
UNIVERSITY OF GENOVA

DOCTORAL THESIS

Sense, Think, Grasp:
A study on visual and tactile
information processing for
autonomous manipulation

Author:
Giulia Vezzani

Supervisors:
Dr. Lorenzo Natale

Dr. Ugo Pattacini

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

Humanoid Sensing and Perception - iCub Facility

Istituto Italiano di Tecnologia (IIT)

March 7, 2019

https://unige.it/
https://www.iit.it/research/lines/humanoid-sensing-and-perception
https://www.iit.it/it/research/lines/icub
https://www.iit.it/

iii

Declaration of Authorship

I hereby declare that except where specific reference is made to the work
of others, the contents of this dissertation are original and have not been
submitted in whole or in part for consideration for any other degree or
qualification in this, or any other university. This dissertation is my own
work and contains nothing which is the outcome of work done in collabo-
ration with others.

Giulia Vezzani
March 7, 2019

v

Abstract

Giulia Vezzani

Sense, Think, Grasp:
A study on visual and tactile information processing for
autonomous manipulation

Interacting with the environment using hands is one of the distinctive
abilities of humans with respect to other species. This aptitude reflects on
the crucial role played by objects’ manipulation in the world that we have
shaped for us. With a view of bringing robots outside industries for sup-
porting people during everyday life, the ability of manipulating objects
autonomously and in unstructured environments is therefore one of the ba-
sic skills they need. Autonomous manipulation is characterized by great
complexity especially regarding the processing of sensors information to
perceive the surrounding environment. Humans rely on vision for wide-
ranging tridimensional information, prioprioception for the awareness of
the relative position of their own body in the space and the sense of touch
for local information when physical interaction with objects happens. The
study of autonomous manipulation in robotics aims at transferring simi-
lar perceptive skills to robots so that, combined with state of the art con-
trol techniques, they could be able to achieve similar performance in ma-
nipulating objects. The great complexity of this task makes autonomous
manipulation one of the open problems in robotics that has been drawing
increasingly the research attention in the latest years.

In this work of Thesis, we propose possible solutions to some key com-
ponents of autonomous manipulation, focusing in particular on the per-
ception problem and testing the developed approaches on the humanoid

vi

robotic platform iCub. When available, vision is the first source of infor-
mation to be processed for inferring how to interact with objects. The ob-
ject modeling and grasping pipeline based on superquadric functions we de-
signed meets this need, since it reconstructs the object 3D model from par-
tial point cloud and computes a suitable hand pose for grasping the object.
Retrieving objects information with touch sensors only is a relevant skill
that becomes crucial when vision is occluded, as happens for instance dur-
ing physical interaction with the object. We addressed this problem with
the design of a novel tactile localization algorithm, named Memory Unscented
Particle Filter, capable of localizing and recognizing objects relying solely
on 3D contact points collected on the object surface. Another key point of
autonomous manipulation we report on in this Thesis work is bi-manual
coordination. The execution of more advanced manipulation tasks in fact
might require the use and coordination of two arms. Tool usage for in-
stance often requires a proper in-hand object pose that can be obtained via
dual-arm re-grasping. In pick-and-place tasks sometimes the initial and
target position of the object do not belong to the same arm workspace, then
requiring to use one hand for lifting the object and the other for locating it
in the new position. At this regard, we implemented a pipeline for executing
the handover task, i.e. the sequences of actions for autonomously passing an
object from one robot hand on to the other.

The contributions described thus far address specific subproblems of
the more complex task of autonomous manipulation. This actually dif-
fers from what humans do, in that humans develop their manipulation
skills by learning through experience and trial-and-error strategy. A proper
mathematical formulation for encoding this learning approach is given by
Deep Reinforcement Learning, that has recently proved to be successful in
many robotics applications. For this reason, in this Thesis we report also
on the six month experience carried out at Berkeley Artificial Intelligence
Research laboratory with the goal of studying Deep Reinforcement Learning
and its application to autonomous manipulation.

vii

Publications

This work has been carried out during my Ph.D. course in Advanced and
Humanoid Robotics from November 2015 to November 2018. This three-
year project resulted in the following publications (at the time of writing):

• G. Vezzani, N. Jamali, U. Pattacini, G. Battistelli, L. Chisci, and L.
Natale, "A novel Bayesian filtering approach to tactile object recogni-
tion,” IEEE International Conference on Humanoid Robots, pp. 256 - 263,
2016, Cancun.

• G. Vezzani, U. Pattacini, G. Battistelli, L. Chisci, and L. Natale, “Mem-
ory Unscented Particle Filter for 6-DOF tactile localization,” IEEE
Transaction on Robotics, 33 (5), 1139 - 1155, 2017.

• G. Vezzani, U. Pattacini, and L. Natale, “A Grasping approach based
on superquadric models,” IEEE International Conference on Robotics
and Automation, pp. 1579 - 1586, 2017, Singapore.

• G. Vezzani, U. Pattacini, M.Regoli and L. Natale, “A novel pipeline
for bi-manual handover task,” Advanced Robotics, 31 (23-24), 1267 -
1280, 2017.

• G. Vezzani, and L. Natale, “Real-time pipeline for object modeling
and grasping pose selection via superquadric functions,” Frontiers in
Robotics and AI, 4, 59, 2017.

• G. Vezzani, U. Pattacini and L. Natale "Improving superquadric mod-
eling and grasping with prior on object shapes", IEEE Internationl
Conference on Robotics and Automation (ICRA), pp. 6875 - 6882, 2018,
Brisbane.

• C. Fantacci, G. Vezzani, U. Pattacini, V. Tikhanoff and L. Natale
"Markerless visual servoing on unknown objects for humanoid robot
platforms", IEEE Internationl Conference on Robotics and Automation
(ICRA), pp. 3099 - 3106, 2018, Brisbane.

viii

• A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E.
Todorov, S. Levine, "Learning complex dexterous manipulation with
deep reinforcement learning and demonstrations", Robotics: Science
and Systems (RSS), 2018, Pittsburgh.

This Thesis provides a structured discussion on top of these aforemen-
tioned papers in order to describe the overall contribution of the Ph.D.
project. As such, some ideas and figures have already appeared in those
publications.

ix

Acknowledgements

First and foremost, I would like to thank Dr. Lorenzo Natale, for giving
me this opportunity. I still remember my excitement and happiness when
I was accepted for starting my PhD in humanoid robotics. Together with
guiding me during my research, Lorenzo has also given me the freedom to
try my own ideas and improve my knowledge and skills with wonderful
experiences during the past three years.

A special thanks goes to Dr. Ugo Pattacini, that has been and still is
a mentor to me. During the last three years, he has taught me with pa-
tience and constancy not only countless technical skills but also the proper
attitude for working efficiently and effectively.

I am grateful to Prof. Pieter Abbeel, for giving me the opportunity to
visit the Berkeley Artificial Intelligence Research lab at UC Berkeley.

I also would like to thank the friends who have always been there and
those I met during my PhD. Thank you all for always being close and
present in my life, regardless of the distance and the PhD busy schedule.
In particular to my ex- and current lab mates: thanks for sharing the fun,
anxieties and abroad experiences that made the PhD a wonderful time.

Last, but not least, many thanks go to my family and Claudio, for al-
ways believing in me and supporting all my choices in the first lines.

xi

Contents

Abstract v

Publications vii

Acknowledgements ix

Preface 1

I Introduction 3

1 The importance of perception and autonomous manipulation 5
1.1 Vision and motivation . 7
1.2 Contribution and outline . 9

2 What is the stage of autonomous manipulation? 11
2.1 Tactile object localization and recognition 11

Tactile object localization 12
Tactile object recognition 15

2.2 Bi-manual coordination . 16
2.3 Object modeling from vision 18
2.4 Autonomous grasping . 20
2.5 Deep Reinforcement Learning for autonomous manipulation 24

3 The iCub humanoid robot and its key components for
manipulation 29
3.1 iCub upper body . 29
3.2 Perception system . 31

3.2.1 Vision . 31
3.2.2 Tactile sensors . 32
3.2.3 Proprioception . 33

3.3 The Cartesian controller . 33

xii

3.4 Yarp . 34

II A novel tactile object localization algorithm: the
Memory Unscented Particle Filter 35

4 Memory Unscented Particle Filter for 6-DOF Tactile Object
Localization 37
4.1 Mathematical background . 38

4.1.1 The Unscented Particle Filter 40
4.2 Problem formulation . 43

4.2.1 Considerations on the motion model 45
4.2.2 Measurement model 46

4.3 The Memory Unscented Particle Filter 49
4.4 Algorithm validation . 55

4.4.1 Simulation setup . 55
4.4.2 Performance evaluation 58
4.4.3 Simulation results . 60
4.4.4 Experimental setup . 64
4.4.5 Experimental results 66
4.4.6 Further analysis . 68

4.5 Discussion . 71

5 Applications of the Memory Unscented Particle Filter to object
tactile recognition 77
5.1 Methodology . 77

5.1.1 Recognition as multi-object localization 78
5.2 Data Acquisition . 79
5.3 Results . 84

5.3.1 Simulation results . 84
5.3.2 Experimental results 87

5.4 Discussion . 89

III Bi-manual coordination: a new pipeline for the
execution of handover tasks 93

6 In-hand object localization using vision: bi-manual handover 95

xiii

6.1 Pipeline . 96
6.1.1 Stable grasp with tactile feedback 97
6.1.2 Point cloud acquisition and filtering 101
6.1.3 In-hand localization 102
6.1.4 Pose selection . 103
6.1.5 Approach and handover 107

6.2 Results . 108
6.3 Discussion . 116

IV Dealing with unknown objects: modeling and
grasping with superquadrics 121

7 Superquadric object modeling and grasping 123
7.1 Superquadric modeling . 124

7.1.1 Object modeling . 126
7.1.2 Hand modeling . 127

7.2 Grasp pose computation . 127
7.2.1 Grasping avoiding object penetration 128
7.2.2 Obstacle avoidance . 131
7.2.3 Specifications on pose reachability 131
7.2.4 Lifting objects . 135
7.2.5 Real-time computation and execution 136

7.3 Using prior on object shape for modeling 137
7.3.1 Object classifier . 139

7.4 Best hand selection . 141
7.5 Final modeling and grasping pipeline 144
7.6 Evaluation . 145

7.6.1 Evaluation on multiple objects 146
7.6.2 Robustness of the method 153
7.6.3 The effect of prior on object shapes 156
7.6.4 Enlarging the workspace using two hands 159

7.7 Discussion . 160

8 Modeling and grasping more complex objects using multiple
superquadrics 163
8.1 Multi-superquadrics modeling 164

xiv

8.1.1 Creating the superquadric-tree 165
8.1.2 Inferring the splitting planes 166
8.1.3 Generating the final superquadrics 173

8.2 Multi-superquadrics grasping 173
8.2.1 Grasping pose candidates computation using multi-

superquadric models 174
8.2.2 Best pose selection with multi-superquadric models . 180

8.3 Evaluation . 182
8.3.1 Multi-superquadric models 182
8.3.2 Multi-superquadric grasping poses 189

8.4 Discussion . 198

V Deep Reinforcement Learning for manipulation 203

9 The exploration problem in Deep Reinforcement Learning and its
relevance in manipulation 205
9.1 Problem formulation . 206
9.2 Learning complex dexterous manipulation with Deep

Reinforcement Learning and demonstrations 211
9.2.1 Dexterous manipulation tasks 212

Object relocation (Fig. 9.3) 214
In-hand Manipulation – Repositioning a pen (Fig. 9.4) 214
Manipulating Environmental Props (Fig. 9.5) 214
Tool Use – Hammer (Fig. 9.6) 214

9.2.2 Demo Augmented Policy Gradient (DAPG) 215
Natural Policy Gradient 215
Augmenting RL with demonstrations 216
Pretraining with behavior cloning 216
RL fine-tuning with augmented loss 217

9.2.3 Results . 218
Experimental setup . 218
Reinforcement Learning from Scratch 219
Reinforcement Learning with Demonstrations 220

9.3 Learning state representations for improving exploration . . 221
9.3.1 Learning the latent representation z 223

xv

9.3.2 Exploration via maximum-entropy bonus on the
latent variable z . 225

9.3.3 Preliminary results . 230
Learning the latent representation z for the object-

pusher environment 231
Maximum-entropy bonus exploration 234

9.4 Discussion . 240

VI Conclusions 243

10 Conclusions and future work 245

VII Appendix 249

A Superquadric modeling and grasping pipeline: implementation 251

B Grasping pose computation with superquadrics for markerless
visual servoing on unknown objects 255

Bibliography 258

xvii

List of Figures

1.1 Industrial manipulators for car assembly. 7
1.2 How autonomous robots could have beneficial effects on the

society: some examples. 8

3.1 iCub hardware and perception key-components for
manipulation. 30

3.2 Cross-section of the iCub fingertip. 32
3.3 The protective textile layer on the iCub fingertip. 33

4.1 Simulation setup objects for tactile localization. 56
4.2 Pipeline for real object CAD modelling. 56
4.3 Example of local minima in tactile localization. 59
4.4 MUPF simulation results. 60
4.5 Average performance index by varying m. 61
4.6 Average reliability by varying m. 62
4.7 Mesh models of real geometric objects. 65
4.8 Average performance index with real measurements by

varying m. 67
4.9 Average reliability with real measurements by varying m. . . 69
4.10 MUPF experimental results. 69
4.11 MUPF robustness analysis. 71
4.12 MUPF performance analysis on fifty trials by varying N. . . 71
4.13 MUPF average execution time on 50 trials. 72
4.14 Performance index trend at each algorithm time step. 73

5.1 Experimental setup for data collection. 80
5.2 Objects used for experimental evaluation of the method. . . 81
5.3 A flow chart showing the object-surface sampling. 82
5.4 Real measurements collected on the objects for tactile recog-

nition. 83

xviii

5.5 The localization errors obtained with real measurements
with different values of m. 85

5.6 MUPF performance with simulated measurements on tactile
recognition. 86

5.7 Synthetic test showing the challenging nature of tactile
recognition problem. 88

5.8 MUPF performance with real measurements on tactile
recognition. 90

6.1 Handover pipeline. 98
6.2 Grasp stabilizer control schema. 99
6.3 The object position αO. 100
6.4 Point cloud filtering. 101
6.5 Some examples of robotic hands. 103
6.6 An example of object model in the estimated pose, com-

puted via the MUPF algorithm. 104
6.7 An outline of the two-arms chain we exploit for the

handover task. 105
6.8 An example of pose ranking. 107
6.9 The iCub performing handover task. 108
6.10 The set of objects used for the handover task. 109
6.11 Some examples of poses generated with Grasp-Studio. . . . 110
6.12 Example of a priori pose candidates for the second hand. . . 110
6.13 An example of filtered point clouds after the coarse filter, on

the top, and after the hand filter, on the bottom. 113
6.14 An example of estimated object poses for all the objects. . . . 113
6.15 Some example of grasping pose selection results for the set

of objects. 114
6.16 Different initial poses of the object in the first hand used for

stressing our approach and testing its robustness. 117
6.17 Examples of successful handovers. 117

7.1 Superquadric functions can represent several simple objects,
ranging from boxes (on the right) to octaedruses (on the left). 125

7.2 Examples of superquadrics with different values of the pa-
rameters λ4, λ5. 125

xix

7.3 The volume graspable by the hand is represented as the el-
lipsoidH attached to the hand. 127

7.4 An example of object modeling and grasp pose computation
with our approach for a box located vertically on a table. . . 129

7.5 The L points sampled on the closest half of the hand ellip-
soidH. 129

7.6 Avoiding object penetration. 130
7.7 The plane on which the object is located is modeled as a plane.132
7.8 Cones representing subregioons of the space where hand

reference frame axes can range. 133
7.9 Examples of possible positions of a point P with respect to a

cone with axis d and aperture α. 134
7.10 Stretching the ellipsoid H so as to amount the longest di-

mension of the object superquadric O leads to a grasping
pose that eventually enables lifting the object. 136

7.11 How superquadric shapes change according to λ4 and λ5

values. 138
7.12 Two examples of superquadric models overlapped to the ac-

quired object point cloud. 140
7.13 An example of superquadric modeling an object and recon-

structed by using (λ4, λ5) = (0.1, 0.1), ∆u,4 = ∆u,5 > 0 and
∆l,4 = ∆l,5 > 0. 140

7.14 Training set for object classification. 141
7.15 Example of object graspable only by the left hand. 143
7.16 Example of grasping candidates with similar costs Cright and

Cle f t. 144
7.17 The complete modeling and grasping pipeline. 145
7.18 Object set used for testing our modeling and grasping

pipeline. 147
7.19 Some examples of superquadric models and grasping pose

candidates for the 18 objects of the test set. 149
7.20 Some examples of superquadric models and grasping pose

candidates for the 18 objects of the test set. 150
7.21 Some examples of superquadric models and grasping pose

candidates for the 18 objects of the test set. 151

xx

7.22 Some examples of superquadric models and grasping pose
candidates for the 18 objects of the test set. 152

7.23 Objects used for robustness evaluation. 154
7.24 For each object 10 poses are shown. The letters identifying

the different plots ((a) - (f)) correspond to different objects,
according to the notation of Fig. 7.23. 155

7.25 Classification results on the test set. 156
7.26 The effect of prior on object modeling and grasping pose

computation. 157
7.27 Some examples of the improvements obtained in terms of

model accuracy by using prior on object shape (Fig.7.27(b) -
7.27(d)). 158

7.28 Pose costs for right hand and left hand of the jello box 1 in
different positions. 159

7.29 R1 grasping a wine paper bottle in a kitchen. 162

8.1 Non-convex superquadrics, i.e. with λ4, λ5 > 2.0, represent
shapes that are very uncommon in everyday objects. 164

8.2 An example of superquadric-tree with height H = 3. 166
8.3 An example of superquadric tree computed for a tool. 167
8.4 Some examples of desired splitting planes represented with

blue lines. 168
8.5 Matrix Rl

r encodes the information of which axes of su-
perquadric Sr are parallel to axes of Sl. 169

8.6 Example showing why the dimensions along parallel and
contiguous axes can be arbitrary. 170

8.7 An example of comparison between nephew and uncle su-
perquadric. 171

8.8 Different multi-superquadric models obtained using differ-
ent planes of the superquadric-tree. 173

8.9 Points used for representing hand and fingers occupancy. . . 177
8.10 Example of left hand grasp candidates computed for an ob-

ject represented with two superquadrics. 179
8.11 The superquadric leaves of the superquadric-tree ST (in

the center) and the final multi-superquadric model (on the
right) obtained for noiseless point clouds from YCB dataset
with height H = 3. 183

xxi

8.12 The superquadric leaves of the superquadric-tree ST (in
the center) and the final multi-superquadric model (on the
right) for noiseless point clouds from YCB datasets with
height H = 3. 184

8.13 The superquadric leaves of the superquadric-tree ST (in
the center) and the final multi-superquadric model (on the
right) for noiseless point clouds from ShapeNet and YCB
datasets with height H = 3. 185

8.14 The superquadric leaves of the superquadric-tree ST (in
the center) and the final multi-superquadric model (on the
right) with height H = 3 for noisy point clouds, i.e. acquired
from the iCub stereo system. 186

8.15 The superquadric leaves of the superquadric-tree ST (in
the center) and the final multi-superquadric model (on the
right) with height H = 3 for noisy point clouds, i.e. acquired
from the iCub stereo system. 187

8.16 Examples of models obtained with different µ values. 190
8.17 Multi-superquadric models and grasping candidates com-

puted with no-noisy point clouds. 191
8.18 Multi-superquadric models and grasping candidates com-

puted with no-noisy point clouds. 192
8.19 Multi-superquadric models and grasping candidates com-

puted with noisy point clouds. 193
8.20 Multi-superquadric models and grasping candidates com-

puted with noisy point clouds. 194
8.21 Comparison between grasping candidates computed by

solving the optimization problems of (8.2) and applying the
single-superquadric grasping pose computation of Eq. (7.4)
on each superquadric. 196

8.22 Comparison between pose candidates cost when cost C̄ (on
the left) and C (on the right) are used. 197

8.23 Comparison between grasping poses computed by model-
ing tools with single- and multiple-superquadric models. . 199

8.24 Comparison between grasping poses computed by mod-
eling soft objects with single- and multiple-superquadric
models. 200

xxii

9.1 Markov Decision Process graphical model. 208
9.2 Reinforcement Learning scheme. 208
9.3 Object relocation – move the blue ball to the green target. . . 213
9.4 In-hand manipulation – reposition the blue pen to match the

orientation of the green target. 213
9.5 Door opening – undo the latch and swing the door open. . . 213
9.6 Tool use – pick up and hammer with significant force to

drive the nail into the board. 213
9.7 Performance of pure RL methods – NPG and DDPG, with

sparse task completion reward and shaped reward. 220
9.8 Performance of RL with demonstrations methods –

DAPG(ours) and DDPGfD. 221
9.9 An example of 2D object-pusher environment. 224
9.10 Multi-headed network for reward regression on N tasks. . . 224
9.11 Variational Autoencoder. 227
9.12 Maximum-entropy bonus exploration on a learned latent

representation z. 229
9.13 Relative distances analysis of the learned latent representa-

tion z when using (S(i), R(i))N
i=1. 233

9.14 Relative distances analysis of the learned latent representa-
tion z when using (I(i), R(i))N

i=1. 235
9.15 100 pusher trajectories obtained when running each trained

policy π, π2, π3. 236
9.16 Object trajectories obtained when running 100 times each

trained policy π, π2, π3. 237
9.17 Average returns η(θ) with different reward bonus. 238
9.18 Average return η(θ) of our approach and some basic baselines.239

A.1 Outcomes of the modeling and grasping pipeline. 253
A.2 Modules communication for the implementation of the

modeling and grasping pipeline. 254

B.1 Block representation of the proposed markerless visual ser-
voing framework on unknown objects. 257

xxiii

List of Tables

2.1 State of the art comparison among data-driven approaches
for power grasp of unknown objects. 24

4.1 Parameter set for the MUPF. 57
4.2 Simulation results for the MUPF algorithm. 60
4.3 Simulation results: measurements and m values. 63
4.4 Simulation results for the Scaling Series algorithm. 63
4.5 Experimental results for the MUPF. 66
4.6 Experimental results for the Scaling Series algorithm. 68
4.7 Q matrices used in the tests. 70

5.1 Parameters set for the MUPF in simulation. 85
5.2 Parameters set for the MUPF in real experiments. 87

6.1 Success percentage of the handover task for each object and
for different poses, in absence of grasp stabilization. 112

6.2 Computation time for pose selection step. 114
6.3 Success percentage of the handover task for each object and

for different poses. 116
6.4 Main causes of handover failures. 116
6.5 Success percentage of the handover task for Sugar and

Chocolate box for different initial poses, enumerated as
shown in Fig. 6.16. 118

7.1 Execution time for model reconstruction. 148
7.2 Object Dimensions. 153
7.3 Experiment on best pose selection: Percentage of successful

grasps. 160

8.1 Execution time for multi-superquadric modeling. 188
8.2 Execution time for grasping pose computation. 195

xxiv

9.1 Sample and robot time complexity of DAPG (ours) com-
pared to RL (Natural Policy Gradient) from scratch with
shaped (sh) and sparse task completion reward (sp). 221

1

Preface

"Man grew the most intelligent among animals because of having his hands" is
what the philosopher Anaxagoras1 said. Nearly one century later, Aristotle
argued against this claim: "It is more reasonable to say that man received his
hands because he is the most intelligent [. . .]. Giving a flute to someone who can
play it is a better plan than teaching someone which already has a flute how to play
it. Considering that nature always acts in the best way, we must conclude that
man does not own his intelligence to his hands, but his hands to his intelligence.
" [1]

According to Aristotle then, we did not choose the best path towards
autonomous robotic manipulation. We equipped robots with hands they
did not know how to properly use and we are now struggling to teach
them.

