Back to list

Roman Krahne Write a Message

Senior Researcher TT (TT2)
Group leader Optoelectronics

Research Line



Via Morego 30
+39 010 71781 796


Professional career:

- since November 2014: Leader of the Optoelectronics group as Tenure Track researcher

- June 2009 - October 2014: Senior scientist at Nanofabrication Department of the Italian Institute of Technology (IIT) in Genova.

 - January 2003 - June 2009: Researcher at the National Nanotechnology Labs of CNR-INFM, Italy. Work on optical and electronic properties of colloidal nanocrystals and biomolecules.

- November 2000 – December 2002: Postdoc at the Department of Condensed Matter Physics, Weizmann Institute of Science (Israel), in the group of Prof. Dr Israel Bar-Joseph. Research on electronic properties of single nano objects. Fellowships awarded from the Feinberg Graduate School and the Thyssen Foundation.


- October 2000: PhD in Physics, at the University of Hamburg. Topic: FIR Fourier-transform-spectroscopy on field-effect induced quantum dots and modulated two-dimensional electron systems.

- April 1996: Master in Physics Title: Raman spectroscopy on GaAs-AlGaAs microstructures in an external magnetic field.

Research interests:

Colloidal semiconductor nanocrystals can be excellent light emitters or absorbers, and the optical properties like for example the light emission wavelength, direction and polarization can be controlled via the nanocrystal size, shape and composition. This makes them very interesting as active material in light emitting, lasing, or photovoltaic devices, and we are exploring novel approaches for proof of principle prototypes. On the other hand, metal nanostructures are very good conductors and can strongly interact with light in the visible and infrared spectral regions due to the presence of free electrons that can perform plasmon oscillations, which opened the field of nanoplasmonics. Recently, graphene has attracted great interest as a 2D material with very appealing conductive, plasmonic, and mechanical properties. We aim at combining the favorable properties of these materials in order to investigate complex optoelectronic systems and to pave the way for novel architectures for components in photodetectors, optical communication, photovoltaics, plasmonics, and nanoscale electronics.


-       Coordinator of the EU Horizon2020 MSCA Rise project “COMPASS-691185” for long term scientific exchange between IIT, Ludwigs-Maximilian-University, University of Gent and University of Utrecht with partner institutions University of California-Berkeley, Cornell Unversity, and Columbia University in the US, total budget 890 k€, 2016-2020.

-       PI of the Molecular Foundry User Facility project # 3641 on Nanospectroscopic imaging of electrically contacted nanowire heterostructures, 2016/2017.

-       PI (host) of the EU MSCA IEF project SCEL-TA - 659144 (2015-2017)

-       PI in the Optoelectronics work package of the Core 1 phase of the FP7 FET Flagship "Graphene-Driven Revolutions in ICT and Beyond" (GRAPHENE), 2016-2018.

-       PI for IIT in the CARIPLO project NANOCRYSLAS, Title: Micro-laser based on rod-shaped self-assembling colloidal semiconductor nanocrystals, 2013-2014, total budget 148.000€, 77k€ under my control.

-       PI for IIT for the FP7 FET Flagship "Graphene-Driven Revolutions in ICT and Beyond" (GRAPHENE), starting 2013, 2013-2016, IIT budget 500.000€.

-       IIT national project “Neuro-plasmonics”: plasmonic nanoneedles for multi-site intracellular recording”. Co-Principal investigator, budget: roughly 100K euro for 2 years.

-       Workpackage leader of a European Commission financed FP7 STREP project (SA-NANO) and participation in the coordination of the project. The total value of the project was 2 million Euro over three years.

-       Experienced researcher in a Transfer of knowledge Marie Curie project (NANOTAIL) coordinated by FORTH in Greece (2006-2009).

-       Leader of a Molecular Foundry user facility project on electronic and optical characterization in a bilateral project financed by the Italian Ministry of Research (MIUR) with the Molecular Foundry in Berkeley, USA.

-       Responsible scientist for the National Nanotechnology Laboratory (NNL) in a MIUR financed PRIN project (2004-2005) with total budget 120.000 Euros for 2 years.

-       Project leader in two EU transnational access program financed visits to the Braun Center of Microstructure Research at the Weizmann Institute of Science in Israel.

-       Program Chair of the 8th International Conference on Quantum Dots in Pisa, May 11-16 2014, Italy (

-       Co-organizer of the 3rd international conference “Nanoscience with Nanocrystals – NaNaX3” on May 21-31 2008 in Lecce, Italy.

