Back to list

Liberato Manna Write a Message

Senior Researcher Tenured - Research Director
Department Director

About

Born December 5th 1971, Italian Citizen

Professional Preparation

Ph.D. in Chemistry, University of Bari, Italy, 2001

M.S. in Chemistry, with Honours, University of Bari, Italy, 1996

 

Research interests

Synthesis and assembly of colloidal nanocrystals, study of structural, chemical and surface transformations in nanoscale materials, modelling and related applications in energy-related areas, in photonics, electronics and biology.

 

Appointments

2010-current:            Professor of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology (The Netherlands) (part-time, unpaid position)

2009-current:            Head of the Nanochemistry Department at the Italian Institute of Technology in Genova (Italy)

2006- 2009:              Leader of the Chemistry Division at the National Nanotechnology Lab in Lecce (Italy)

2003-2008:               Junior Scientist at the National Nanotechnology Lab in Lecce (Italy)

2003:                        Visiting Scientist at the Center for Nanoscience, Munich (Germany)

2001-2003:               Postdoctoral Fellow, University of California, Berkeley

1999-2000:               Visiting student, University of California, Berkeley

 

Publications

224 papers in international journals (8 review articles), excluding conference proceedings, 16 book chapters, 1 book

Citations

~17,500 citations, H index 56 (ISI Web of Science, October 2015),

~21,500 citations, H index 62 (Google Scholar, October 2015)

 

Covers of journal issues

1. “Semiconductor Nanorods Liquid Crystals”, Nano Letters 2002, http://pubs.acs.org/action/showLargeCover?issue=40378338

2. “Nanocrystal Phase Control”, Nature Materials 2003, http://www.nature.com/nmat/journal/v2/n6/covers/index.html

3. “Room temperature-dipolelike single photon source with a colloidal dot-in-rod”, Applied Physics Letters 2010, http://apl.aip.org/resource/1/applab/v96/i3

4. “Interlocked branched nanocrystals”, Nature Materials 2011, http://www.nature.com/nmat/journal/v10/n11/covers/index.html

5. “Showcasing research from the recipient of the 2011 Journal of Materials Chemistry Lectureship”, Journal of Materials Chemistry 2012, http://pubs.rsc.org/en/content/articlepdf/2012/jm/c2jm90087d

6. “Synthesis of highly luminescent wurtzite CdSe/CdS giant-shell nanocrystals using a fast continuous injection route”, Journal of Materials Chemistry C, 2014,         http://pubs.rsc.org/en/content/articlelanding/2014/tc/c4tc90046d#!divAbstract

7. “One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate”, Journal of Materials Chemistry B, 2014, http://pubs.rsc.org/En/content/articlepdf/2014/tb/c4tb00061g

 

Invited talks

80 Invited conference presentations, 36 invited seminars/lectures/colloquia at Universities, Research Centres and Companies


Granted Patents and Patent Applications

10 issued patents, 18 patent applications

Teaching Expertise

2014, 2015: Electronic Structure of Solids (grad. course, Univ. of Genoa)

2014, 2015: Fundamentals of Crystallography (grad. course, Univ. of Genoa)

2006: Physical Chemistry of interfaces (undergrad. course, Univ. of Lecce)

2004: Polymer Science (undergrad. course,Univ. of Lecce)

 

Organization of conference/symposia

2015:                           Co-Organizer of the Symposium “From Molecules to Colloidal Compound Semiconductor Nanocrystals ─ Advances in Mechanism-Enabled Design and Syntheses”, at the 2015 MRS Spring Meeting, San Francisco, USA.

2014:                         Chairman of the “Quantum Dots 2014” conference, Pisa, Italy

2012:                         Co-Organizer of the Symposium “Organized Nanostructures and Nano-objects: Fabrication, characterization and applications” at the EMRS Fall Meeting 2012, September 17th-21st 2012, Warsaw

2010:                         Organizer of the Symposium "Science and Technology of Nanotubes and Nanowires and Graphene" at the June 8th-10th 2010 European Materials Research Society Spring Meeting (EMRS2010) in Strasbourg, France

2008:                         Chairman of the International Conference ‘Nanoscience with Nanocrystals’ (NANAX3), May 21st-23rd 2008, Lecce, Italy

Editorial Board Membership

-Journal of Experimental Nanoscience

-Journal of Nano-Optics and Nanoelectronics

-Particle & Particle Systems Characterization (Wiley)

- Chemistry of Materials (ACS)

Projects

Major Research Grants Secured

2014-2018:               European Research Council (ERC) FP7 Consolidator grant recipient (TRANS-NANO, contract. n. 614897)

2014-2016:               Fondazione Cariplo, project partner “Green nanomaterials for next-generation photovoltaics (GREENS)”

2013-2016:               FP7-ICT-2013-FET-F “Graphene-Driven Revolutions in ICT and Beyond”, Project Partner

2012-2014:               European FP7 Marie Curie IEF project (NIRPLANA, contract n. 298022), Supervisor

2012-2014:               European FP7 Marie Curie IEF project (LOTOCON, contract n. 301100), Supervisor

2013-2016:               European FP7 Marie Curie ITN project (MAGNETICFUN, contract n. 290248)

2012-2015:               European FP7 large scale project (SCALENANO, contract n. 284489)

2011-2014:               Italian FIRB project (Nanostructured oxides, contract n. RBAP115AYN)

2009-2013:               European Research Council (ERC) FP7 starting grant recipient (NANO-ARCH, contract n. 240111)

2009-2012:               European project FP7 SMALL, project partner (MAGNIFYCO, contract n. 228622) 

2006-2009:               European FP6 Marie Curie TOK Network, scientific leader for NNL (NANOTAIL, contract n. 042459)

2006-2010:               Italy-USA Bilateral Project (Italian Min. of Research), scientific leader for NNL (contract n. RBIN048TSE)

2005-2008:               European project FP6 STREP, project coordinator (SA-NANO, contract n. 013698) 

 

Selected Publications

1             Wang, S.et al.  Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects, ACS Nano 2015, 9, 1788-1800, http://dx.doi.org/10.1021/nn506687t

2             Toma, A.et al.  Squeezing Terahertz Light into Nanovolumes: Nanoantenna Enhanced Terahertz Spectroscopy (NETS) of Semiconductor Quantum Dots, Nano Lett. 2015, 15, 386-391, http://dx.doi.org/10.1021/nl503705w

3             Tao, C.et al.  17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells, Energy & Environmental Science 2015, 8, 2365-2370, http://dx.doi.org/10.1039/c5ee01720c

4             Najafishirtari, S.et al.  Nanoscale Transformations of Alumina-Supported AuCu Ordered Phase Nanocrystals and Their Activity in CO Oxidation, Acs Catalysis 2015, 5, 2154-2163, http://dx.doi.org/10.1021/cs501923x

5             Miszta, K.et al.  Selective Cation Exchange in the Core Region of Cu2–xSe/Cu2–xS Core/Shell Nanocrystals, J. Am. Chem. Soc. 201510.1021/jacs.5b06379

6             Lesnyak, V.et al.  Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals, J. Am. Chem. Soc. 2015, 137, 9315-9323, http://dx.doi.org/10.1021/jacs.5b03868

