Multiscale Brain Communication

Multiscale Brain Communication

The Multiscale Brain Communication Line studies the neural mechanisms responsible for our capacity to communicate with others. This research is essential to develop new brain interfaces, specifically conceived for human use, to transduce and computationally decode neural signals.

To this purpose, we are studying the mechanisms by which the brain processes and understands the communicative behaviors of other individuals to efficiently decode the brain signals related to communicative intentions. We are applying innovative and biologically-compatible technologies to the problem of automatic speech and action recognition (Speech and Communication Team) and we are designing a new generation of brain electronic devices characterized by reduced invasiveness, improved resolution, ultrasensitivity and capability to record and stimulate brain regions (Neurotechnologies Team).

In summary, with a critical focus on translational methodologies (single unit recordings, Micro-ECoG, fMRI, EEG, TMS), our research goal is to advance knowledge on brain functioning to help building the next generation of brain-computer interfaces. The group research activities span from basic research to applied one along three main research lines:

  • Design and fabrication of long-term stable neural interfaces with high signal-to-noise ratio and spatio-temporal resolution.
  • Research on brain centers and circuits involved in action/speech understanding
  • Research on new efficient methods for automatic speech recognition from audio and multimodal signals (e.g., audio-visual)

Collaborations with other National and international labs are fundamental. A particularly intense collaboration is running between CTNSC@UniFe and the Neurosurgery Unit of Udine Hospital (M. Skrap).



Our laboratories host state-of-the-art facilities for motion capture, neurophysiology, histology, cell culture, material science, electrochemical and electrical characterization.

  • Neuronavigated Transcranial Magnetic Stimulation, High density Electroencephalography, Eye-tracking, Optical Motion Tracking and ElectroMagnetic Articulography
  • Tethered and wireless multichannel neural recording and stimulation, Neuron Tracing Fluorescence Microscopy, Histology Sectioning Microtome, Primary Cells Culture facilities
  • Galvanostats/Potentiostats, Electropolymerization, High Resolution Optical Microscopy, LCR meter, Electrometers, Dual Source Meters, Scanning Probe Microscope, Probe station, Contact Angle Measurement, Plasma, Profilometer;
  • Processing/fabrication/characterization line for organic electronics materials and devices: high-vacuum chambers for metal evaporation and organic thin film sublimation; glove boxe with spin coating;  dip coating and vertical deposition.


Mixed Speech
Continuous listening


  • Translational Neurophysiology on Humans – Miran Skrap - Neurochirurgia, Ospedale di Udine
  • Ultraflexible electrode arrays - Guglielmo Fortunato – CNR-IMM – Roma
  • Polyimide Based Ultraconformable arrays- Thomas Stieglitz - Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany
  • Glassy carbon electrode arrays - Sam Kassegne - San Diego State University - USA
  • Marmoset motor cortex mapping – Atsushi Iriki – RIKEN Brain Science Institute – Saitama – Japan
  • Action perception and motor control - Thierry Pozzo – CTNSC@IIT and INSERM - U1093 Cognition, Action, and Sensorimotor Plasticity, Dijon, France
  • Motor intention understanding - Cristina Becchio – RBCS@IIT and Università di Torino, Italy
  • The shared syntax of action, music and language - Stefan Kölsch - University in Bergen, Norway
  • Computational investigation of action primitives - Yiannis Aloimonos - University of Maryland, USA
  • The syntax of action, objects affordances and language - Katerina Pastra - Cognitive Systems Research Institute and Institute for Language and Speech Processing, Athens, Greece
  • Object affordances in humans and robots - Jose Santos-Victor - Instituto Superior Técnico, Institute of Systems and Robotics, Lisboa, Portugal
  • The motor system in speech and language perception - Friedemann Pulvermüller - Institut für Deutsche und Niederländische Philologie, Berlin, Germany
  • Automatic speech recognition for robotics- Giorgio Metta – iCub@IIT>
  • Articulatory automatic speech recognition and acoustic inversion – Raman Arora – Center for Language and Speech Processing, Johns Hopkins University
  • Machine learning techniques for automatic speech recognition – Massimiliano Pontil –Computational and Statistical Learning, IIT
  • Automatic speech recognition for dysarthric speech – Frank Rudzicz – University of Toronto
  • Goal-directed sensorimotor coordination in group interaction - Andrea Gaggioli and Giuseppe Riva – Università Cattolica di Milano and IRCCS Istituto Auxologico Italiano, Milano, Italy
  • Sensorimotor signaling - Giovanni Pezzulo - Institute of Cognitive Sciences and Technologies (ISTC-CNR), Roma
  • Sensorimotor entrainment to musical ensembles - Gualtiero Volpe and Antonio Camurri – University of Genova
  • Complex social interaction in musical ensembles - Peter Keller - University of Western Sydney, Australia
  • Impedance spectroscopy and device characterization-Henrique L. Gomes- Electronic Engineering-Universidade do Algarve, Faro, Portugal.
  • Analysis of signals and molecular modelling- Francesco Zerbetto- Alma Mater Università di Bologna
  • Organic electronics biosensors – Carlo Augusto Bortolotti – Università di Modena e Reggio Emilia, Modena.

IIT People


IIT Publications List

Carli S., Trapella C., Armirotti A., Fantinati A., Ottonello G., Scarpellini A., Prato M., Fadiga L., Ricci D.
Biochemically Controlled Release of Dexamethasone Covalently Bound to PEDOT
Chemistry - A European Journal, vol. 24, (no. 41), pp. 10300-10305
Soriano M., Cavallo A., D'Ausilio A., Becchio C., Fadiga L.
Movement kinematics drive chain selection toward intention detection
Proceedings of the National Academy of Sciences of the United States of America, vol. 115, (no. 41), pp. 10452-10457
Carli S., Lambertini L., Zucchini E., Ciarpella F., Scarpellini A., Prato M., Castagnola E., Fadiga L., Ricci D.
Single walled carbon nanohorns composite for neural sensing and stimulation
Sensors and Actuators, B: Chemical, vol. 271, pp. 280-288
Mukherjee S., Badino L., Hilt P., Tomassini A., Inuggi A., Fadiga L., Nguyen N., D'Ausilio A.
The neural oscillatory markers of phonetic convergence during verbal interaction
Human Brain Mapping
Badino L., Canevari C., Fadiga L., Metta G.
Integrating articulatory data in deep neural network-based acoustic modeling
Computer Speech and Language, vol. 36, pp. 173-195