Selected Publications

  1. Guilherme Almeida, Sedat Dogan, Giovanni Bertoni, Cinzia Giannini, Robero Gasparri, Stefano Perisissinotto, Roman Krahne, Sandeep Gosh, Liberato Manna, Colloidal Monolayer β-In2Se3 Nanosheets with High Photoresponsivity, Journal of the American Chemical Society 139, 3005 (2017), DOI: 10.1021/jacs.6b11255
  2. Manohar Chirumamilla, Anisha Gopalakrishnan, Alexander S. Roberts, Remo Proietti Zaccaria, Francesco De Angelis, Peter Kjær Kristensen, Roman Krahne, Sergey I. Bozhevolnyi, Kjeld Pedersen and Andrea Toma, Hotspot Engineering in 3D Multibranched Nanostructures: Ultrasensitive Substrates for Surface Enhanced Raman Spectroscopy, Advanced Optical Materials 2017, DOI: 10.1002/adom.201600836
  3. Mario Miscuglio, Miaoling Lin, Francesco Di Stasio, Ping-Heng Tan, and Roman Krahne, Confined Acoustic Phonons in Colloidal Nanorod Heterostructures Investigated by Non-resonant Raman Spectroscopy and Finite Elements Simulations, Nano Letters 16, 7664-7670 (2016), DOI: 10.1021/acs.nanolett.6b03706
  4. Mario Miscuglio, Davide Spirito, Remo Proietti Zaccaria, and Roman Krahne, Shape approaches for enhancing plasmon propagation in graphene, ACS Photonics 2016, 3 (11), pp 2170–2175, DOI: 10.1021/acsphotonics.6b00667
  5. Francesco Di Stasio, Anatolii Polovitsyn, Ilaria Angeloni, Iwan Moreels, and Roman Krahne, Broadband Amplified Spontaneous Emission and Random Lasing from Wurtzite CdSe/CdS “Giant-Shell” Nanocrystals, ACS Photonics 2016, 3 (11), pp 2083–2088, DOI: 10.1021/acsphotonics.6b00452
  6. 6.     Francisco Palazon, Francesco Di Stasio, Simone Lauciello, Roman Krahne, Mirko Prato, and Liberato Manna, Evolution of CsPbBr3 Nanocrystals Upon Post-Synthesis Annealing Under Inert Atmosphere, Journal of Material Chemistry C, 2016,4, 9179-9182, DOI: 10.1039/C6TC03342C
  7. Francisco Palazon, Francesco Di Stasio, Quinten A. Akkerman, Roman Krahne, Mirko Prato, and Liberato Manna, Polymer-Free Films of Inorganic Halide Perovskite Nanocrystals as UV-to-White Color-Conversion Layers in LEDs, Chemistry of Materials, 2016, 28 (9), pp 2902–2906
  8. Milena P. Arciniegas, Francesco Di Stasio, Hongbo Li, Davide Altamura, Luca De Trizio, Mirko Prato, Alice Scarpellini, Iwan Moreels, Roman Krahne, and Liberato Manna, Self-Assembled Dense Colloidal Cu2Te Nanodisk Networks in P3HT Thin Films with Enhanced Photocurrent, Advanced Functional Materials 26 (25), pages 4535-4542 2016, DOI: 10.1002/adfm.201600751
  9. Angelo Accardo, Victoria Shalabaeva, Bernhard Hesse, Marine Cotte, Roman Krahne, Christian Riekel, Silvia Dante, Temperature, surface morphology and biochemical cues: A combined approach to influence the molecular conformation of Alpha-synuclein, Microelectronic Engineering Volume 158, Pages 64–68 (2016), doi:10.1016/j.mee.2016.03.006
  10. Eli Sutter, Peter Sutter, Alexmei V. Tkachenko, Roman Krahne, Joost de Graaf, Milena Arciniegas, Liberato Manna, In-situ microscopy of self assembly of branched nanocrystals in solution, Nature Communications 7, 11213 (2016), DOI: 10.1038/ncomms11213
  11. Sergey Vikulov, Francesco Di Stasio, Luca Ceseracciu, Pearl L. Saldanha, Alice Scarpellini, Zhiya Dang, Roman Krahne, Liberato Manna, and Vladimir Lesnyak, Fully Solution-Processed Conductive Films Based on Colloidal Copper Selenide Nanosheets for Flexible Electronics, Advanced Functional Materials 26 (21), pages 3670-3677, 2016, DOI: 10.1002/adfm.201600124
  12. Yang Zhang, Ritun Chakraborty, Stefan Kudera, and Roman Krahne, Light-gated single CdSe nanowire transistor: photocurrent saturation and band gap extraction, Journal of Nanoparticle Research (2015) 17:443, DOI: 10.​1007/​s11051-015-3244-6
  13. Davide Spirito, Stefan Kudera, Vaidotas Miseikis, Carlo Giansante, Camilla Coletti, Roman Krahne, UV Light Detection from CdS Nanocrystal Sensitized Graphene Photodetectors at kHz Frequencies, Journal of Physical Chemistry C 119 (42), pp 23859–23864,  (2015), DOI: 10.1021/acs.jpcc.5b07895
  14. Angelo Accardo, Victoria Shalabaeva, Bernhard Hesse, Marine Cotte, Roman Krahne, Christian Riekel, Silvia Dante, Synchrotron μ-FTIR highlights amyloid-β conformational changes under the effect of surface wettability and external agents, Vibrational Spectroscopy 80, 30-35 (2015),DOI:10.1016/j.vibspec.2015.07.004