Maybe this is the reason why robotic manipulation is such a hard prob-
lem to solve...

(Actually, Anaxagoras’ intuition has been later on confirmed by several
findings of paleoanthropologists, showing that the mechanical dexterity
of the human hand has been a major factor in allowing homo sapiens to

develop a superior brain (a similar role played by the anatomical
structure of the human larynx in relation with speech capabilities has

been also recognized). We therefore have hope of solving autonomous
robotic manipulation and this thesis makes sense (fortunately)).

1(500?–428 BC).

3

Part I

Introduction

5

Chapter 1

The importance of perception and
autonomous manipulation

"Could you please give me the big bottle of oil?"

This is a task that every human more than five years old can suc-
cessfully accomplish just taking a little care. Making a robot able to au-
tonomously perform the same actions would require some of the most ad-
vanced techniques available in robotics and, most likely, the final outcome
would be strongly customized for solving this specific task and would
fail if objects positions or vision condition change. This is just one exam-
ple of the huge gap that still exists between humans’ and robots’ skills in
autonomous manipulation.

Using hands for interacting with the environment has been one of the
key features of human evolution. The ability of operating tools allowed us
to shape the world into a place where the chances of surviving were higher
at the beginning of our history, and then created opportunity to further

6
Chapter 1. The importance of perception and autonomous
manipulation

improve the quality of our lives with the emergence of technologies and
arts.

Aside from its great benefits and power, autonomous manipulation is
characterized by great complexity. Together with advanced motor and co-
ordination skills, humans strongly rely on their perception system while
interacting with objects: vision provides wide-ranging tridimensional in-
formation about the surrounding environment; prioprioception makes
aware of relative position of one’s own body in the space and the sense of
touch gives local information when physical interaction with objects hap-
pens. Even if in the lack of one of the mentioned perception skills the other
two can compensate, only the combination of all of them leads to the best
performance. When trying to grasp an object in the darkness for example,
a rough knowledge of the arm and hand positions is given by proprio-
ception and touch helps when first contacts with the objects are detected.
However, it might happen that we hit the object and make it drop while
blindly looking for it. Equally, striking a matchstick without the sense of
touch is almost impossible and it requires several trials to learn how to
accomplish the task without the tactile information1.

Autonomous robotic manipulation shows the same complexity as
the human counterpart but no equal dexterous and powerful skills have
been reached yet, making it one of the most challenging open problem
in nowadays robotic research. While state of the art control techniques
allow robots to follow complex trajectories with high speed and precision,
equally efficient and reliable methods for sensors information processing
and decision making are still missing. In particular, the ability of modeling
the surrounding environment and autonomously inferring how to interact
with objects do represent the core skills that mark the boundary between
preprogrammed and autonomous manipulation.

This work of Thesis addresses some of the key problems of autonomous
manipulation such as object modeling and localization, grasping and bi-manual
coordination. The vision and motivation that accompanied the Ph.D. re-
search activity are shown in Section 1.1. Then, Section 1.2 summarizes the
main contributions and outlines the Thesis structure.

1This experiment was conducted by Prof. Roland Johansson at the University of Umeå,
Sweden. More information are available here: http://roboticmaterials.com/rm/why-
making-robotic-manipulation-harder-than-it-is/.

http://roboticmaterials.com/rm/why-making-robotic-manipulation-harder-than-it-is/
http://roboticmaterials.com/rm/why-making-robotic-manipulation-harder-than-it-is/

1.1. Vision and motivation 7

1.1 Vision and motivation

Industrial manipulators are already in use in factories for many years by
now. They can achieve great performance in terms of speed, precision and
reliability, because advanced control techniques are flanked with very ac-
curate knowledge of the environment and the objects to manipulate (Fig. 1.1).
Such an information level is possible since industrial manipulators operate

FIGURE 1.1: Industrial manipulators for car assembly.

in strongly structured environments. Though very effective, this restricts
the operational domain of the such robots and requires engineering pro-
cess of the environment. By removing such a constraint, production chains
would be built more easily, but also, and more importantly, robots could
be brought outside industries for supporting people in their everyday life.
Robots ability to manipulate objects autonomously and in unstructured envi-
ronment would be in fact crucial in several applications, such as cargo han-
dling, people and object recovery after disasters, elder people assistance
(Fig 1.2). Moving towards this new robots generation requires the design
of novel hardware and cognitive skills. Taking inspiration from humans2,
the required features are the following:

1. A motor system reproducing the human upper body, in particular
including two arms and hands with sufficient degrees of freedom
(DOFs) and dexterous workspaces.

2Human-inspired robots are not necessary the optimal choice but taking inspiration
from humans seems reasonable given their impressive dexterity in manipulation. How-
ever, a proper discussion about whether human-inspired robots are the best choice for
autonomous manipulation does not fall within the scope of this work.

8
Chapter 1. The importance of perception and autonomous
manipulation

FIGURE 1.2: How autonomous robots could have beneficial
effects on the society: some examples.

2. A proper sensor system including: cameras for acquiring images and
depth information, tactile sensors on the robot hands and encoders
for prioprioception.

3. A control system of the upper body for reaching desired poses in a
reliable, safe and accurate way.

4. The ability of processing perceptive information generated by vision
and tactile sensors.

5. Motor coordination with respect to the environment and the objects
to manipulate and between the robot arms themselves.

The hardware design of several recent humanoid robots, such as the
iCub [2] - the platform used for testing all the contributions presented in
this Thesis work -, presents good, even still upgradeable, solutions for the
fulfillment of the first three requirements in the aforementioned list. For
this reason, the attention of this research activity focuses on the other two
points, i.e. on the processing of the perceptive information and planning of
proper movements for accomplishing manipulation tasks. The techniques
derived from this research are still general and can be applied to any other
humanoid robots satisfying points 1., 2. and 3. .

1.2. Contribution and outline 9

1.2 Contribution and outline

During the Ph.D. activity, our research focused on the following problems:

• Object localization: the problem of estimating the pose of a known
object, using the information acquired from the robot perceptive sys-
tem (vision and/or tactile sensors).

• Bi-manual coordination: the planning of proper actions to be exe-
cuted with two arms for the accomplishment of a unique task.

• Object modeling: the reconstruction of an efficient mathematical
representation of an unknown objects in terms of their shape, dimen-
sions and pose, by using information provided by the robot sensors.

• Object grasping: the design of a suitable pose of the robot hand with
respect to the object in order to enable grasps characterized by given
properties (e.g. robustness, precision etc).

For each problem, we proposed specific solutions that together provide
the main contributions of this Thesis:

• A localization algorithm, named Memory Unscented Particle Filter, capa-
ble of estimating the object poses using only 3D points collected on
the object surface.

• A complete pipeline for the execution of object bi-manual handovers
with the robot iCub. In other words, the robot is asked to pass one
object from his hand on to the other.

• An object modeling and grasping pose computation approach based on su-
perquadric function, that uses vision information to reconstruct the ob-
ject model and compute a robot hand pose for grasping the object.

The solutions described thus far address specific key-parts of the
general manipulation task. In particular, the solution of a complex and
general problem such as manipulation is turned into the solution of many
simpler sub-problems. This is the standard way to go in robotics, but it ac-
tually differs from what humans do. Humans develop their manipulation
skills by learning them through experience and trial-and-error strategy. A
mathematical formulation that encodes this approach is Reinforcement

10
Chapter 1. The importance of perception and autonomous
manipulation

Learning (RL) [3]. While previously applied mostly to game playing,
recent works [4, 5, 6] show successful applications of Deep RL3 to robotic
manipulation. For this reason, six months of the Ph.D. activity presented
in this work took place at Berkeley Artificial Intelligence Research labora-
tory at UC Berkeley with the main goal of studying Deep Reinforcement
Learning and its application to autonomous manipulation.

This Thesis is organized as follows. A review of the state of the art
regarding manipulation and more in particular the four problems we tack-
led is provided in Chapter 2, followed by a brief description of the iCub
humanoid robot in Chapter 3. Chapters 4 and 5 respectively describe the
Memory Unscented Particle Filter, including the mathematical derivation
and experimental evaluation, and its application on a challenging tactile
recognition task. In Chapter 6, we describe the entire pipeline imple-
mented on the iCub robot for the execution of bi-manual handover tasks.
Chapter 7 and 8 reports the proposed object modeling and grasping pose
computation respectively for simple and more complex kinds of objects.
In Chapter 9, the activity carried out while studying Deep Reinforcement
Learning is detailed. Finally, Chapter 10 ends this Thesis work with con-
cluding remarks and more general discussion.

3Deep Reinforcement Learning is the combination of Reinforcement Learning together
with deep networks. Deep networks are extremely helpful when, for example, the algo-
rithm is asked to learn from raw inputs, such as vision, without any hand-crafted features
or domain heuristics.

11

Chapter 2

What is the stage of autonomous
manipulation?

Autonomous manipulation requires the solution of different subprob-
lems, through the combination of techniques belonging to various areas
of robotics and the fusion of information provided by different sensors.
Considering the intrinsic multidisciplinarity nature of the problem at hand
so as the contributions of this Thesis work, we analyze the current stage
of autonomous manipulation by focusing on the following topics: tactile
object localization and recognition (Section 2.1), bi-manual coordination (Sec-
tion 2.2), object modeling from vision (Section 2.3) and autonomous grasping
(Section 2.4).

We complete the overview of the state of the art in autonomous
manipulation by reporting on the recent progress of Deep Reinforcement
Learning in dexterous manipulation and the related challenges (Section
2.5).

2.1 Tactile object localization and recognition

The interest in tactile sensing and perception has considerably increased
over the last decade [7], often flanking or even replacing vision information
during object manipulation, localization and recognition [8, 9, 10, 11, 12].
This extensive usage of the sense of touch in robotics is put forward in
several findings in human physiology that testify how humans jointly ex-
ploit vision and touch in order to accomplish manipulation tasks and how
humans are even able to explore objects by means of tactile perception
solely [13, 14]. Certainly, the surge of interest on this topic is also encour-
aged by the recent advances in tactile technology [15, 16, 17, 18, 19, 20]

12 Chapter 2. What is the stage of autonomous manipulation?

that have made it possible to build tactile systems that are reliable enough
and can be deployed on real robots at a reasonable price [21, 22, 23]. Tac-
tile sensors can be categorized in multiple manners, such as according to
their sensing principles, fabrication methods or the body parts they are
analogous to [7, 24]. The main sensing principles exploited in the current
technologies are resistance, capacitance, piezoelectricity, optic component,
or magnetics. Another possible classification regards the output nature of
touch sensors. The major focus is often to measure the contact force and
location over a certain area. Some other sensors, such as the ones exploited
in this Thesis work [21], retrieve instead the pressure exerted on the sensor
when contact is detected. Very recently, a novel vision-based optical tactile
sensor, named GelSight [25, 26, 27], has been developed and commercial-
ized. Unlike the traditional tactile sensors, GelSight basically measures ge-
ometry, with very high spatial resolution. The sensor has a contact surface
of soft elastomer, and by a conventional camera it captures the deforma-
tions of the elastomer when the sensor is pressed against an object. The
contact force and slip can be inferred from the sensor deformation itself.

Tactile sensors play a fundamental role in autonomous manipulation
since they provide useful information when contacts with the objects are
detected. Vision is usually the major source of measurements for perceiv-
ing the surrounding environment but it might be occluded while interact-
ing with the object. In such a scenario, the ability of localizing and recog-
nizing objects by means of solely tactile measurements is crucial for the
execution of manipulation tasks. Hereafter, we briefly review the state of
the art in tactile object localization and recognition.

Tactile object localization

The first contributions on tactile object localization (1980s) tackled the
problem by using mostly iterative optimization methods and focused on
finding a single solution best fitting the set of available measurements
[28, 29, 30]. Since these methods tend to be trapped in local minima, low
initial uncertainty is assumed so as to ensure that the optimization algo-
rithm is initialized near the solution. In order to avoid local minima, the
algorithm can be executed multiple times from different starting points.

Over the last years, Bayesian methods have been playing an important
role in tactile localization [31, 32, 33, 34]. In particular, these methods are

2.1. Tactile object localization and recognition 13

capable of working with noisy sensors, inaccurate models, moving objects
and can give information on where to sense next during tactile exploration.
Thus, they can be used not only to localize the object, but also to provide
useful information for collecting measurements and for real exploration.

Since the localization problem is intrinsically of multimodal nature (i.e.
the probability density exhibits multiple peaks), nonlinear Kalman filter-
ing techniques (such as the extended or unscented Kalman Filter) cannot
be satisfactorily used. In this respect, the Bayesian framework (e.g. parti-
cle filtering) is more appropriate, since it intrinsically handles multimodal
distributions. On the other hand, its main drawback is represented by the
computational complexity, which grows exponentially with the number of
independent variables (DOFs) and polynomially with the size of the ini-
tial region of uncertainty. For example, recalling that the localization of an
object involves 6 DOFs, a particle filter should be configured to run with a
number of particles in the order of 106, which might entail an unaffordable
computational burden for real-time operation. In fact, most of the existing
work is characterized by assumptions limiting the number of DOFs and
the size of initial uncertainty.

In this respect, the first known work traces back to 2001 and is due to
Gadeyne et al. [31], who performed 3-DOF localization of a box with initial
uncertainty of 300 mm in position and 360 degrees in orientation. Measure-
ments were taken by a force-controlled robot and a sampled measurement
model, stored in a lookup table and constructed off-line, was used. In 2005,
Chhatpar et al. [32] used particle filters to achieve 3-DOF localization with
20 mm of initial uncertainty in peg-in-hole assembly tasks. The exploited
measurement model was obtained by sampling the object in advance.

An interesting approach to tactile localization makes use of the Scaling
Series method [34, 35] developed by Petrovskaya et al., by which 6-DOF
localization has been achieved with large initial uncertainty of 400 mm in
position and 360 degrees in orientation. This method, which combines
Bayesian Monte Carlo and annealing techniques, exploits measurements of
contact points and surface normals. It performs multiple iterations over the
data, gradually scaling precision from low to high. For each iteration, the
number of particles is automatically selected on the basis of the complexity
of the annealed posterior. As it will be shown in Chapter 4 through specific

14 Chapter 2. What is the stage of autonomous manipulation?

experiments, the Scaling Series algorithm is however affected by low relia-
bility, that can be attributed to the automatic process of particle generation.
Particularly, a rough parameter tuning can easily lead to the generation of
an insufficient number of particles or, on the contrary, to their exponential
growth, thus precluding the final convergence of the algorithm.

In 2010, Corcoran et al. [33] used an annealed particle filter to estimate
a 4-DOF pose and radius of cylindrical objects. The initial uncertainty was
of 250 mm in position and unrestricted in orientation. The measurement
model proposed in [34] was extended by exploiting the concept of “nega-
tive information”. To this end, a set of “no-contact measurements” is de-
fined to account for regions explored by the robot where it is known or it
can be inferred that the object cannot be located, since no contacts are per-
ceived.

In 2013, Chalon et al. [36] presented another particle filter method
including information on both object and finger movements. A recent
work [37] combines global optimization methods with the Monte Carlo
approach in order to provide a batch solution to the global localization
problem, either improving the estimate of the object pose obtained by vi-
sion or globally estimating pose when vision is not available.

In [38], Koval et al. propose a novel particle filter, named Manifold Par-
ticle Filter. This algorithm samples particles directly from a contact mani-
fold guaranteeing the non-penetration constraint. In fact, the real pose of
the object in contact with the robot hand belongs to a lower-dimensional
manifold determined by non-penetration constraints between the object
and the hand itself. If this kind of constraint is not incorporated, the sam-
pled particles might correspond to configurations in which the manipula-
tor and the object are overlapping or separated. The main limitation of this
approach is however given by the fact that it relies on explicit analytic and
sampled-base representations of the contact manifold. This kind of repre-
sentation fits well to low-dimensional domains but do not scale properly
to more complex scenarios. For this reason in [39], the same authors ad-
dressed the problem by proposing an implicit representation of the contact
manifold to apply the Manifold Particle Filter to six or more dimensional
state spaces.

In 2017, we proposed the Memory Unscented Particle Filter [40] which
combines an Unscented Particle Filter with a windowing based memory

2.1. Tactile object localization and recognition 15

strategy to estimate the 6D pose of a stationary object using 3D tactile con-
tact points - and no contact normals - and starting from an initial uncer-
tainty of 400 mm in position and 360 degrees in orientation. This approach
is one of the main contributions of the Thesis and is presented in Chapter
4.

Some recent works [41, 42, 43] have focused on the particular problem
of tactile in-hand object pose estimation, i.e. the estimation of an object
pose when hold in the robot hand. In particular, [43] makes use of a parti-
cle filter for processing tactile information and of haptic rendering models
of the robot hand. The particle filter at first estimates the grasp pose of the
object using the touch measurements. Then, hypotheses of grasp poses are
evaluated by comparing tactile measurements and expected tactile infor-
mation from CAD-based haptic renderings.

Another interesting application, which the attention in the latest years
has been turned on, is visuo-tactile localization, i.e. the exploitation and
fusion of tactile and vision information with the final goal of estimating
the object pose [10, 27, 44]. A detail review of the state of the art of those
approaches is hower out of the scope of this work.

Tactile object recognition

Tactile object recognition refers to the problem of discriminating an object
with respect to others considering some of its properties measurable with
touch sensors. Several features can be taken into account for the solution
of the recogntion problem such as the object shape, surface texture or cur-
vature.

Different methods have been proposed in the literature in order to solve
tactile object recognition. They can be classified depending on the type of
information they use and the object features they recover, namely, mate-
rial and shape properties. Some researchers have focused on identifying
material properties [45, 46, 47]. Decherchi et al. use multiple techniques
to classify object materials with tactile data [46]. Liu et al. [47] apply a dy-
namic friction model to determine physical properties of surfaces while a
robotic finger slides along the object with different speeds.

16 Chapter 2. What is the stage of autonomous manipulation?

To recognize object shapes, a viable approach is to recover local geom-
etry from each contact point, i.e., surface normal and curvature. By us-
ing a cylindrical tactile sensor, Fearing et al. propose a nonlinear, model-
based inversion to recover contact surface curvatures [48]. Contact loca-
tion point-clouds have also been used to reconstruct object shapes with
computer graphic techniques [49, 50, 51, 52]. Allen et al. fit points from
tactile sensors readings to superquadric surfaces to reconstruct unknown
shapes [51]. A similar approach, proposed by Charlebois [53], uses ten-
sor B-spline surfaces instead of superquadratic surfaces. Through these
methods, arbitrary object shapes can be identified by estimating surface
curvatures. In [54], we perform tactile recogniton by using contact loca-
tion point-clouds but without reconstructing the object shape or estimat-
ing surface normals. We cast tactile recognition into a localization problem
wherein multiple models are fit to the available measurements and objects
are recognized by selecting the model that minimizes the localization error.
More details about this approach are provided in Chapter 5.

Another solution to recognizing object shapes is to use machine
learning techniques on the output of tactile sensor arrays. In this case,
object features are extracted from the tactile data and/or haptic measure-
ments. A classifier is then trained to predict the shapes of novel objects
[18, 55, 56, 57, 58, 59, 60, 61, 62, 63].

The recent development of new sensors, such as GelSight, leads to sen-
sitivity and resolution exceeding that of the human fingertips. This opens
the possibility of measuring and recognizing highly detailed surface tex-
tures and shapes. The GelSight sensor, when pressed against a surface,
delivers a height map. This can be treated as an image, and processed us-
ing the tools of visual texture analysis. An example of Gelsight application
on texture recognition is shown in [64], where a material can be correctly
categorized among a database of 40 classes of tactile textures correspond-
ing to different materials. Other kinds of tactile sensors are also mounted
on robot hands for extracting tactile images and applying computer vision
technique to process such an information for object recognition [65, 66].

2.2. Bi-manual coordination 17

2.2 Bi-manual coordination

Humans take advantage of both their arms for executing plenty of
manipulation tasks. Bringing bi-manual coordination skills to humanoid
robots, themselves equipped with two arms, is then fundamental within
the view of replicating the human manipulation abilities on a robotic plat-
form.