7             Kovalenko, M. V.et al.  Prospects of Nanoscience with Nanocrystals, ACS Nano 2015, 9, 1012-1057, http://dx.doi.org/10.1021/nn506223h

8             Hyeon, T.et al.  Sustainable nanotechnology, Chem. Soc. Rev. 2015, 44, 5755-5757, http://dx.doi.org/10.1039/c5cs90072g

9             Grim, J. Q.et al.  A sustainable future for photonic colloidal nanocrystals, Chem. Soc. Rev. 2015, 44, 5897-5914, http://dx.doi.org/10.1039/c5cs00285k

10           Goriparti, S.et al.  Direct Synthesis of Carbon doped TiO2-Bronze Nanowires as Anode Materials for High Performance Lithium Ion Batteries, ACS Appl. Mater. Interf. 2015, http://dx.doi.org/10.1021/acsami.5b06426

11           Di Stasio, F.et al.  Single-Mode Lasing from Colloidal Water-Soluble CdSe/CdS Quantum Dot-in-Rods, Small 2015, 11, 1328-1334, http://dx.doi.org/10.1002/smll.201402527

12           De Trizio, L.et al.  Cu3-x,P Nanocrystals as a Material Platform for Near-Infrared Plasmonics and Cation Exchange Reactions, Chem. Mat. 2015, 27, 1120-1128, http://dx.doi.org/10.1021/cm5044792

13           Corrias, A.et al.  Insights into the Structure of Dot@Rod and Dot@Octapod CdSe@CdS Heterostructures, J. Phys. Chem. C 2015, 119, 16338-16348, http://dx.doi.org/10.1021/acs.jpcc.5b04593

14           Christodoulou, S.et al.  Band structure engineering via piezoelectric fields in strained anisotropic CdSe/CdS nanocrystals, Nature Communications 2015, 610.1038/ncomms8905

15           Chavan, A. A.et al.  Elastomeric Nanocomposite Foams for the Removal of Heavy Metal Ions from Water, ACS Appl. Mater. Interf. 2015, 7, 14778-14784, http://dx.doi.org/10.1021/acsami.5b03003

16           Bigall, N. C.et al.  Hollow Iron Oxide Nanoparticles in Polymer Nanobeads as MRI Contrast Agents, J. Phys. Chem. C 2015, 119, 6246-6253, http://dx.doi.org/10.1021/jp508951t

17           Akkerman, Q. A.et al.  From Binary Cu2S to Ternary Cu-In-S and Quaternary Cu-In-Zn-S Nanocrystals with Tunable Composition via Partial Cation Exchange, ACS Nano 2015, 9, 521-531, http://dx.doi.org/10.1021/nn505786d

18           Akkerman, Q. A.et al.  Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions, J. Am. Chem. Soc. 2015, 137, 10276-10281, http://dx.doi.org/10.1021/jacs.5b05602

19           Verrelli, R.et al.  A lithium ion battery exploiting a composite Fe2O3 anode and a high voltage Li1.35Ni0.48Fe0.1Mn1.72O4 cathode, Rsc Advances 2014, 4, 61855-61862, http://dx.doi.org/10.1039/c4ra12598c

20           Saldanha, P. L.et al.  Generalized One-Pot Synthesis of Copper Sulfide, Selenide-Sulfide, and Telluride-Sulfide Nanoparticles, Chem. Mat. 2014, 26, 1442-1449, http://dx.doi.org/10.1021/cm4035598

21           Paolella, A.et al.  Etched Colloidal LiFePO4 Nanoplatelets toward High-Rate Capable Li-Ion Battery Electrodes, Nano Lett. 2014, 14, 6828-6835, http://dx.doi.org/10.1021/nl504093w

22           Paolella, A.et al.  Redox Centers Evolution in Phospho-Olivine Type (LiFe0.5Mn0.5 PO4) Nanoplatelets with Uniform Cation Distribution, Nano Lett. 2014, 14, 1477-1483, http://dx.doi.org/10.1021/nl4046697

23           Miszta, K.et al.  Nanocrystal Film Patterning by Inhibiting Cation Exchange via Electron-Beam or X-ray Lithography, Nano Lett. 2014, 14, 2116-2122, http://dx.doi.org/10.1021/nl500349j

24           Miszta, K.et al.  Hollow and Concave Nanoparticles via Preferential Oxidation of the Core in Colloidal Core/Shell Nanocrystals, J. Am. Chem. Soc. 2014, 136, 9061-9069, http://dx.doi.org/10.1021/ja5032634

25           Maserati, L.et al.  Oxygen Sensitivity of Atomically Passivated CdS Nanocrystal Films, ACS Appl. Mater. Interf. 2014, 6, 9517-9523, http://dx.doi.org/10.1021/am501906y

26           Lesnyak, V.et al.  Alloyed Copper Chalcogenide Nanoplatelets via Partial Cation Exchange Reactions, ACS Nano 2014, 8, 8407-8418, http://dx.doi.org/10.1021/nn502906z

27           Kostopoulou, A.et al.  Assembly-mediated interplay of dipolar interactions and surface spin disorder in colloidal maghemite nanoclusters, Nanoscale 2014, 6, 3764-3776, http://dx.doi.org/10.1039/c3nr06103e

28           Guardia, P.et al.  One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate, Journal of Materials Chemistry B 2014, 2, 4426-4434, http://dx.doi.org/10.1039/c4tb00061g

29           Grim, J. Q.et al.  Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells, Nat. Nanotechnol. 2014, 9, 891-895, http://dx.doi.org/10.1038/nnano.2014.213

30           Grancini, G.et al.  The Impact of the Crystallization Processes on the Structural and Optical Properties of Hybrid Perovskite Films for Photovoltaics, Journal of Physical Chemistry Letters 2014, 5, 3836-3842, http://dx.doi.org/10.1021/jz501877h

31           Goriparti, S.et al.  Germanium Nanocrystals-MWCNTs Composites as Anode Materials for Lithium Ion Batteries, ECS Transactions 2014, 62, 19-24, http://dx.doi.org/10.1149/06201.0019ecst

32           Gaspari, R.et al.  A theoretical investigation of the (0001) covellite surfaces, Journal of Chemical Physics 2014, 141, 044702, http://dx.doi.org/10.1063/1.4890374

33           De Trizio, L.et al.  Sn Cation Valency Dependence in Cation Exchange Reactions Involving Cu2-xSe Nanocrystals, J. Am. Chem. Soc. 2014, 136, 16277-16284, http://dx.doi.org/10.1021/ja508161c

34           Conca, E.et al.  Charge separation in Pt-decorated CdSe@CdS octapod nanocrystals, Nanoscale 2014, 6, 2238-2243, http://dx.doi.org/10.1039/c3nr05567a

35           Comin, A.et al.  New materials for tunable plasmonic colloidal nanocrystals, Chem. Soc. Rev. 2014, 43, 3957-3975, http://dx.doi.org/10.1039/c3cs60265f

36           Chushkin, Y.et al.  Three-dimensional coherent diffractive imaging on non-periodic specimens at the ESRF beamline ID10, Journal of Synchrotron Radiation 2014, 21, 594-599, http://dx.doi.org/10.1107/s1600577514003440