  15. Angelo Accardo, Victoria Shalabaeva, Emanuela Di Cola, Manfred Burghammer, Roman Krahne, Christian Riekel, and Silvia Dante, Superhydrophobic Surfaces Boost Fibril Self-Assembly of Amyloid β Peptides, ACS Appl. Mater. Interfaces, 2015, 7 (37), pp 20875–20884, DOI: 10.1021/acsami.5b06219
  16. Iacopo Torre, Andrea Tomadin, Roman Krahne, Vittorio Pellegrini, and Marco Polini, Electrical plasmon detection in graphene waveguides, Phys. Rev. B 91, 081402(R) (2015), DOI:
  17. Angelo Accardo, Francesco Di Stasio, Manfred Burghammer, Christian Riekel and Roman Krahne, Nanocrystal self-assembly into hollow dome-shaped microstructures by slow solvent evaporation on superhydrophobic substrates, Particle & Particle Systems Characterization Volume 32, Issue 5, pages 524–528, May 2015, DOI:10.1002/ppsc.201400205
  18. Francesco Di Stasio, Joel Q. Grim, Vladimir Lesnyak, Prachi Rastogi, Liberato Manna, Iwan Moreels, and Roman Krahne, Single-mode lasing from colloidal water-soluble CdSe/CdS quantum dot-in-rods, Small  Volume 11, Issue 11, pages 1328–1334, March 18, 2015, DOI: 10.1002/smll.201402527
  19. Joel Q. Grim, Sotirios Christodoulou, Francesco Di Stasio, Roman Krahne, Roberto Cingolani, Liberato Manna, Iwan Moreels, Continuous-Wave Biexciton Lasing at Room Temperature Using Solution-Processed Quantum Wells, Nature Nanotechnolgy 9, 891–895 (2014), DOI:10.1038/nnano.2014.213
  20. Ermanno Miele, Angelo Accardo, Andrea Falqui, Monica Marini, Andrea Giugni, Marco Leoncini, Francesco De Angelis, Roman Krahne, and Enzo Di Fabrizio, Writing and Functionalisation of Suspended DNA Nanowires on Superhydrophobic Pillar Arrays, Small 2015, DOI: 10.1002/smll.201401649
  21. Anisha Gopalakrishnan, Manohar Chirumamilla, Francesco De Angelis, Andrea Toma, Remo Proietti Zaccaria, and Roman Krahne, Bimetallic 3D Nanostar Dimers in Ring Cavities: Recyclable and Robust Surface-Enhanced Raman Scattering Substrates for Signal Detection from Few Molecules, ACS Nano 8 (8), pp 7986–7994 (2014), DOI: 10.1021/nn5020038
  22. Toma A., Chirumamilla M., Gopalakrishnan A., Das G., Proietti Zaccaria R., Krahne R., Rondanina E., Leoncini M., Liberale C., De Angelis F. and Di Fabrizio E, 3D plasmonic nanostructures as building blocks for ultrasensitive Raman spectroscopy, Optics InfoBase Conference Papers, San Jose, California, USA, 08 - 13 Jun 2014
  23. Lorenzo Maserati, Iwan Moreels, Mirko Prato, Roman Krahne, Liberato Manna,  and Yang Zhang, Oxygen Sensitivity of Atomically Passivated CdS Nanocrystal Films, ACS Appl. Mater. Interfaces 2014, 6, 9517−9523, DOI: 10.1021/am501906y
  24. Manohar Chirumamilla, Anisha Gopalakrishnan, Andrea Toma, Remo Proietti Zaccaria and Roman Krahne, Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering, Nanotechnology, 25, 235303 (2014) doi:10.1088/0957-4484/25/23/235303
  25. Karol Miszta, Fanny Greullet, Sergio Marras, Mirko Prato, Andrea Toma, Milena Arciniegas, Liberato Manna, and Roman Krahne, "Nanocrystal Film Patterning by Inhibiting Cation Exchange via Electron-Beam or X-ray Lithography", Nano Letters 2014, 14 (4), pp 2116–2122, DOI: 10.1021/nl0524492
  26. Angelo Accardo, Victoria Shalabaeva, Marine Cotte, Manfred Burghammer, Roman Krahne, Christian Riekel, Silvia Dante, Amyloid β peptide conformational changes in the presence of a lipid membrane system, Langmuir 30, 3191–3198 (2014)
  27. Manohar Chirumamilla, Andrea Toma, Anisha Gopalakrishnan, Gobind Das, Remo Proietti Zaccaria, Roman Krahne, Eliana Rondanina, Marco Leoncini, Carlo Liberale, Francesco De Angelis and Enzo Di Fabrizio, "3D Nanostar Dimers with Sub-10 nm Gap for single/few Molecules Surface Enhanced Raman Scattering", Advanced Materials (2014). DOI: 10.1002/adma.201304553
  28. Enrico Dilena, Yi Xie, Rosaria Brescia, Mirko Prato, Lorenzo Maserati, Roman Krahne, Andrea Paolella, Giovanni Bertoni, Mauro Povia, Iwan Moreels, and Liberato Manna, “CuInxGa1–xS2 Nanocrystals with Tunable Composition and Band Gap Synthesized via a Phosphine-Free and Scalable Procedure”, Chem. Materials, 25 (15), pp 3180–3187 (2013), DOI: 10.1021/cm401563u
  29. Yang Zhang, Karol Miszta, Liberato Manna, Enzo Di Fabrizio, and Roman Krahne, “Cold field emission dominated photoconductivity in ordered three-dimensional assemblies of octapod-shaped CdSe/CdS nanocrystals”, Nanoscale 5, 7596-7600 (2013), DOI: 10.1039/C3NR01588B
