Back to list

Giulio Sandini

Senior Researcher - Founding Director
Department Director


IIT-RBCS Via Morego 30
+39 010 8172 227


Giulio Sandini is Director of Research at the Italian Institute of Technology and full professor of bioengineering at the University of Genoa. After his graduation in Electronic Engineering (Bioengineering) at the University of Genova in 1976 he was research fellow and assistant professor at the Scuola Normale Superiore in Pisa until 1984. During this period, working at the Laboratorio di Neurofisiologia of the CNR, he investigated aspects of visual processing at the level of single neurons as well as aspects of visual perception in human adults and children. He has been Visiting Research Associate at the Department of Neurology of the Harvard Medical School in Boston where he developed diagnostic techniques based on brain electrical activity mapping. After his return to Genova in 1984 as associate professor, in 1990 he founded the LIRA-Lab (Laboratory for Integrated Advanced Robotics, In 1996 he was Visiting Scientist at the Artificial Intelligence Lab of MIT.


Since July 2006 Giulio Sandini is on absence of leave from University of Genoa  as he has  been appointed Director of Research at the Italian Institute of Technology where he has established and is currently directing the department of Robotics, Brain and Cognitive Sciences. RBCS department concentrates on a multidisciplinary approach to human centered technologies encompassing machine learning and artificial cognition, exploring the brain mechanisms at the basis of motor behavior, learning, multimodal interaction, and sensorimotor integration.


The department’s multidisciplinary research staff is composed of researchers with different backgrounds (engineers, biologists, psychologists, mathematicians, physicists, medical doctors) addressing three, strictly interconnected, streams of research: Humanoid Cognition, Human Behavior and Biomechanics, Brain Machine Interface. 


Giulio Sandini research activities are in the fields of Biological and Artificial Vision, Computational and Cognitive Neuroscience and Robotics with the objective of understanding the neural mechanisms of human sensory-motor coordination and cognitive development from a biological and an artificial perspective. A distinctive aspect of his research has been the multidisciplinarity of the approach expressed through national and international collaborations with neuroscientists and developmental psychologists.


Giulio Sandini is author of more than 300 publications and five international patents. He has been coordinating international collaborative projects since 1984 and has been the chair of international conferences and workshops. He has served in the evaluation committees of national and international research funding agencies and research centers as well as international journals.

Selected Publications

Casadio M., Giannoni P., Masia L., Morasso P., Sandini G., Sanguineti V., Squeri V. & Vergaro E. 2009, 'Robot therapy of the upper limb in stroke patients: preliminary experiences for the principle-based use of this technology', Functional Neurology, vol. 24, pp. 195–202.

Masia L., Casadio M., Giannoni P., Sandini G. & Morasso P. 2009, 'Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study.', Journal of NeuroEngineering and Rehabilitation., vol. 6,no. 44, pp. 1–11

Squeri V., Sciutti A., Gori M., Masia L., Sandini G. & Konczack J. 2012, 'Two hands, one perception: how bimanual haptic information is combined by the brain', J Neurophysiol, vol. 107, pp. 544–550.

Gori M., Mazzilli G., Sandini G. & Burr D. 2011, ‘Cross-sensory facilitation reveals neural interactions between visual and tactile motion in humans.’, Front. Psychology, vol. 2,no. 55, 55.

Gori M., Sciutti A.., Burr D. & Sandini G. 2011, ‘Direct and indirect haptic calibration of visual size judgments’, PLoS ONE, vol. 6,no. 10, e25599.

Fiorilla A.E., Nori F. & Masia L. Sandini G. 2011, ‘Finger Impedance Evaluation by means of Hand Exoskeleton’, Annals of Biomedical Engineering, vol. 39,no. 12, pp. 2945–2954.

Melendez-Calderon A., Masia L. &. G.R. Sandini G. and Burdet E. 2011, ‘Force field adaptation can be learned using vision in the absence of proprioceptive error?’, IEEE Transaction on Neural System and Rehabilitation Engineering, vol. 19,no. 3, pp. 298–306.