37           Christodoulou, S.et al.  Synthesis of highly luminescent wurtzite CdSe/CdS giant-shell nanocrystals using a fast continuous injection route, Journal of Materials Chemistry C 2014, 2, 3439-3447, http://dx.doi.org/10.1039/c4tc00280f

38           Arciniegas, M. P.et al.  Self-Assembly of Octapod-Shaped Colloidal Nanocrystals into a Hexagonal Ballerina Network Embedded in a Thin Polymer Film, Nano Lett. 2014, 14, 1056-1063, http://dx.doi.org/10.1021/nl404732m

39           Zhang, Y.et al.  Cold field emission dominated photoconductivity in ordered three-dimensional assemblies of octapod-shaped CdSe/CdS nanocrystals, Nanoscale 2013, 5, 7596-7600, http://dx.doi.org/10.1039/c3nr01588b

40           Zanella, M.et al.  Atomic Ligand Passivation of Colloidal Nanocrystal Films via their Reaction with Propyltrichlorosilane, Chem. Mat. 2013, 25, 1423–1429, http://dx.doi.org/10.1021/cm303022w

41           Xie, Y.et al.  Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu+ Ions, J. Am. Chem. Soc. 2013, 135, 17630−17637, http://dx.doi.org/10.1021/ja409754v

42           Rippa, M.et al.  Bragg Extraction of Light in 2D Photonic Thue Morse Quasicrystal patterned in Active CdSe/CdS Nanorods-Polymer Nanocomposites, Nanoscale 2013, 5, 331-336, http://dx.doi.org/10.1039/c2nr31839c

43           Riedinger, A.et al.  Subnanometer Local Temperature Probing and Remotely Controlled Drug Release Based on Azo-Functionalized Iron Oxide Nanoparticles, Nano Lett. 2013, 13, 2399-2406, http://dx.doi.org/10.1021/nl400188q

44           Qi, W.et al.  Phase diagram of octapod-shaped nanocrystals in a quasi-two-dimensional planar geometry, J. Chem. Phys. 2013, 138, 154504, http://dx.doi.org/10.1063/1.4799269

45           Pisanello, F.et al.  Highly luminescent, flexible and biocompatible cadmium-based nanocomposites, Microelectr. Eng. 2013, 111, 299-303, http://dx.doi.org/10.1016/j.mee.2013.02.019

46           Pisanello, F.et al.  Radiofrequency characterization of polydimethylsiloxane – iron oxide based nanocomposites, Microelectr. Eng. 2013, 111, 46-51, http://dx.doi.org/10.1016/j.mee.2012.11.013

47           Pisanello, F.et al.  GHz properties of magnetophoretically aligned iron-oxide nanoparticle doped polymers, ACS Appl. Mater. Interf. 2013, 5, 2908–2914, http://dx.doi.org/10.1021/am400239b

48           Paolella, A.et al.  Colloidal Synthesis of Cuprite (Cu2O) Octahedral Nanocrystals and Their Electrochemical Lithiation, ACS Appl. Mater. Interf. 2013, 5, 2745–2751, http://dx.doi.org/10.1021/am4004073

49           Li, H.et al.  Colloidal Branched Semiconductor Nanocrystals: State of the Art and Perspectives, Acc. Chem. Res. 2013, 46, 1387-1396, http://dx.doi.org/10.1021/ar3002409

50           Li, H.et al.  Synthesis of Uniform Disk-Shaped Copper Telluride Nanocrystals and Cation Exchange to Cadmium Telluride Quantum Disks with Stable Red Emission, J. Am. Chem. Soc. 2013, 135, 12270-12278, http://dx.doi.org/10.1021/ja404694k

51           Kunneman, L. T.et al.  Mobility and Spatial Distribution of Photoexcited Electrons in CdSe/CdS Nanorods, J. Phys. Chem. C 2013, 117, 3146-3151, http://dx.doi.org/10.1021/jp3117984

52           Guardia, P.et al.  Plasmon Dynamics in Colloidal Au2Cd Alloy–CdSe Core/Shell Nanocrystals, ACS Nano 2013, 7, 1045-1053, http://dx.doi.org/10.1021/nn303764k

53           Grivas, C.et al.  Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals, Nat Commun 2013, 4, art. n. 2376, http://dx.doi.org/10.1038/ncomms3376

54           George, C.et al.  CO Oxidation on Colloidal Au0.80Pd0.20–FexOy Dumbbell Nanocrystals, Nano Lett. 2013, 13, 752-757, http://dx.doi.org/10.1021/nl304448p

55           Dilena, E.et al.  CuInxGa1–xS2 Nanocrystals with Tunable Composition and Band Gap Synthesized via a Phosphine-Free and Scalable Procedure, Chem. Mat. 2013, 25, 3180-3187, http://dx.doi.org/10.1021/cm401563u

56           Della Valle, G.et al.  Ultrafast Optical Mapping of Nonlinear Plasmon Dynamics in Cu2–xSe Nanoparticles, The Journal of Physical Chemistry Letters 2013, 4, 3337-3344, http://dx.doi.org/10.1021/jz401862v

57           De Trizio, L.et al.  Colloidal CdSe/Cu3P/CdSe Nanocrystal Heterostructures and Their Evolution upon Thermal Annealing, ACS Nano 2013, 7, 3997-4005, http://dx.doi.org/10.1021/nn3060219

58           Ceseracciu, L.et al.  Compression stiffness of porous nanostructures from self-assembly of branched nanocrystals, Nanoscale 2013, 5, 681–686, http://dx.doi.org/10.1039/C2NR32590J

59           Bigall, N. C.et al.  Colloidal Ordered Assemblies in a Polymer Shell – A Novel Type of Magnetic Nanobeads for Theranostic Applications, Chem. Mat. 2013, 25, 1055−1062, http://dx.doi.org/10.1021/cm3036746

60           Allione, M.et al.  Two-Photon-Induced Blue Shift of Core and Shell Optical Transitions in Colloidal CdSe/CdS Quasi-Type II Quantum Rods, ACS Nano 2013, 7, 2443–2452, http://dx.doi.org/10.1021/nn3057559

61           Zavelani-Rossi, M.et al.  Self-assembled CdSe/CdS nanorod micro-lasers fabricated from solution by capillary jet deposition, Laser Photon. Rev. 2012, 6, 678–683, http://dx.doi.org/10.1002/lpor.201200010

62           Scotognella, F.et al.  Study of higher-energy core states in CdSe/CdS octapod nanocrystals by ultrafast spectroscopy, Eur. Phys. J. B 2012, 85, 128, http://dx.doi.org/10.1140/epjb/e2012-20867-x

63           Qi, W.et al.  Ordered Two-Dimensional Superstructures of Colloidal Octapod-Shaped Nanocrystals on Flat Substrates, Nano Lett. 2012, 12, 5299–5303, http://dx.doi.org/10.1021/nl302620j

64           Mendelsberg, R. J.et al.  Understanding the Plasmon Resonance in Ensembles of Degenerately Doped Semiconductor Nanocrystals, J. Phys. Chem. C 2012, 116, 12226-12231, http://dx.doi.org/10.1021/jp302732s

