
OpenSim Real-Time Robotics Operating System Integration*

Frederico B. Klein1 and Ruoli Wang2

Abstract— Real-time accurate description of human move-
ment is necessary for applications that require a close interface
between robotic devices and people. The open-source simulator
OpenSim is an accurate implementation of rigid body mechan-
ics of human movement, but while written in C++, it was not
designed with real-time operation as its focus. OpenSim real-
time (OpenSimRT), is a step towards bridging this gap, however
the absence of a framework made it harder to integrate with
other systems. The work presented here aims to solve this
integration issue by implementing OpenSimRT’s pipeline in a
Robotics Operating System (ROS) framework using Docker
for easy replication. Benefits include abstraction of hardware
interfaces with devices such as Inertial Motion Units (IMUs)
and ease of integration with other ROS algorithms (e.g. Aug-
mented Reality). We finally justify this approach (OpenSimRT
and ROS-Docker) as a desirable platform for prototyping
systems requiring accurate musculoskeletal modelling of human
movement and integration with various sub-components.

I. INTRODUCTION

Accurate human movement description can benefit many
tasks such as exoskeleton control, movement analysis,
human-computer interaction, movement related augmented
and virtual reality design. A way to ensure accurate human
movement description is by using validated movement de-
scription systems as opposed to ad-hoc solutions. However,
for most of these tasks real-time estimation of movement pa-
rameters are a requirement, restricting the type of algorithms
and implementations possible.

Commonly, musculoskeletal modelling and simulation can
be done by optimization algorithms running a pipeline which
is not meant to be executed in real-time. As such Open-
Sim [1], an open-source software that allows creation of
models of musculoskeletal structures and dynamic movement
simulator and other implementations such as AnyBody [2]
are not designed with real-time execution as their focus.

Different attempts to bridge this gap and simulate vali-
dated movement description of musculoskeletal models in
real-time exist, notably RTOSIM [3] and more currently
OpenSimRT [4]. RTOSIM is a real-time implementation of
OpenSim which solves inverse kinematics and dynamics at
2000fps using motion-capture data and measured ground
reaction forces from force plates. OpenSimRT extends this
work by including inverse kinematics from IMU input and
model based Ground Reaction Force and Moments (GRFM)

*This work was supported by Digital Futures
1Frederico Belmonte Klein is with MoveAbility Lab, Dept. of Engineer-

ing Mechanics, Kungliga Tekniska Högskolan, KTH 100 44 Stockholm,
Sweden frekle@kth.se

2Ruoli Wang is with MoveAbility Lab, Dept. of Engineering
Mechanics, Kungliga Tekniska Högskolan, KTH, Stockholm Sweden
ruoli@kth.se

prediction for walking, as well as estimation of individual
Muscle Activation and Joint Reaction loads.

Integration of multiple systems becomes a concern once
a system starts to become more complex. ROS [5], widely
used for real-time robotics research applications is a frame-
work which tackles integration issues by introducing the
concept of nodes, which execute a certain specific task and a
communications framework based on pre-compiled messages
published on topics and service calls which those nodes use
to communicate with each other.

Pinocchio [6], a ROS integrated, real-time rigid multi-
body physics mechanics by the Gepetto Research Group
offers the support for OpenSim models by using the ospi
library. However it does so by parsing OpenSim models and
simulating them with Pinocchio, instead of using OpenSim
directly. An interface which uses OpenSim itself offers the
advantage of using other modules from the feature-rich
OpenSim platform.

OpenSimRT provides example tests which are almost
equivalent to ROS nodes, however without a framework such
as the ros_comm interface, integration and development of
variation of nodes become cumbersome as the number of
variations becomes large. Modifications of the underlying
code become increasingly harder, specially when multiple
different modes of operation (such as different sensor inputs
or algorithms and changes in models) are considered.