Saegusa R., Metta G. & Sandini G. 2010, ‘Own body perception based on visuomotor correlation’, The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2010), pp.1044-1051,  Taipei, Taiwan, October 18-22, 2010.

Tomassini A., Gori M., Burr D., Sandini G. & Morrone C. 2011, ‘Perceived duration of visual and tactile stimuli depends on perceived speed’, Frontiers in integrative neuroscience, vol. 5,no. 51.

Mohan V., Morasso P., Zenzeri J., Metta G., Chakravarthy V.S. & Sandini G. 2011, ‘Teaching a humanoid robot to draw 'Shapes'’, Autonomous Robots, vol. 31,no. 1, pp. 21–53.

Castellini C., Badino L., Metta G., Sandini G., Tavella M., Grimaldi M. & Fadiga L. 2011, ‘The use of phonetic motor invariants can improve automatic phoneme discrimination’, PLoS ONE, vol. 6,no. 9, e24055.

Orabona F., Castellini C., Caputo. B., Jie L. & Sandini G. 2010, ‘On-line Independent Support Vector Machines’, Pattern Recognition, vol. 43, pp. 1402–1412.

Gori M., Sandini G., Martinoli C. & Burr D. 2010, ‘Poor haptic orientation discrimination in non-sighted children may reflect’, Current Biology, vol. 20,no. 3, pp. 223–225.

Sciutti A., Squeri V., Gori M., Masia L., Sandini G. & Konczak J. 2010, ‘Predicted sensory feedback derived from motor commands does not improve haptic sensitivity’, Experimental Brain Research, vol. 200,no. 3, pp. 259–267.

Dahiya R.S., Metta G., Valle M. & Sandini G. 2010, ‘Tactile Sensing: From Humans to Humanoids’, IEEE Transactions on Robotics, vol. 26,no. 1, pp. 1–20.

Metta G., Natale L., Nori F., Sandini G., Vernon D., Fadiga L., von Hofsten C., Rosander K., Santos-Victor J., Bernardino A. & Montesano L. 2010, ‘The iCub Humanoid Robot: An Open-Systems Platform for Research in Cognitive Development’, Neural Networks, special issue on Social Cognition: From Babies to Robots, vol. 23,8-9, pp. 1125–1134.

Campanella F., Sandini G. & Morrone M.C. 2010, ‘Visual information gleaned by observing grasping movement in allocentric and egocentric perspectives’, Biological sciences / The Royal Society, vol. Epub ahead of print.

Mohan V., Morasso P., Metta G. & Sandini G. 2009, ‘A biomimetic, force-field based computational model for motion planning and bimanual coordination in humanoid robots.’, Autonomous Robots, vol. 27, pp. 291–307.

Fiorilla A.E., Tsagarakis N., Nori F. & Sandini G. 2009, ‘Design of a 2-Finger Hand Exoskeleton for finger stiffness measurements’, Journal of Applied Bionics and Biomechanics, vol. 6,no. 2, pp. 217–228.

Masia L., Casadio M., Sandini G. & Morasso P. 2009, ‘Eye-hand coordination during dynamic visuomotor rotations’, PLoSONE, vol. 4,9 (E7004), pp. 1–11.

Castellini C., Gruppioni E., Davalli A. & Sandini G. 2009, ‘Fine detection of grasp force and posture by amputees via surface electromyography’, Journal of Physiology – Paris Corresponding.

Castellini C., Fiorilla A.E. & Sandini G. 2009, ‘Multi-subject / Daily-Life Activity EMG-based control of mechanical hands’, Journal of NeuroEngineering and Rehabilitation, vol. 6,no. 41.

Gori, M.; Del Viva, M.M.; Sandini, G.; Burr, D,  Young Children Do Not Integrate Visual and Haptic Form Information, Current Biology / Vol 10. 2008


C. Castellini, F. Orabona, G. Metta, G. Sandini, Internal models of reaching and grasping, Advanced Robotics, special issue on Imitative Robots, Vol 21 N.15, 2007.