Some examples of manipulation tasks where bi-manual coordination
provides the solution are:

• Moving towards a desired position objects too heavy or big to be
grasped with a single hand.

• Pick-and-place scenarios where the initial and target position of the
object do not belong to the same arm workspace.

• Re-grasping objects whose in-hand pose is not suitable for perform-
ing the required task.

In the literature, bi-manual coordination has been addressed focusing on
all the manipulation tasks listed above. One of the earliest contributions
on bi-manual coordination is [67], in which the authors address the prob-
lem of planning the path of two cooperating robot arms to carry an ob-
ject from an initial configuration to a goal configuration amidst obstacles.
The paper compares three 2D planning techniques with different arms –
2-DOFs and 3-DOFs – in different scenarios (without and with obstacles).
These results were later extended to 3D planning [68, 69, 70]. A more recent
work [71] implements multi-arm handover for object movements towards
a final position using the motion planning framework proposed in [70].
In [72], Kromer et al. address bi-manual coordination in a Reinforcement
Learning setting. Their method exploits the phase structure in which tasks
can be split in order to learn manipulation skills more efficiently. Start-
ing with human demonstrations, the robot learns a probabilistic model of
the phases and the phase transitions. Then model-based Reinforcement
Learning is used to create motor primitives that well generalize to new sit-
uations and tasks. Another work where bi-manual coordination is cast into
the learning framework is [73] where the authors combine a dynamical

18 Chapter 2. What is the stage of autonomous manipulation?

systems formulation of the demonstrated trajectories and a task- parame-
terized probabilistic model to extract the relevant features of the demon-
strated skill.

Another application of bi-manual coordination is object re-grasping [74,
75]. In [74], bi-manual re-grasping is formulated as an optimization prob-
lem, where the objective is to minimize execution time. The optimiza-
tion problem is supplemented with image processing and a uni-manual
grasping algorithm based on machine learning that jointly identifies two
good grasping points on the object and the proper orientations for each
end-effector. The optimization algorithm exploits this data by finding the
proper re-grasp location and orientation to minimize the execution time.
The work presented in [75] instead provides an interesting study on when
one- or dual-arm re-grasp is to be performed, according to the object prop-
erties. Dual-arm re-grasp is more flexible and versatile but if the two hands
grasps overlap on the object, an higher success rate is provided by single-
arm re-grasp.

Dual-arm re-grasp is a specific case of the more general handover task,
i.e. passing the object from one hand on to the other. The handover can
be performed for executing pick-and-place tasks when the initial and tar-
get position of the object do not belong to the workspace of the same arm
[76]. Other works as [54, 77, 78] provide solutions to the general handover
problem. In [77], Gasparri et al. cast the handover into a robust optimiza-
tion problem focusing on the choice of optimal stiffness to accomplish the
handover by minimizing the forces involved. Both [54, 78] rank a priori
generated poses for the execution of the handover. A detailed description
of [54] is provided in Chapter 6, as one of the main contributions of this
Thesis work.

2.3 Object modeling from vision

The ability of reconstructing in real-time 3D information about the scene
and, particularly, the object to be manipulated is central to autonomous
manipulation. Raw 3D information can be obtained differently according
to the vision system the robot is equipped with, such as stereo or RGB-D
cameras.

2.3. Object modeling from vision 19

Several works in manipulation [79, 80, 81, 82] exploit only partial point
clouds collected from a single view of the object to infer how to approach
and manipulate the object. However, ignoring a 3D representation of the
occluded portions of the object might lead to failures during the execution
of the task. Reconstructing instead a full 3D model, capable therefore to
represent also the occluded portions, provides much powerful information
on the object shape and volume.

Object modeling has been studied since the 1980s mostly in computa-
tional geometry and computer graphics as surface reconstruction, i.e. the
problem concerned with recreating a surface from scattered data points
sampled from an unknown object. Several methods have been developed
in last decades [83, 84, 85, 86, 87, 88] mostly returning mesh models as out-
put of the modeling process.

In the last years, a great interest for object modeling arose also in
robotics due to the growing availability of depth or stereo cameras [89,
90, 91, 92]. Several recent works reconstruct object mesh models from par-
tial 3D informations using Deep Learning techniques [89, 93, 94, 95, 96, 97].
In [89], for instance, the authors perform shape completion through the use
of a 3D convolutional neural network (CNN), trained on a large dataset of
mesh models. At runtime, a 2.5D point cloud captured from a single point
of view is fed into the CNN that returns a full 3D model of the object. This
way, the occluded portion of the object is inferred by the network from the
training set, thus providing more realistic models than just using symme-
tries or minimum volume closures. Another popular kind of object model
used in most recent works consists of voxel-based models [98, 99]. They
represent in fact the object volume and shape as a binary occupancy grid
and therefore provide a representation suitable for being used with CNN,
that are increasingly popular in 3D applications.

A different type of 3D model introduced in computer graphics in 1981
by A.H. Barr is the superquadric model [100, 101], a generalization of
quadrics that has been well studied in graphics and computer vision [102].
Superquadrics and extensions such as hyperquadrics [103] and deformable
superquadrics [101] are a convenient representation for a large class of both
convex and non-convex objects. The most popular method to determine
superquadric parameters for fitting partial or full object point clouds was
proposed by Solina in 1990 [102]. Recently, several works have focused on

20 Chapter 2. What is the stage of autonomous manipulation?

speeding up computation [90, 104] and refining the model by extending
it to approximate complex shapes with a set of superquadrics [105, 106].
In addition to object approximation, superquadrics have been used for
object detection [107], object segmentation [108, 109], collision detection
[110, 111] and grasping [90, 112, 113, 114, 115, 116]. The great advantage
of superquadrics with respect to mesh or voxel-based models consists of
the small number of parameters to be memorized and their closed-form
mathematical representation. Nevertheless, the new Deep Learning meth-
ods show much lower computation test time, since most of the effort is
done during the offline training. In this respect, some preliminary ideas on
how to speed up the superquadric computation making use of the Deep
Learning framework have been proposed in [117].

2.4 Autonomous grasping

The grasping problem consists of computing a feasible pose of the robot
hand, which allows grabbing the object under consideration. While great
performance can be achieved if the shape and position of the object are
accurately provided, autonomous grasping of unknown objects or whose
pose is uncertain is still an open problem. Although the problem has been
addressed since the late 1980s [118], recently the robotic community has
shown an increasing interest in autonomous grasping [119, 120, 121]. Di-
verse methodologies have been explored addressing various goals still
belonging to the field of grasping. In this respect, the broad field of
autonomous grasping can be divided into more specific areas according to
several criteria. For instance, grasp actions can be divided into power and
precision grasps [122]. Power grasp involves large areas of contact between
the hand and the object, without the adjustment of the fingers after con-
tact [123]. On the contrary, precision grasp provides sensitivity and dexter-
ity, since in this case the object is held with the tips of the fingers [124]. In
precision grasp tasks, the hand touches the object at small contact points,
therefore the study of grasp stability plays an important role.

Another classification criterion [120] considers how the robot hand pose
for approaching the object is computed, grouping the methodologies in an-
alytic and empirical. The former formulates the grasping problem only in
terms of force-closure and form-closure, looking for specific conditions on

2.4. Autonomous grasping 21

the contact wrenches that ensure a certain hand configuration to firmly
hold any object. These approaches usually assume that contact point loca-
tions were given without explicitly relating the hand configuration to the
object geometry. Empirical or data-driven approaches instead mimic human
grasping in selecting a grasp that best conforms to task requirements and
the target object geometry. They often rely on sampling grasp candidates
for an object and ranking them according to a specific metric.

Until about twenty years ago, most popular robotic grasping ap-
proaches belonged to the analytical class, as reviewed in [119]. Data-driven
approaches started to become popular with the availability of the simula-
tor GraspIt! [125]. Several works have been developed [112, 126, 127] using
this or analogous simulators and being characterized in how grasp candi-
dates were sampled and ranked. More recently, some studies [128, 129]
showed that techniques just evaluated in simulation do not provide good
predictors for grasp success in the real world. This motivated several re-
searchers [130, 131, 132] to let the robot learn how to grasp by experience
gathered during grasps execution. The problem of transferring from sim-
ulated environments to the real world is then removed at the cost of ex-
tremely time-consuming collection of examples. Then, a crucial point be-
comes how to generalize the collected experience to novel objects so to
contain the amount of required data. A great improvement in this respect
has been provided by Saxena et al. [133] who trained simple logistic regres-
sors on large amounts of synthetic labeled data to predict good grasping
points in a monocular image. The authors demonstrated their method in a
household scenario in which a robot emptied a dishwasher. Several other
works were subsequently proposed addressing the problem of inferring
discriminative object features for grasping [134, 135].

The availability of affordable and accurate depth sensing devices start-
ing from the 2010 [136, 137] encouraged grasping research to rely increas-
ingly more on 3D data. Processing depth map or point clouds is nowadays
the starting point for the majority of approaches proposed for the grasping
problem [90, 113, 123, 124, 138].

A further incentive for the study of grasping has been provided by the
Amazon picking challeng [139], whose goal is the development of robotics
hardware and software able to identify objects, grasp and move them from

22 Chapter 2. What is the stage of autonomous manipulation?

place to place. Since 2015 this challenge has been giving rise to different ap-
proaches [140, 141, 142] sharing the same scenario: two-fingered grippers
are used to grasp known and novel objects in the clutter.

The methods mentioned thus far place more weight on the object rep-
resentation and the processing of perceptive data to retrieve grasps from
some knowledge base or sample and rank grasps by comparison to exist-
ing experience. As a result, a convenient way to group data-driven ap-
proaches [121] is based on the prior knowledge assumed on the query ob-
ject: if it is known, familiar or unknown. The trend of most recent works is in
particular to focus on familiar or unkwnon objects, often generalizing from
the available knowledge on how to grasp known objects.

One approach towards generating grasp hypotheses for unknown ob-
jects is to approximate objects with shape primitives. Marton et al. [91]
show how grasp selection can be performed exploiting symmetry by fit-
ting a curve to a cross section of the point cloud of an object. For grasp
planning, the reconstructed object is imported in a simulator. Grasp candi-
dates are generated through randomization of grasp parameters on which
then the force-closure criteria is evaluated. Rao et al. [143] use segmen-
tation, especially relying on depth information. A supervised localization
method is then employed to select graspable segments and plans a grasp-
ing strategy, after shape completion from the partial 3D information. Bohg
et al. [144] propose a related approach that reconstructs full object shape
assuming planar symmetry. Recently, superquadrics functions have be-
come a popular alternative to point clouds or mesh models for represent-
ing novel objects. As already mentioned in Section 2.3, they provide a com-
pact mathematical formulation and their precision in modeling the object
shape and volume occupancy has been proven to be suitable to grasping
tasks. Some works [112, 113, 114] reconstruct the object model using a sin-
gle or a set of superquadrics and then rely on grasp candidates generators
(such as GraspIt!) to select the grasp candidate. In [90] instead, we ex-
ploit superquadrics not only for estimating the object 3D model but also
for representing the volume graspable by the hand. A single proper grasp
candidate is computed by overlapping the superquadric representing the
volume graspable by the robot hand onto the object superquadrics while

2.4. Autonomous grasping 23

meeting some orientation and obstacle avoidance constraints (e.g. avoid-
ance of the support on which the object is located). We will provide exten-
sive details on this approach in Chapter 7. Other ideas about how to use
the superquadric model to compute directly grasp candidates are shown
in [115] and [116]. Makhal et al. in [115] design the grasping pose by
maximizing force balance and stability and taking advantage of dimension
and surface curvature information obtained from the object superquadric
parameters. In [116], the grasp candidates are located in proximity of the
superquadric cardinal points of the upper part of the object (for avoid-
ing the support on which the object is located), taking into account proper
constraints on orientations. The poses are then ranked according to their
reachability and the matching between the object and hand dimensions.

Another approach to deal with unknown objects consists of extract-
ing from 2D or 3D visual information those features able to encode some
properties of the object relevant to the grasp. Several heuristics and
patterns have been proposed to extract grasp candidates from low-level
[79, 80, 138, 145] or more global shape information [146, 147]. Very re-
cently, the most common technique used to extract grasping features from
3D data is Deep Learning [81, 82, 148, 149]. A relevant work in this re-
spect is given by the DexNet project [150, 151, 152] including a growing
synthetic dataset of million point clouds, grasps, and analytic grasp met-
rics generated from thousands of 3D models and a model that rapidly pre-
dicts the probability of success of grasps from depth images, where grasps
are specified as the gripper planar position, angle and depth. Throughout
their papers, Mahler et al. have extended the Dexnet dataset and improved
the model predicting grasp success, being able to provide very high suc-
cess rate on novel and adversarial objects. The large number of samples of
the Dexnet dataset is linked to a crucial limitation of Deep Learning tech-
niques: the need of a huge amount of labeled data to enable generalization.
Collecting such a number of samples in the real world is not time-wise
affordable. The alternative is to generate the data in simulation environ-
ments. However, as already mentioned, grasp predictors trained only on
simulated data are very likely to behave poorly in the real world. New
common strategies for facing this issue are domain randomization [153, 154]
and adaptation [155, 156]. The former consists in training the grasp predic-
tor in simulation using tons of data randomly generated and synthetically

24 Chapter 2. What is the stage of autonomous manipulation?

labeled and randomizing over different parameters of the system (e.g. im-
age noise and physical parameters etc.). The latter is a particular case of
Transfer Learning that utilizes labeled data in one or more relevant source
domains to execute new tasks in a target domain. In grasping applications
the source domains are generated and used in simulation and real-world
is the target domain.

In the last years, also the Deep Reinforcement Learning framework has
been used for addressing the grasping problem. More details about the
latest results in this respect are collected in the following Section.

For the sake of comparison, Table 2.1 summarizes the state of the art
of autonomous grasping by focusing on data-driven methods for power
grasp of unknown objects, including also Deep RL methods that will be
described in the following Section.

TABLE 2.1: State of the art comparison among data-driven
approaches for power grasp of unknown objects.

Reference Methodology Distinctive feature Input Robot hand

[123] pose ranking geometry-based 3D partial point cloud multi-fingered
[112] pose ranking simulator-based reconstructed superquadrics multi-fingered
[126] pose ranking geometry-based reconstructed shapes multi-fingered
[127] supervised learn. SVM reconstructed superquadrics multi-fingered
[130] supervised learn. automatic data collection RGB images gripper
[132] supervised learn. predict pose reliability RGB images multi-fingered
[133] supervised learn. synthetic dataset RGB images gripper
[134] supervised learn. predict pose stability RGB-D images multi-fingered
[90] optimization robot agnostic reconstructed superquadrics multi-fingered

[138] pose ranking local features 3D point cloud gripper
[91] pose ranking simulated grasp planner reconstructed mesh model multi-fingered

[143] supervised learn. fill missing depth data reconstructed shape multi-fingered
[144] pose ranking simulated grasp planner reconstructed mesh model multi-fingered
[115] geometry-based mirror partial point cloud reconstructed superquadrics gripper
[116] pose ranking geometry-based reconstructed superquadrics multi-fingered
[79] pose ranking local features RGB-D images + tactile data gripper
[80] pose ranking local features RGB-D images gripper

[145] local features active exploration RGB images gripper
[146] pose ranking global features RGB images gripper
[147] pose ranking global features RGB-D images multi-fingered
[150] supervised learn. synthetic dataset RGB-D images gripper
[151] supervised learn. synthetic dataset RGB-D images gripper
[152] supervised learn. synthetic dataset RGB-D images gripper + suction
[153] supervised learn. domain randomization RGB-D images gripper
[154] supervised learn. domain randomization RGB-D images gripper
[155] supervised learn. domain adaptation RGB images gripper
[156] supervised learn. domain adaptation RGB images gripper

[4] supervised learn. spatial softmax CNN RGB images gripper
[5] deep RL trained on real-robot RGB images gripper
[6] deep RL trained on real-robot RGB images gripper

[157] deep RL trained on real-robot RGB images gripper
[158] deep RL trained on real-robot RGB images gripper

2.5. Deep Reinforcement Learning for autonomous manipulation 25

2.5 Deep Reinforcement Learning for

autonomous manipulation

One goal of artificial intelligence is to provide fully autonomous agents
interacting with the environment and learning optimal behaviors through
trial and error. Reinforcement Learning (RL) provides a suitable mathe-
matical framework for experience-driven autonomous learning [159] and
has been shown to be successful in several tasks in the past [160, 161, 162]
although in the context of low-dimensional domains. RL is in fact affected
by the lack of scalability due to its memory requirements and computa-
tional complexity. As happened in many areas of machine learning, such
as computer vision, speech recognition and language translation, Deep
Learning had had a significant impact on RL, improving considerably the
state of the art and defining the so-called field of Deep Reinforcement
Learning. The main reason of Deep Learning success is that deep neu-
ral networks are able to learn compact low-dimensional representations,
i.e. features, of high dimensional data, such as images. This way, RL has
scaled to decision-making problems that were previously intractable, due
to their high-dimensional state and action spaces. One example of the suc-
cessful stories of Deep RL is the development of an algorithm able to play
a set of Atari 2600 video games with super-human performance, learning
directly from image pixels [163]. Another example is the hybrid DeepRL
system, AlphaGo, that defeated a human world champion in Go [164] and
brought to another level the AI revolution started two decades earlier with
DeepBlue [165] and Watson DeepQA [166] that won respectively chess and
quiz competitions against human players. In particular, the novelty of Al-
phaGo consisted of the usage of neural networks trained with supervised
and reinforcement learning together with a traditional heuristic search al-
gorithm.

Deep RL has been applied to a variety of different fields, including
also robotics in the very last years. One of the most studied problems is
autonomous manipulation [4, 5, 6, 157, 158, 167]. In the popular work
described in [6], the authors propose a learning-based approach to learn
hand-eye coordination for robotic grasping from monocular images. They
train a large CNN to predict the probability that the motion of the gripper

26 Chapter 2. What is the stage of autonomous manipulation?

will achieve a successful grasps, using only monocular camera images in-
dependent of camera calibration or the current robot pose. For this reason
the network is required to learn also the spatial relationship between the
gripper and the objects in the scene. The approach was tested on real robots
thanks to the collection of large-scale datasets, using up to 14 manipulators
and two months of grasp attempts. In [4] Levine et al. propose a method
to learn CNN policies that map from raw images to torques at robot mo-
tors. The approach is tested on a range of real-world manipulation tasks
such as screwing a cap onto a bottle and placing a coat hanger on a clothes
rack. Another work where DeepRL is used to learn policies directly from
raw pixels is presented in [5]. This method uses a deep spatial autoen-
coder to acquire a set of feature points that describe the environment for
the manipulation task to be solved, such as object position, and learns a
motion skill with these feature using RL. This approach is shown with the
PR2 robot on task including pushing toy blocks, picking up items with a
spatula and hanging a loop of rope of a hook at various positions. Al-
though outstanding, these works still show some limitations. In [6], a huge
amount of data is required to be collected on the real robot for achieving
good performances and the motions necessary for performing the tasks
addressed in [5] are limited to simple actions.

An interesting extension in this respect is the use of multi-fingered ma-
nipulators for the accomplishment of dexterous manipulation tasks that
cannot be executed with a single gripper, such as in-hand manipulation,
complex grasping and tool use. These tasks turn out to be very challeng-
ing due to the high dimensional observation and action spaces involved
and the difficulties in defining proper reward functions for guiding the
agent during the training. Solving tasks with such a level of difficulty of-
ten require to face one of the greatest difficulties in RL: the exploration ver-
sus exploitation problem, i.e. the problem of choosing between non-optimal
actions in order to explore the state space and exploiting the optimal ac-
tion in order to make useful progress. One of the simplest exploration
strategy, typical used in off-policy algorithms such as DQN [163], is the
ε-greedy exploration policy that chooses a random action with probabil-
ity ε ∈ [0, 1] and the optimal action otherwise. By decreasing ε over time,
the agent progresses towards exploitation. As the task becomes more com-
plex or temporally extended however, this kind of exploration strategies

2.5. Deep Reinforcement Learning for autonomous manipulation 27

becomes less effective. Several exploration strategies have been proposed
in the last years comprising different criteria used for encouraging explo-
ration. In [168, 169], the exploration is based on intrinsic motivation. Dur-
ing the training, the agent learns also a model of the system and an ex-
ploration bonus is assigned when novel states with respect to the trained
model are encountered. Novel states are identified as those states that
create a stronger disagreement with the model trained until that moment.
Another group of exploration algorithms are count-based methods that di-
rectly count the number of times a certain state has been visited to guide
the agent towards states less visited. Obviously, such an approach is infea-
sible in continuous state space. For this reason, some works such as [170]
extend count-based exploration approaches to non-tabular (continous) RL
using density models to derive a pseudo-count of the visited states. An-
other approach to encourage exploration consists of injecting noise to the
agent’s parameters, leading to richer set of agent behaviors during train-
ing [171, 172].

These exploration strategies are task agnostic in that they aim at pro-
viding good exploration without exploiting any specific information of the
task itself. More recently instead, the exploration problem has been cast
into meta-learning (or learning to learn), the field of machine learning whose
goal is to learn strategies for fast adaptation by using prior tasks [173].
An example of application of meta-learning for the exploration problem is
shown in [174], where a novel algorithm is presented to learn exploration
strategies from prior experience.

Alternatively, it is possible to get around the exploration problem by
providing task demonstrations for guiding and speeding up the train-
ing [175, 176, 177, 178, 179]. The work presented in [180] shows how the
proper incorporation of human demonstrations into RL methods allows
reducing the number of samples required for training an agent to solve
complex dexterous manipulation tasks with a multi-fingered hand in sim-
ulation. Even if verification on a real robot is still to be verified, the training
time thus far obtained is compatible with real-world applications. More
details about this work are presented in Chapter 9.

