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Abstract— The use of musculoskeletal model to analyze the user-
exoskeleton interactions can generate exoskeleton assistive to 
improve human performance or rehabilitate impaired patient 
mobility. Nonetheless, the distortion of the video-derived 
musculoskeletal model prevents its application in clinical practice. 
This study aims to investigate the robustness and accuracy of the 
video-derived musculoskeletal model in the presence of model 
distortion uncertainty through sensitivity analysis. We introduced 
changes in environmental conditions, such as inclination and 
backpack loads, analyzed trends in walking gait, and compared them 
with experimental data to verify validity. Our preliminary analysis 
suggested that the kinematic data acquired by the lightweight mobile 
phones have musculoskeletal reliability and are feasible for 
predicting gait adaptation with exoskeleton assistance. 

I. INTRODUCTION 

In recent years, the use of exoskeleton to assist human 

motion has become a promising approach to enhance human 

performance or rehabilitate the mobility of impaired patients 

[1]. The purpose is to reduce metabolic consumption during 

human motion or to provide assistive power to mobility 

impaired patients. However, exoskeleton assistance has 

challenges in analyzing user-exoskeleton interaction, such 

as the high redundancy of the musculoskeletal system in 

humans [2, 3] and significant individual differences [4, 5], 

making it challenging to derive the trivial solution for 

assistance strategy and adaptation to the individual. 

The musculoskeletal model as middleware can manage 

various components in complex user-exoskeleton interactions 

and analyze the system to derive assistive strategies [6]. To 

identify the assistive strategy suitable for the subject, 

human-in-the-loop optimization tuned the control parameters 

through the musculoskeletal model during the subject’s 

movement [7, 8], but its instability in the optimization stage 

may cause discomfort to subjects with unhealthy legs. In 

contrast to optimizing the assistive strategy for subject on-line, 

predictive simulation allows the biomechanics analysis under 

different physiological conditions [9, 10]. The musculoske-

letal model was used to forward simulate the walking gait and 

iteratively optimize the controller parameters. 

Although assistive strategies based on musculoskeletal 

model are promising approaches, the accuracy of muscle 

strength leads to challenges when applied to clinical practice 

[11]. Calibration of muscle strength required the use of 

musculoskeletal model and kinematics data from motion cap-

ture systems [12, 13]. Nonetheless, the complex configuration 

and high cost of the sensor, camera and treadmill make it 

difficult to use in clinical practice [14-16]. Using mobile 

phone cameras to estimate kinematics is another promising 

way. For example, OpenCap [17] was used to estimate the 

 
Figure 1. Schematic of the musculoskeletal model derived 

from the 2D pose estimations then adding exoskeleton 

assistance. The potential distortion of the model was analyzed 

by adding ground inclination and backpack loads to 

investigate the effect of muscle strength and walking gait 

adaption.  

 

coordinates of 3D anatomical markers on the subject’s motion 

trajectory through multiple mobile phones. However, 

distortions in the video-derived musculoskeletal model may 

amplify the abnormalities in muscle strength and walking gait, 

such as interference from light or the object’s shape. 

Given the promising clinical practice of the use of mobile 

phones acquired kinematic data for exoskeleton assistance, 

it is essential to validate the robustness and accuracy of their 

muscle strength and gait adaptation. In this study, we aim 

to investigate the impact of distortions in the video-derived 

musculoskeletal model on walking gait through sensitivity 

analysis. To amplify and observe the effects of distortion 

implied in the model, we analyzed walking gait adaptation 

by increasing ground inclination and backpack loading, as 

previous literature has shown significant changes in lower-

limb joints and muscle activation [18]. Our preliminary anal-

ysis suggests that gait adaptations generated from video-

derived musculoskeletal model have reliability in kinematic 

and kinematic trends and are feasible for estimating muscle 

strength and gait adaption with exoskeleton assistance. 

II. MATERIALS AND METHODS 

A. Participants and Video Pre-processing 

A healthy subject (age = 22, Body Mass Index = 27.4 kg/m2 ) 

was enrolled for the study. Two iPhone 13 cameras were used 

to acquire motion videos. To detect 3D anatomical markers 

positions [19] from the walking motion, the software of  

OpenCap was used to conduct video pre-processing, such as  

time synchronization and pose feature extraction. 



 
Figure 2. With the addition of the knee exoskeleton (green) and backpack load (blue), the musculoskeletal model determines 

muscle excitation during the gait cycle through low-level control. Muscle excitation is regulated by normalized muscle fiber length 

(L), muscle contraction (V), normalized tendon force (F), and proportional-derivative (PD) as feedback to the controller. Positive 

and Negative feedback of the controller is denoted by (+) and (-) respectively. The contact spheres on the toe and heel of each foot 

detect the ground reaction force to determine the gait cycle. 

 

As shown in Fig. 1, the 2D video keypoints detected by 

OpenPose [20] were triangulated to calculate twenty 3D 

tracker positions, which were time-synchronized through 

cross-correlation. Then, the 3D positions of forty-three 

anatomical markers were predicted from the previous twenty 

triangulated 3D trackers using the well-trained long and short-

term memory (LSTM) network included in OpenCap. 