  30. Ritun Chakraborty, Fanny Greullet, Chandramohan George, Dmitry Baranov, Enzo Di Fabrizio and Roman Krahne, “Broad spectral photocurrent enhancement in Au-decorated CdSe nanowires”, Nanoscale 5 (12), 5334 - 5340 (2013), DOI: 10.1039/C3NR00752A
  31. Romain Lavieville, Yang Zhang, Enzo Di Fabrizio, and Roman Krahne, “Electrical contacts to nanorod networks at different length scales: From macroscale ensembles to single nanorod chains”, Microelectronic Engineering 111, 185–188 (2013),
  32. Gobind Das, Anisha Gopalakrishnan, Ritun Chakraborty, Dmitry Baranov, Enzo Di Fabrizio, and Roman Krahne, “A new route to produce efficient surface-enhanced Raman spectroscopy substrates: gold-decorated CdSe nanowires”, Journal of Nanoparticle Research 15, p1596 (2013)
  33. Marco Zanella, Lorenzo Maserati, Manuel Pernia Leal, Mirko Prato, Romain Lavieville, Mauro Povia, Roman Krahne, and Liberato Manna, “Atomic Ligand Passivation of Colloidal Nanocrystal Films via their Reaction with Propyltrichlorosilane.” Chemistry of Materials (2013),
  34. Anisha Gopalakrishna, Mario Malerba, Salvatore Tuccio, Simone Panaro, Ermanno Miele, Manohar Chirumamilla, Stefania Santoriello, Carla Dorigoni, Andrea Giugni, Remo Proietti Zaccaria, Carlo Liberale, Francesco De Angelis, Luca Razzari, Roman Krahne, Andrea Toma, Gobind Das, and Enzo Di Fabrizio, Nanoplasmonic structures for biophotonic applications: SERS overview, Annalen der Physik 1–17 (2012), DOI 10.1002/andp.201200145
  35. Margherita Zavelani Rossi, Roman Krahne, Giuseppe Della Valle, Stefano Longhi, Isabella R. Franchini, Salvatore Girardo, Francesco Scotognella, Dario Pisignano, Liberato Manna, Guglielmo Lanzani and Francesco Tassone, Self-assembled CdSe/CdS nanorod micro-lasers fabricated from solution by capillary jet deposition, Laser & Photonics Reviews 6(5), 678-683 (2012), DOI: 10.1002/lpor.201200010
  36. Stefan Kudera, Yang Zhang, Enzo Di Fabrizio, Liberato Manna, and Roman Krahne, Spatial analysis of the photocurrent generation and transport in semiconductor nanocrystal films, Physical Review B 86, 075307 (2012), DOI: 10.1103/PhysRevB.86.075307
  37. Peigang Li, Alexandros Lappas, Romain Lavieville, Yang Zhang, and Roman Krahne, CdSe-Au nanorod networks welded by gold domains: a promising structure for nano-optoelectronic components, Journal of Nanoparticle Research 14 (7), article number 978 (2012), DOI: 10.1007/s11051-012-0978-2
  38. Romain Lavieville, Yang Zhang, Alberto Casu, Alessandro Genovese, Liberato Manna, Enzo Di Fabrizio, and Roman Krahne, Charge Transport in Nanoscale “All-Inorganic” Networks of Semiconductor Nanorods Linked by Metal Domains, ACS Nano 6 (4), 2940-2947 (2012), DOI: 10.1021/nn3006625
  39. Andrea Giugni, Gobind Das, Alessandro Alabastri, Remo Proietti Zaccaria, Marco Zanella, Isabella Franchini, Enzo Di Fabrizio, and Roman Krahne, Optical phonon modes in ordered core-shell CdSe/CdS nanorod arrays, Physical Review B 85, 115413 (2012), DOI: 10.1103/PhysRevB.85.115413
  40. Hongbo Li, Rosaria Brescia, Roman Krahne, Giovanni Bertoni, Marcelo J. P. Alcocer, Cosimo D’Andrea, Francesco Scotognella, Francesco Tassone, Marco Zanella, Milena De Giorgi, and Liberato Manna, Blue-UV-Emitting ZnSe(Dot)/ZnS(Rod) Core/Shell Nanocrystals Prepared from CdSe/CdS Nanocrystals by Sequential Cation Exchange, ACS Nano 6 (2), pp 1637–1647 (2012), DOI: 10.1021/nn204601n
  41. Chandramohan George, Alessandro Genovese, Fen Qiao, Kseniya Korobchevskaya, Alberto Comin, Andrea Falqui, Sergio Marras, Anna Roig, Yang Zhang, Roman Krahne and Liberato Manna, Optical and electrical properties of colloidal (spherical Au)-(spinel ferrite nanorod) heterostructures, Nanoscale 3, 4647-4654 (2011) DOI: 10.1039/C1NR10768B
  42. Andrea Paolella, Chandramohan George, Mauro Povia, Yang Zhang, Roman Krahne, Marti Gich, Alessandro Genovese, Andrea Falqui, Maria Longobardi, Pablo Guardia, Teresa Pellegrino, and Liberato Manna, Charge Transport and Electrochemical Properties of Colloidal Greigite (Fe(3)S(4)) Nanoplatelets, Chemistry of Materials 23 (16), pp 3762–3768 DOI: 10.1021/cm201531h
  43. Yang Zhang, Karol Miszta, Stefan Kudera, Liberato Manna, Enzo Di Fabrizio, and Roman Krahne, „Spatially resolved photoconductivity of thin films formed by colloidal octapod-shaped CdSe/CdS nanocrystals”, Nanoscale 3, 2964-2970 (2011), doi: 10.1039/C1NR10251F