29

Chapter 3

The iCub humanoid robot and its
key components for manipulation

In this Chapter, a brief overview of the iCub humanoid robot is provided.
More specifically, the description will cover only those components that
are relevant for the manipulation problem (see Fig. 3.1).

The iCub [2] is an open-source robotic platform developed for robotics
research. It has the appearance of a child and its design is human-inspired.
As mentioned in Section 1.1, the iCub is a proper platform for studying the
manipulation problem as it is provided with the following components:

• a human-like upper body including two arms and multi-fingered
hands (Section 3.1);

• a proper sensor system including two cameras, tactile sensors and
encoders for joint angle sensing (Section 3.2);

• a Cartesian controller for the upper body (Section 3.3).

Section 3.4 ends the platform description introducing the software
framework of the iCub.

3.1 iCub upper body

The total number of DOFs of the iCub for the complete body is 53. Focusing
on the upper body, the (41) DOFs are distributed as follows:

• 6 in the head: 3 for the neck, providing full movements and 3 for the
cameras, to support both tilt, pan and vergence1 behaviors.

1The vergence is the simultaneous movement of both eyes in opposite directions to
obtain or maintain single binocular vision.

30
Chapter 3. The iCub humanoid robot and its key components for
manipulation

FIGURE 3.1: iCub hardware and perception key components
for manipulation. On the left: the sensor system. Stereo vi-
sion provides RGB and depth information; encoders are used
for proprioception through joints sensing; tactile sensors lo-
cated on the fingertips detect contacts with the object to ma-
nipulate. On the right: how the DOFs are distributed in the

upper body.

3.2. Perception system 31

• 7 for each arm: 3 for the shoulder, 2 for the elbow and 2 for the wrist.

• 9 for each hand: 3 for the thumb, 2 for the index, 2 for the middle fin-
ger, 1 for the ring and little fingers and 1 for finger abduction2. Conse-
quently, each hand has three independent fingers whereas the fourth
and fifth are used for additional stability. Fingers are tendon-driven,
with most of the motors located in the forearm. Tendon driven robots
(TDR) are robots whose limbs mimic biological musculoskeletal sys-
tems, using plastic straps. Such robots are claimed to move in a
“more natural” way than traditional robots that use rigid metal or
plastic limbs controlled by geared actuators.

• 3 in the waist. A 2 DOF waist/torso would be enough for ef-
fective crawling but a 3 DOF waist was incorporated to support
manipulation. A 3 DOF waist provides increased range and flexi-
bility of motion for the upper body resulting in a larger workspace
for manipulation.

3.2 Perception system

Concerning perception, iCub is equipped different kinds of sensors, in-
cluding digital cameras (one for each eye), gyroscopes and accelerometers,
microphones, encoders, force/torque and tactile sensors. Hereafter, we fo-
cus only on those that are mostly relevant for manipulation tasks.

3.2.1 Vision

The RGB cameras mounted are used to perform stereo vision, i.e. the ex-
traction of 3D information from digital images that contain two views of
the same scene.

The 3D spatial information of the scene can be obtained by estimat-
ing the relative pose of one of the two cameras with respect to the other.
This information is coded in the so-called extrinsic parameters of the stereo
vision system. Dealing with moving eyes requires the estimation of the
extrinsic parameters each time the robot eyes change their relative config-
uration. This is done on the iCub with a complete Structure From Motion

2In physiology, adbuction is the movement which separates a limb or other part from
the axis.

32
Chapter 3. The iCub humanoid robot and its key components for
manipulation

pipeline [181]. The extrinsic parameters allows then the rectification of the
images and the computation of the disparity map. Finally, the disparity
map, the intrinsic parameters of the camera and the forward kinematics
of the iCub eyes are used to compute the 3D coordinates of a point in the
image expressed with respect to the root frame of the robot.

3.2.2 Tactile sensors

The iCub is equipped with tactile sensors based on capacitive pressure sys-
tem and covering almost its entire body. The sensors on its arms, torso and
legs are mostly used for force estimation and compliant control (see Para-
graph 3.3). The tactile sensors on the palm3 and, in particular, the fingertips
of the hands are instead relevant for manipulation. The fingertip structure
is the following, outlined in Fig. 3.2.

The proposed fingertip, illustrated in Figure 1, builds on
previous work on the iCub tactile sensing system [3], [4].
The shape of the fingertip is based on the work by Schmitz
et al. [3], which was chosen to make the fingertip compatible
with the existing mounting probe on the iCub hand. We
improve the fingertip design by using a novel dielectric layer
proposed by Maiolino et al. [4]. Typically the dielectric layer
is made of an elastomer covered by a conductive layer. This
complicates the production process considerably and limits
the durability of the sensor due to aging. Moreover, such
systems suffer from higher hysteresis. The new fingertip uses
a three-layer fabric that comprises of a deformable dielectric
layer, a conductive layer and a protective layer. The three-
layer fabric is manufactured using industrial techniques. As a
result the fingertips are consistent, reliable, robust and easier
to manufacture.

The following section gives an overview of existing work.
This is followed in section III with the details of the fingertip
design. Section IV describes the experimental setup. We then,
in section V, present our characterization experiments and
provide the results. We conclude the paper in section VI and
give future directions in section VII.

II. BACKGROUND

To equip robots with human-like dexterity, the past three
decades has seen increased research in the development of
an artificial sense of touch. Great effort has been devoted
to developing tactile sensors that can provide sufficient in-
formation for dextrous manipulation. The literature has pro-
posed various sensing principles based on different physical
phenomena. These include capacitive [5], piezo-resistive [6],
[7], optical [8], [9], [10] and magnetic [11]. Knowledge of all
three components of force plays a crucial role in acquiring
tactile perception. Attempts have been made to build sensors
which can provide all three components of force [9], [11],
[12]. Using human fingers as an inspiration, soft fingers with
randomly distributed receptors at different depths have been
developed [13]. Researchers such as Engel et al. [14], have
taken advantage of microelectromechanical systems (MEMS)
to manufacture tactile sensors with the capability to provide
force and temperature information. MEMS based sensors are
very attractive for use in robotics because of their small size
and capability to provide multiple modes of transduction.
However, their development is in the early stages and their
aplication still require considerable efforts.

Majority of the sensors discussed so far are rigid, that is,
they don’t lend themselves well to applications where the tac-
tile sensors have to be attached to curved surfaces such as the
fingertip of a humanoid robot. Ohmura et al. [10] proposed a
conformable and scalable robot skin system formed by self-
contained modules that can be interconnected. Each module
is made of flexible printed circuit boards (FPPBs) consisting
of photo-reflectors covered by urethane foam. Mukai et al.
[15] have developed a tactile sensor system that uses FPCBs
with a tree-like shape to conform to curved surfaces. Asfour
et al. [16] use skin patches specifically designed for different
body parts of the ARMAR-III robot.

(a) The existing fingertip

(b) The proposed fingertip

Fig. 2. Comarison of the the existing iCub fingertip (Schmitz et al. [3])
and the proposed fingertip. As illustrated the main difference between the
two designs is that, in the new design the silicone foam and the conductive
silicone layers are replaced by a composite three-layer fabric. This increases
the robustness and repeatability of the fingertip.

III. FINGERTIP DESIGN

As described in section I, the new fingertip is an ex-
tension of our previous work on the iCub tactile sensing
system [3], [4]. The shape of the fingertip is based on
the existing iCub fingertip [3]. This makes the fingertip
compatible with the existing mounting probe on the iCub
hand. The novelty of this design is that it replaces the
silicone foam and the conductive silicone with a three-layer
fabric inspired by the one developed for the large scale
tactile sensors on the iCub’s body[4]. Figure 2 illustrates the
difference between the exisiting fingertip (Figure 2(a)) and
the proposed fingertip (Figure 2(b)). The primary difference
between the two designs is that the proposed fingertip
replaces the silicone foam and the conductive silicone layers
with a composite three-layer fabric. The advantage of the
compiste material is that the new finger is more robust,
repeatable and easier to manufacture.

As illustrated in Figure 1, the overall shape of the fin-
ger mimics the shape of a human finger. The fingertip is
14.5mm long, 13mm wide. The fingertip assembly com-
prises 5 layers (see Figure 1(a)). The inner support is made of
plastic. The inner support is attached to the finger of the robot
through a mounting probe. The flexible PCB (Figure 1(b))
is wrapped around the inner support (Figure 1(c)), the 12
sensors are deployed on locally flat planes that are cut on
the inner support. The PCB hosts the chip that performs
capacitance to digital conversion (CDC). A plastic surface of
1 mm works as a mechanical interface: it has an inner shape
that conforms to the PCB and a rounded external shape on
which the three-layer fabric can be easily glued. The outer
shell of the sensor is made up of a three-layer, sandwich-
like, assembly that incorporates: a deformable neoprene
layer, a conductive textile material (lycra) and a protective

FIGURE 3.2: Cross-section of the fingertip. Yellow: inner sup-
port. Green: flexible PCB. Black, grey and blue: the compos-
ite three-layer fabric, respectively the dielectric, conductive
and protective layers. This structure increases the robustness

and repeatability of the fingertip.

A flexible PCB is wrapped around the inner support and hosts 12 sen-
sors called taxels. The PCB also hosts a chip that converts capacitance
readings to digital data. A plastic surface of 1mm is used as a mechani-
cal interface to the external environment. It has an inner part that adapts
to the shape of the PCB and an external part on which a three-layer fabric
is glued. The fabric includes a dieletric layer, a conductive layer, connected
to the ground, and a protective textile layer (the black material visible in
Fig. 3.3). The conductive lycra is connected to ground. This assembly
effectively forms a capacitive pressure sensor.

3Due to the hand design, the tactile sensors on the palm are rarely activated during
manipulation tasks. The limited hand opening in fact usually prevent the manipulated
object to be in contact with the robot palm. For this reason, sometimes we refer to the
tactile sensors on the fingertips as the tactile sensors of the hand.

3.3. The Cartesian controller 33

FIGURE 3.3: The protective textile layer on the fingertip.

3.2.3 Proprioception

Proprioceptive inputs in the iCub simply consist of angular position mea-
surements in every joint. For most joints, they are provided by absolute
12bit angular encoders. The joint angles of the hand are sensed using a
custom-designed Hall-effect-magnet pair. [182]

3.3 The Cartesian controller

The iCub is provided with a cartesian controller [183] for the arms and a
gaze controller [184] for the head and the vision system. They provide an
interface that exploits an inverse kinematics solver in order to control the
arms and the head directly in the operational space, by querying 3D points
instead of configurations at the joint level and generating trajectories with
human-like minimum-jerk velocity profiles [185].

The robot joints can be then controlled with different control modes,
including also impedance mode. This mode allows controlling the joint
position and its compliance. In particular, both the equilibrium position
of a virtual spring and its stiffness/damping are controlled. By tuning the
stiffness parameters, the robot joint can behave like a hard or soft spring,
while maintaining control on the desired joint position. The torque applied
on the robot joints are estimated by combining the force-torque sensors
available on the iCub shoulders and the tactile sensors on its upper body.
The latter allow better estimating the application point of the torque. The
impedance control mode implements a safe way to control robots operat-
ing in unstructured environments and interacting with humans.

34
Chapter 3. The iCub humanoid robot and its key components for
manipulation

3.4 Yarp

All the software that runs on the iCub is written using YARP [186]. YARP
(Yet Another Robot Platform) is an open-source software framework that
supports distributed computation and is compatible with multiple operat-
ing systems (Windows, Linux and Mac OS). YARP facilitates the reuse of
code by decoupling the user code from the specific hardware (using spe-
cial device drivers called PolyDrivers) and operating system (thanks to OS
wrappers). It also enables the development of modular software architec-
tures thanks to an intuitive inter-process communication mechanism based
on the concept of Port. A YARP module open ports in order to communi-
cate with other modules and send/receive commands and data. Ports are
extremely versatile as they support several types of data (vectors, matrices,
images, sounds, point clouds, etc.) and several protocols (e.g. TCP, UDP
and many others). YARP also provides several libraries for mathematical
computations (vectors, matrices, matrix inversion and singular value de-
composition, etc.). Basic image processing is also possible thanks to the
integration with the computer vision library OpenCV.

35

Part II

A novel tactile object localization
algorithm: the Memory Unscented

Particle Filter

37

Chapter 4

Memory Unscented Particle Filter
for 6-DOF Tactile Object
Localization

Accurate object perception is a necessary requirement for the execution of
manipulation tasks with autonomous robots in real-world environments.
This makes the advances in robotic manipulation and perception strongly
related to each other. In particular, the development of new sensors and in-
ference algorithms enhance the robot ability to deal with uncertainties and
reduce the cost required to engineer the environment in which the robot
will operate. Recently, a great interest arose regarding the use of tactile sen-
sors for manipulation tasks [7, 8, 9, 10, 11, 12]. While the use of vision has
been thoroughly investigated [187], recent advances in tactile technology
have made it possible to build tactile systems that are reliable enough and
can be deployed on real robots at a reasonable price [21, 22, 23]. This re-
cent improvement of tactile sensors is surely one of the reasons for a surge
of interest on this topic [15, 16, 17, 19, 20]. But tactile sensing is also fun-
damental whenever vision is unavailable or imprecise, for example due to
occlusions and/or bad lighting conditions. In addition, findings in human
physiology testify how humans jointly exploit vision and touch in order to
accomplish manipulation tasks and how humans are even able to explore
objects by means of tactile perception solely [13], [14].

Due to technological limitations, most tactile systems have low resolu-
tion and rarely provide other than estimation of the force normal to the
surface. Object localization using tactile feedback is, therefore, challenging
and requires the development of filtering techniques that allow appropri-
ate fusion of multiple measurements, taking into account the presence of

38
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

noise and the real-time requirements of the task.
In this Chapter, we present a novel algorithm, named Memory Unscented

Particle Filter (MUPF) [40], designed for addressing global 6-DOF tactile
object localization. This algorithm relies on the Unscented Particle Filter
(UPF) [188] and exploits only the measured position of the contact points
obtained from the tactile sensors on the robot. Other works in the literature
instead take advantage of other measurements such as the surface normal
at the contact points [34, 189, 190] or a 6-dimensional vector including force
and torque [31]. The proposed solution is inherently recursive in that the
measurements are sequentially processed in real time as they become avail-
able, and the algorithm can provide the object’s pose estimate after the pro-
cessing of each measurement. We take into account a recursive approach
for several reasons: the algorithm can provide the object’s pose estimate
after the processing of each measurement, and not only at the final mea-
surement acquisition time as with a batch procedure like the one in [34, 35];
it is compliant with active exploration techniques where the robot decides,
at each time t, where to sense next on the basis of the current object’s pose
estimate; it can allow stopping the object localization procedure at a given
time t whenever a suitable stopping criterion is satisfied.

The Chapter is organized as follows. Section 4.1 is a brief introduction
to nonlinear filtering techniques useful for the subsequent theoretical de-
velopments. Section 4.2 provides a mathematical (Bayesian) formulation of
the tactile localization problem. Section 4.3 presents the novel Memory Un-
scented Particle Filter (MUPF) approach to 6-DOF tactile localization. Sec-
tion 4.4 demonstrate the effectiveness of the proposed approach by means
of simulation and experimental tests on the iCub humanoid robot. Finally,
Sections 4.5 ends the Chapter with concluding remarks, applications and
perspectives for future work.

4.1 Mathematical background

Hereafter, tactile localization is cast into the Bayesian framework and ad-
dressed as a nonlinear multimodal filtering problem. Recall that filtering
is the problem of recursively estimating the state xt ∈ Rn of a dynamical
system while acquiring and processing noisy observations on-line. Specif-
ically, from a Bayesian viewpoint, the goal of the filtering problem is to

4.1. Mathematical background 39

recursively compute the following conditional PDFs

pt|t(x) = p(xt = x|yt)

pt+1|t(x) = p(xt+1 = x|yt),
(4.1)

given the noisy observations yt = {y1, . . . , yt} with yt ∈ Rp.
The solution of the filtering problem is given by the Bayesian recursion,

starting from the initial prior p1|0(·) and consisting of two functional equa-
tions, i.e. the following Bayes and respectively Chapman-Kolmogorov
equations:

pt|t(x) =
`t(yt|x)pt|t−1(x)∫
`t(yt|ξ)pt|t−1(ξ)dξ

(4.2)

pt+1|t(x) =
∫

ϕt+1|t(x|ξ)pt|t(ξ)dξ, (4.3)

where ϕt+1|t(x|ξ) is the Markov transition density representing the condi-
tional probability that the state at time t + 1 will take value x given that the
state at time t is equal to ξ, and `t(y|x) is the measurement likelihood function
denoting the probability that the measurement at time t will take value y
given that the state is equal to x.

However, in many practical applications, such as navigation, tracking
and localization, the transition and likelihood models are usually affected
by nonlinearities and/or non-Gaussian noise distributions, thus preclud-
ing analytical solutions of (4.2) and (4.3). In these cases, one must invari-
ably resort to some approximation technique. Most of the existing approx-
imation techniques can be divided in two families: Kalman-filtering-like
approaches, and sequential Monte Carlo methods. The algorithms belong-
ing to the former family (like the Extended Kalman filter and the Unscented
Kalman filter (UKF) [191]-[192]) propagate only the first- and second-order
moments (i.e., mean and covariance) of the posterior state distribution.
Such methods are usually characterized by a low computational cost, but
are not appropriate for multimodal distributions like the one arising from
the tactile localization problem. On the other hand, sequential Monte Carlo
methods, also known as particle filters [193], can deal with arbitrary non-
linearities and distributions and supply a complete representation of the
posterior state distributions.

Particle filtering techniques stem from the idea of approximating the

40
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

posterior density function pt|t(x) by means of a finite set of weighted sam-
ples (particles) as

p̂t|t(x) ≈
N

∑
i=1

w̃(i)
t δ(x− x(i)t|t), (4.4)

where δ(·) is the Dirac delta function, x(i)t|t is the position of the i-th parti-

cle and w̃(i)
t its normalized importance weight. In this way, the evaluation

of the integrals that are necessary for application of the Bayesian filtering
equations (4.2) and (4.3) is performed via the Monte Carlo numerical inte-
gration method, i.e., by transforming the integrals into discrete sums.

In principle, the particle approximation (4.4) can be computed by draw-
ing a set of independent and identically distributed samples {x(i)t|t , i =

1, . . . , N} from the posterior pt|t(x). While such a solution is not feasi-
ble because pt|t(x) is not known, the difficulty can be circumvented by
sampling each particle i from a known, easy-to-sample, proposal distribu-
tion q(i)(xt|yt), and then compute the normalized importance weights as

w(i)
t = w̃(i)

t−1

`t(yt|x(i)t|t) ϕt|t−1(x(i)t|t |x
(i)
t|t−1)

q(i)(x(i)t|t |yt)
, (4.5)

w̃(i)
t = w(i)

t /
N

∑
j=1

w(j)
t . (4.6)

In fact, by comparing (4.5) with (4.2) and (4.3), it is an easy matter to see
that the resulting particle-based description approximates the true poste-
rior pt|t(x) at time t.

4.1.1 The Unscented Particle Filter

The main drawback of particle filtering techniques is that, unless special
care is taken, the number N of particles needed to make the approximation
(4.4) sufficiently accurate can increase exponentially with the dimension n
of the vector to be estimated (since it is required to sample in a subset of
Rn). In this respect, a critical point of particle filtering is how to choose the
proposal distribution q(i)(xt|yt) so as to approximate the posterior reason-
ably well with a moderate number of particles. Among the most effective
variations, there is the unscented particle filter (UPF) which exploits the UKF

4.1. Mathematical background 41

in the proposal distribution to improve performance [188]. In the following
part of this section, an outline of the UPF algorithm is provided.

The UPF propagates a set of extended particles Pt = {P (1)
t , . . . ,P (N)

t },
each one comprising a weight w̃(i)

t , a mean x(i)t|t , and a covariance P(i)
t|t , i.e.,

P (i)
t = {w̃(i)

t , x(i)t|t , P(i)
t|t } .

Given the set of particles at time t− 1, the UKF prediction and correction
steps are applied to each particle mean and covariance so as to move the
particle towards the measurements. Then, for each i, a new particle is sam-
pled using N (xt; x̄(i)t , P(i)

t|t) as proposal distribution where x̄(i)t is the up-

dated mean after the correction step, P(i)
t|t is the updated covariance, and

N (x; x̄, P) denotes the normal distribution with mean x̄ and covariance P,
thus achieving a more dense sampling in the most relevant areas of the
search space.

In order to apply the UKF to each particle, it is necessary to assume that
the Markov transition density ϕt+1|t(xt+1|xt) and measurement likelihood
function `t(yt|xt) are generated by a state transition and, respectively, mea-
surement equation, so that the time evolution of xt and yt can be described
by the discrete-time dynamical system

xt+1 = ft(xt, ωt) (4.7)

yt = ht(xt, νt). (4.8)

Notice that in system (4.7)-(4.8) the probabilistic nature of the model is
captured by the process disturbance ωt and measurement noise νt, which are
supposed to be sequences of independent random variables with known
probability density functions.

The UKF does not directly approximate the nonlinear process and ob-
servation models, but exploits the nonlinear models, approximating the
distribution of the state. This is made possible by means of the scaled un-
scented transformation (SUT) [194], which is a tool for computing the statis-
tics of a random variable undergoing a nonlinear transformation. Specifi-
cally, the state distribution is specified using a minimal set of determinis-
tically chosen sample points. Such sample points exactly provide the true
mean and covariance of such a variable and, when propagated through

42
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

the nonlinear transformation, they approximate the posterior mean and
covariance accurately to the 2nd order for any nonlinearity. For the reader’s
convenience, a brief review of the SUT is provided hereafter.

Let x ∈ Rnx be a random variable, with mean x̄ and covariance Px, and
g : Rnx → Rny an arbitrary nonlinear function. The goal is to approximate
the mean value ȳ and covariance Py of the variable y = g(x). A set of
2nx + 1 weighted samples or sigma points Si = {Wi,X i}2nx

i=0 are chosen to
completely represent the true mean and covariance of the variable x, i.e.