65           Maier, S.et al.  Editorial: Plasmonic sensors, An. der Physik 2012, 524, A155-A155, http://dx.doi.org/10.1002/andp.201200753

66           Lupo, M. G.et al.  Band-edge ultrafast pump-probe spectroscopy of core/shell CdSe/CdS rods: assessing electron delocalization by effective mass calculations, Phys. Chem. Chem. Phys. 2012, 14, 7420-7426, http://dx.doi.org/10.1039/c2cp40439g

67           Li, H.et al.  Blue-UV-Emitting ZnSe(Dot)/ZnS(Rod) Core/Shell Nanocrystals Prepared from CdSe/CdS Nanocrystals by Sequential Cation Exchange, ACS Nano 2012, 6, 1637-1647, http://dx.doi.org/10.1021/nn204601n

68           Lavieville, R.et al.  Charge Transport in Nanoscale "All-Inorganic" Networks of Semiconductor Nanorods Linked by Metal Domains, ACS Nano 2012, 6, 2940-2947, http://dx.doi.org/10.1021/nn3006625

69           Kudera, S.et al.  Spatial analysis of the photocurrent generation and transport in semiconductor nanocrystal films, Phys. Rev. B 2012, 86, 075307, http://dx.doi.org/10.1103/PhysRevB.86.075307

70           Korobchevskaya, K.et al.  Effect of Morphology on Ultrafast Carrier Dynamics In Asymmetric Gold-Iron Oxide Plasmonic Heterodimers, J. Phys. Chem. C 2012, 116, 26924−26928, http://dx.doi.org/10.1021/jp309462q

71           Kim, M. R.et al.  Influence of Chloride Ions on the Synthesis of Colloidal Branched CdSe/CdS Nanocrystals by Seeded Growth, ACS Nano 2012, 6, 11088–11096, http://dx.doi.org/10.1021/nn3048846

72           Head, C. R.et al.  Spinning nanorods - active optical manipulation of semiconductor nanorods using polarised light, Nanoscale 2012, 4, 3693-3697, http://dx.doi.org/10.1039/C2NR30515A

73           Guardia, P.et al.  Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment, ACS Nano 2012, 6, 3080-3091, http://dx.doi.org/10.1021/nn2048137

74           Goris, B.et al.  Thermally Induced Structural and Morphological Changes of CdSe/CdS Octapods, Small 2012, 8, 937-942, http://dx.doi.org/10.1002/smll.201101897

75           Ferrari, A. C.et al.  Science and technology of nanotubes, nanowires and graphene, Physica E 2012, 44, 921-923, http://dx.doi.org/10.1016/j.physe.2012.02.005

76           Dilena, E.et al.  Colloidal Cu2-x(SySe1-y) alloy nanocrystals with controllable crystal phase: synthesis, plasmonic properties, cation exchange and electrochemical lithiation, J. Mater. Chem. 2012, 22, 13023-13031, http://dx.doi.org/10.1039/C2JM30788J

77           De Trizio, L.et al.  Strongly Fluorescent Quaternary Cu–In–Zn–S Nanocrystals Prepared from Cu1-xInS2 Nanocrystals by Partial Cation Exchange, Chem. Mat. 2012, 24, 2400-2406, http://dx.doi.org/10.1021/cm301211e

78           De Trizio, L.et al.  Size-Tunable, Hexagonal Plate-like Cu3P and Janus-like Cu-Cu3P Nanocrystals, ACS Nano 2012, 6, 32-41, http://dx.doi.org/10.1021/nn203702r

79           de Graaf, J.et al.  A Roadmap for the Assembly of Polyhedral Particles, Science 2012, 337, 417-418, http://dx.doi.org/10.1126/science.1226162

80           De Caro, L.et al.  A superbright X-ray laboratory microsource empowered by a novel restoration algorithm, J. Appl. Cryst. 2012, 45, 1228-1235, http://dx.doi.org/doi:10.1107/S0021889812042161

81           Dallari, W.et al.  Light-Induced Inhibition of Photoluminescence Emission of Core/Shell Semiconductor Nanorods and Its Application for Optical Data Storage, J. Phys. Chem. C 2012, 116, 25576-25580, http://dx.doi.org/10.1021/jp3078776

82           Comin, A.et al.  Plasmon Bleaching Dynamics in Colloidal Gold-Iron Oxide Nanocrystal Heterodimers, Nano Lett. 2012, 12, 921-926, http://dx.doi.org/10.1021/nl2039875

83           Bertoni, G.et al.  Direct Determination of Polarity, Faceting and Core Location in Colloidal Core/Shell Wurtzite Semiconductor Nanocrystals, ACS Nano 2012, 6, 6453–6461, http://dx.doi.org/10.1021/nn302085t

84           Zhang, Y.et al.  Spatially resolved photoconductivity of thin films formed by colloidal octapod-shaped CdSe/CdS nanocrystals, Nanoscale 2011, 3, 2964-2970, http://dx.doi.org/10.1039/c1nr10251f

85           Zanella, M.et al.  Self-Assembled Multilayers of Vertically Aligned Semiconductor Nanorods on Device-Scale Areas, Adv. Mater. 2011, 23, 2205-2209, http://dx.doi.org/10.1002/adma.201100539

86           Zanella, M.et al.  Assembly of shape-controlled nanocrystals by depletion attraction, Chem. Commun. 2011, 47, 203-205, http://dx.doi.org/10.1039/c0cc02477e

87           van Huis, M. A.et al.  Chemical Transformation of Au-Tipped CdS Nanorods into AuS/Cd Core/Shell Particles by Electron Beam Irradiation, Nano Lett. 2011, 11, 4555-4561, http://dx.doi.org/10.1021/nl2030823

88           Scotognella, F.et al.  Ultrafast Exciton Dynamics in Colloidal CdSe/CdS Octapod Shaped Nanocrystals, J. Phys. Chem. C 2011, 115, 9005-9011, http://dx.doi.org/10.1021/jp203000n

89           Scotognella, F.et al.  Plasmon Dynamics in Colloidal Cu2-xSe Nanocrystals, Nano Lett. 2011, 11, 4711-4717, http://dx.doi.org/10.1021/nl202390s

90           Petti, L.et al.  Novel hybrid organic/inorganic 2D quasiperiodic PC: from diffraction pattern to vertical light extraction, Nanoscale Res. Lett. 2011, 6, 371, http://dx.doi.org/10.1186/1556-276x-6-371

91           Petti, L.et al.  A novel hybrid organic/inorganic photonic crystal slab showing a resonance action at the band edge, Nanotechnology 2011, 22, 285307, http://dx.doi.org/10.1088/0957-4484/22/28/285307

92           Paolella, A.et al.  Charge Transport and Electrochemical Properties of Colloidal Greigite (Fe3S4) Nanoplatelets, Chem. Mat. 2011, 23, 3762-3768, http://dx.doi.org/10.1021/cm201531h

93           Morello, G.et al.  Temperature and Size Dependence of the Optical Properties of Tetrapod-Shaped Colloidal Nanocrystals Exhibiting Type-II Transitions, J. Phys. Chem. C 2011, 115, 18094-18104, http://dx.doi.org/10.1021/jp2048162