  44. Roman Krahne, Margherita Zavelani-Rossi, Maria Grazia Lupo, Liberato Manna, Guglielmo Lanzani, Amplified Stimulated Emission from Core and Shell Transitions in CdSe/CdS Nanorods fabricated by Seeded Growth, Applied Physics Letters 98, pp 063105 (2011)
  45. Roman Krahne, Giovanni Morello, Albert Figuerola, George Chandramohan, Sasanka Deka and Liberato Manna, „Physical Properties of Inorganic Elongated  Nanoparticles.“ Physics Reports, Volume 501, Issues 3-5, April 2011, Pages 75-221  (2011) doi:10.1016/j.physrep.2011.01.001
  46. Sasanka Deka, Alessandro Genovese, Yang Zhang, Karol Miszta, Giovanni Bertoni, Roman Krahne, Cinzia Giannini and Liberato Manna, Phosphine-Free Synthesis of p-Type Copper(I) Selenide Nanocrystals in Hot Coordinating Solvents, J. Am. Chem. Soc., 2010, 132 (26), pp 8912–8914 DOI: 10.1021/ja103223x
  47. Franchini I.R., Cola A., Rizzo A., Mastria R., Persano A., Krahne R., Genovese A., Falqui A., Baranov D., Gigli G., Manna L., Phototransport in networks of tetrapod-shaped colloidal semiconductor nanocrystals., Nanoscale 2, pp 3028–3036 (2010), DOI: 10.1039/c0nr00308
  48. Anna Persano, Milena De Giorgi, Angela Fiore, Roberto Cingolani, Liberato Manna, Adriano Cola and Roman Krahne, Photoconduction Properties in Aligned Assemblies of Colloidal CdSe/CdS Nanorods, ACS Nano 4 (3), pp 1646–1652 (2010), DOI: 10.1021/nn901575r
  49. Margherita Zavelani-Rossi, Maria Grazia Lupo, Roman Krahne, Liberato Manna, Guglielmo Lanzani, “Lasing in self assembled microcavities of colloidal core/shell CdSe/CdS quantum rods”, Nanoscale 2, pp 931 (2010), DOI: 10.1039/b9nr00434c
  50. G. Maruccio, E. Primiceri, P. Marzo, V. Arima, T. Pellegrino, R. Krahne, A. Della Torre, R. Cingolani and R. Rinaldi, “A nanoelectrode-based biosensor for the detection of single biorecognition events.” Analyst 134, 2458-2461 (2009)
  51. C. Nobile, L. Carbone, A. Fiore, R. Cingolani, L. Manna, and R. Krahne, “Self assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal phases by externally stimulated evaporation dynamics.”  J. Phys.: Condens. Matter 21 264013 (2009)
  52. C. Nobile, P.l D. Ashby, P. J. Schuck, A. Fiore, R. Mastria, R. Cingolani,  L. Manna, and R. Krahne. "Probe tips functionalized with colloidal nanocrystal tetrapods for high resolution atomic force microscopy imaging." Small 4 (12), 2123-21-26 (2008)
  53. L. Carbone, C. Nobile, M. De Giorgi, F. Della Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I. R. Franchini, M. Nadasan, A. F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, and L. Manna, Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach, Nano Letters 7 (10), 2942-2950  (2007) DOI: 10.1021/nl0717661
  54. G. Maruccio, P. Marzo, R. Krahne, A. Passaseo, R. Cingolani, and R. Rinaldi, Protein conduction and negative differential resistance in large-scale nanojunction arrays, Small 3(7),  1184-1188 (2007) DOI: 10.1002/smll.200600600
  55. G. Maruccio , P. Marzo, R. Krahne, A. Della Torre, A. Passaseo, R. Cingolani, R. Rinaldi,, Fabrication and transport of large-scale molecular tunnel-junction arrays, Microelectronic Engineering 84(5-8), 1585-1588 (2007), DOI:10.1016/j.mee.2007.01.107
  56. A. Della Torre, P.P. Pompa, L.L. del Mercato, R. Chiuri, R. Krahne, G. Maruccio, L. Carbone, L. Manna, R. Cingolani, and R. Rinaldi, Interconnection of specific nano-objects by electron beam lithography – a controllable method, Materials Science and Engineering 28 (2), 299-302 (2008), DOI: 10.1016/j.msec.2007.01.009
  57. C. Nobile, V. A. Fonoberov, S. Kudera, A. Della Torre, A. Ruffino, G. Chilla, T. Kipp, D. Heitmann, R. Cingolani, L. Manna, A.A. Balandin, and R. Krahne, Confined optical phonon modes in aligned nanorod arrays detected by resonant inelastic light scattering, Nano Letters 7 (2), 476-479 (2007) DOI: 10.1021/nl062818+
  58. C. Nobile, S. Kudera, A. Fiore, L. Carbone, G. Chilla, T. Kipp, D. Heitmann, R. Cingolani, L. Manna, and R. Krahne, Confinement effects on optical phonons in spherical, rod-, and tetrapod-shaped nanocrystals detected by Raman spectroscopy, phys. Stat. Sol. (a) 204, No. 2, 483–486 (2007) / DOI 10.1002/pssa.200673223
  59. R. Krahne, G. Chilla,  Ch. Schűller, L. Carbone, S. Kudera, D. Tarì, M. DeGiorgi, D. Heitmann, R. Cingolani, L. Manna,, Shape dependence of the scattering processes of optical phonons in colloidal nanocrystals detected by Raman spectroscopy,, Journal of Nanoelectronics and Optoelectronics 1 (1), 104-107 (2006).DOI  10.1166/jno.2006.012