X 0 = x̄

X i = x̄ + (
√
(nx + k)Px)i i = 1, . . . , nx

X i = x̄− (
√
(nx + k)Px)i i = nx + 1, . . . , 2nx

W (m)
0 = λ/(nx + λ)

W (c)
0 = λ/(nx + λ) + (1− α2 + β)

W (m)
i =W (c)

i = 1/[2(nx + λ)] i = 1, . . . , 2nx,

where: λ = α2(nx + k)− nx; α > 0 provides one more degree of freedom
to control the scaling of the sigma points and to avoid the possibility of
getting a non-positive semi-definite covariance; k ≥ 0 is another scaling
parameter; β affects the weighting of the zero-th sigma point.

Each sigma point is then propagated through the function g(·) (Y i =

g(X i), for i = 0, . . . , 2nx) and the estimated mean and covariance of y, as
well as the cross-covariance between x and y, are computed as follows:

ȳ =
2nx

∑
i=0
WiY i Py =

2nx

∑
i=0
Wi(Y i − ȳ)(Y i − ȳ)T

Pxy =
2nx

∑
i=0
Wi(X i − x̄)(Y i − ȳ)T.

(4.9)

The Unscented Kalman Filter is obtained by applying the SUT to the
nonlinear functions ft and ht in (4.7)-(4.8).

In practice, in the UPF algorithm, given the mean x(i)t−1|t−1 and covari-

ance P(i)
t−1|t−1 at time t− 1, as well as the mean and covariance of the process

disturbance ωt−1, application of the SUT to the state transition equation
(4.7) allows to compute an approximation of the predicted mean x(i)t|t−1 and

4.2. Problem formulation 43

covariance P(i)
t|t−1 at time t. In turn, given x(i)t|t−1 and P(i)

t|t−1 as well as the
mean and covariance of the measurement noise νt, application of the SUT
to the measurement equation (4.8) allows to provide an approximation of
the predicted measurement mean y(i)

t|t−1 and covariance S(i)
t as well as of the

state-measurement cross-covariance matrix Γ(i)
t . Then, the updated mean

x̄(i)t and covariance P(i)
t|t are obtained by applying the standard Kalman fil-

ter correction step.
Since in practice it can happen that, after a few iterations, one of the

normalized weights tends to 1, while the remaining weights tend to zero
(weight degeneration), a selection or resampling stage is usually included in
the particle filtering algorithm, in order to eliminate samples with low
importance weights and replicate samples with high importance weights.
Summing up, the resulting algorithm is reported in Algorithm 1.

4.2 Problem formulation

The object to be localized is assumed to be static during the measurement
collection. This assumption is common to other works [31, 34, 35, 190] and
is realistic, for instance, if the object is very heavy or is stuck on a support
preventing any possible movement. Hence, the goal of the 6-DOF object
tactile localization problem is to estimate in real-time the pose x ∈ R6 of
an object O of known shape, on the basis of the tactile measurements yt =

{y1, . . . , yt} collected up to the current time instant t. The minimal pose
representation of the object is given by the 6-dimensional state vector x,
consisting of the coordinates of the center of the reference system attached
to the object and the three Euler angles representing the orientation, i.e.

x =
[

x, y, z, φ, θ, ψ
]T

. (4.10)

The measurements are collected by touching the object with the end effec-
tor of the robot. Each measurement yt consists of the acquired Cartesian
position of the contact point, i.e.:

yt =
[

xt,p, yt,p, zt,p

]T
. (4.11)

44
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

Algorithm 1 The Unscented Particle Filter

1: for i = 1, . . . , N do
2: draw the state particles x(i)0|0 from the prior p0|0(x) and set P(i)

0|0 = P0,

3: and w̃(i)
0 = 1/N;

4: end for
5: for t = 1, 2, . . . , do
6: 1) UKF prediction and correction
7: for i = 1, . . . , N do
8: - Time update:
9: given {x(i)t−1|t−1, P(i)

t−1|t−1}, compute {x(i)t|t−1, P(i)
t|t−1} by applying

10: the SUT to the state transition equation (4.7);
11: - Measurement prediction:
12: given {x(i)t|t−1, P(i)

t|t−1}, compute {y(i)
t|t−1, S(i)

t , Γ(i)
t }

13: by applying the SUT to the measurement equation (4.8);
14: - Measurement update: set

K(i)
t = Γ(i)

t

(
S(i)

t

)−1

x̄(i)t = x(i)t|t−1 + K(i)
t (yt − y(i)

t|t−1)

P(i)
t|t = P(i)

t|t−1 − K(i)
t S(i)

t

(
K(i)

t

)T
;

15: end for
16: 2) Weight update
17: for i = 1, . . . , N do
18: sample from the proposal distribution:

x̂(i)t ∼ q(i)(·|yt) = N (·; x̄(i)t , P(i)
t|t);

19: evaluate and normalize the importance weights:

w(i)
t = w̃(i)

t−1

`t(yt|x̂(i)t) ϕt|t−1(x̂(i)t |x
(i)
t|t−1)

N (x̂(i)t ; x̄(i)t , P(i)
t|t)

w̃(i)
t = w(i)

t /
N

∑
j=1

w(j)
t ;

20: end for

4.2. Problem formulation 45

21: 3) Resampling
22: for i = 1, . . . , N do
23: draw j ∈ {1, . . . , N} with probability w̃(j)

t and set:

x(i)t|t = x̂(j)
t P(i)

t|t = P(j)
t|t w̃(i)

t =
1
N

.

24: end for
25: end for

It is worth noticing that the exploited measurements consist only of
tridimensional contact point vectors. Notice also that, while for ease of
presentation it is assumed that a measurement consists of a single contact
point, the proposed approach is well-suited to being extended to measure-
ments consisting of multiple contact points (corresponding to different fin-
gertips touching the object). This would simply amount to processing, at
each time t, a measurement vector of size 3nt, nt being the number of fin-
gertips touching the object at that time. Finally, notice that, in the sequel,
all measurements and the object pose will be assumed to be expressed in
the same, fixed, reference system.

4.2.1 Considerations on the motion model

Since the object is assumed to be static, the 6-DOF object tactile localization
problem is basically a static parameter estimation problem. In this respect,
it is well known that the use of particle filtering techniques for estimat-
ing static parameters requires special care, because a direct application of
these techniques to the constant state equation xt+1 = xt, corresponding
to the Markov transition density ϕt+1|t(x|ξ) = δ(x − ξ), would incur in
the so-called weight-degeneracy phenomenon. Many solutions have been
proposed in the literature to circumvent such a problem, see for instance
[195] and the references therein. A simple but effective approach consists
of adding an artificial dynamic noise on the static parameter by consider-
ing a state-transition equation of the form

xt+1 = xt + ωt, (4.12)

where ωt is the artificial dynamic noise which is modeled as a Gaussian
random variable with zero mean and suitable covariance Qt. The idea is

46
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

that the artificial evolution provides a mechanism for generating at each
time instant new particles with a sufficiently diffuse distribution. In this
work, a time-invariant covariance matrix is used, i.e. Qt = Q, since it
proves effective in the considered case studies. However more elaborated
solutions can be easily incorporated within the proposed algorithm [195].

Some considerations on the possibility of extending the approach to the
case of moving object localization are provided in the subsequent Remark
2.

4.2.2 Measurement model

In order to apply the UPF to the tactile localization problem under inves-
tigation, it is necessary to define the measurement model both in terms
of a likelihood function `t(yt|xt) and of a measurement function ht(· , ·).
The proposed likelihood function is based on the so-called proximity model,
in which the measurements are considered independent of each other and
corrupted by Gaussian noise. For each measurement, the likelihood func-
tion depends on the distance between the measurement and the object,
hence the name “proximity". This model is the adaptation of the likelihood
proposed in [34] to the case of contact point measurements only.

Let the 3D object model be represented by a polygonal mesh consisting
of faces { fi}. For each face fi, let `t,i(yt|xt) be the likelihood of the measure-
ment yt relative to that face when the object is in the pose xt. Then, the
likelihood of the measurement is defined as the maximum likelihood over
all faces, i.e.

`t(yt|xt) ∝ max
i

`t,i(yt|xt), (4.13)

apart from a normalizing factor which, however, is independent of the
state xt and needs not necessarily to be computed.

Each likelihood is assumed to be Gaussian, with variance σ2
p, and can

be computed as follows:

`t,i(yt|xt) =
1√

2πσp
exp

(
−1

2
di(yt, xt)2

σ2
p

)
, (4.14)

where the quantity di(yt, xt) is the shortest Euclidean distance of yt from
the face fi when the object is in the pose xt. For instance, supposing that
fi is the representation of the i-th face in the object reference system, the

4.2. Problem formulation 47

distance di(yt, xt) can be computed as

di(yt, xt) = min
p∈ fi
‖yxt

t − p‖,

where ‖ · ‖ is the Euclidean norm and yxt
t denotes the transformation of

the measurement yt using the roto-translation matrix corresponding to the
state xt.

Notice that the considered measurement model does not take negative
information into account. In other words, the points of the search space ex-
ploited to compute the likelihood function are only the ones on the object
surface touched during the collection of measurements, while the infor-
mation provided by the lack of contact in some sub-regions of the search
space is not taken into account in the likelihood function. Even if the neg-
ative information can also support object localization, it is not exploited in
this method in order to keep the computational complexity moderate.

As previously pointed out, the use of the UPF requires also the defini-
tion of a measurement function, namely a mathematical mapping giving the
measurement yt as a function of the current state xt and a measurement
noise νt, see (4.8). For the sake of simplicity, a measurement equation with
additive noise is taken into account, i.e.,

yt = ht(xt) + νt . (4.15)

In particular, the measurement function is required to compute the Scaled
Unscented Tranform (SUT) in the measurement prediction step of the Un-
scented Kalman Filter.

It is important to highlight how the definition of a measurement equa-
tion is different from the one of a likelihood function: given the state and
the measurement noise, the measurement equation provides a measure-
ment value - a contact point in the present case - whereas the likelihood
function is proportional to the probability of having a certain measurement
for a given state.

Tactile sensors are atypical sensors from this standpoint. In fact, typical
sensors, e.g. radars, are characterized by a mathematical relationship be-
tween the current state of the object and the provided measurement: given

48
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

the state of the object, the measurement of the object position and orienta-
tion supplied by the sensor remains unchanged (neglecting the measure-
ment noise).

On the other hand, the employment of tactile sensors makes the sce-
nario quite different. The measurement is given by the tactile sensor pose
itself, i.e., the forward kinematics of the end effector of the robot, only if the
robot actually touches the object. Thus, if the object is in a generic state and
the sensor in a specific pose, it cannot be taken for granted that such a con-
figuration provides a contact measurement. Moreover, the sensor moves
during the measurement collection, while the object is motionless. It is
not possibile to predict unambiguously the measurement value without a
model of the sensor motion: given the pose of the sensor and the object
distance from it, the predicted measurement is not unique, since the sensor
could touch the object in different points.

Nevertheless, in order to compute a predicted measurement for each
possible configuration x, it is necessary to define a measurement equation
capable of handling also the case in which there is no actual contact be-
tween the sensor and the object in the considered pose x (in particular, the
sigma point of the i-th predicted particle). Further, the predicted measure-
ment should be consistent with the proximity-based likelihood (4.13).

To this end, it is useful to provide an alternative interpretation of the
likelihood (4.13). Notice first that, due to the measurement noise, the mea-
surement yt does not represent the actual contact point between the sensor
and the object, which however will be in the neighborhood of yt. The prox-
imity model assumes that the actual contact point is the point on the object
surface which is closest to the measurement yt. In fact, equation (4.13) can
be rewritten as

`t(yt|xt) ∝ exp

(
− 1

2σ2
p
‖yt − ht(xt)‖2

)
(4.16)

where
ht (xt) = arg min

p∈∂Oxt
‖yt − p‖ (4.17)

and ∂Oxt represents the object boundary in the pose xt with respect to the
robot reference system. Then, the likelihood of the measurement yt de-
pends on its distance from such a hypothetical contact point according to

4.3. The Memory Unscented Particle Filter 49

a Gaussian distribution. Accordingly, given a configuration xt, the cor-
responding predicted measurement is selected as the point of the object
surface which is closest to the measurement yt. Such a choice turns out
to be consistent with the proximity likelihood model. In fact, by taking
the additive measurement noise νt in (4.15) as a Gaussian random variable
with zero-mean and covariance σ2

p I, with I the identity matrix, it is an easy
matter to see that (4.15) and (4.17) give rise precisely to a likelihood of the
form (4.16).

4.3 The Memory Unscented Particle Filter

The main challenges of the 6-DOF tactile localization problem are its di-
mension (6-DOFs), its multimodal nature, and the fact that individual mea-
surements are relatively uninformative, since they are tridimensional vec-
tors in a 6-DOF space. In particular, the latter fact implies that the standard
UPF algorithm is not well suited to this problem. In fact, Algorithm 1 uses,
at each time instant t, only the current measurement yt in order to com-
pute the importance weights w(i)

t . However, since a single contact point
measurement is unable to completely characterize the object’s pose (lack
of observability), the standard weights do not provide enough information
to understand which particles must be replicated and which ones must be
eliminated in the subsequent resampling step. Thus, performing the stan-
dard resampling step - and then discarding some particles - on the basis of
such weights is problematic: some potential representative particles could
be cut off and the algorithm could limit the search to wrong sub-regions.

In order to overcome such a drawback, we propose a novel variant of
the UPF, referred to as Memory UPF (MUPF). The idea is to use also past
measurements to update particle weights so as to preserve their ability to
characterize particle goodness. Since the object is static, all the measure-
ments refer to the same pose and, in principle, at each time t all the mea-
surements yt collected up to the current time could be used to compute
the importance weights. However, this solution would entail a computa-
tional effort growing in time. To avoid such a growth of complexity, the
proposed approach follows a moving window strategy, i.e., by using, at each
time instant, a sliding window consisting of the most recent m measure-
ments. In this way, at each time instant, the weight computation requires

50
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

O(Nm) likelihood evaluations, and the size m of the sliding window can
be chosen according to the available computational capabilities.

In practice, the particles {x̂(i)t }N
i=1 and the set of independent measure-

ments {y1, . . . , yt}, collected up to the current instant t, are used to com-
pute the weights by:

w(i)
t =

w̃(i)
t−1·∏

t
k=k̄(t) `(yk|x̂

(i)
t)

N (x̂(i)t ; x̄(i)t , P(i)
t|t)

, (4.18)

w̃(i)
t = w(i)

t /
N

∑
j=1

w(j)
t (4.19)

for i = 1, . . . , N, where

k̄(t) =

{
t−m + 1, if t−m + 1 ≥ 1
1, otherwise.

(4.20)

Of course, the reuse of measurements in the update of the particles’
weights modifies the nature of the approximation, and hence special care
needs to be taken in order to retrieve the pose estimate in a theoretically
sound way. To see this, observe preliminarily that the addressed problem
is inherently of a multimodal nature, since in the presence of symmetries
in the object, there might exist multiple values of x compatible with the
measurements. Then, taking the expected value as estimate is not mean-
ingful. Instead, a maximum a posteriori probability (MAP) criterion can
be followed by taking as pose estimate at time t the corrected particle x̂(i)t

corresponding to the highest value of the estimated posterior distribution
[196].

Recalling that each corrected particle after the weight update can be
considered corresponding to a Gaussian distribution with mean x̂(i)t and
covariance P(i)

t|t , one might be tempted to take as estimated posterior p̂t|t(·)
the function

p̂t|t(x) =
N

∑
i=1

w̃(i)
t N (x; x̂(i)t , P(i)

t|t). (4.21)

Unfortunately, such a choice would not be theoretically sound due to the
multiple use of measurements in the weight computation. In this respect,
notice first that, since the object is static, the 6-DOF localization problem

4.3. The Memory Unscented Particle Filter 51

is a parameter estimation problem and, hence, the true posterior pt|t(·) at
time t takes the form

pt|t(x) ∝
t

∏
k=1

`(yk|x) p0(x), (4.22)

where p0(·) is a PDF reflecting the prior knowledge on the object con-
figuration. Since at each time instant multiple measurements are used in
the weight computation, the estimated posterior p̂t|t(·) does not approxi-
mate the true one pt|t(·) but instead it approximates the PDF

p̃t|t(x) ∝
k̄(t)−1

∏
k=1

`(yk|x)m
t

∏
k=k̄(t)

`(yk|x)t+1−k p0|0(x), (4.23)

where p0|0(·) is the prior density used in the generation of the initial
particles, thus introducing an undesired warp in the form of the estimated
posterior PDF.

This drawback can be circumvented by computing special weights w̄(i)
t ,

used only for the purpose of pose estimation extraction but not propagated
in the recursion. In fact, by setting

w(i)
t =

w̃(i)
t ·∏t

k=k̄(t) `(yk|x̂
(i)
t)m−t+k−1

N (x̂(i)t ; x̄(i)t , P(i)
t|t)

, (4.24)

w̄(i)
t = w(i)

t /
N

∑
j=1

w(j)
t (4.25)

for i = 1, . . . , N, and using the estimated posterior

p̂t|t(x) =
N

∑
i=1

w̄(i)
t N (x; x̂(i)t , P(i)

t|t) (4.26)

in place of (4.21), it turns out that such a p̂t|t(·) approximates the PDF

p̄t|t(x) ∝
t

∏
k=1

`(yk|x)m p0|0(x) (4.27)

so that all measurements provide the same contribution to the estimation
problem. Then, by choosing p0|0(x) ∝ p(x0)

m, we obtain p̄t|t(x) ∝ pm
t|t(x)

52
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

which implies that p̄t|t(x) and pt|t(x) share the same maximum points. In
turn, this implies that application of the MAP estimation criterion to p̄t|t(x)
is equivalent to computing the MAP estimate according to pt|t(x). These
considerations allow concluding that, with the choice p0|0(x) ∝ p0(x)m,
the MAP estimate x̂t corresponding to the particle with the maximum a
posteriori probability according to (4.26)

x̂t = arg max
j

p̂t|t(x̂(j)
t) = (4.28)

= arg max
j

N

∑
i=1

w̄(i)
t N (x̂(j)

t ; x̂(i)t , P(i)
t|t). (4.29)

is coherent with the true posterior PDF.

Remark 1 The fact that (4.26) approximates (4.27) can be shown by noting that
p̄t|t(x) can be decomposed as follows

p̄t|t(x) ∝
t

∏
k=k̄(t)

`(yk|x)m−t+k−1

×
t

∏
k=k̄(t)

`(yk|x)t+1−k
k̄(t)−1

∏
k=1

`(yk|x)m p0|0(x)

=
t

∏
k=k̄(t)

`(yk|x)m−t+k−1 p̃t|t(x)

which precisely corresponds to the weight update in (4.24).

A further modification, as compared to the standard UPF, pertains to
the resampling step. Since in the first iterations only few measurements
are available (thus providing insufficient information), all the particles are
retained so as to account for more possibile solutions, in accordance with
the multimodal nature of the problem. This amounts to skipping the stan-
dard resampling step for a certain number t0 of initial time instants (in the
experimental results reported in the following sections, for the first two
time instants). The degeneration of the weights in the first iterations is
avoided by setting the weights of all particles equal to 1/N.

Summing up, the proposed MUPF algorithm is shown in Algorithm 2.
The term Memory, in the name of the proposed algorithm, is due to the
computation of the weights: at each iteration a non-decreasing number of

4.3. The Memory Unscented Particle Filter 53

Algorithm 2 The Memory Unscented Particle Filter

1: for i = 1, . . . , N do
2: draw the state particles x(i)0|0 from the prior p0|0(x)

3: and set P(i)
0|0 = P0 and w̃(i)

0|0 = 1/N;
4: end for
5: for t = 1, 2, . . . do
6: 1) UKF prediction and correction
7: for i = 1, . . . , N do
8: - Time update: set x(i)t|t−1 = x(i)t−1|t−1 and P(i)

t|t−1 = P(i)
t−1|t−1 + Q;

9: - Measurement prediction: like in Algorithm 1;
10: - Measurement update: like in Algorithm 1;
11: end for
12: 2) Weight update
13: for i = 1, . . . , N do
14: sample from the proposal distribution:

x̂(i)t ∼ q(i)(·|yt) = N (·; x̄(i)t , P(i)
t|t),

15: evaluate and normalize the modified importance weights via
16: (4.18) and (4.19);
17: end for
18:
19: 3) Estimated pose extraction (optional)
20: for i = 1, . . . , N do
21: evaluate and normalize the importance weights via (4.24) and
22: (4.25);
23: end for
24: compute the estimated pose x̂t via (4.28);

54
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

25: 4) Resampling
26: for i = 1, . . . , N do
27: if t > t0 then
28:
29: draw j ∈ {1, . . . , N} with probability w̃(j)

t ,
30: then set:

x(i)t|t = x̂(j)
t P(i)

t|t = P(j)
t|t w̃(i)

t =
1
N

.

31: else
32: set :

x(i)t|t = x̂(i)t w̃(i)
t =

1
N

.

33: end if
34: end for
35: end for

measurements is exploited to evaluate the likelihood function. Notice also
that the computation of the weights w̄(i)

t is optional (since they are not used
in the time propagation from t to t + 1) and can be limited only to those
time instants in which one wants to extract an estimate x̂t of the object’s
pose from the approximated posterior.

Remark 2 While the considered framework deals with static objects, the proposed
algorithm is well-suited to being extended to the case of moving objects since it is
based on Bayesian filtering and is inherently recursive in nature. When the object
is not static, however, the use of a sliding window of the most recent measurements
in the weight computation requires some caution because the past measurements
do not refer to the current pose. In principle, this problem can be circumvented
by considering particle states consisting of the whole object trajectory in the slid-
ing window (similarly to what happens in particle-filtering-based solutions to the
SLAM problem) so that the likelihood, with respect to the measurements in the
sliding window, can be correctly computed. Further, when the object is static, a
simple motion model like (4.12) makes sense only to model small random move-
ments caused by probing. For truly moving objects (for example a rolling ball),
more complex motion models are required including also the object velocity. Of
course, the main challenge in this case is the increased complexity due to such
modifications. Such generalizations are left for future research.