A system with many components may become hard to
reimplement on different hardware or operating systems, a
term colloquially referred to as "dependency hell". To avoid
such issues, we chose a pipeline using Docker [7], a solution
often used by the AI community to mitigate replication
issues[8]. Docker provides containerization, which allows
for more control of installed libraries and communications,
allowing containers to be shared online and a more quick de-
ployment and testing. To allow for the system to continue to
grow in complexity, we thus decided to use ROS, Docker and
a customized version of OpenSimRT with ROS integration,
which will present in this paper.

II. ARCHITECTURE DESCRIPTION

A. System overview

A Dockerized 3 version of OpenSimRT was developed
using a ROS container image with OpenSim 4.1 and Open-
SimRT based on the Continuous Integration [9] GitHub
workflow from OpenSimRT. The OpenSimRT package was

3Docker image builder available in https://github.com/
opensimrt-ros/docker-opensimrt.

https://github.com/opensimrt-ros/docker-opensimrt
https://github.com/opensimrt-ros/docker-opensimrt


Fig. 1: Block diagram of the system showing Open-
SimRT ROS package with its nodes. The ximu3_ros and
ros_track_alvar provide rotation frame of reference transfor-
mations for XIMU3 and ALVAR markers respectively.

modified to be integrated with ROS4 and suitable ROS
messages were used. Nodes were altered to use ROS com-
munications. An overview of the workflow can be seen in
Fig. 1.

From the OpenSimRT project, we ported to ROS the
following modules:

• Inverse Kinematics (IK) - reads orientation data from
the subject and produces joint angles;

• GRFM estimation - provides ground reaction wrenches
for normal walking by using a state-machine to detect
current gait states using either virtual ground surfaces,
or acceleration values of lower limb kinematics;

• Inverse Dynamics (ID) - solves ID by using a recursive
Newton-Euler formulation with online filtering;

• Muscle Force Estimation - solves the static optimiza-
tion muscle redundancy problem by minimizing muscle
activations.

More details about the operation of the OpenSimRT nodes,
can be found in Stanev et al [4].

B. Communication

Data transmission between nodes is done by ROS’s mid-
dleware communications stack ros_comm, via network sock-
ets, abstracted into topics, messages and services. The unit
tests from OpenSimRT source-code provided a convenient
interface as TimeTableSeries objects were adopted,
transposed to a standardized CommonTimed ROS message5

with varying length and column labels. To avoid transmitting
redundant information, we separate metadata from contents
and we used a service call to inform the labels. As every
node requires this handshaking, it was implemented as a
CommonNode from which other pipeline elements were
derived. For topics which required more than one input,
message_filters were used.

An additional type of message was also used to allow
transferring not only positions, but also the velocities and

4To reduce compilation times, OpenSimRT internals were separated from
the package containing the ROS nodes.

5An additional detail is the inclusion of an extra-field for timestamps in
the message, necessary for slowed-down data playback from recorded data
read from CSV or STO files, instead of using ROSBAGs.

accelerations. Derivatives are sensitive to noise, therefore
joint position signal needs to be first filtered. To avoid having
to filter joint positions multiple times in different nodes, this
information is optionally computed only once and sent in a
different type of message, the PosVelAccTimed message
in addition to the normal CommonTimed.

C. Generation of the Unified Robot Description Format file

The lower body Unified Robot Description Format
(URDF)[10] model generation was done based on the .osim
model using Pinocchio and ospi2urdf library.6

The generated URDF model was visually adjusted on the
origin (translation) of the knees joints and a custom joint
publisher node was written.

D. Inertial Motion Unit interface

Inverse kinematics from IMU readings, originally in Open-
SimRT as a custom driver, was replaced by a ROS TF
interface7. This allows us to abstract IMU drivers and more
easily replace orientation providers to use different IMU
types or different sources of orientation input while the
rest of the code remains unchanged. This change was also
necessary as the IMUs used in the original OpenSimRT are
no longer fabricated and communicated via oscpack.