  60. R. Krahne, G. Chilla,  Ch. Schűller, L. Carbone, S. Kudera, G. Mannarini, L. Manna, D. Heitmann, R. Cingolani, Confinement effects on optical phonons in polar tetrapod nanocrystals detected by resonant inelastic light scattering, Nano Letters 6 (3), 478-482 (2006). (10.1021/nl0524492)
  61. T. Rosenblum-Dadosh, Y. Gordin, R. Krahne, I. Khivrich, D. Mahalu, V. Frydman, J. Sperling, A. Yacoby and I. Bar-Joseph, Measurement of the conductance of single conjugated molecules., Nature 436, 677 (2005). (
  62. D. Tarì, M. De Giorgi, F. Della Sala, L. Carbone, R. Krahne, L. Manna, R. Cingolani, S. Kudera and W. J. Parak, Optical properties of tetrapod-shaped CdTe nanocrystals, Applied Physics Letters 87, 224101 (2005) (10.1063/1.2130727)
  63. M. De Giorgi, D. Tari, L. Manna, R. Krahne and R. Cingolani, Optical properties of colloidal nanocrystal spheres and tetrapods, Microelectronics Journal, 36 (3-6), 552-554 (2005) (10.1016/j.mejo.2005.02.074)
  64. L. Manna, M. de Giorgi, D. Tari’, L. Carbone, R. Krahne, M. Anni,  R. Cingolani, S. Kudera and W. Parak, Perspectives of Colloidal Nanocrystals in Nanoscience and Nanotechnology. Proceedings of the International School of Physics Enrico Fermi, “From Nanostructures to Nanosensing Applications” (2004)
  65. A. Della Torre, P. Visconti, G. Maruccio, R. Krahne, R. Rinaldi, and R. Cingolani, Fabrication of nanoelectrodes for hybrid molecular-electronic device. Proceedings of the 4th IEEE Conference on Nanotechnology, 456-458 (2004), (Munich, Germany - 17-09/08/2004).
  66. R. Krahne, T. Dadosh, Y. Gordin, A. Yacoby, H. Shtrikman, D. Mahalu, J. Sperling, and I. Bar-Joseph, Nanoparticles and Nanogaps: Controlled Positioning and Fabrication. Physica E 17: 498-502 (2003) (10.1016/S1386-9477(02)00848-2)
  67. R. Krahne, T. Dadosh, A. Yacoby, H. Shtrikman, J. Sperling, and I. Bar-Joseph, Fabrication of Nanoscale Gaps in Integrated Circuits. Applied Physics Letters 81, 730 (2002). (10.1063/1.1495080)
  68. D. Heitmann, V. Gudmundsson, M. Hochgrafe, R. Krahne, D. Pfannkuche, Far-infrared spectroscopy of tailored quantum wires, quantum dots and antidot arrays. Physica E 14 (1-2), pp 37-44 (2002). (10.1016/S1386-9477(02)00357-0)
  69. R. Krahne, V. Gudmundsson, Ch. Heyn and D. Heitmann. Inter-Dot Interaction in an Array of Elliptical Quantum Dots. Physica E 12 (1-4), pp. 892-895 (2002). (10.1016/S1386-9477(01)00455-6)
  70. V. Gudmundsson, A. Manolescu, R. Krahne, D. Heitmann, From single dots to interacting arrays. “Nano-Physics and Bio-Electronics", edited by T. Chakraborty, F. Peeters, and U. Sivan, published by Elsevier (2002).(
  71. R. Krahne, V. Gudmundsson, Ch. Heyn and D. Heitmann. Far-infrared excitations below the Kohn mode:Internal motion in a quantum dot. Physical Review B 63, 195303, (2001). (10.1103/PhysRevB.63.195303)
  72. R. Krahne, M. Hochgräfe, Ch. Heyn, D. Heitmann, M. Hauser and K. Eberl. Excitation of two-dimensional plasmons with cross-grating couplers. Physical Review B 62, 15345, (2000). (10.1103/PhysRevB.62.15345)
  73. R. Krahne, M. Hochgräfe, Ch. Heyn, and D. Heitmann. Bernstein modes in density modulated two-dimensional electron systems and quantum dots. Physical Review B 61, R16319, (2000). (10.1103/PhysRevB.61.R16319)
  74. M. Hochgräfe, R. Krahne, Ch. Heyn, and D. Heitmann. Pillow shape motion in antidot arrays. Physica E 6 (1-4): 507-509 (2000). (10.1016/S1386-9477(99)00095-8)
  75. M. Hochgräfe, R. Krahne, Ch. Heyn, and D. Heitmann. Anticrossing of the one-dimensional plasmon and the Kohn’s mode in periodically modulated quantum wires. Physical Review B 60, R13974, (1999). (10.1103/PhysRevB.60.R13974)
  76. M. Hochgräfe, R. Krahne, Ch. Heyn, and D. Heitmann. Anticyclotron motion in antidot arrays.        Physical Review B 60, 10680, (1999). (10.1103/PhysRevB.60.10680)
  77. C. Schüller, R. Krahne, G. Biese, C. Steinebach, E. Ulrichs, D. Heitmann, and K. Eberl. Multiple cyclotron resonances in GaAs-AlGaAs quantum wells detected by resonant inelastic light scattering. Physical Review B 56, 1037, (1997). (10.1103/PhysRevB.56.1037)
  78. C. Steinebach, R. Krahne, G. Biese, C. Schüller, D. Heitmann, and K. Eberl. Internal electron-electron interactions in one dimensional systems detected by Raman spectroscopy. Physical Review B 54, R14281, (1996). (10.1103/PhysRevB.54.R14281)