4.4. Algorithm validation 55

4.4 Algorithm validation

In order to evaluate the performance of the developed Memory Unscented
Particle Filter (MUPF), a C++ implementation of MUPF has been tested via
simulations on different objects and collections of measurements. The tests
have been run on a Linux platform, with a quadcore 3.40 GHz processor.
The developed code, the exploited measurements and the reconstructed
object models can be downloaded from github1.

4.4.1 Simulation setup

The simulation setup consists of five objects: a rectangular box, a tetrahe-
dron, a cleaner spray, a robot toy and a safety helmet (Fig. 4.1).

The mesh models of the first two objects, having a simple geomet-
rical shape, are built from ruler measurements whereas the other three
more complicated objects are approximated by triangular mesh models,
reconstructed via image processing algorithms. In particular, the mesh
models of the cleaner spray and safety helmet are obtained from 360
degree point clouds reconstructed with the RTM toolbox2 [197]. The RTM
toolbox merges together several partial 3D models - i.e. different views
of the object - captured by rotating the object in front of a RGB-D camera
and, in a few seconds, provides a 360 degree point cloud of the object.
Conversely, the more complex point cloud of the robot toy is retrieved
by making use of the AutoDesk 123d catch application3 that, in several
tens of minutes, processes different object photos taken from different
views with a smartphone. Thus, the triangular mesh models of the three
objects are extracted by applying the Poisson Surface Reconstruction
algorithm [198] to the merged point clouds. The complete pipeline for
model reconstruction is outlined in Fig. 4.2.

The contact point measurements exploited in the simulation tests
are drawn by non-uniformly sampling random points on a subset of 3D
model faces.

The MUPF algorithm requires setting the following parameters: the

1 DOI:10.5281/zenodo.163860.
2Recognition Tracking and Modelling of Objects, by ACIN of Technische Universität

Wien, http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/rtm/.
3http://www.123dapp.com/catch.

http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/rtm/
http://www.123dapp.com/catch

56
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

FIGURE 4.1: Simulation setup objects. From left to right: a
rectangular box (0.1× 0.3× 0.2 [m]), a tetrahedron (equilat-
eral triangular basis with the side of 0.33 [m] × height of 0.2
[m]), a cleaner spray (approximately 0.23× 0.08× 0.05 [m]), a
robot toy (0.23× 0.09× 0.06 [m]), and a safety helmet (nearly

a half-sphere with radius 0.1 [m]).

FIGURE 4.2: Pipeline for real object modelling. From left to
right: real objects, 360 degree point clouds (obtained with a
RGB-D camera and the RTM toolbox for the cleaner spray
and the safety helmet, and with 40 photos from different
views and the Autodesk 123d catch app for the robot toy), tri-
angular mesh models matching the point clouds, computed
by using the Poisson surface reconstruction. On the top: the
cleaner spray, whose mesh model consists of 250 faces. In the
middle: the safety helmet, featured by a mesh model of 250
faces. On the bottom: the robot toy, whose mesh model is

made up of 750 faces.

4.4. Algorithm validation 57

artificial process noise covariance matrix Q; the measurement noise covari-
ance σ2

p characterizing sensor accuracy; the initial covariance matrix P0 to
quantify the initial uncertainty and, hence, the extent of the search region;
the parameters of the unscented transformation α, β, k; the number of
particles N; the length m of the measurement window for the importance
weight update.

As preliminary tests, the parameters are kept constant, as shown in
Table 4.1. In particular, the chosen matrix Q is such that the artificial
process disturbance spreads the particles with standard deviations of 1 cm
in position and about 5 degrees in rotation. Conversely, the covariance σ2

p

assumes that the measurements of the end-effector position are affected
by an error with standard deviation of 1 cm in all Cartesian coordinates.
Finally, the initial matrix P0 indicates an initial uncertainty with standard
deviation of 0.2 [m] for the position along the three coordinates and respec-
tively π, π/2, π for the three orientation angles φ, θ, ψ. The initial particles
x(i)0|0 for i = 1, . . . , N are drawn from the prior distribution N (·; x0, P0),
where x0 is arbitrarily chosen (a 6D null vector in our tests). The choices
of Table 4.1 have proven effective in all the considered simulations, thus
indicating that the proposed algorithm works over a broad range of
problems without a case-by-case parameter tuning.

It is worth pointing out how the exploitation of the UKF step in the
UPF allows to considerably reduce the number of particles to N = 700
(with a standard particle filter it would be in the order of N = 106 for
a 6-DOF problem). Section 4.4.6 provides a detailed analysis about the
parameters influence on MUPF performance.

TABLE 4.1: Parameter set for the MUPF.

Q diag([10−5, 10−5, 10−5, 10−4, 10−4, 10−4]) [m2], [rad2]
P0 diag([0.04, 0.04, 0.04, π2, (π/2)2, π2]) [m2], [rad2]
σ2

p 10−4[m2]
α 1
k 2
β 30
N 700

58
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

4.4.2 Performance evaluation

The performance of the proposed algorithm is assessed in terms of both
effectiveness and execution time, since the ultimate aim of this work is a
real-time application of the algorithm.

In this respect, algorithm reliability is measured in terms of number of
successes among trials, where a trial is considered failed whenever the es-
timated pose is substantially different from the real one.

In simulation tests, successes and failures can be discriminated by com-
puting the distance between the estimated and the true object poses, since
the knowledge of the latter is available. The situation is different in real ex-
periments, wherein the true pose is often difficult (if not impossible) to be
measured. In this case, the distinction between a successful or a failed trial
is necessarily accomplished by the user by visually inspecting that the so-
lution found by the algorithm is consistent with the real pose of the object.
In the successful cases, a numerical evaluation of the localization can be
done by relying merely on measurements without the need of the ground
truth. This choice is by far preferable (sometimes the only viable solution)
for an experimental assessment.

These considerations suggest the definition of the following performance
index:

IL =
1
L

L

∑
i

di, (4.30)

where L is the total number of collected measurements and di the distance
between the i-th measurement and the object in the estimated pose. In
other words, given the set of measurements and the estimated pose, the
proposed performance index is the average of the distances between each
measurement and the object in the estimated pose. It is worth highlight-
ing that the performance index (4.30) is not in the standard least-square
fit form in that it is a sum of errors (not of squared errors) and each error
term di in (4.30) is a complicated nonlinear distance function G(y, x) of two
arguments (a contact point measurement y and the object pose x), not ex-
pressible in the classical residual form y− g(x) of best-fit problems.

The performance index IL has been adopted to evaluate the localization
quality in simulation (together with the standard localization error mea-
sured as distance of the final estimated pose from the ground truth) and
experimental tests, for the reasons listed below. First, the index IL is the

4.4. Algorithm validation 59

FIGURE 4.3: On the left: a robot toy in the real pose. On
the right: two different estimated poses, both featured by a
performance index of 0.008[m] with respect to the set of mea-
surements, coloured in black. The green one corresponds to
the correct pose, whereas the red one is a local minimum,
representing a completely wrong pose, but anyway consis-

tent with the measurements.

only viable solution for the experimental tests, wherein the real pose can-
not typically be known or measured with sufficient accuracy. Secondly, the
use of a common error index for both simulation and experimental tests,
makes easier the comparison between the two cases. Third, if simulation
tests are carried out with noiseless measurements and a sufficient num-
ber of informative measurements is collected, then the performance index
IL can be related to the distance between the estimated and the true ob-
ject poses, in the sense that IL vanishes for large L if and only if the two
poses coincide. Finally, the index It is easily computable on-line at each
time t and could therefore be monitored in order to understand when to
stop localization of the current object. As a further benefit, (4.30) provides
a synthetic (scalar) indicator of the pose error, in terms of linear displace-
ment (measured in units of length). Thus, the index computation is not
affected by the problems related to the computation of angular displace-
ments.

Nevertheless, it is worth pointing out that when the measurements are
too inaccurate, the index (4.30) can be non-informative and the evaluation
of the algorithm performance would necessarily require the ground truth
object pose. In fact, if measurements are very noisy, the computed per-
formance index might be low even if it is associated to local minima and
corresponds to a completely wrong localization (Fig 4.3).

60
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

FIGURE 4.4: MUPF simulation results: the real poses are
coloured in blue, whereas the estimated ones, featured by an

error index of 0.002 [m], are coloured in green.

4.4.3 Simulation results

Table 4.2 provides, for each considered object, the following metrics aver-
aged over 50 independent trials of the MUPF: standard localization error
in both position and orientation, performance index IL defined in (4.30),
execution time and reliability. Table 4.3 reports the total number of mea-
surements L and the MUPF window size m used for each object. The true
object poses are fixed over trials and differ from the 6D null vector in trans-
lation (from 0.05 up to 0.1 [m] along one axis) and orientation (from 45 up
to 90 degrees with respect to one axis).

It is worth underlining how, when an adequate choice of m is adopted
(see Fig. 4.5 and 4.6), the localization errors averaged over trials are small
(e.g. the index IL is less than 2 [mm], see Fig. 4.4), the execution time is
acceptable and the reliability is high. In Fig. 4.5, the behavior of the perfor-
mance index IL is shown as a function of the memory m ranging from 1 to
L (the total number of available measurements). Such plots highlight how
MUPF is capable of solving the problem even with small m (1 < m � L)
whereas the standard UPF (i.e. MUPF with m = 1) doe not converge at all.
In addition, Fig. 4.6 demonstrates that the algorithm is reliable even with
small values of m (provided that m > 1).

TABLE 4.2: Simulation results for the MUPF algorithm.

Object Standard error [deg], [m] IL [m] Time [s] Succ./Trials
Box 0.30 - 0.0036 0.0025 1.61 50/50

Tetra. 17.1 - 0.0061 0.0021 3.63 50/50
Cleaner 0.78 - 0.0027 0.0025 7.32 50/50
Robot 19.6 - 0.0072 0.0021 3.95 50/50

Helmet 0.06 - 0.0023 0.0017 4.82 50/50

4.4. Algorithm validation 61

1 3 6 9 12 15
m

0

0.02

0.04

0.06

P
er

f.
in

de
x

[m
]

(a) Boxb Box

1 6 12 18 24 30
m

0

0.005

0.01

0.015

P
er

f.
in

de
x

[m
]

(b) BTetrahedron

1 12 24 36 48 62
m

0

0.01

0.02

P
er

f.
in

de
x

[m
]

(c) Bx Cleaner

1 8 16 24 32 40
m

0

0.005

0.01

0.015
P

er
f.

in
de

x
[m

]

(d) Box Robot

1 12 24 36 48 60
m

0

0.01

0.02

P
er

f.
in

de
x

[m
]

(e) Box Helmet

FIGURE 4.5: MUPF simulation results: average performance
index on fifty trials by varying m, ranging from 1 up to the

total number of measurements L.

62
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

1 3 6 9 12 15
m

0

0.5

1

R
el

ia
bi

lit
y

(a) Boxb Box

1 6 12 18 24 30
m

0.9

0.95

1

R
el

ia
bi

lit
y

(b) B Tetrahedron

1 12 24 36 48 62
m

0

0.5

1

R
el

ia
bi

lit
y

(c) Bx Cleaner

1 8 16 24 32 40
m

0

0.5

1

R
el

ia
bi

lit
y

(d) Box Robot

1 12 24 36 48 60
m

0.6

0.8

1

R
el

ia
bi

lit
y

(e) Box Helmet

FIGURE 4.6: MUPF simulation results: reliability on fifty tri-
als by varying m, ranging from 1 up to the total number of

measurements L.

4.4. Algorithm validation 63

TABLE 4.3: Simulation results: measurements and m values.

Object L m Object L m
Box 15 9 Tetra. 30 12

Cleaner 62 36 Robot 40 24
Helmet 60 36

For the sake of comparison, a simple batch baseline, the Iterative Closest
Point (ICP) algorithm [199], and a state-of-art approach, the Scaling Series
algorithm presented in [34] specifically for tactile localization, have been
applied to the same simulation scenario.

In order to adapt ICP, which is originally designed for shape registra-
tion, to the tactile localization problem, two point clouds are considered:
one consisting of the measurements, and the other representing the object
model in the right pose. To this end, suitable models have been obtained
by sampling 1000 points on the object mesh models of Fig. 4.1. However,
it was found that a standard implementation of ICP does not converge in
such a scenario. ICP fails because there is a large uncertainty in the object
initial pose. Lacking a good initial guess close to the optimal solution, ICP
gets trapped in local minima.

The results obtained with the Scaling Series are reported in Table 4.4 for
the same sets of measurements used in the MUPF simulation tests (Table
4.3). For the sake of conciseness, only the values of the performance index
IL are shown.

TABLE 4.4: Simulation results for the Scaling Series algo-
rithm.

Object IL [m] Time - Max. Time [s] Successes/Trials
Box 0.001 3.47 - 13.2 45/50

Tetra. 0.001 0.05 - 1.03 50/50
Cleaner 0.006 0.03 - 5.64 42/50
Robot 0.003 0.02 - 3.64 43/50

Helmet 0.005 0.04 - 4.20 32/50

Notice that the execution time of the Scaling Series algorithm signif-
icantly changes over the trials as the algorithm generates quite different

64
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

numbers of particles from trial to trial. Hence, Table 4.4 reports both av-
erage and maximum (worst-case) execution times. Nevertheless, the Scal-
ing Series algorithm proves to be relatively faster than MUPF. In terms of
localization precision in the successful trials, the MUPF and Scaling Series
algorithms exhibit comparable results. It is worth pointing out, however,
that in a non negligible number of trials the Scaling Series algorithm di-
verged and failed to find a solution. The low reliability of the Scaling Series
algorithm can be attributed to the automatic process of particle generation.
Particularly, a rough parameter tuning can easily lead to the generation of
an insufficient number of particles or, on the contrary, to their exponen-
tial growth, thus precluding the final convergence of the algorithm. This
is somewhat surprising as MUPF has always been executed with the same
parameters, whereas the parameters of the Scaling Series algorithm have
been specifically tuned to each case in order to achieve better performance.
In summary, MUPF turned out to be more reliable than the Scaling Series
algorithm.

An extensive evaluation of the MUPF algorithm is performed by tack-
ling the 6-DOF tactile localization problem for real objects via actual tactile
measurements. For these experiments, the employed code implementation
and hardware computing platform are the same ones exploited for the
simulation tests.

4.4.4 Experimental setup

Four everyday objects are considered: two toys, the cleaner spray and the
robot toy. The experimental tests on the safety helmet are not shown since
many local minima, corresponding to different poses and featured by the
same localization error, are wrongly given as possible solutions. The rea-
sons of this behaviour will be explained in detail in Section 4.4.5. The mesh
models of the first two objects are reconstructed from ruler measurements
(Fig. 4.7), since they are well-represented by geometrical solid figures. The
cleaner spray and robot toy mesh models are the same ones exploited for
the simulation tests. Note that in order to avoid object’s slip caused by
the robot’s movements, each object was strictly fixed to a support during
measurement collection.

4.4. Algorithm validation 65

FIGURE 4.7: Mesh models of real geometric objects. On the
left: cylindrical tube, with a diameter of 0.06 [m] and height
of 0.2 [m], 144 triangular faces. On the right: a Lego object,
made up of three parallelepipeds (total dimensions of 0.2×

0.1× 0.2 [m3]), 36 triangular faces.

The platform used for the collection of tactile measurements is the iCub
humanoid robot [2]. Tactile measurements are supplied by fingertips on
the iCub hands (see Chapter 3), that are covered with capacitive tactile
sensors capable of providing accurate contact point measurements, once
contact with the object is detected. Due to the object complexity, tactile
measurements are collected through a user-guided strategy, consisting of
predefined points approximately located around the objects. This strategy
was necessary since a completely blind exploration of the objects turned
out to be unfeasible and often caused the robot to hit the object with part
of the hand not covered with sensors. It is important to remark that, for this
work, the final goal of the experimental tests is the extensive evaluation of
the proposed MUPF algorithm through realistic measurements, without
focusing on the design of an autonomous measurement collection strategy.

Before providing experimental results, it is worth discussing the main
sources of measurement uncertainty, in order to better appreciate the per-
formance of the proposed algorithm and to understand how to set the pa-
rameters. In this respect, one relevant source of uncertainty is given by
the tactile sensors themselves. The contact point measurement, in fact, is
given by the kinematics of one of the fingers and the supplied x, y, z co-
ordinates are affected by calibration offsets. In addition to this, the kine-
matics provides the x, y, z coordinates of the center of the fingertip. Thus,
the retrieved point is always the center of the fingertip even if the tactile
taxel activation - and thus the contact detection - has taken place on the

66
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

extremity or on the side of the fingertip. Taking into account all these con-
siderations, tactile measurements were empirically estimated to be affected
by a noise with standard deviation of 0.015 [m]. Such sources of error and
uncertainty suggest to choose a slightly larger variance σ2

p = 4 10−4 [m2] in
order to characterize iCub tactile sensor accuracy. The other MUPF param-
eters used for the experimental tests are shown in Table 4.1, except for the
number of particles N, set equal to 1200 in the experimental tests unless
differently specified.

4.4.5 Experimental results

In Tables 4.5 and 4.6, the average performance index, along with the
execution time and the algorithm reliability are provided for fifty trials
of both the MUPF and Scaling Series algorithms on the four considered
objects. The results obtained with the ICP algorithm are not shown due
to the lack of convergence. In addition, only the performance index IL is
computed in the real experiments, where the true pose is difficult to be
measured. Figs. 4.8 and 4.9 show the average performance index and the
reliability on fifty trials by varying m, ranging from 1 (standard UPF) up to
the total number of measurements m = L.

TABLE 4.5: Experimental results for the MUPF.

Object IL [m] Time [s] Successes/Trials L m
Lego toy 0.0090 12.8 46/50 55 55
Cylinder 0.0063 6.71 50/50 30 18
Cleaner 0.0090 13.7 50/50 62 30
Robot 0.0054 12.3 43/50 60 36

The experimental tests confirm the MUPF behavior exhibited in the
simulation tests, even if the experimental solutions are unavoidably af-
fected by a slightly worse performance index, due to the high measure-
ment noise (Fig. 4.10). The measurement noise is also responsible for the
deterioration of algorithm reliability for the Lego and robot toys. This ef-
fect can be ascribed to the fact that the measurement noise is comparable
with the dimension of the distinctive details of these two objects. In fact,
the distinction between a good or a wrong solution is strongly influenced

4.4. Algorithm validation 67

1 11 22 33 44 55
m

0

0.02

0.04

P
er

f.
in

de
x

[m
]

(a) Bo Lego Box

1 6 12 18 24 30
m

0

0.02

0.04

P
er

f.
in

de
x

[m
]

(b) BoxCylinder

1 15 30 45 60 75
m

0

0.02

0.04

P
er

f.
in

de
x

[m
]

(c) Bx Cleaner

1 12 24 36 48 60
m

0.005

0.01

0.015

0.02

P
er

f.
in

de
x

[m
]

(d) Box Robot

FIGURE 4.8: MUPF experimental results: average perfor-
mance index on fifty trials by varying m, ranging from 1 up

to the total number of measurements L.

68
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

TABLE 4.6: Experimental results for the Scaling Series algo-
rithm.

Object IL [m] Time/ Max. Time [s] Successes/Trials
Lego toy 0.0073 5.03 - 29.71 40/50
Cylinder 0.0059 4.02 - 13.22 40/50
Cleaner 0.0139 4.02 - 13.22 23/50
Robot 0.0027 0.81 - 8.72 43/50

by the object details, since the only exploited information consists of tridi-
mensional points, without taking advantage of surface normals. In such
scenarios, a measurement noise of the same entity of the detail dimensions
prevents the user from localizing the object even via visual inspection. As
mentioned above, this is also the reason why experimental tests on the
safety helmet are not shown: due to the strongly symmetric shape and the
measurement noise, the measurements are not informative enough in the
sense that there are many different poses compatible with the measure-
ments (i.e. corresponding to local minima).

On the contrary, the Scaling Series performance turns out to be much
worse compared to what reported in the simulation tests, particularly in
terms of reliability. The failures of the Scaling Series algorithm are mainly
caused by the generation of an insufficient number of particles. Often, it
is not simple to set the Scaling Series parameters so that the number of
generated particles is sufficient to reliably localize the objects. This shows
how parameter tuning can actually be a weakness of the Scaling Series ap-
proach.

4.4.6 Further analysis

In this section, additional results are provided, with the aim of better ana-
lyzing MUPF performance.

First, the algorithm robustness has been tested by varying some algo-
rithm parameters, such as the covariance Q of the artificial process noise
and the number of particles N. The box-plots of Figs. 4.11(a) and 4.11(b)
point out how the performance index and reliability are not significantly
affected by varying the covariance matrix Q. Fifty trials of the MUPF have

4.4. Algorithm validation 69

1 11 22 33 44 55
m

0

0.5

1

R
el

ia
bi

lit
y

(a) Bo Lego Box

1 6 12 18 24 30
m

0.4

0.6

0.8

1

R
el

ia
bi

lit
y

(b) Bo Cylinder

1 15 30 45 60 75
m

0

0.5

1

R
el

ia
bi

lit
y

(c) Bx Cleaner

1 12 24 36 48 60
m

0

0.5

1

R
el

ia
bi

lit
y

(d) Box Robot

FIGURE 4.9: MUPF experimental results: reliability on fifty
trials by varying m, ranging from 1 up to the total number of

measurements L.

FIGURE 4.10: MUPF experimental results: tactile measure-
ments are coloured in red, the estimated poses (performance

index of 0.008 [m]) in blue.

70
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

TABLE 4.7: Q matrices used in the tests.