As a demonstration, we implemented a ROS driver for
the IMU system (XIMU3, x-io Technologies)8. Due to a
different coordinate system and quaternion representation in
OpenSim than ROS, a conversion is needed. The use of ROS
TFs allows the use of augmented reality ALVAR markers[11]
for a correct frame of reference (by attaching the marker
to the IMU), which allowed us to separate the problem
of getting the correct quaternion representation from the
IMU and getting the correct transformation of quaternions
(from the ALVAR input, only rotations are used) from ROS
to OpenSim. ALVAR markers provide also a camera only
solution, which may be sufficient in some cases.

III. RESULTS

Using one single orientation provider, such as either an
AR Cube (see Fig.2) or a single IMU, it is possible to get
the orientation of a single link. To use this information to
test our implementation, rigid transformations were applied
between all the links of the model, which allows us to test
both the AR orientations and the IMU orientations of both
the lower-limb model and the upper-limb model.

Using pre-recorded data, we were also able to test our
URDF model against the internal visualization model from
OpenSim (see Fig.3). In Fig.4, GRFM and muscle activation
estimation were illustrated side by side with the URDF
model. Note the GRFM model has a slight delay, because
the URDF is still reading unfiltered joint angles.

6Included docker-opensimrt is the script human_control.bash which
facilitates the installation of Pinocchio and ospi2urdf.

7ROS TF publishes rotation and translation transformations between
frames of reference.

8Available at https://github.com/opensimrt-ros/ximu3_
ros

https://github.com/opensimrt-ros/ximu3_ros
https://github.com/opensimrt-ros/ximu3_ros


(a) AR cube with OpenSim model showing current position.

(b) Using XIMU3 as TF source.

Fig. 2: Screencapture of real-time use of (a) AR cube and
(b) XIMU3, showing both can provide orientation TFs.

Fig. 3: Visualization of a gait trial by URDF model in rViz.

IV. DISCUSSION AND FUTURE WORK

This work aimed to allow easy replication, integration
and extension of real-time human movement simulation for
robotics and biofeedback applications. It provides fast model
based IK via an agnostic interface allowing input from
either AR markers or IMU orientation. Ground reaction
wrenches can be estimated without additional sensor input
for normal walking. Muscle activations can also be estimated,
information which can be used for biofeedback or energetic
cost estimation for exoskeleton control. Deployment with
Docker is straightforward and if the focus of extension of
this pipeline is on robotics alone, the whole implementation
can be abstracted, limiting the required OpenSim knowledge.
While the stack ROS-Docker-OpenSimRT presented offers
all of these advantages, it is not without its own limitations.

A notable limitation is using a single IMU and pre-
recorded data for testing the system. We reasonably assume
that ROS TF static_transform_publishers emulate ximu3_ros
TF publisher nodes, but multiple IMU sources were not
tested. And while the models used were validated, this partic-
ular implementation was not, with further testing needed for
the claim of validated human movement model to be made.
Secondly, Docker makes ROS networking harder and integra-
tion with a robot (the main advantage of such a system), now

(a) URDF and OpenSim

(b) Muscle activation estimation.

Fig. 4: Side by side walk showing (a) OpenSim and URDF
models. Green line is GRF prediction vector. On (b) muscle
activation is shown, more intense red shading is more active.

requires more expertise. 9 Also, as it is, not all information is
being published in appropriate ROS topics. The level of ROS
integration, with a service handshake to initialize input labels
and not the appropriate ROS messages10 limits integration
and visualization of topics in rViz. Finally, muscle activation
estimation is slow, only reliable at <30fps11, allowing only
description of slow-walking.

Future work aims to tackle some of those limitations.
Communication can be improved by using Nodelets (uses
shared memory instead of sockets for communication) in-
stead of normal nodes. Currently also Inverse Dynamics
and Static Optimization are combined in a hybrid node to
avoid multiple uses of message_filters, which is an additional
source of lag. Nodelets can likely be used here with the same
benefits and preserving a ROS design pattern. A planned
extension is also to include ground reaction measurement
with insole sensors to allow description of a wider range
of movements. Further developments in this project aim
to tackle these issues by increasing ROS integration, using
Nodelets and parallelization.