Book chapters:

  1. Proietti Zaccaria R., Alabastri A., Toma A., Das G., Giugni A., Tuccio S., Panaro S., Chirumamilla M., Gopalakrishnan A., Saeed A., Li H., Krahne R. and Di Fabrizio E., Plasmonic Nanostructures for Nanoscale Energy Deliverry and Biosensing: Design, Fabrication and Characterization, Singular and Chiral Nanoplasmonics, Panstanford 2014, Singapore, ISBN 9789814613170 , DOI: 10.4032/9789814613187
  2. Angelo Accardo, Remo Proietti Zaccaria, Patrizio Candeloro, Francesco Gentile, Maria Laura Coluccio, Gobind Das, Roman Krahne, Carlo Liberale, Andrea Toma, Simone Panaro, Ermanno Miele, Manohar Chirumamilla, Vijayakumar Rajamanickam, and Enzo Di Fabrizio, “Metal Structures as Advanced Materials in Nanotechnology”, Bharat Bhushan (ed.), Handbook of Nanomaterials Properties, DOI 10.1007/978-3-642-31107-9_42, Springer-Verlag Berlin Heidelberg 2014
  3. Enzo Di Fabrizio, Francesco Gentile, Michela Perrone Donnorso, Manohar Chirumamilla Chowdary, Ermanno Miele, Maria Laura Coluccio, Rosanna La Rocca, Rosaria Brescia, Roman Krahne, Gobind Das, Francesco De Angelis, Carlo Liberale, Andrea Toma, Luca Razzari, Liberato Manna and Remo Proietti Zaccaria, “Nanoparticles and Nanostructures for Biophotonic Applications”, The Delivery of Nanoparticles,  ISBN: 978-953-51-0615-9, Intech Open science, DOI: 10.5772/34988
  4. Remo Proietti Zaccaria, Anisha Gopalakrishnan, Gobind Das, Francesco Gentile, Ali Haddadpour, Andrea Toma, Francesco De Angelis, Carlo Liberale, Federico Mecarini, Luca Razzari, Andrea Giugni, Roman Krahne and Enzo Di Fabrizio, “Photonic Crystals for Plasmonics: From Fundamentals to Superhydrophobic Devices”, Intech Open Science, Photonic Crystals - Innovative Systems, Lasers and Waveguides,  ISBN: 978-953-51-0416-2, DOI: 10.5772/32948
  5. Roman Krahne and Liberato Manna. “Colloidal Inorganic Nanocrystals: Synthesis and Controlled Assembly”, Handbook of Nanofabrication, edited by Stefano Cabrini and Satoshi Kawata, C&C Press – Taylor and Francis (2011), Publication Date: February 24, 2012 | ISBN-10: 1420090526 | ISBN-13: 978-1420090529
    1. Andrea Toma, Remo Proietti Zaccaria, Roman Krahne, Alessandro Alabastri, Maria Laura Coluccio, Gobind Das, Carlo Liberale, Francesco De Angelis, Marco Francardi, Federico Mecarini, Francesco Gentile, Angelo Accardo, Liberato Manna and Enzo Di Fabrizio, Nanostructures for Photonics, Encyclopedia of Nanotechnology, Editor Bharat Bhushan, ISBN 978-90-481-9750-7 Springer (2012)
  6. Roman Krahne and Liberato Manna. “Tetrapod-shaped semiconductor nanocrystals”, Handbook of Nanophysics: Nanoparticles and Quantum Dots, edited by Klaus Sattler, C&C Press – Taylor and Francis september 17, 2010, ISBN:  9781420075441
  7. Dirk Dorfs, Roman Krahne, Cinzia Giannini, Andrea Falqui, Daniela Zanchet and Liberato Manna, “Synthesis and characterization of quantum dots”. Comprehensive Nanoscience and Technology, Edited by David Andrews, Greg Scholes and Gary Wiederrecht, Elsevier, 2010, ISBN 13: 978-0-12-374390-9