N.G.Tsagarakis, G.Metta, G.Sandini, D.Vernon, R.Beira, F.Becchi, L.Righetti, J.S.Victor, A.J. Ijspeert, M.C.Carrozza and D.G.Caldwell, iCub – The Design and Realization of an Open Humanoid Platform for Cognitive and Neuroscience Research, Advanced Robotics special issue on "Robotic platforms for Research in Neuroscience". Vol 21, No. 10, 2007.


D. Vernon, G. Metta, G. Sandini, A Survey of Cognition and Cognitive Architectures: Implications for the Autonomous Development of Mental Capabilities in Computational Systems, IEEE Transactions on Evolutionary Computation, special issue on AMD. Vol. 11, No. 2, 2007.


C. Castellini, F. Orabona, G. Metta, G. Sandini, Internal models of reaching and grasping. Advanced Robotics, special issue on Imitative Robots, Vol 21 N.15, 2007.


Craighero, L.; Metta, G.; Sandini, G.; Fadiga L., The Mirror-Neuron System: data and models., In C. von Hoftsen, K. Rosander (Eds.), Progress in Brain Research. 164: 39-59, 2007.


L. Natale, F. Orabona, G. Metta, G. Sandini, “Sensorimotor coordination in a "baby" robot: learning about objects through grasping”, in: Progress in Brain Research, From Action to Cognition, Volume 164, pp.403-424, Elsevier (2007).


R. Manzotti,   G.Sandini:  Does Functionalism really deal with the phenomenal side of experience?  Behavioral Brain Sciences. 2002.


G. Metta, G. Sandini: Embodiment and complex systems. A commentary on Barbara Webb: Can robots make good models of biological behavior?. Behavioral and Brain Sciences, 2002.


R. Manzotti, A. Gasteratos, G. Metta, G. Sandini: Disparity estimation in log polar images and vergence control, Computer Vision and Image Understanding, 2002.


F.Panerai, G.Metta, G.Sandini,Visuo-inertial Stabilization in Space-variant Binocular Systems, Robotics and Autonomous Systems, Special Issue on Biomimetic Robotics, Vol. 30 No 1-2, Pag 195-214, 2000.


Sandini, G., F. Panerai, and F.A. Miles, The Role of Inertial and Visual Mechanisms in the Stabilization of Gaze in Natural and Artificial Systems, in Motion Vision, Computational, Neural, and Ecological Constraints, J.M. Zanker and J. Zeil, Editors. 2000, Springer. p. 189-218..


G.Metta, G.Sandini and J.Konczak. A developmental approach to visually-guided reaching in artificial systems, Neural Networks, Vol 12 No 10 pp 1413-1427, 1999.


F. Panerai, G. Sandini, Oculo-Motor Stabilization Reflexes: Integration of Inertial and Visual Information,” Neural Networks, vol. 11, 1998. 


C. Capurro, F. Panerai, G. Sandini, “Dynamic Vergence using Log-polar Images,” International Journal of Computer Vision, vol. 24, pp. 79—94, 1997.



E. Grosso, G. Metta, A. Oddera, G. Sandini, “Robust Visual Servoing in 3D Reaching Tasks,” IEEE Transactions on Robotics and Automation, vol. 12, pp. 732—742, 1996.



G. Sandini, E. Grosso, “Why Purposive Vision,” CVGIP – Image Understanding, vol. 60, pp. 109-112, 1994


P. Dario, G. Sandini, P. Aebischer, “Robots and Biological Systems: Towards a New Bionics,” in NATO ASI Series, vol. Series F: Computer and Systems Sciences Vol. 102: Springer-Verlag, 1993 


M. Tistarelli, G. Sandini, “On the Advantages of Polar and Log-polar Mapping for Direct Estimation of  Time-to-Impact from Optical Flow,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, pp. 401—410, 1993


M. Tistarelli, G. Sandini, “Dynamic Aspects in Active Vision”, CVGIP: Image Understanding, vol. 56 No.1, pp. 108-129, 1992.