Simulated tests
Q1 diag([10−6, 10−6, 10−6, 10−5, 10−5, 10−5]) [m2], [rad2]
Q2 diag(5×[10−6, 10−6,10−6,10−5, 10−5,10−5]) [m2], [rad2]
Q3 diag([10−5, 10−5, 10−5, 10−4, 10−4, 10−4]) [m2], [rad2]
Q4 diag(5×[10−5,10−5, 10−5,10−4, 10−4,10−4]) [m2], [rad2]
Q5 diag([10−4, 10−4, 10−4, 10−3, 10−3, 10−3]) [m2], [rad2]

Experimental tests
Q1 diag([10−6, 10−6, 10−6, 10−4, 10−4, 10−4]) [m2], [rad2]
Q2 diag(5×[10−6, 10−6,10−6,10−4, 10−4,10−4]) [m2], [rad2]
Q3 diag([10−5, 10−5, 10−5, 10−3, 10−3, 10−3]) [m2], [rad2]
Q4 diag(5×[10−5,10−5, 10−5,10−3, 10−3,10−3]) [m2], [rad2]
Q5 diag([10−4, 10−4, 10−4, 10−2, 10−2, 10−2]) [m2], [rad2]

been carried out for five different Q matrices shown in Table 4.7 (a total of
5× 50 trials). The performance index IL and reliability averaged over the
50 trials - 5 values for each object - are used in building each box. The box-
plots of Fig. 4.11 show the performance obtained with real measurements.

Fig. 4.12 shows the influence of the number of particles N on MUPF
performance, in terms of localization error and reliability when real mea-
surements are exploited. Performance deteriorates for N ≤ 400, while
slight changes have been found by varying N from 600 up to 1200 (with
the exception of the legobox, see Fig. 4.12 (b)).

Secondly, MUPF execution time has been studied by varying the num-
ber of particles N and the MUPF window size m. Figs. 4.13(a) - 4.13(d)
and 4.13(e) show the average execution time over fifty trials versus m (with
N=1200) and, respectively, N (with m=L), in the case of real measurements.

Finally, given the recursive nature of the algorithm, it is worth to ana-
lyze the evolution of the performance index It during the MUPF iterations
in order to check if it could be used as an appropriate stopping criterion for
recursive, on-line localization. Fig. 4.14 shows how the index It evolves in
time, i.e. while new measurements are being processed. It turns out that,
after a burn-in period, It quickly converges to a small value. This suggests
that the localization could be terminated whenever the addition of a new

4.5. Discussion 71

legobox cylinder cleaner robot
object

0

0.005

0.01

0.015

P
er

f.
in

de
x

[m
]

(a)

legobox cylinder cleaner robot
0

0.5

1

R
el

ia
bi

lit
y

(b)

FIGURE 4.11: MUPF robustness analysis: (a) performance in-
dex and (b) reliability (number of successes among trials) on

fifty trials for 5 different Q matrices, shown in Table 4.7.

50 200 400 600 800 1000 1200
N

-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

Lo
g

10
(lo

ca
liz

at
io

n
er

ro
r

[m
]) legobox

cylinder
cleaner
robot

(a)

50 200 400 600 800 1000 1200
N

0

0.2

0.4

0.6

0.8

1

R
el

ia
bi

lit
y

legobox
cylinder
cleaner
robot

(b)

FIGURE 4.12: MUPF performance analysis on fifty trials by
varying N from 50 up to 1200 with real measurements, in

terms of localization error (a) and reliability (b).

measurement (or a sequence of measurements) does not corresponds to a
significant reduction of It.

4.5 Discussion

The proposed solution to the 6-DOF tactile localization is based on a novel
recursive Bayesian estimation algorithm, the Memory Unscented Particle
Filter (MUPF). In contrast to optimization techniques, Bayesian filtering
turns out to be a successful approach to account for noisy sensors and in-
accurate models. A further advantage of the Bayesian approach is that it
can be naturally extended to consider the case in which the object moves,
by introducing a suitable probabilistic model for the object motion. The
multimodal nature of the problem makes particle filtering techniques more

72
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

1 11 22 33 44
m

14.5

15

15.5

16

16.5
A

ve
ra

ge
 T

im
e

[s
]

(a) Bo Lego Box (N fixed).

1 6 12 18 24 30
m

10

10.5

11

A
ve

ra
ge

 T
im

e
[s

]

(b) Bo Cylinder (N fixed).

1 12 24 36 48 62
m

15

20

25

30

A
ve

ra
ge

 T
im

e
[s

]

(c) Bx Cleaner (N fixed).

1 12 24 36 48 60
m

16

18

20

22

24

A
ve

ra
ge

 T
im

e
[s

]

(d) Box Robot (N fixed).

400 600 800 1000 1200
N

0

10

20

30

A
ve

ra
ge

 T
im

e
[s

]

legobox
cylinder
cleaner
robot

(e) BComparison between all objects (m
fixed).

FIGURE 4.13: Average execution time on 50 trials (a) - (d) by
varying m (with N = 1200) and (e) by varying N (with m

equal to the maximum value, i.e. m = L).

suitable for tactile localization than nonlinear Kalman filtering approaches.
However, the exploitation of standard particle filtering for 6-DOF tactile
localization would require a number of particles in the order of 106 which,
in turn, might entail an unaffordable computational load for real-time op-
eration.

The proposed MUPF algorithm is capable of localizing tridimensional
objects through tactile measurements with good overall performance and

4.5. Discussion 73

0 20 40
#t

0

0.05

0.1

0.15

P
er

f.
in

de
x

[m
]

(a) Bo Lego Box

0 10 20 30
#t

0

0.02

0.04

0.06

0.08

P
er

f.
in

de
x

[m
]

(b) Bo Cylinder

0 20 40 60
#t

0

0.05

0.1

P
er

f.
in

de
x

[m
]

(c) Bx Cleaner

0 20 40 60
#t

0

0.02

0.04

0.06

P
er

f.
in

de
x

[m
]

(d) Box Robot

FIGURE 4.14: Performance index trend at each algorithm
time step (with real measurements). After a burn-in period,
the performance index decreases and converges to an asymp-

totic value.

by exploiting a reduced number of particles (in the order of hundreds). The
MUPF algorithm relies on the Unscented Particle Filter suitably adapted to
the localization problem of interest. The Unscented Particle Filter jointly
exploits the potentials of the particle filter for approximating multimodal
distributions and of the unscented Kalman filter for efficiently generating
the proposal distribution. It is worth to point out that, for measurement up-
date purposes, the particle filter requires a probabilistic sensor description
in terms of likelihood function while the unscented Kalman filter needs
a measurement function allowing to predict the measurement given the
estimated state. In the specific problem of interest, it is quite natural to
characterize the tactile sensor in terms of likelihood (i.e. probability distri-
bution of the sensed contact point given the object pose) while it is clearly
not possible to uniquely predict the sensed contact point given the esti-
mated object pose. To circumvent this difficulty and be able to apply UPF
to tactile localization, the following idea has been pursued: for given object
pose and measured contact point, define the likelihood in terms of distance

74
Chapter 4. Memory Unscented Particle Filter for 6-DOF Tactile
Object Localization

between the object and the measured contact point and take the predicted
contact point as the point on the boundary of the object at minimum dis-
tance from the measured contact point. As a further contribution, the stan-
dard UPF algorithm has been modified by the inclusion of a suitable slid-
ing memory (hence the name MUPF) of past measurements in the update of
the particle importance weights. In this respect, it was found that the mem-
ory feature is crucial for a careful exploitation of the available contact point
measurements with consequent improvement of localization accuracy.

Furthermore, it is worth underlining how the proposed algorithm suc-
ceeds in solving the problem by using only tridimensional contact point
measurements, without requiring the knowledge of surface normals.

Performance evaluation, carried out via simulation tests on two geo-
metric objects and three everyday objects by using simulated measure-
ments and tridimensional mesh models reconstructed by vision, demon-
strates that the algorithm is reliable and has good performance with an av-
erage localization error less than 0.002 [m] and a computing time of a few
seconds. Moreover, the algorithm manages to localize real objects with ac-
tual tactile measurements collected with the humanoid robot iCub. The
results of experimental tests on four real objects confirm the results of the
simulation tests, providing localization errors less than 0.01[m] with a com-
puting time less than 8 [s].

The same simulation and experimental tests have been carried out also
with a reference algorithm in the literature, called Scaling Series. The ob-
tained results show how the MUPF is competitive with the state of art for
6-DOF tactile localization, and also exhibits several advantages with re-
spect to the Scaling Series algorithm.

The MUPF described in this Chapter has been successfully applied also
on a challenging tactile recognition task (see Chapter 5 for more details).
This is in fact a natural extension of the localization problem. A robot able
to localize an object using tactile sensors can also recognize it among a
finite set of possible objects, using the same information. For example,
given an effective localization algorithm, the robot can run it with different
known object models and select the one that best matches the observations.

A useful feature of the proposed algorithm consists of the nature of
measurements it processes. As we said in Section 4.2, the MUPF take

4.5. Discussion 75

advantage solely of the 3D contact positions of its fingertip with the ob-
ject surface, instead of requiring also the surface normal measurements
or other kinds of tactile informations, such as exerted force of texture in-
formation, as commonly happens in literature. The usage of this limited
information can be considered as a limitation, being the responsible of lack
of observability. However, this fact has the silver lining to making the al-
gorithm agnostic to the source of measurements: it just needs to be fed
with 3D points collected on the object surface, regardless of the exploited
sensors. As a result, the MUPF can localize object by processing 3D point
clouds. This turns out to be very useful in practical robotic manipulation
since visual perception is often the first source of information for manip-
ulating objects. Object point clouds can be used for estimating the initial
object pose. After that, since vision occlusion is very likely to happen when
interacting with the object, tactile information is exploited to assist or even
replace visual feedback. Chapter 6 shows a practical usage of the MUPF to
estimate the object in-hand pose using point clouds during the execution
of bi-manual handover tasks.

The contributions detailed in this Chapter suggest other perspectives
for future work on 6-DOF object tactile localization. First of all, dealing
with the localization of objects in presence of slippage or even tracking
moving objects is fundamental in real applications. When filtering tech-
niques (e.g. variants of particle filtering) are employed in place of opti-
mization methods, the extension to this case can be achieved by further
considering a suitable model for the object motion. Moreover, the nearly
recursive nature and the promising computing time of the proposed algo-
rithm would allow reducing localization uncertainty on-line during mea-
surement collection. This partial information could be in fact exploited to
guide tactile exploration in order to maximize the information on the object
pose.

77

Chapter 5

Applications of the Memory
Unscented Particle Filter to object
tactile recognition

This Chapter shows the application of the Memory Unscented Particle Fil-
ter, presented in Chapter 4 on tactile object recognition [200]. The robot
explores an object using its tactile sensors, registering the 3D coordinates
of the finger-object contact locations. The contact locations collected dur-
ing the exploration are, then, compared with different object models. The
solution of the recognition problem is given as the object whose model bet-
ter fits the measurements, i.e., the object model with the lowest localization
error.

As we already stressed out in Chapter 4, also in this application the
measurements consisting only of a set of 3D contact point coordinates.
Such data provide very basic, and noisy information, making the tactile
recognition task more challenging.

The Chapter is organized as follows. Section 5.1 provides our formu-
lation of tactile recognition as a multi-object localization problem. Section
5.2 presents the exploration strategy for acquiring measurements. Section
5.3 demonstrates the effectiveness of the proposed solution by means of
simulation and experimental tests on the iCub humanoid robot. In Section
5.4 we suggest possible future directions.

5.1 Methodology

We introduce hereinafter the problem of tactile object recognition. Let k
denote the number of objects of interest, each object being represented by

78
Chapter 5. Applications of the Memory Unscented Particle Filter
to object tactile recognition

a mesh model consisting of triangular faces { fi}. A set of measurements
{yt}L

t=1 is collected using the tactile sensors by detecting contacts on the
surface of object k∗ (one of the k objects). It is assumed that object is
attached to a surface and, thus, does not move during the exploration.
Each measurement provides the 3D coordinates of the contact point, i.e.
{yt = (xt, yt, zt)}L

t=1. The goal is to infer on which object the measurements
have been collected. In the described scenario, the solution is given by the
object model that best fits the available measurements.

5.1.1 Recognition as multi-object localization

We address the tactile object recognition problem as a localization problem
applied to multiple objects, where the solution is provided by the object
whose localization error is the lowest among all the considered objects.

The localization algorithm we use is the Memory Unscented Particle
Filter, described in Chapter 4. Object recognition is achieved by simply
running the MUPF for each of the given object models using the same set of
measurements. For each possible object j ∈ {1, . . . , k}, the algorithm finds
the pose x̂l that makes the object model representing the jth object best fit
the set of measurements. After k executions of the algorithm, k different
solutions x̂j, for j = 1, . . . , k, are computed. Once the pose x̂j is calculated
for each object models j ∈ {1, . . . , k}, the corresponding performance index
IL,j introduced in 4.4.2 is used in order to measure the fitness of each object
model in the estimated pose j. We recall the performance index to be defined
as:

IL,j =
1
L

L

∑
t

dt,j, (5.1)

where L is the number of measurements and dt,j is the distance between
the tth measurement and the object model j in the estimated pose x̂j. For
the sake of clarity, from now on we refer to the performance index by sim-
ply using Ij, omitting the number of measurements L in the subscript. In
other words, given the set of measurements and the estimated pose, the
proposed performance index is the average of the distances between each
measurement and the object model in the estimated pose. Finally, after the
k executions of the localization algorithm, the quantities Ij for j = 1, . . . , k,
are available and the solution k̂ for the tactile recognition problem is given

5.2. Data Acquisition 79

by:
k̂ = arg min

j
Ij. (5.2)

Clearly, the recognition is successful when k̂ = k∗. The steps of our
algorithm for the tactile recognition stated as a localization problem are
outlined in Algorithm 3.

Algorithm 3 Tactile recognition algorithm

1: Data: k object models, a set of tactile measurements {yt}L
t=1 on object

k∗;
2: for j = 1, . . . , k do
3: Localization algorithm:
4: data: object model j, set of measurements on object k∗;
5: output: x̂j ;
6: end for
7: Choose k̂ as:

k̂ = arg min
j
Ij,

where Ij =
1
L ∑L

t dt,j and dt,j is the distance between the tth measure-
ment and the object j in the estimated pose x̂j.

8: Recognition is successful if k̂ = k∗.

5.2 Data Acquisition

The experimental setup consists of the iCub robot [201](Fig. 5.1) and six
objects of interest (i.e. k = 6) for acquiring tactile data in our experi-
ments. The objects, as shown in Fig. 5.2, are made of wooden geometric
shapes. The objects are deliberately selected to have overlapping shapes
with strong similarities in order to test our method in a challenging set-
ting. For example, objects (a) and (b) have similar geometric configura-
tions: one has a smooth arched surface and the other a saw-tooth surface,
respectively. With the same principle we also selected objects (c) and (d),
that have same general shape, the only difference being in the smoothness
of the surfaces. Objects (e) and (f) can only be discriminated by the bottom
edge: one has a straight edge, while the other has a curved edge.

The robot touches the object at various locations with the tip of its in-
dex finger. The fingertip is 14.5 [mm] long, 13 [mm] wide. Each finger is
equipped with tactile sensors [22]. A contact location is registered when

80
Chapter 5. Applications of the Memory Unscented Particle Filter
to object tactile recognition

FIGURE 5.1: Experimental setup for data collection: the iCub
robot is touching the object with its index fingertip.

the tactile sensors are activated. In our experiments the object is anchored
to the surface of a table in front of the robot, hence, it does not move during
the exploration. The choice of the exploratory area depends on the the size
of the object. We sample an area of 40× 50 [mm2] (Fig. 5.4), using a grid
search with a cell size of 2.5× 2.5 [mm2].

At the beginning of the exploration, the robot’s index finger is placed
at an arbitrary position close to the object. Then, the robot is commanded
to sample a location of interest. We will refer to the location of interest as
a waypoint. Since we do not have a priori knowledge of the shape of the
object, the height of the waypoint is set to an arbitrary value larger than
the height of the object. As reported in the flow chart of Fig. 5.3, the robot
moves the finger toward the waypoint. After that, the robot extends its
finger downward to detect a contact. If no contact is detected when the
finger is fully extended, the robot sets the waypoint to the current location
of the finger and retracts it. This process is repeated until the finger makes
a contact with a surface – either the object or the table. When a contact is
detected, the location of the contact is registered and the next waypoint is
set to the next point in the grid. This process is repeated until the area is
entirely covered. The tactile data collected for each object with this explo-
ration strategy are shown in Fig. 5.4.

5.2. Data Acquisition 81

(a) (b)

(c) (d)

(e) (f)

FIGURE 5.2: Objects used for experimental evaluation of the
method.

82
Chapter 5. Applications of the Memory Unscented Particle Filter
to object tactile recognition

FIGURE 5.3: A flow chart showing the object-surface sam-
pling.

5.2. Data Acquisition 83

0

0.01

0.02

z
[m

]

0.03

-0.34

x [m]

-0.32
-0.08

y [m]

-0.1-0.3 -0.12

(a)

0.01

0.02

0.03

-0.34

z
[m

]

x [m]

-0.32 -0.06

y [m]

-0.08-0.3 -0.1
-0.12

(b)

0.01

0.02

0.03

z
[m

]

-0.34

x [m]

-0.32

y [m]

-0.08
-0.1-0.3 -0.12

(c)

0.01

0.02

0.03

z
[m

]

-0.34

x [m]

-0.32

y [m]

-0.08
-0.1-0.3 -0.12

(d)

0

0.01

0.02

z
[m

]

0.03

-0.32

x [m]

-0.06

y [m]

-0.08-0.3 -0.1

(e)

0

0.01

0.02

z
[m

]

0.03

-0.32

x [m] y [m]

-0.08
-0.1-0.3 -0.12

(f)

FIGURE 5.4: For each object, the tactile data collected by us-
ing the exploration strategy of Section 5.2 are shown. The
letters identifying the different plots ((a) - (f)) correspond to

the objects according to the notation of Fig. 5.2.

84
Chapter 5. Applications of the Memory Unscented Particle Filter
to object tactile recognition

5.3 Results

The algorithm evaluation is performed first with synthetic measurements
(Section 5.3.1) and then with real measurements (Section 5.3.2), collected
through the exploration strategy described in Section 5.2. In both scenarios,
the aim is to recognize the true object labeled as k∗, among the set of six
objects shown in Fig. 5.2.

The C++ implementation of the MUPF algorithm used to carry out our
experiments is publicly available on GitHub1.

5.3.1 Simulation results

The synthetic measurements consist of six sets of 3D points (around 170
triplets for each set), each sampled on the surface of one specific model. We
refer to the 3D points sampled on object (a) as set of measurements (a). The
same notation is used for the other objects. The synthetically-generated
data are noiseless.

In Table 5.1, the MUPF parameter set used for running the simulated
tests is shown. Matrix Q and σp are respectively the covariances of the
process noise ωt and measurement noise νt; P0 is the covariance matrix
representing the initial uncertainty and N is the number of particles. The
covariance Q is chosen such that it takes into account the stationarity of
the object, similarly, the value of the covariance σp models the measure-
ment noise. An arbitrarily large value is instead chosen for P0 matrix. The
selected number of particles N is a trade-off between algorithm execution
time and reliability. In order to determine a good value for m, which is the
number of most recent measurements used at each time instant, we run
the MUPF algorithm for each object. Fig. 5.5 displays how the localization
errors vary with different values of m in the range from 1 to L. The figure
is for the data collected in the real experiments. The results of the sim-
ulated data, which were similar, have been omitted for clarity. Since the
localization errors do not decrease significantly for m > L/2, m = L/2 has
been chosen. Such a value leads to accurate performance regardless of the
order of the measurements under consideration, thus not requiring the m
measurements to be uniformly sampled on the object surface.

1DOI:10.5281/zenodo.45493.

5.3. Results 85

FIGURE 5.5: The localization errors obtained with real mea-
surements with different values of m, from 1 to L. For the
sake of clarity, the results from the simulated data have not

been plotted as it exhibits a similar trend.

TABLE 5.1: Parameters set for the MUPF in simulation.

Q diag([10−4, 10−4, 10−4, 10−2 10−2, 10−2]) [m], [rad]
σp 10−4 [m]
P0 diag([0.04, 0.04, 0.04, π2, (π/2)2, π2]) [m], [rad]
N 700
m L/2

Fig. 5.6 shows the performance achieved with the simulated measure-
ments in the shape of confusion matrix. Each row i of the matrix corre-
sponds to a different set of measurements, respectively sampled on each
object model surface. The column j instead stands for the jth object model
used by the localization algorithm. Each block of the matrix (i, j) contains
the average localization errors on 10 trials obtained by running the MUPF
with the set of measurements sampled on the object i and the model of ob-
ject j, i.e. I i

j . Therefore, the correct behavior of the algorithm can be easily
deduced by checking if the localization errors on the diagonal of matrix
are the minimum for each row. More tightly, the recognition of object i is

86
Chapter 5. Applications of the Memory Unscented Particle Filter
to object tactile recognition

FIGURE 5.6: MUPF performance with simulated measure-
ments. The performance achieved with the simulated mea-
surements are shown in the shape of confusion matrix. Each
row i of the matrix corresponds to a different set of measure-
ments, respectively sampled on each object model surface.
The column j instead stands for the jth object model used by
the localization algorithm. For each experiment, the average
localization errors on 10 trials obtained for all the object mod-

els are shown.

successful if I i
i = minjI i

j . Fig. 5.6 confirms that this condition is satisfied
when simulation measurements are exploited.

5.3. Results 87

5.3.2 Experimental results

Before showing the performance achieved using the real measurements,
we provide a synthetic experiment to point out, from a quantitative view-
point, that the task at hand is indeed challenging. The results of the exper-
iment are shown in Fig. 5.7. The test consists of calculating the localization
error of three different object models: (a), (b) and (c), using the set of real
measurements (b). More precisely, the three profiles depicted in Fig. 5.7
represent how the localization error varies as the object models slide along
the y axis of the frame attached to the object basis. Therefore, Fig. 5.7
reports the localization error versus the y displacement: a displacement
equal to 0 represents the correct pose for the object (b), with respect to the
set of measurements (b). By observing the trend of the localization errors,
we can see how the localization error for object (b) is minimum for a dis-
placement equal to 0, that is in fact the correct pose. However, object (a)
and (c) provide an even lower localization error in correspondence of small
displacements along y. This fact highlights how the similarity of objects
and the noisy nature of the measurements could lead to wrong recogni-
tions.