94           Miszta, K.et al.  Cation Exchange Reactions in Colloidal Branched Nanocrystals, ACS Nano 2011, 5, 7176-7183, http://dx.doi.org/10.1021/nn201988w

95           Miszta, K.et al.  Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures, Nat. Mater. 2011, 10, 872-876, http://dx.doi.org/10.1038/nmat3121

96           Li, H. B.et al.  Sequential Cation Exchange in Nanocrystals: Preservation of Crystal Phase and Formation of Metastable Phases, Nano Lett. 2011, 11, 4964-4970, http://dx.doi.org/10.1021/nl202927a

97           Krahne, R.et al.  Amplified spontaneous emission from core and shell transitions in CdSe/CdS nanorods fabricated by seeded growth, Appl. Phys. Lett. 2011, 98, 063105, http://dx.doi.org/10.1063/1.3549298

98           Krahne, R.et al.  Physical properties of elongated inorganic nanoparticles, Phys. Rep. 2011, 501, 75-221, http://dx.doi.org/10.1016/j.physrep.2011.01.001

99           Korobchevskaya, K.et al.  Ultrafast carrier dynamics in gold/iron-oxide nanocrystal heterodimers, Appl. Phys. Lett. 2011, 99, 011907, http://dx.doi.org/10.1063/1.3609324

100         George, C.et al.  Optical and electrical properties of colloidal (spherical Au)-(spinel ferrite nanorod) heterostructures, Nanoscale 2011, 3, 4647-4654, http://dx.doi.org/10.1039/c1nr10768b

101         George, C.et al.  A Cast-Mold Approach to Iron Oxide and Pt/Iron Oxide Nanocontainers and Nanoparticles with a Reactive Concave Surface, J. Am. Chem. Soc. 2011, 133, 2205-2217, http://dx.doi.org/10.1021/ja108781w

102         Dorfs, D.et al.  Reversible Tunability of the Near-Infrared Valence Band Plasmon Resonance in Cu2-xSe Nanocrystals, J. Am. Chem. Soc. 2011, 133, 11175-11180, http://dx.doi.org/10.1021/ja2016284

103         Di Corato, R.et al.  Multifunctional Nanobeads Based on Quantum Dots and Magnetic Nanoparticles: Synthesis and Cancer Cell Targeting and Sorting, ACS Nano 2011, 5, 1109-1121, http://dx.doi.org/10.1021/nn102761t

104         Brescia, R.et al.  Birth and Growth of Octapod-Shaped Colloidal Nanocrystals Studied by Electron Tomography, J. Phys. Chem. C 2011, 115, 20128-20133, http://dx.doi.org/10.1021/jp206253w

105         Baranov, D.et al.  Chemically induced self-assembly of spherical and anisotropic inorganic nanocrystals, J. Mater. Chem. 2011, 21, 16694-16703, http://dx.doi.org/10.1039/c1jm11599e

106         Antognazza, M. R.et al.  Steady-state photoinduced absorption of CdSe/CdS octapod shaped nanocrystals, Phys. Chem. Chem. Phys. 2011, 13, 15326-15330, http://dx.doi.org/10.1039/c1cp21402k

107         Zavelani-Rossi, M.et al.  Suppression of Biexciton Auger Recombination in CdSe/CdS Dot/Rods: Role of the Electronic Structure in the Carrier Dynamics, Nano Lett. 2010, 10, 3142-3150, http://dx.doi.org/10.1021/nl101933z

108         Zavelani-Rossi, M.et al.  Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods, Nanoscale 2010, 2, 931-935, http://dx.doi.org/10.1039/b9nr00434c

109         Pisanello, F.et al.  Dots in rods as polarized single photon sources, Superlattices Microstruct. 2010, 47, 165-169, http://dx.doi.org/10.1016/j.spmi.2009.06.009

110         Pisanello, F.et al.  Room temperature-dipolelike single photon source with a colloidal dot-in-rod, Appl. Phys. Lett. 2010, 96, 033101, http://dx.doi.org/10.1063/1.3291849

111         Petti, L.et al.  DYNAMIC ORIENTATIONAL PHOTO-REFRACTIVE GRATINGS OBSERVED IN CdSe/CdS NANORODS DOPED NEMATIC LIQUID CRYSTAL CELLS, J. Nonlinear Opt. Phys. Mater. 2010, 19, 111-121, http://dx.doi.org/10.1142/s0218863510005066

112         Petti, L.et al.  Dynamic orientational photorefractive gratings observed in CdSe/CdS nanorods imbedded in liquid crystal cells, Opt. Mater. 2010, 32, 1060-1065, http://dx.doi.org/10.1016/j.optmat.2010.02.031

113         Petti, L.et al.  Optically induced light modulation in an hybrid nanocomposite system of inorganic CdSe/CdS nanorods and nematic liquid crystals, Opt. Mater. 2010, 32, 1011-1016, http://dx.doi.org/10.1016/j.optmat.2010.02.022

114         Persano, A.et al.  Photoconduction Properties in Aligned Assemblies of Colloidal CdSe/CdS Nanorods, ACS Nano 2010, 4, 1646-1652, http://dx.doi.org/10.1021/nn901575r

115         Morello, G.et al.  Evidence for an internal field in CdSe/CdS nanorods by time resolved and single rod experiments, Superlattices Microstruct. 2010, 47, 174-177, http://dx.doi.org/10.1016/j.spmi.2009.07.030

116         Lupo, M. G.et al.  Evidence of electron wave function delocalization in CdSe/CdS asymmetric nanocrystals, Superlattices Microstruct. 2010, 47, 170-173, http://dx.doi.org/10.1016/j.spmi.2009.09.006

117         Franchini, I. R.et al.  Phototransport in networks of tetrapod-shaped colloidal semiconductor nanocrystals, Nanoscale 2010, 2, 2171-2179, http://dx.doi.org/10.1039/c0nr00308e

118         Franchini, I. R.et al.  Colloidal PbTe-Au nanocrystal heterostructures, J. Mater. Chem. 2010, 20, 1357-1366, http://dx.doi.org/10.1039/b915687a

119         Figuerola, A.et al.  Epitaxial CdSe-Au Nanocrystal Heterostructures by Thermal Annealing, Nano Lett. 2010, 10, 3028-3036, http://dx.doi.org/10.1021/nl101482q

120         Figuerola, A.et al.  From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications, Pharmacol. Res. 2010, 62, 126-143, http://dx.doi.org/10.1016/j.phrs.2009.12.012

121         Falqui, A.et al.  Electron Microscopy Studies of Electron-Beam Sensitive PbTe-Based Nanostructures, Microsc. Res. Tech. 2010, 73, 944-951, http://dx.doi.org/10.1002/jemt.20843

122         Deka, S. R.et al.  Acidic pH-Responsive Nanogels as Smart Cargo Systems for the Simultaneous Loading and Release of Short Oligonucleotides and Magnetic Nanoparticles, Langmuir 2010, 26, 10315-10324, http://dx.doi.org/10.1021/la1004819