V. CONCLUSION

This implementation of OpenSimRT in a ROS framework
allows for wider integration efforts between biomechanics
and robotics. It is extensible and allows validated description
of human movement for real-time bio-mechanics applica-
tions, facilitating human robot interaction applications and
enabling easier development of complex exoskeleton appli-
cations requiring ROS utilities.

ROS-OpenSim integration conveniently provides real-time
human walking related parameters which should allow
roboticists, clinicians, and researchers working on assistive
robotics for human walking to measure those quantities for
rehabilitation efforts, as well as more easily develop complex
walking aid systems.

9The authors suggest real-time nodes be first written off-line reading
TimeTableSeries entries from OpenSim 4.1 and then ported to ROS.

10Such as geometry_msgs/WrenchStamped.msg for GRFM.
11The machine used for testing is an Intel(R) Core(TM) i7-10750H CPU

@ 2.60GHz running Debian GNU/Linux 11 (bullseye).



REFERENCES

[1] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T.
John, E. Guendelman, and D. G. Thelen, “OpenSim: open-source
software to create and analyze dynamic simulations of movement,”
IEEE transactions on bio-medical engineering, vol. 54, pp. 1940–
1950, Nov. 2007.

[2] J. Rasmussen, M. Damsgaard, E. Surma, S. Tørholm, M. de Zee, and
V. Vondrak, “AnyBody - a software system for ergonomic optimiza-
tion,” in Fifth World Congress on Structural and Multidisciplinary
Optimization, Schönenfeld & Ziegler, Jan. 2003.

[3] C. Pizzolato, M. Reggiani, L. Modenese, and D. G. Lloyd, “Real-time
inverse kinematics and inverse dynamics for lower limb applications
using OpenSim,” Computer Methods in Biomechanics and Biomedical
Engineering, vol. 20, pp. 436–445, Mar. 2017. Publisher: Taylor &
Francis _eprint: https://doi.org/10.1080/10255842.2016.1240789.

[4] D. Stanev, K. Filip, D. Bitzas, S. Zouras, G. Giarmatzis, D. Tsaopou-
los, and K. Moustakas, “Real-Time Musculoskeletal Kinematics and
Dynamics Analysis Using Marker- and IMU-Based Solutions in Reha-
bilitation,” Sensors, vol. 21, p. 1804, Jan. 2021. Number: 5 Publisher:
Multidisciplinary Digital Publishing Institute.

[5] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, p. 5,
Kobe, Japan, 2009. Issue: 3.2.

[6] Gepetto Research Group - Movement of Anthropomorphic Sys-
tems, “Pinocchio.” https://stack-of-tasks.github.io/
pinocchio/, 2022. Accessed: 2022-09-16.

[7] D. Merkel, “Docker: lightweight linux containers for consistent de-
velopment and deployment,” Linux journal, vol. 2014, no. 239, p. 2,
2014.

[8] M. Hutson, “Artificial intelligence faces reproducibility crisis,” Sci-
ence, vol. 359, pp. 725–726, Feb. 2018. Publisher: American Associ-
ation for the Advancement of Science.

[9] P. Duvall, S. Matyas, and A. Glover, Continuous integration: improv-
ing software quality and reducing risk. Addison-Wesley Professional,
first ed., 2007.

[10] Ioan Sucan and Jackie Kay, “urdf - ROS Wiki.” http://wiki.
ros.org/urdf/, 2009. Accessed: 2022-09-19.

[11] Scott Niekum, “ar_track_alvar - ROS Wiki.” https://wiki.ros.
org/ar_track_alvar/, 2012. Accessed: 2022-09-16.

https://stack-of-tasks.github.io/pinocchio/
https://stack-of-tasks.github.io/pinocchio/
http://wiki.ros.org/urdf/
http://wiki.ros.org/urdf/
https://wiki.ros.org/ar_track_alvar/
https://wiki.ros.org/ar_track_alvar/

	INTRODUCTION
	ARCHITECTURE DESCRIPTION
	System overview
	Communication
	Generation of the Unified Robot Description Format file
	Inertial Motion Unit interface

	RESULTS
	DISCUSSION AND FUTURE WORK
	CONCLUSION
	References