D. Vernon, G. Sandini, “Parallel Computer Vision: The Vis a Vis System,”: Ellis Horwood, 1992



E. Grosso, G. Sandini, M. Tistarelli, “3D Object Reconstruction Using Stereo and Motion,” IEEE Transactions on Systems Man and Cybernetics, vol. 19 N.6, pp. 1465-1476, 1989.



G. Rodriguez, F. Arvigo, S. Marenco, F. Nobili, P. Romano, G. Sandini, G. Rosadini, “Regional Cerebral Blood Flow in Essential Hypertension: Data Evaluation by a Mapping System,” Stroke, vol. 18 No.1, pp. 13-20, 1987.



G. Sandini, G. Rodriguez, P. Romano, G. Rosadini, “Topographic Mapping of rCBF Data,” in  "PET and NMR: new perspectives in neuroimaging and in clinical neurochemistry, L. Battistin, F. Gerstenbrand, Eds. New York: Alan R. Liss, 1986.



Fiorentini, M. Pirchio, G. Sandini, “Development of Retinal Acuity in Infants Evaluated with Pattern Electroretinogram,” Human Neurobiol., vol. 3, pp. 93-95, 1984.




S. Gaglio, P. Morasso, G. Sandini, V. Tagliasco, “Anthropomorphic Robotics,” in Modeling and Analysis in Biomedicine, C. Nicolini, Ed.: World Scientific, 1984, pp. 391-446



D. Spinelli, M. Pirchio, G. Sandini, “Visual Acuity in the Young Infant is Highest in a Small Retinal Area,” Vision Res., vol. 23, pp. 1133-1136, 1983


G. Sandini, P. Romano, A. Scotto, G. Traverso, “Topography of Brain Electrical Activity: a Bioengineering Approach,” Medical Progress through Technology, vol. 10, pp. 5-19, 1983.


Fiorentini, L. Maffei, G. Sandini, “The Role of High Spatial Frequencies in Face Perception,” Perception, vol. 12, pp. 195-201, 1983


Braccini, G. Gambardella, G. Sandini, V. Tagliasco, “A Model of the Early Stages of the Human Visual System: Functional and  Topological Transformation Performed in the Peripheral Visual Field,” Biological Cybernetics, vol. 44, pp. 47—58, 1982.



G. Sandini, V. Tagliasco, “An Anthropomorphic Retina-like Structure for Scene Analysis,” Computer Graphics and Image Processing, vol. 14 No.3, pp. 365-372, 1980.


F. H. Duffy, M. B. Denckla, P. H. Bartels, G. Sandini, L. S. Kiessling, “Dyslexia: Automated Diagnosis by Computerized Classification of Brain Electrical Activity,” Annals of Neurology, vol. 7, pp. 421-428, 1980 


L. Maffei, C. Morrone, M. Pirchio, G. Sandini, “Responses of Visual Cortical Cells to Periodic and non Periodic Stimuli,” J. Physiology, vol. 296, pp. 27-47, 1979.



P. Morasso, G. Sandini, V. Tagliasco, R. Zaccaria, “Control Strategies in the Eye-Head Coordination System,” IEEE Trans. Systems, Man and Cybernetics, vol. SMC-7 No.9, pp. 639-651, 1977. 


P. Morasso, G. Sandini, V. Tagliasco, R. Zaccaria, “Plasticity in the Eye-Head Coordination System,” in Aspects of Neural Plasticity, vol. 43, V. Durand, Jeannerod, Eds., 1975, pp. 83-94.


IIT's website uses the following types of cookies: browsing/session, analytics, functional and third party cookies. Users can choose whether or not to accept the use of cookies and access the website.
By clicking on further information, the full information notice on the types of cookies used will be displayed and you will be able to choose whether or not to accept cookies whilst browsing on the website.
Further information
Accept and close

I numeri di IIT

L’Istituto Italiano di Tecnologia (IIT) è una fondazione di diritto privato - cfr. determinazione Corte dei Conti 23/2015 “IIT è una fondazione da inquadrare fra gli organismi di diritto pubblico con la scelta di un modello di organizzazione di diritto privato per rispondere all’esigenza di assicurare procedure più snelle nella selezione non solo nell’ambito nazionale dei collaboratori, scienziati e ricercatori ”.