123         Deka, S.et al.  Octapod-Shaped Colloidal Nanocrystals of Cadmium Chalcogenides via "One-Pot" Cation Exchange and Seeded Growth, Nano Lett. 2010, 10, 3770-3776, http://dx.doi.org/10.1021/nl102539a

124         Deka, S.et al.  Phosphine-Free Synthesis of p-Type Copper(I) Selenide Nanocrystals in Hot Coordinating Solvents, J. Am. Chem. Soc. 2010, 132, 8912-8914, http://dx.doi.org/10.1021/ja103223x

125         Bomm, J.et al.  Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites, Beilstein J. Nanotechnol. 2010, 1, 94-100, http://dx.doi.org/10.3762/bjnano.1.11

126         Baranov, D.et al.  Assembly of Colloidal Semiconductor Nanorods in Solution by Depletion Attraction, Nano Lett. 2010, 10, 743-749, http://dx.doi.org/10.1021/nl903946n

127         Rizzo, A.et al.  Polarized Light Emitting Diode by Long-Range Nanorod Self-Assembling on a Water Surface, ACS Nano 2009, 3, 1506-1512, http://dx.doi.org/10.1021/nn900063m

128         Nolle, D.et al.  Structural and magnetic deconvolution of FePt/FeOx-nanoparticles using x-ray magnetic circular dichroism, New J. Phys. 2009, 11, 033034, http://dx.doi.org/10.1088/1367-2630/11/3/033034

129         Nobile, C.et al.  Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics, J. Phys.-Condes. Matter 2009, 21, 264013, http://dx.doi.org/10.1088/0953-8984/21/26/264013

130         Lutich, A.et al.  Macroscale alignment of CdSe/CdS nanorods by porous anodic alumina templates, Phys. Status Solidi-Rapid Res. Lett. 2009, 3, 151-153, http://dx.doi.org/10.1002/pssr.200903108

131         Li, Y. Q.et al.  Improved photovoltaic performance of bilayer heterojunction photovoltaic cells by triplet materials and tetrapod-shaped colloidal nanocrystals doping, Appl. Phys. Lett. 2009, 95, 043101, http://dx.doi.org/10.1063/1.3186074

132         Li, Y. Q.et al.  Improved Photovoltaic Performance of Heterostructured Tetrapod-Shaped CdSe/CdTe Nanocrystals Using C60 Interlayer, Adv. Mater. 2009, 21, 4461-4466, http://dx.doi.org/10.1002/adma.200901338

133         Fiore, A.et al.  Tetrapod-Shaped Colloidal Nanocrystals of II-VI Semiconductors Prepared by Seeded Growth, J. Am. Chem. Soc. 2009, 131, 2274-2282, http://dx.doi.org/10.1021/ja807874e

134         Figuerola, A.et al.  End-to-End Assembly of Shape-Controlled Nanocrystals via a Nanowelding Approach Mediated by Gold Domains, Adv. Mater. 2009, 21, 550-554, http://dx.doi.org/10.1002/adma.200801928

135         Di Corato, R.et al.  Magnetic-Fluorescent Colloidal Nanobeads: Preparation and Exploitation in Cell Separation Experiments, Macromol. Biosci. 2009, 9, 952-958, http://dx.doi.org/10.1002/mabi.200900154

136         Deka, S.et al.  CdSe/CdS/ZnS Double Shell Nanorods with High Photoluminescence Efficiency and Their Exploitation As Biolabeling Probes, J. Am. Chem. Soc. 2009, 131, 2948-2958, http://dx.doi.org/10.1021/ja808369e

137         Deka, S.et al.  Fluorescent Asymmetrically Cobalt-Tipped CdSe@CdS Core@Shell Nanorod Heterostructures Exhibiting Room-Temperature Ferromagnetic Behavior, J. Am. Chem. Soc. 2009, 131, 12817-12828, http://dx.doi.org/10.1021/ja904493c

138         Chiodo, L.et al.  An ab initio study of the magnetic-metallic CoPt3-Au interfaces, J. Phys.-Condes. Matter 2009, 21, 015001, http://dx.doi.org/10.1088/0953-8984/21/1/015001

139         Carbone, L.et al.  Self-Assembly of Amphiphilic Nanocrystals, Angew. Chem. Int. Edit. 2009, 48, 4282-4283, http://dx.doi.org/10.1002/anie.200900822

140         Zanella, M.et al.  Growth of colloidal nanoparticles of group II-VI and IV-VI semiconductors on top of magnetic iron-platinum nanocrystals, J. Mater. Chem. 2008, 18, 4311-4317, http://dx.doi.org/10.1039/b804154g

141         von Holt, B.et al.  Ligand exchange of CdSe nanocrystals probed by optical spectroscopy in the visible and mid-IR, J. Mater. Chem. 2008, 18, 2728-2732, http://dx.doi.org/10.1039/b720009a

142         Steiner, D.et al.  Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy, Nano Lett. 2008, 8, 2954-2958, http://dx.doi.org/10.1021/nl801848x

143         Quarta, A.et al.  Multifunctional nanostructures based on inorganic nanoparticles and oligothiophenes and their exploitation for cellular studies, J. Am. Chem. Soc. 2008, 130, 10545-10555, http://dx.doi.org/10.1021/ja800102v

144         Persano, A.et al.  Charge carrier transport in thin films of colloidal CdSe quantum rods, J. Appl. Phys. 2008, 104, 074306, http://dx.doi.org/10.1063/1.2988136

145         Nobile, C.et al.  Probe Tips Functionalized with Colloidal Nanocrystal Tetrapods for High-Resolution Atomic Force Microscopy Imaging, Small 2008, 4, 2123-2126, http://dx.doi.org/10.1002/smll.200800604

146         Morello, G.et al.  Radiative recombination dynamics in tetrapod-shaped CdTe nanocrystals: Evidence for a photoinduced screening of the internal electric field, Appl. Phys. Lett. 2008, 92, 191905, http://dx.doi.org/10.1063/1.2924306

147         Morello, G.et al.  Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: Photoinduced screening of the internal electric field, Phys. Rev. B 2008, 78, 195313, http://dx.doi.org/10.1103/PhysRevB.78.195313

148         Morello, G.et al.  The influence of intrinsic and surface states on the emission properties of colloidal nanocrystals, Superlattices Microstruct. 2008, 43, 528-531, http://dx.doi.org/10.1016/j.spmi.2007.06.016

149         Martiradonna, L.et al.  Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals, Nano Lett. 2008, 8, 260-264, http://dx.doi.org/10.1021/n10725751

150         Malvindi, M. A.et al.  Rod-Shaped Nanocrystals Elicit Neuronal Activity In Vivo, Small 2008, 4, 1747-1755, http://dx.doi.org/10.1002/smll.200800413

151         Lupo, M. G.et al.  Ultrafast Electron-Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals, Nano Lett. 2008, 8, 4582-4587, http://dx.doi.org/10.1021/nl8028366

152         Figuerola, A.et al.  One-pot synthesis and characterization of size-controlled bimagnetic FePt-iron oxide heterodimer nanocrystals, J. Am. Chem. Soc. 2008, 130, 1477-1487, http://dx.doi.org/10.1021/ja078034v

