Back to list

Rosaria Brescia

Technologist - Facility Coordinator

Facility

Electron Microscopy

Contacts

+39 010 71781 284

About

2010 – present
Italian Institute of Technology (IIT) – Genova (Italy)

  • Analysis of crystal structure and composition of nanostructured materials via electron diffraction, HRTEM, EDS, EELS and EFTEM
  • Investigation of the chemical binding of inorganic materials, and their modification upon electrochemical or oxidation reactions, via core-loss EELS 
  • Reconstruction of three-dimensional shape of complex branched or hollow nanostructures, or their assemblies, via HAADF-STEM electron tomography

2008 – 2010

CNR - Institute of Inorganic Methodologies and Plasmas (IMIP) – Bari (Italy)

  • Deposition of polycrystalline diamond thin films via microwave-plasma CVD (MWPCVD) on silicon substrates
  • Analysis of the deposition process and of the resulting diamond thin films using in-situ (pyrometric interferometry) and ex-situ (SEM, AFM, XRD, Raman spectroscopy, photoluminescence, thermoluminescence) techniques

2005 - 2008

Institut fuer Physik - University of Augsburg (Germany)
PhD in physics within the Marie Curie Research and Training Nework DRIVE (Diamond Research on Interfaces for Versatile Electronics)
Thesis: “Transmission electron microscopy studies and simulations of heteroepitaxial diamond nucleation on Ir/YSZ/Si”

  • analysis of the nucleation process of diamond synthesised via MWPCVD on iridium thin films by SEM, TEM, AFM and RHEED
  • TEM and HRTEM study of thin metal films and yttria-stabilized zirconia (YSZ) films with different crystal structures grown on Si(001), as-grown or after thermal annealing

2003
University of Florence – Italy
M. Sc. in physics
Thesis: “Study of diamond UV detectors in transverse configuration for astrophysical applications”

Selected Publications

Hollow and Concave Nanoparticles via Preferential Oxidation of the Core in Colloidal Core/Shell Nanocrystals, K. Miszta, R. Brescia, M. Prato, G. Bertoni, S. Marras, Y. Xie, S. Ghosh, M. R. Kim, L. Manna, J. Am. Chem. Soc. 136 (2014) 9061

Room Temperature Fabrication of Silicon Nanocrystals with Pulsed Laser Deposition
, E. Biserni, A. Scarpellini, R. Brescia, D. Dellasega, A. Li Bassi, P. Bruno, J. Nanopart. Res. 16 (2014) 2461

Self-Assembly of Octapod-shaped Colloidal Nanocrystals into a Hexagonal Ballerina Network Embedded in a Thin Polymer Film, M. Arciniegas, M. R. Kim, J. De Graaf, R. Brescia, S. Marras, K. Miszta, M. Dijkstra, R. van Roij, L. Manna, Nano Lett. 14 (2014) 1056

Synthesis of Uniform Disk-Shaped Copper Telluride Nanocrystals and Cation Exchange to Cadmium Telluride Quantum Disks with Stable Red Emission, H. Li, R. Brescia, M. Povia, M. Prato, G. Bertoni, L. Manna and I. Moreels, J. Am. Chem. Soc. 135 (2013) 12270

CuInxGa1-xS2 Nanocrystals with Tunable Composition and Band Gap Synthesized via a Phosphine-Free and Scalable Procedure, E. Dilena, Y. Xie, R. Brescia, M. Prato, L. Maserati, R. Krahne, A. Paolella, G. Bertoni, M. Povia, I. Moreels, L. Manna, Chem. Mater. 25 (2013) 3180

Colloidal Synthesis of Cuprite (Cu2O) Octahedral Nanocrystals and Their Electrochemical Lithiation, A. Paolella, R. Brescia, M. Prato, M. Povia, S. Marras, L. De Trizio, A. Falqui, L. Manna, C. George, ACS Appl. Mater. Interfaces 5 (2013) 2745 

Direct Determination of Polarity, Faceting, and Core Location in Colloidal Core/Shell Wurtzite Semiconductor Nanocrystals, G. Bertoni, V. Grillo, R. Brescia, X. Ke, S. Bals, A. Catellani, H. Li, L. Manna, ACS Nano 6 (2012) 6453

Blue-UV-Emitting ZnSe(Dot)/ZnS(Rod) Core/Shell Nanocrystals Prepared from CdSe/CdS Nanocrystals by Sequential Cation Exchange, H. Li, R. Brescia, R. Krahne, G. Bertoni, M. J. P. Alcocer, C. D’Andrea, F. Scotognella, F. Tassone, M. Zanella, M. De Giorgi, L. Manna, ACS Nano 6 (2012) 1637

Birth and Growth of Octapod-Shaped Colloidal Nanocrystals Studied by Electron Tomography, R. Brescia, K. Miszta, D. Dorfs, L. Manna, G. Bertoni, J. Phys. Chem. C  115 (2011) 20128

Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures, K. Miszta, J. de Graaf, G. Bertoni, D. Dorfs, R. Brescia, S. Marras, L. Ceseracciu, R. Cingolani, R. van Roij, M. Dijkstra, L. Manna, Nat. Mater. 10 (2011) 872

Mechanical properties of MWPECVD diamond coatings on Si substrate via nanoindentation, M. A. Nitti, G. Cicala, R. Brescia, J. B. Guion, G. Perna, V. Capozzi, Diamond Relat. Mater. 20 (2011) 221

Assembly of shape-controlled nanocrystals by depletion attraction, M. Zanella, G. Bertoni, I. R. Franchini, R. Brescia, D. Baranov, L. Manna, Chem. Commun. 47 (2011) 203

Thermoluminescent response of thin (2 µm) polycrystalline diamond films grown by pulsed and continuous microwave plasmas, G. Cicala, R. Brescia, M. A. Nitti, A. Romeo, M. Ambrico, L. Schiavulli, G. Perna, V. Capozzi, Diamond Relat. Mater. 19 (2010) 470

Study of polycrystalline diamond deposition by continuous and pulsed discharges, G. Cicala, R. Brescia, M. A. Nitti, A. Romeo, D. Altamura, C. Giannini, M. Capitelli, P. Spinelli, S. Schutzmann, Surf. Coat. Technol. 204 (2010) 1884

Comparison of diamond bias enhanced nucleation on Ir and 3C-SiC: A high resolution electron energy loss spectroscopy study, A. Hoffman, Sh. Michaelson, R. Akhvlediani, N. K. Hangaly, S. Gsell, R. Brescia, M. Schreck,B. Stritzker, J.-C. Arnault, and S. Saada, Phys. Status Solidi A 206 (2009) 1972

Diamond nucleation on iridium: Local variations of structure and density within the BEN layer M. Schreck, S. Gsell, R. Brescia, M. Fischer, P. Bernhard, P. Prunici, P. Hess, B. Stritzker, Diamond Relat. Mater. 18 (2009) 107

Growth of twin-free heteroepitaxial diamond on Ir/YSZ/Si(111), M. Fischer, R. Brescia, S. Gsell, M. Schreck, T. Brugger, T. Greber, J. Osterwalder, B. Stritzker, J. Appl. Phys. 104 (2008) 123531

Iridium on Biaxially Textured Oxide Templates: A Concept to Grow Single Crystals on Arbitrary Substrates, S. Gsell, M. Schreck, R. Brescia, B. Stritzker, P. N. Arendt, and J. R. Groves, Jpn. J. Appl. Phys. 47 (2008) 8925

Transmission electron microscopy study of the very early stages of diamond growth on iridium, R. Brescia, M. Schreck, S. Gsell, M. Fischer, B. Stritzker, Diamond Relat. Mater. 17 (2008) 1045

Preparation of 4-inch Ir/YSZ/Si(001) substrates for the large-area deposition of single crystal diamond, M. Fischer, S. Gsell, M. Schreck, R. Brescia, B. Stritzker, Diamond Relat. Mater. 17 (2008) 1035

Comparative electron diffraction study of the diamond nucleation layer on Ir(001), S. Gsell, S. Berner, T. Brugger, M. Schreck, R. Brescia, M. Fischer, T. Greber, J. Osterwalder, B. Stritzker, Diamond Relat. Mater. 17 (2008) 1029

Interaction of small diamond islands on iridium: a finite element simulation study, R. Brescia, M. Schreck, J. Michler, S. Gsell, B. Stritzker, Diamond Relat. Mater. 16 (2007) 705

DUV photons to probe the photoconductive properties of diamond films in the surface proximity, R. Brescia, A. De Sio, E. Pace, M. C. Castex, Diamond Relat. Mater. 13 (2004) 938

Photoconductive properties of single-crystal CVD diamond, R. Brescia, A. De Sio, M. G. Donato, G. Faggio, G. Messina, E. Pace, G. Pucella, S. Santangelo, H. Sternschulte, G. Verona Rinati, Phys. Status Solidi A 199 (2003) 113


PATENTS

 - PCT International Patent Application n. PCT/EP2011/063304 "ORDERED SUPERSTRUCTURES OF OCTAPOD-SHAPED NANOCRYSTALS AND USE THEREOF" filed on August 2,2011
Inventors: L. Manna, G. Bertoni, D. Dorfs, R. Brescia, K. Miszta, S. Marras, S. Deka, Y. Zhang, A. Genovese, R. Krahne, R. Cingolani

- US Patent Application n. 13/196123 "OCTAPOD SHAPED NANOCRYSTALS AND USE THEREOF" filed on August 2, 2011
Inventors: L. Manna, G. Bertoni, D. Dorfs, R. Brescia, K. Miszta, S. Marras, R. Krahne, R. Cingolani, Y. Zhang, F. Quian