IIT è sotto la vigilanza del Ministero dell'Istruzione, dell'Università e della Ricerca e del Ministero dell'Economia e delle Finanze ed è stato istituito con la Legge 326/2003. La Fondazione ha l'obiettivo di promuovere l'eccellenza nella ricerca di base e in quella applicata e di favorire lo sviluppo del sistema economico nazionale. La costruzione dei laboratori iniziata nel 2006 si è conclusa nel 2009.

Lo staff complessivo di IIT conta circa 1440 persone. L’area scientifica è rappresentata da circa l’85% del personale. Il 45% dei ricercatori proviene dall’estero: di questi, il 29% è costituito da stranieri provenienti da oltre 50 Paesi e il 16% da italiani rientrati. Oggi il personale scientifico è composto da circa 60 principal investigators, circa 110 ricercatori e tecnologi di staff, circa 350 post doc, circa 500 studenti di dottorato e borsisti, circa 130 tecnici. Oltre 330 posti su 1400 creati su fondi esterni. Età media 34 anni. 41% donne / 59 % uomini.

Nel 2015 IIT ha ricevuto finanziamenti pubblici per circa 96 milioni di euro (80% del budget), conseguendo fondi esterni per 22 milioni di euro (20% budget) provenienti da 18 progetti europei17 finanziamenti da istituzioni nazionali e internazionali, circa 60 progetti industriali

La produzione di IIT ad oggi vanta circa 6990 pubblicazioni, oltre 130 finanziamenti Europei e 11 ERC, più di 350 domande di brevetto attive, oltre 12 start up costituite e altrettante in fase di lancio. Dal 2009 l’attività scientifica è stata ulteriormente rafforzata con la creazione di dieci centri di ricerca nel territorio nazionale (a Torino, Milano, Trento, Parma, Roma, Pisa, Napoli, Lecce, Ferrara) e internazionale (MIT ed Harvard negli USA) che, unitamente al Laboratorio Centrale di Genova, sviluppano i programmi di ricerca del piano scientifico 2015-2017.


IIT: the numbers

Istituto Italiano di Tecnologia (IIT) is a public research institute that adopts the organizational model of a private law foundation. IIT is overseen by Ministero dell'Istruzione, dell'Università e della Ricerca and Ministero dell'Economia e delle Finanze (the Italian Ministries of Education, Economy and Finance).  The Institute was set up according to Italian law 326/2003 with the objective of promoting excellence in basic and applied research andfostering Italy’s economic development. Construction of the Laboratories started in 2006 and finished in 2009.

IIT has an overall staff of about 1,440 people. The scientific staff covers about 85% of the total. Out of 45% of researchers coming from abroad 29% are foreigners coming from more than 50 countries and 16% are returned Italians. The scientific staff currently consists of approximately 60 Principal Investigators110 researchers and technologists350 post-docs and 500 PhD students and grant holders and 130 technicians. External funding has allowed the creation of more than 330 positions . The average age is 34 and the gender balance proportion  is 41% female against 59% male.

In 2015 IIT received 96 million euros in public funding (accounting for 80% of its budget) and obtained 22 million euros in external funding (accounting for 20% of its budget). External funding comes from 18 European Projects, other 17 national and international competitive projects and approximately 60 industrial projects.

So far IIT accounts for: about 6990 publications, more than 130 European grants and 11 ERC grants, more than 350 patents or patent applications12 up start-ups and as many  which are about to be launched. The Institute’s scientific activity has been further strengthened since 2009 with the establishment of 11 research nodes throughout Italy (Torino, Milano, Trento, Parma, Roma, Pisa, Napoli, Lecce, Ferrara) and abroad (MIT and Harvard University, USA), which, along with the Genoa-based Central Lab, implement the research programs included in the 2015-2017 Strategic Plan.