153         Fasoli, A.et al.  Vapor-phase nucleation of individual CdSe nanostructures from shape-engineered nanocrystal seeds, Appl. Phys. Lett. 2008, 92, 023106, http://dx.doi.org/10.1063/1.2825425

154         Di Corato, R.et al.  Water solubilization of hydrophobic nanocrystals by means of poly(maleic anhydride-alt-1-octadecene), J. Mater. Chem. 2008, 18, 1991-1996, http://dx.doi.org/10.1039/b717801h

155         Della Torre, A.et al.  Interconnection of specific nano-objects by electron beam lithography - A controllable method, Mater. Sci. Eng. C 2008, 28, 299-302, http://dx.doi.org/10.1016/j.msec.2007.01.009

156         Creti, A.et al.  Shell thickness dependence of exciton trapping in colloidal core/shell nanorods, J. Lumines. 2008, 128, 361-365, http://dx.doi.org/10.1016/j.jlumin.2007.09.001

157         Creti, A.et al.  Role of defect states on electrical and optical properties in CdSe nanorod thin films, Physica E 2008, 40, 2063-2065, http://dx.doi.org/10.1016/j.physe.2007.09.101

158         Creti, A.et al.  Ultrafast carrier dynamics and confined acoustic phonons in CdSe nanorods, J. Opt. A-Pure Appl. Opt. 2008, 10, 064004, http://dx.doi.org/10.1088/1464-4258/10/6/064004

159         Corti, M.et al.  Magnetic properties of novel superparamagnetic MRI contrast agents based on colloidal nanocrystals, J. Magn. Magn. Mater. 2008, 320, E320-E323, http://dx.doi.org/10.1016/j.jmmm.2008.02.064

160         Caputo, G.et al.  Reversible wettability changes in colloidal TiO2 nanorod thin-film coatings under selective UV laser irradiation, J. Phys. Chem. C 2008, 112, 701-714, http://dx.doi.org/10.1021/jp0777061

161         Caputo, G.et al.  Determination of surface properties of various substrates using TiO(2) nanorod coatings with tunable characteristics, J. Mater. Sci. 2008, 43, 3474-3480, http://dx.doi.org/10.1007/s10853-007-2335-x

162         Tortiglione, C.et al.  Synthesis and biological assay of GSH functionalized fluorescent quantum dots for staining Hydra vulgaris, Bioconjugate Chem. 2007, 18, 829-835, http://dx.doi.org/10.1021/bc060355t

163         Rizzo, A.et al.  Blue light emitting diodes based on fluorescent CdSe/ZnS nanocrystals, Appl. Phys. Lett. 2007, 90, 051106, http://dx.doi.org/10.1063/1.2426899

164         Quarta, A.et al.  Fluorescent-magnetic hybrid nanostructures: Preparation, properties, and applications in biology, IEEE Trans. Nanobiosci. 2007, 6, 298-308, http://dx.doi.org/10.1109/tnb.2007.908989

165         Pompa, P. P.et al.  Fluorescence enhancement in colloidal semiconductor nanocrystals by metallic nanopatterns, Sens. Actuator B-Chem. 2007, 126, 187-192, http://dx.doi.org/10.1016/j.snb.2006.11.037

166         Nobile, C.et al.  Confinement effects on optical phonons in spherical, rod-, and tetrapod-shaped nanocrystals detected by Raman spectroscopy, Phys. Status Solidi A 2007, 204, 483-486, http://dx.doi.org/10.1002/pssa.200673223

167         Nobile, C.et al.  Confined optical phonon modes in aligned nanorod arrays detected by resonant inelastic light scattering, Nano Lett. 2007, 7, 476-479, http://dx.doi.org/10.1021/nl062818+

168         Morello, G.et al.  Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots, J. Phys. Chem. C 2007, 111, 5846-5849, http://dx.doi.org/10.1021/jp068307t

169         Morello, G.et al.  Picosecond photoluminescence decay time in colloidal nanocrystals: The role of intrinsic and surface states, J. Phys. Chem. C 2007, 111, 10541-10545, http://dx.doi.org/10.1021/jp072783h

170         Morello, G.et al.  The role of intrinsic and surface states on the emission properties of colloidal CdSe and CdSe/ZnS quantum dots, Nanoscale Res. Lett. 2007, 2, 512-514, http://dx.doi.org/10.1007/s11671-007-9096-y

171         Kudera, S.et al.  Sequential growth of magic-size CdSe nanocrystals, Adv. Mater. 2007, 19, 548-552, http://dx.doi.org/10.1002/adma.200601015

172         Kudera, S.et al.  Synthesis routes for the growth of complex nanostructures, Physica E 2007, 37, 128-133, http://dx.doi.org/10.1016/j.physe.2006.06.016

173         Fu, A. H.et al.  Semiconductor quantum rods as single molecule fluorescent biological labels, Nano Lett. 2007, 7, 179-182, http://dx.doi.org/10.1021/nl0626434

174         Fasoli, A.et al.  Catalytic and seeded shape-selective synthesis of II-VI semiconductor nanowires, Physica E 2007, 37, 138-141, http://dx.doi.org/10.1016/j.physe.2006.06.010

175         Creti, A.et al.  Role of defect states on Auger processes in resonantly pumped CdSe nanorods, Appl. Phys. Lett. 2007, 91, 093106, http://dx.doi.org/10.1063/1.2776847

176         Casavola, M.et al.  Topologically controlled growth of magnetic-metal-functionalized semiconductor oxide nanorods, Nano Lett. 2007, 7, 1386-1395, http://dx.doi.org/10.1021/nl070550w

177         Carbone, L.et al.  Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach, Nano Lett. 2007, 7, 2942-2950, http://dx.doi.org/10.1021/nl0717661

178         Tari, D.et al.  Exciton transitions in tetrapod-shaped CdTe nanocrystals investigated by photomodulated transmittance spectroscopy, Appl. Phys. Lett. 2006, 89, 094104, http://dx.doi.org/10.1063/1.2335801

179         Pompa, P. P.et al.  Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control, Nat. Nanotechnol. 2006, 1, 126-130, http://dx.doi.org/10.1038/nnano.2006.93

180         Pompa, P. P.et al.  Fluorescence resonance energy transfer induced by conjugation of metalloproteins to nanoparticles, Chem. Phys. Lett. 2006, 417, 351-357, http://dx.doi.org/10.1016/j.cplett.2005.09.133

181         Pellegrino, T.et al.  Heterodimers based on CoPt3-Au nanocrystals with tunable domain size, J. Am. Chem. Soc. 2006, 128, 6690-6698, http://dx.doi.org/10.1021/ja0607741

182         Martiradonna, L.et al.  High Q-factor colloidal nanocrystal-based vertical microcavity by hot embossing technology, Appl. Phys. Lett. 2006, 88, 181108, http://dx.doi.org/10.1063/1.2200748

183         Malkmus, S.et al.  Electron-hole dynamics in CdTe tetrapods, J. Phys. Chem. B 2006, 110, 17334-17338, http://dx.doi.org/10.1021/jp0615306

184         Kudera, S.et al.  Synthesis and perspectives of complex crystalline nano-structures, Phys. Status Solidi A 2006, 203, 1329-1336, http://dx.doi.org/10.1002/pssa.200566182