INFORMATIVA SUI COOKIES

Il sito web di IIT utilizza i seguenti tipi di cookies: di navigazione/sessione, analytics, di funzionalità e di terze parti. L'utente può scegliere di acconsentire all'uso dei cookies e accedere al sito. Facendo click su "Maggiori Informazioni" verrà visualizzata l'informativa estesa sui tipi di cookies utilizzati e sarà possibile scegliere se autorizzarli durante la navigazione sul sito.
Maggiori Informazioni
Accetta e chiudi

I numeri di IIT

L’Istituto Italiano di Tecnologia (IIT) è una fondazione di diritto privato - cfr. determinazione Corte dei Conti 23/2015 “IIT è una fondazione da inquadrare fra gli organismi di diritto pubblico con la scelta di un modello di organizzazione di diritto privato per rispondere all’esigenza di assicurare procedure più snelle nella selezione non solo nell’ambito nazionale dei collaboratori, scienziati e ricercatori ”.

IIT è sotto la vigilanza del Ministero dell'Istruzione, dell'Università e della Ricerca e del Ministero dell'Economia e delle Finanze ed è stato istituito con la Legge 326/2003. La Fondazione ha l'obiettivo di promuovere l'eccellenza nella ricerca di base e in quella applicata e di favorire lo sviluppo del sistema economico nazionale. La costruzione dei laboratori iniziata nel 2006 si è conclusa nel 2009.

Lo staff complessivo di IIT conta circa 1440 persone. L’area scientifica è rappresentata da circa l’85% del personale. Il 45% dei ricercatori proviene dall’estero: di questi, il 29% è costituito da stranieri provenienti da oltre 50 Paesi e il 16% da italiani rientrati. Oggi il personale scientifico è composto da circa 60 principal investigators, circa 110 ricercatori e tecnologi di staff, circa 350 post doc, circa 500 studenti di dottorato e borsisti, circa 130 tecnici. Oltre 330 posti su 1400 creati su fondi esterni. Età media 34 anni. 41% donne / 59 % uomini.

Nel 2015 IIT ha ricevuto finanziamenti pubblici per circa 96 milioni di euro (80% del budget), conseguendo fondi esterni per 22 milioni di euro (20% budget) provenienti da 18 progetti europei17 finanziamenti da istituzioni nazionali e internazionali, circa 60 progetti industriali

La produzione di IIT ad oggi vanta circa 6990 pubblicazioni, oltre 130 finanziamenti Europei e 11 ERC, più di 350 domande di brevetto attive, oltre 12 start up costituite e altrettante in fase di lancio. Dal 2009 l’attività scientifica è stata ulteriormente rafforzata con la creazione di dieci centri di ricerca nel territorio nazionale (a Torino, Milano, Trento, Parma, Roma, Pisa, Napoli, Lecce, Ferrara) e internazionale (MIT ed Harvard negli USA) che, unitamente al Laboratorio Centrale di Genova, sviluppano i programmi di ricerca del piano scientifico 2015-2017.

IIT: the numbers

Istituto Italiano di Tecnologia (IIT) is a public research institute that adopts the organizational model of a private law foundation. IIT is overseen by Ministero dell'Istruzione, dell'Università e della Ricerca and Ministero dell'Economia e delle Finanze (the Italian Ministries of Education, Economy and Finance).  The Institute was set up according to Italian law 326/2003 with the objective of promoting excellence in basic and applied research andfostering Italy’s economic development. Construction of the Laboratories started in 2006 and finished in 2009.

IIT has an overall staff of about 1,440 people. The scientific staff covers about 85% of the total. Out of 45% of researchers coming from abroad 29% are foreigners coming from more than 50 countries and 16% are returned Italians. The scientific staff currently consists of approximately 60 Principal Investigators110 researchers and technologists350 post-docs and 500 PhD students and grant holders and 130 technicians. External funding has allowed the creation of more than 330 positions . The average age is 34 and the gender balance proportion  is 41% female against 59% male.

In 2015 IIT received 96 million euros in public funding (accounting for 80% of its budget) and obtained 22 million euros in external funding (accounting for 20% of its budget). External funding comes from 18 European Projects, other 17 national and international competitive projects and approximately 60 industrial projects.

So far IIT accounts for: about 6990 publications, more than 130 European grants and 11 ERC grants, more than 350 patents or patent applications12 up start-ups and as many  which are about to be launched. The Institute’s scientific activity has been further strengthened since 2009 with the establishment of 11 research nodes throughout Italy (Torino, Milano, Trento, Parma, Roma, Pisa, Napoli, Lecce, Ferrara) and abroad (MIT and Harvard University, USA), which, along with the Genoa-based Central Lab, implement the research programs included in the 2015-2017 Strategic Plan.