 

B. Muscle Strength Estimated from Videos 

The muscle strengths in the video were estimated biome-

chanically, we employed a reduced lower-limb muscle model 

with nine degrees of freedom actuated by sixteen Hill-type 

tendon units [21] adapted from the gait model included in 

OpenSim [6], as shown in Fig. 2. The added knee exoskeleton 

(green) provided a maximum of 50 N.m assistive torque to the 

knee and changed the body mass distribution with a 5 kg 

backpack load (blue). Then, to fit the musculoskeletal ge-

ometry of subjects, we used the OpenSim linear scaling tool to 

minimize the error between two 3D anatomical marker 

positions, one predefined on the reduced lower-limb muscle 

model, and the other calculated from OpenCap. Muscle 

strengths were calculated via OpenSim’s muscle analysis tools, 

as shown in Fig. 2, with each muscle showing different 

activations during walking. The ground contact forces were 

calculated using the interaction between the contact spheres at 

the toe and heel of each foot and the ground through the 

Hertz/Hunt-Crossley contact model [22]. The calculated 

contact forces were used to detect the gait cycle. 

C. Gait Adaptation Regulated via Reflection Controller 

For the adaptation of walking gait with changing inclina-

tion in the environment, we used a reflection-based walking 

controller to generate time-varying muscle excitation [23]. Fig. 

2 showed the laws of the reflex controller for rectus femoris 

(RF), hamstring (HAM), glutes (GLU), iliopsoas (ILI) , vastus 

(VAS), gastroc (GAS), soleus (SOL), and tibia (TIB) muscles. 

 
Figure 3. Knee flexion assistive torque, defined by parameters: 

peak time, duration time, rise time, fall time and peak torque. 

 

Each muscle excitation can be modulated by combining 

muscle contraction (V), normalized muscle fiber length 

feedback (L), normalized tendon force (F), and proportional-

derivative (PD) control. For example, in early stance of muscle 

VAS, increasing (L) and (V) will increase muscle excitation 

(positive feedback). Detailed equations can refer to the defined 

control laws [23]. The control law for the assistive torques 

applied by the exoskeleton is parameterized as a function of 

the time and torque. As shown in Fig. 3, there were five 

parameters: rise time, peak time, duration time, fall time, and 

peak torque. And the gait cycle percentage was determined by 

the contact forces between the toe and heel of each foot and 

the ground as estimated by the Hertz/Hunt-Crossley contact 

model. Both the reflection control parameters and the assistive 

torque parameters will be optimized using the covariance 

matrix adaptation method [24]. The optimization minimizes 

the metabolic cost [25] at the selected minimum speed and 

avoids knee hyper-extension by penalizing the forces. The 

controller and optimization were implemented and executed 

with SCONE [26], using OpenSim for forward simulation.  



III. RESULTS 

In the experiments, we first present the predicted simu-

lations through environmental slope changes to show the 

sensitivity and tread of muscle and walking gait. Then we 

validated the accuracy of the predictive simulations by 

comparing with experimental data. Finally, we present the gait 

adaptation due to exoskeletal assistance based on the 

parameters that meet the validation. 

 

A. Simulation of Gait Adaptation at Different Slopes 

Intuitively, as the incline increased, the angle of ankle 

contact with the ground became increasingly flexed, and the 

range of motion of the hip joint became decreasing. In addition, 

muscle activation also increased with the increase of 

inclination. The experimental results in Fig. 4 showed that the 

simulation results have the similar trends. This implied that the 

video-derived musculoskeletal model has good reliability to 

the kinematics and kinetics of humans walking on the flat or 

inclined ground. The anomalies amplified by the model 

distortion were insufficient to affect the changing trends in 

joint angles and muscle strengths in motion. 

 
Figure 4. Comparison of (A) joint angles and (B) root mean 

square of muscle activation at different inclinations. 

 

B. Validating the Walking Gait Performed by Video-derived 

Musculoskeletal Model 

The results of the comparison with the measured data from 

the subjects are shown in Fig. 5. The changes in knee and hip 

angles acquired from the simulations were generally consistent 

with the changes in experimentally measured joint angles [18]. 

This implies that the video-derived musculoskeletal model has 

a good ability to estimate joint angles in motion. In the case of 

the ankle joint, compared to the experimental data, there was 

a significant lack of angular flexion in the ankle joint when 

simulating walking on a flat ground versus on an incline. This 

may be due to the miscalculation of the Hertz/Hunt-Crossley 

sphere at the toe and heel of each foot in the simulation.

  
Figure 5. Comparison of joint angle changes between our 

proposed method (blue line) and gait features [18] (gray line). 

(A) On the flat ground. (B) On the inclination of 5.7 degrees. 

 

C. Gait Adaptation due to Joint-Assisted Torque 

As the knee exoskeleton assisted in climbing by stretching 

the knee joint, the muscle activation of all the posterior sides 

of the lower limbs decreases (HAM, GLU, GAS), as shown in 

Fig. 6. In addition, the muscles on the anterior side of the lower 

limbs did not decrease in muscle activation (ILI, VAS, TIB), 

which might be due to these muscles pulling the exoskeleton 

with mass when the lower limbs swing forward. While the 

ankle muscles were in contact with the ground, the muscles on 

the posterior side of the ankle had a passive force as the 

inclination increases, and only the muscles on the posterior 

side of the ankle had an increased activation. 

 
Figure 6. Comparison of muscle activation with (w/) and 

without (w/o) exoskeleton assistive torque when the ground 

inclination is 5.7 degrees. 

IV. CONCLUSION 

We proposed to use a video-derived musculoskeletal model 

to predict gait adaptation via exoskeletal assistance through 

predictive simulations. In addition, adding ground inclination 

and backpack loads to the predictive simulation amplifies 

and observes the anomalous effects of potential model dis-

tortions. Empirical sensitivity analysis demonstrated that the 

musculoskeletal model derived from the lightweight and 

affordable mobile phones has kinematic and kinetic reliability 

and thus has the potential to be applied in clinical practice 

to predict gait adaptation during exoskeletal assistance. 

Further deployment to a real exoskeleton and related safety 

training for the subjects is necessary for our follow-up study.
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