185         Krahne, R.et al.  Shape dependence of the scattering processes of optical phonons in colloidal nanocrystals detected by Raman Spectroscopy, J. Nanoelectron. Optoelectron. 2006, 1, 104-107, http://dx.doi.org/10.1166/jno.2006.012

186         Krahne, R.et al.  Confinement effects on optical phonons in polar tetrapod nanocrystals detected by resonant inelastic light scattering, Nano Lett. 2006, 6, 478-482, http://dx.doi.org/10.1021/nl0524492

187         Creti, A.et al.  Role of the shell thickness in stimulated emission and photoinduced absorption in CdSe core/shell nanorods, Phys. Rev. B 2006, 73, 165410, http://dx.doi.org/10.1103/PhysRevB.73.16510

188    &

Awards

Awards & research highlights:

2013:                           American Chemical Society Early Career Award in Experimental Physical Chemistry (http://phys-acs.org/awards/2013.html)

2013:                           Habilitation as full professor for the following disciplines: Inorganic Chemistry, Physical Chemistry, Theoretical Chemistry

2011:                           Ranked #24 among the top 100 Chemists of the last decade by Thomson Reuters (http://www.sciencewatch.com/dr/sci/misc/Top100Chemists2000-10/)

2011:                           Journal of Materials Chemistry Lectureship Award (Royal Society of Chemistry)

2011:                           Highlighted by ChemComm as among the top emerging investigators in chemical sciences worldwide.

2010:                           Highlighted by the Journal of Materials Chemistry as among the top emerging investigators in materials chemistry worldwide.

2009:                           Highlighted in the October 2009 issue of ScienceWatch for “Emerging Research Front Paper in the field of Materials Science” (Thomson Reuters, http://sciencewatch.com/).

2009:                           European Research Council (ERC) Starting Grant recipient

2009:                           R&D 100 Award recipient for ‘Cost Competitive Solar Cells’

2007:                           ‘Ugo Campisano’ Young Investigator Award in Materials Science (Italian Institute for Condensed Matter Physics, www.infm.it).

2007:                           Ranked #9 among the most cited scientists worldwide working on nanocrystals by ‘Essential Science Indicators’ (Thomson Scientific), www.esi-topics.com.

2005:                           Top nine innovators in Italy younger than 35 (Financial magazine ‘Il Sole 24 ore’)

2002:                           ‘Berkeley Lab Technology Transfer Award’.

2001:                           ‘Semerano Award’ (Italian Association of Physical Chemistry): best PhD thesis in Physical Chemistry in Italy in 2001.

2000:                           ‘Umberto Maria Grassano Award’ (Italian Association of Physics).

INFORMATION NOTICE ON COOKIES

IIT's website uses the following types of cookies: browsing/session, analytics, functional and third party cookies. Users can choose whether or not to accept the use of cookies and access the website.
By clicking on further information, the full information notice on the types of cookies used will be displayed and you will be able to choose whether or not to accept cookies whilst browsing on the website.
Further information
Accept and close
×

I numeri di IIT

L’Istituto Italiano di Tecnologia (IIT) è una fondazione di diritto privato - cfr. determinazione Corte dei Conti 23/2015 “IIT è una fondazione da inquadrare fra gli organismi di diritto pubblico con la scelta di un modello di organizzazione di diritto privato per rispondere all’esigenza di assicurare procedure più snelle nella selezione non solo nell’ambito nazionale dei collaboratori, scienziati e ricercatori ”.

IIT è sotto la vigilanza del Ministero dell'Istruzione, dell'Università e della Ricerca e del Ministero dell'Economia e delle Finanze ed è stato istituito con la Legge 326/2003. La Fondazione ha l'obiettivo di promuovere l'eccellenza nella ricerca di base e in quella applicata e di favorire lo sviluppo del sistema economico nazionale. La costruzione dei laboratori iniziata nel 2006 si è conclusa nel 2009.

Lo staff complessivo di IIT conta circa 1440 persone. L’area scientifica è rappresentata da circa l’85% del personale. Il 45% dei ricercatori proviene dall’estero: di questi, il 29% è costituito da stranieri provenienti da oltre 50 Paesi e il 16% da italiani rientrati. Oggi il personale scientifico è composto da circa 60 principal investigators, circa 110 ricercatori e tecnologi di staff, circa 350 post doc, circa 500 studenti di dottorato e borsisti, circa 130 tecnici. Oltre 330 posti su 1400 creati su fondi esterni. Età media 34 anni. 41% donne / 59 % uomini.

Nel 2015 IIT ha ricevuto finanziamenti pubblici per circa 96 milioni di euro (80% del budget), conseguendo fondi esterni per 22 milioni di euro (20% budget) provenienti da 18 progetti europei17 finanziamenti da istituzioni nazionali e internazionali, circa 60 progetti industriali

La produzione di IIT ad oggi vanta circa 6990 pubblicazioni, oltre 130 finanziamenti Europei e 11 ERC, più di 350 domande di brevetto attive, oltre 12 start up costituite e altrettante in fase di lancio. Dal 2009 l’attività scientifica è stata ulteriormente rafforzata con la creazione di dieci centri di ricerca nel territorio nazionale (a Torino, Milano, Trento, Parma, Roma, Pisa, Napoli, Lecce, Ferrara) e internazionale (MIT ed Harvard negli USA) che, unitamente al Laboratorio Centrale di Genova, sviluppano i programmi di ricerca del piano scientifico 2015-2017.

×

IIT: the numbers

Istituto Italiano di Tecnologia (IIT) is a public research institute that adopts the organizational model of a private law foundation. IIT is overseen by Ministero dell'Istruzione, dell'Università e della Ricerca and Ministero dell'Economia e delle Finanze (the Italian Ministries of Education, Economy and Finance).  The Institute was set up according to Italian law 326/2003 with the objective of promoting excellence in basic and applied research andfostering Italy’s economic development. Construction of the Laboratories started in 2006 and finished in 2009.

IIT has an overall staff of about 1,440 people. The scientific staff covers about 85% of the total. Out of 45% of researchers coming from abroad 29% are foreigners coming from more than 50 countries and 16% are returned Italians. The scientific staff currently consists of approximately 60 Principal Investigators110 researchers and technologists350 post-docs and 500 PhD students and grant holders and 130 technicians. External funding has allowed the creation of more than 330 positions . The average age is 34 and the gender balance proportion  is 41% female against 59% male.

In 2015 IIT received 96 million euros in public funding (accounting for 80% of its budget) and obtained 22 million euros in external funding (accounting for 20% of its budget). External funding comes from 18 European Projects, other 17 national and international competitive projects and approximately 60 industrial projects.

So far IIT accounts for: about 6990 publications, more than 130 European grants and 11 ERC grants, more than 350 patents or patent applications12 up start-ups and as many  which are about to be launched. The Institute’s scientific activity has been further strengthened since 2009 with the establishment of 11 research nodes throughout Italy (Torino, Milano, Trento, Parma, Roma, Pisa, Napoli, Lecce, Ferrara) and abroad (MIT and Harvard University, USA), which, along with the Genoa-based Central Lab, implement the research programs included in the 2015-2017 Strategic Plan.