  1. Roman Krahne, Liberato Manna, Giovanni Morello, Albert Figuerola, Chandramohan George, Sasanka Deka, “Physical properties of nanorods”, Springer Science + Business Media, Series “Nanoscience and Technology”, ISBN: 978-3-642-36429-7 (Print) 978-3-642-36430-3, Springer-Verlag Berlin Heidelberg 2013


-       Fellowship from the Feinberg Graduate School (Weizmann Institute of Science, Israel, 2001).

-       Fellowship from the Thyssen Foundation (Weizmann Institute of Science, Israel, 2002).

-       Guest Professor at the Institute of Semiconductors, Chinese Academy of Sciences, September 2013


IIT's website uses the following types of cookies: browsing/session, analytics, functional and third party cookies. Users can choose whether or not to accept the use of cookies and access the website.
By clicking on further information, the full information notice on the types of cookies used will be displayed and you will be able to choose whether or not to accept cookies whilst browsing on the website.
Further information
Accept and close

I numeri di IIT

L’Istituto Italiano di Tecnologia (IIT) è una fondazione di diritto privato - cfr. determinazione Corte dei Conti 23/2015 “IIT è una fondazione da inquadrare fra gli organismi di diritto pubblico con la scelta di un modello di organizzazione di diritto privato per rispondere all’esigenza di assicurare procedure più snelle nella selezione non solo nell’ambito nazionale dei collaboratori, scienziati e ricercatori ”.

IIT è sotto la vigilanza del Ministero dell'Istruzione, dell'Università e della Ricerca e del Ministero dell'Economia e delle Finanze ed è stato istituito con la Legge 326/2003. La Fondazione ha l'obiettivo di promuovere l'eccellenza nella ricerca di base e in quella applicata e di favorire lo sviluppo del sistema economico nazionale. La costruzione dei laboratori iniziata nel 2006 si è conclusa nel 2009.

Lo staff complessivo di IIT conta circa 1440 persone. L’area scientifica è rappresentata da circa l’85% del personale. Il 45% dei ricercatori proviene dall’estero: di questi, il 29% è costituito da stranieri provenienti da oltre 50 Paesi e il 16% da italiani rientrati. Oggi il personale scientifico è composto da circa 60 principal investigators, circa 110 ricercatori e tecnologi di staff, circa 350 post doc, circa 500 studenti di dottorato e borsisti, circa 130 tecnici. Oltre 330 posti su 1400 creati su fondi esterni. Età media 34 anni. 41% donne / 59 % uomini.

Nel 2015 IIT ha ricevuto finanziamenti pubblici per circa 96 milioni di euro (80% del budget), conseguendo fondi esterni per 22 milioni di euro (20% budget) provenienti da 18 progetti europei17 finanziamenti da istituzioni nazionali e internazionali, circa 60 progetti industriali

La produzione di IIT ad oggi vanta circa 6990 pubblicazioni, oltre 130 finanziamenti Europei e 11 ERC, più di 350 domande di brevetto attive, oltre 12 start up costituite e altrettante in fase di lancio. Dal 2009 l’attività scientifica è stata ulteriormente rafforzata con la creazione di dieci centri di ricerca nel territorio nazionale (a Torino, Milano, Trento, Parma, Roma, Pisa, Napoli, Lecce, Ferrara) e internazionale (MIT ed Harvard negli USA) che, unitamente al Laboratorio Centrale di Genova, sviluppano i programmi di ricerca del piano scientifico 2015-2017.

IIT: the numbers

Istituto Italiano di Tecnologia (IIT) is a public research institute that adopts the organizational model of a private law foundation. IIT is overseen by Ministero dell'Istruzione, dell'Università e della Ricerca and Ministero dell'Economia e delle Finanze (the Italian Ministries of Education, Economy and Finance).  The Institute was set up according to Italian law 326/2003 with the objective of promoting excellence in basic and applied research andfostering Italy’s economic development. Construction of the Laboratories started in 2006 and finished in 2009.

IIT has an overall staff of about 1,440 people. The scientific staff covers about 85% of the total. Out of 45% of researchers coming from abroad 29% are foreigners coming from more than 50 countries and 16% are returned Italians. The scientific staff currently consists of approximately 60 Principal Investigators110 researchers and technologists350 post-docs and 500 PhD students and grant holders and 130 technicians. External funding has allowed the creation of more than 330 positions . The average age is 34 and the gender balance proportion  is 41% female against 59% male.

In 2015 IIT received 96 million euros in public funding (accounting for 80% of its budget) and obtained 22 million euros in external funding (accounting for 20% of its budget). External funding comes from 18 European Projects, other 17 national and international competitive projects and approximately 60 industrial projects.

So far IIT accounts for: about 6990 publications, more than 130 European grants and 11 ERC grants, more than 350 patents or patent applications12 up start-ups and as many  which are about to be launched. The Institute’s scientific activity has been further strengthened since 2009 with the establishment of 11 research nodes throughout Italy (Torino, Milano, Trento, Parma, Roma, Pisa, Napoli, Lecce, Ferrara) and abroad (MIT and Harvard University, USA), which, along with the Genoa-based Central Lab, implement the research programs included in the 2015-2017 Strategic Plan.