We discuss hereinafter the performance achieved with real data. The
MUPF parameters used for the experimental tests are provided in Table
5.2. The parameters have been chosen by taking into account considera-
tions similar to those explained in Section 5.3.1. In particular, covariances
Q and σp are tuned differently in order to take into account the measure-
ment noise of the real data. The value of m is determined as described in
the previous section, see Fig. 5.5.

TABLE 5.2: Parameters set for the MUPF in real experiments.

Q diag([8 10−6, 8 10−6, 8 10−6, 8 10−4 8 10−4, 8 10−4]) [m,rad]
σp 4 10−4 [m]
P0 diag([0.04, 0.04, 0.04, π2, (π/2)2, π2]) [m], [rad]
N 1200
m L/2

Fig. 5.8 shows the results of the real experiments, which can be inter-
preted similarly to the data of Fig. 5.6. Two main differences can be noticed

88
Chapter 5. Applications of the Memory Unscented Particle Filter
to object tactile recognition

-0.04 -0.02 0 0.02 0.04 0.06
Translation on y axis [m]

0

0.005

0.01

0.015

0.02

Lo
ca

liz
at

io
n

er
ro

r
[m

]

object (a) - measurements on object (b)
object (b) - measurements on object (b)
object (c) - measurements on object (b)

FIGURE 5.7: Synthetic test showing the challenging nature
of tactile recognition problem. We compute the localization
errors with respect to the set of real measurements (b) and
three object models: (a), (b), and (c). Each model is sliding
along the y axis of the ground frame. Object (b) results in the
lowest error at zero displacement, whereas, notably, object (a)
and (c) give lower values for small nonzero displacements.

5.4. Discussion 89

by comparing Fig. 5.6 and Fig. 5.8, though. First, the measurement noise
causes higher average localization errors. Therefore we manage to cor-
rectly recognize only 4 objects out of 6 in the real scenario, compared with
the 100% overall classification score achieved in simulation. In particular,
when the MUPF is executed using set of measurements (b), the solution
k̂ is given by object (a) and, analogously, when measurements belong to
object (d), k̂ comes out to be object (c). However, we could reasonably con-
sider these two misclassifications acceptable, considering the high level of
similarity between the pairs of objects and the noise in the measurements.
In addition, the limited resolution of the tactile sensor and the size of the
fingertip (approximately 6 × 6 [mm2]) allow only a coarse discrimination
of the shape of the object and hide finer details. It is expected that the
performance of the recognition would increase using a smaller fingertip or
sensors with higher resolution. Given these limitations, however, the car-
ried out experiments demonstrate that the proposed algorithm achieves
good performance.

5.4 Discussion

We addressed the problem of tactile recognition as tactile localization
on multiple objects using the nonlinear filtering algorithm, Memory Un-
scented Particle Filter. The algorithm is capable of recognizing objects by
exploiting only contact point measurements. The effectiveness of our ap-
proach is demonstrated both in simulation and with a real robot.

The promising results presented in this Chapter encourage possible fu-
ture applications. For example, the model could be extended by includ-
ing local features, such as surface classification (e.g. local curvature, edge,
corners) or material properties (e.g. stiffness, texture). At this aim, the
pressure values collected by the robot tactile sensors when contact with
the object is detected could be exploited in an extended version of our al-
gorithm. Pressure values provide useful information on stiffness proper-
ties, thus facilitating tactile recognition. A further extension of the work
we presented consists of taking advantage of a more complex exploration
strategy for data collection, by using multiple fingers at the same time.
In fact, the exploitation of the knowledge of which finger has caused each

90
Chapter 5. Applications of the Memory Unscented Particle Filter
to object tactile recognition

FIGURE 5.8: The performance achieved with the real mea-
surements are shown in the shape of confusion matrix. Each
row i of the matrix corresponds to a different set of mea-
surements, respectively collected on each object surface. The
column j instead stands for the jth object model used by
the localization algorithm. For each experiment, the aver-
age localization errors on 10 trials obtained for all the object

models are shown.

5.4. Discussion 91

tactile measurement could be very powerful and considerably improve the
performance of our approach.

93

Part III

Bi-manual coordination: a new
pipeline for the execution of

handover tasks

95

Chapter 6

In-hand object localization using
vision: bi-manual handover

In the previous Chapters, we presented an algorithm able to localize and
recognize objects placed on a support (e.g. a table) by using 3D points sam-
pled on their surface. Both the applications we showed in Chapter 4 and 5
make use of tactile measurements, in terms of the 3D positions of the robot
fingertips in contact with the object surface. However, a blind collection of
tactile measurements requires accurate planning or, alternatively, needs to
be applied on controlled scenarios as shown in Section 5.2. Since our test-
ing platform - the iCub humanoid robot - is provided with stereo vision,
a most effective way to collect points belonging to the object surface is by
extracting 3D visual point clouds.

In addition, there is no reason to focus only on localizing objects placed
on a table. As long as we are able to collect visual and/or tactile measure-
ments, an interesting scenario consists of in-hand object localization, i.e.
the goal of estimating the object pose with respect to the hand holding it.
In fact, the success, or not, in accomplishing a manipulation task is also
determined by how the robot is holding the object. For example, we could
image in the future (hopefully not too remote) to give our personal service
robot a bottle of wine and ask it to place it on the table in the kitchen. If
the robot holds the bottle in the wrong way and not aware of that, when the
robot will put the bottle on the table, it’ll likely fall down, staining the ta-
ble and the floor and wasting some good wine. This is a simple example
showing how in-hand pose localization and re-grasp are fundamental for
the achievement even of basic manipulation tasks.

In-hand re-grasp is very challenging and still an open problem. If the
robot is provided by more than one arm - as stands for the iCub -, a possible

96
Chapter 6. In-hand object localization using vision: bi-manual
handover

way to address the problem is by performing bi-manual handover. If the
object pose in one hand of the robot is not suitable for the current task, the
object could be grasped by the other hand in a proper configuration.

Another interesting application of bi-manual handover takes place in a
pick-and-place scenario. If the robot is given an object in its left hand and
is asked to put it on a target location in right hand workspace, the most
reasonable movement in this case requires passing the object from the left
to the right hand.

All these considerations encouraged us to study the bi-manual
handover problem. The result we achieved is a novel pipeline that allows
performing the handover task with the iCub humanoid robot and with
different every-day objects. In this work, we did not explicitly take into
account handover for re-grasp, but this could be surely a straightforward
extension.

The proposed pipeline takes advantage of our previous work on tactile-
driven object localization (Chapter 4) as well as other prior works on in-
hand tactile manipulation [202] and self-touch [203], conveniently adapted
and connected together for tackling the entire handover problem. The core
part of the pipeline consists in the pose selection method for selecting the
best pose for the handover task among a set of a-priori poses. The chosen
pose maximizes the distance between the two hands and the manipulabil-
ity index of a two-arms kinematic chain.

The Chapter is organized as follows. Section 6.1 introduces the pipeline
we designed, together with a detailed description of all its steps. Section
6.2 validates our approach by analyzing the results of each pipeline steps
and showing a set of successful handovers performed by the robot with
different every-day objects. Finally, Section 6.3 ends the Chapter with some
discussions about the main limitations of our approach and suggestions for
improvements.

6.1 Pipeline

The pipeline for bi-manual object transfer we propose is outlined in Fig.
6.1. In practice, we ask the robot to pass a known object from one hand
(that we refer to as first hand) to the other hand (named second hand). The
entire pipeline can be divided in the following steps:

6.1. Pipeline 97

• Stable grasp with the first hand: the robot grasps the desired object
with the first hand and it controls the grasp using tactile feedback.
Grasp stabilization with tactile feedback is active during the entire
execution of the task.

• Point cloud acquisition and filtering: the robot vision system provides
3D points of the closest blob in the field of view. Then, we prop-
erly filter the point cloud in order to extract only points belonging to
the object surface, discarding instead those points that belong to the
background or the hand.

• In-hand localization: a localization algorithm estimates the object in-
hand pose by using the filtered 3D points.

• Grasping pose selection: the object model is a-priori annotated with a set
of grasping poses reachable by the second hand. After the object is
localized, we rank the candidates according to the distance from the
first hand and the manipulability index of the two-arms kinematic
chain. We then select the best pose for performing the handover.

• Approaching strategy: both arms move until they reach the selected
pose.

• Stable grasp with the second hand: the robot grasps the object with the
second hand and, once the grasp is stabilized, the first hand releases
the object. The bi-manual handover is finally achieved.

In the next paragraphs we fully illustrate each step together with the
methodology we implemented.

6.1.1 Stable grasp with tactile feedback

A stable grasp of the object is essential throughout the execution of the en-
tire handover task. In fact, the movements of the object can compromise
the localization reliability or cause the object to fall while the arms are mov-
ing. To this end, we adopted the grasp stabilization strategy described in
[202], performing a three-finger precision grasp with the thumb, the index
and the middle fingers. In this section we briefly revise this method. Fig.
6.2 shows the overall control schema, which is made of three main compo-
nents:

98
Chapter 6. In-hand object localization using vision: bi-manual
handover

FIGURE 6.1: On the left: a sketch of the proposed pipeline.
On the right: some snapshots from the execution of a real
handover. 1) The robot grasps the object with the first hand
by using tactile stabilization. 2) A set of 3D points of the ob-
ject is acquired and filtered. 3) The point cloud is used by
the localization algorithm for estimating the object pose. 4)
The pose for the second hand is selected among a set of pre-
viously defined poses. 5) Both arms move so that the second
hand achieves the selected pose. 6) Finally, the second hand
grasps the object, while the latter is contemporary released

by the first hand.

• The low-level controller is a set of P.I.D. force controllers, one per finger,
which maintain a given force at the fingertips by sending an appro-
priate voltage signal to the motors actuating the proximal joints Θp.
We estimate the force at each fingertip by taking the magnitude of
the vector obtained by summing up all the normals at the sensor lo-
cations weighted by the sensor response.

• The high-level controller acts on top of the low-level controller and sta-
bilizes the grasp by regulating the object position while delivering a
specified grip strength. The object position αo, defined in Fig. 6.3, is
controlled resorting to a P.I.D. controller that adjusts the set-points of
the forces at each finger to reduce the final position error.

The grip strength is a weighted average between the force applied by
the thumb and the forces applied by the index and middle as follows:

g =
2
3
· fth +

1
3
· (find + fmid), (6.1)

where fth, find and fmid are the forces at the thumb, the index and
the middle fingers, respectively. This is obtained by exploiting some
specific assumptions on the force model and the noise distribution,

6.1. Pipeline 99

FIGURE 6.2: Grasp stabilizer control schema. While grasp-
ing an object, the set L of lengths of the edges of the trian-
gle defined by the points of contact is used by the Gaussian
mixture model to compute the reference values of the non-
proximal joints Θnp and the object position αr

o. In order to
reach αr

o and g, the high-level controller sets the appropriate
force references f r of the low-level controller for each finger.
The low-level force controller, in turn, sends voltage to the
motors actuating the proximal joints to compensate the force
error. The actual object position and the actual forces at the

fingertips are represented by, respectively, αa
o and f a.

whose details can be found in [202]. The target grip strength is kept
constant by choosing set-points of the forces that satisfy (Eq. (6.1)).

• The gaussian mixture model is a stable grasp model trained by demon-
stration. We collected several stable grasps using objects of different
size and shape. The stability of a grasp was determined by visual in-
spection, avoiding non-zero momentum, unstable contacts between
the object and the fingertips and grasp configurations that are close to
joint limits. Given the set L of lengths of the edges of the triangle de-
fined by the points of contact, which are related to the object shape,
the model estimates the target object position αr

o and the target set
of non-proximal joints Θnp that improve grasp stability as well as
the robustness. The target αr

o is used as the set-point of the high-level
controller, while the Θnp is commanded directly using a position con-
troller.

The grasp stabilizer is triggered when all the fingertips are in contact
with the object, which happens by closing all the fingers at constant speed.
The fingers stop when they all exceed a given force threshold at the finger-
tip.

100
Chapter 6. In-hand object localization using vision: bi-manual
handover

FIGURE 6.3: The object center Co is defined as the centroid
of the triangle identified by the three points of contact (left).
The object position αo is defined as the angle between the
vectors ~OCo and ~OB (right). A and B are set at the base of,
respectively, the thumb and the middle finger, while O lies at

middle distance between A and B.

6.1. Pipeline 101

(a) (b)

FIGURE 6.4: On the left: Point cloud obtained after the ap-
plication of coarse filter. The point cloud includes also point
belonging to the robot hand. On the right: the blue points
represent the selected points after the hand filter. Notice that

the points belonging to the hand are removed.

6.1.2 Point cloud acquisition and filtering

Once the object is stably held by the first hand, the nearest blob in the
robot visual field is acquired from the stereo vision system. Such a blob
contains 3D points belonging both to the visible portion of the object and
to the robot hand (see Fig. 6.4(a)). Using point clouds that include parts of
the robot’s hand would deteriorete the initial information about the object
pose. For this reason, a pre-filtering process is required. We implemented
two filters that are consequently applied to the point cloud:

a) the coarse filter removes possible points outside a volume a-priori de-
fined around the robot hand. This filter is necessary in case of noisy
initial point clouds, e.g. when the selected blob includes also portions
of the background scene.

b) the hand filter is applied in order to discard the 3D points belonging
to the robot hand. At this aim, the filter removes all points with a
specific color property.

An example of filtered point cloud is shown in Fig. 6.4(b). The blue points
represent the final point cloud after the filtering process. Hereafter, we
describe in the detail the filters we designed.

102
Chapter 6. In-hand object localization using vision: bi-manual
handover

The coarse filter implementation simply consists of an inside/outside
test on the points coordinates. If the 3D point lies outside a 3D box built
around the first hand, the point is discarded, otherwise is selected.

A principled way to remove the hand from the point cloud is to use
the robot kinematics to project the hand model on the point cloud. In the
case of the iCub robot, this approach is unsuitable because the forward
kinematics is affected by errors due to the elasticity of the tendons [204].
To overcome this problem we propose to use a color filter. This solution
assumes that the hand is gray and it corresponds to pixels with low satu-
rations. Such an approach can be applied to other robotic hands (see Fig.
6.5). The filter selects all points for which a measure of saturation:

S =
∑l=L

l=1 (|Rl − Gl|+ |Rl − Bl|+ |Bl − Gl|)/3
L

> µ, (6.2)

where Rl, Gl and Bl are the RGB values of point l ∈ 1, . . . , L and L is the
number of points lying in a certain volume of radius r. The value of µ is
chosen experimentally to deal with variability in light condition.

Even though this approach is effective on a large set of objects (see Sec-
tion 6.2), it may fail when it is applied to grayish objects. The point cloud
saturation is in fact not informative enough for distinguishing among the
points belonging to a grayish object or to the robot hand. We discuss how
we could eventually deal with grayish objects and extend our approach in
Section 6.3.

6.1.3 In-hand localization

In order to estimate the pose of the object in the hand, we adapted the
Memory Unscented Particle Filter (MUPF) described in Chapter 4.

Recall that the MUPF is a recursive Bayesian estimation algorithm, that
is designed for localizing objects given their models and a series of 3D
points collected from the object surface.

Even though the MUPF was designed for tactile object localization, we
can adopt it for object in-hand localization of the handover pipeline for two
reasons. First, the object is stationary (as required by the MUPF) because
the grasp approach (Section 6.1.1) stabilizes the object in the robot hand (as
validated in Section 6.2). Second, the filter is agnostic about measurements
nature, as long as they consists of the Cartesian positions of points lying

6.1. Pipeline 103

(a) (b) (c) (d)

(e)

FIGURE 6.5: Some examples of grayish robotic hands: (a) Al-
legro hand, (b) Wessling hand, (c) Barret hand, (d) Shadow
hand and (e) the iCub hand, which is the platform we used

for testing our approach.

on the object surface. For this reason, we can feed the algorithm with a
subset of points belonging to the filtered point cloud (Section 6.1.2). Fig.
6.6 shows an example of localization.

6.1.4 Pose selection

The models of each object are a-priori annotated each with N pose candi-
dates for the second hand. These poses represent the minimum set of stable
grasps feasible for the object. We compute them by using the Grasp-Studio
library provided with the Simox toolbox [205], that offers the possibility to
obtain grasping poses for several robotic end-effectors, including the iCub
hand. We provide more details on this process in Section 6.2.

Once the object is localized by the MUPF, its model – together with the
annotated poses – is considered attached to the first hand according to the
estimated pose (Fig. 6.8(a)).

Our approach consists in selecting that pose among the N candidates
that allows performing the best handover tasks according to an evaluation
criteria and given the estimated object pose and the current robot arms
configurations. At this aim, instead of modeling the arms as two kinematic
chains with n-DOFs each, we represent them as a single 2n-DOFs chain,

104
Chapter 6. In-hand object localization using vision: bi-manual
handover

FIGURE 6.6: An example of object model in the estimated
pose, computed via the MUPF algorithm. The algorithm uses

the filtered point cloud shown in Fig. 6.4(b).

as explained in[203]. In fact, classical approaches, where the arms are
controlled as two separate chains, lead to several difficulties, as remarked
in [203]. In particular, they require to identify a specific point xd reachable
by both arms and solve two separate IK problems. In fact to accomplish
the task, the solution of the first arm is required to lay in a workspace suf-
ficiently dexterous also for the second arm. The analytical computation
of the shared dexterous workspace turns to be quite heavy and, therefore,
should be executed off-line. Alternatively, to avoid off-line computations
while still complying with real-time requirements, we would need to adopt
empirical heuristics in order to come up with a suitable estimation of the
dexterous workspace for the task at hand.

The use of a single 2n-DOF chain, instead, does not require to identify
xd neither to define heuristics, given that it will be implicitly determined
in the workspace by the configuration of the 2n-DOF chain found by the
solver. Since the handover task only requires to specify the relative position
between the two hands, the use of a 2n-DOF tends to be more natural and
effective, as it does not entail the use of additional heuristics.

For these reasons we make use of a two-arms chain with the origin O
located at the end-effector of the first hand and the end-effector E of the
two-arms chain located on the end-effector of the second hand. Specifi-
cally for the handover task, we refer to the origin withOj, since it coincides
with the j-th pose candidate, with j ∈ 1, . . . N. This situation is depicted in
Fig. 6.7. Under this formulation, the handover task involves moving the

6.1. Pipeline 105

FIGURE 6.7: An outline of the two-arms chain we exploit for
the handover task. The new chain origin Oj is located in cor-
respondence to the j-th pose on the object, held by the left
hand. The first part of the chain is reversed with respect to a
standard chain for a robotic arm (colored in red). The remain-
ing part (in blue) is a direct chain. The new chain end-effector

E is located on the right palm.

end-effector E to the origin Oj of the two-arms kinematic chain. From a
mathematical viewpoint, we need to compute the values of joint angles q∗j
such that the end-effector E reaches the origin Oj both in orientation and
position. Such a problem requires the reversal of the serial chain of the first
arm with floating base. In particular, the first part of the kinematic chain is
reversed with respect to the standard chains of robot arms, because it is tra-
versed upside down from the origin Oj to the shoulder. The description of
this type of kinematic chain in Denavit Hartenberg (DH) convention [206]
is proposed in [203], where the authors provide the algorithm to derive
the corresponding DH transformation matrix for each reversed link. We
exploit this result for modeling the two-arms kinematic chain.

The joint angles q∗j for performing the handover task with the j-th pose
can be obtained as follows:

q∗j = arg min
q∈R2n

(‖I − K
Oj
α (q)‖2)

subject to:{
‖KOj

x (q)‖2 < ε

ql < q < qu
,

(6.3)

106
Chapter 6. In-hand object localization using vision: bi-manual
handover

where I ∈ R3×3 is the identity matrix, K
Oj
x (·) ∈ R3 and K

Oj
α (·) ∈ R3×3 are

the forward kinematic functions that represents the position and the orien-
tation of the end-effector E with respect to the origin Oj; ql and qu ∈ R2n

are vectors describing the joints lower and upper limits; ε is a parameter for
tuning the precision of the reaching movements, typically ε ∈ [10−5, 10−4].
The cost function of Eq. (6.3) imposes the minimization of the error be-
tween the orientations of the end-effector reference frame E and the origin
Oj . The constraints take into account the error between the center of the
reference frame of the end-effector E and the origin Oj and require the
solution q∗j to lie between a set of lower and upper bounds of physically
admissible values for the joints. As fully explained in [183], this formula-
tion gives higher priority to the control of the position with respect to the
orientation. The former is in fact handled as a nonlinear constraint and is
evaluated before the cost function. We require a perfect reaching in po-
sition, whereas we can handle small errors in orientations relying on the
robustness of our grasp controller.

We solve the problem described in Eq. (6.3) for each pose candidate j,
f or j = 1, . . . , N using Ipopt [207], thus obtaining the desired joints values
to perform the handover with all the possible poses, i.e. {q∗j }

j=N
j=1 . The

latter N solutions do intrinsically encode suitable configurations for both
arms, without the need for dedicated heuristics to specify a-priori reachable
regions where to perform the handover. Then, we execute two sequential
rankings on the N poses in order to select the best one for the handover
task.

First, the N candidates are ranked according to:

• the distance dj of the first hand from the originOj (which represents
the target pose):

dj = ‖ph,j‖, (6.4)

where ph,j ∈ R3 is the first hand position in the reference frame of the
origin Oj. The origin Oj represents the pose the second hand should
reach during the handover. Thus, pose candidates j with larger val-
ues of dj are given a higher score in the ranking, since their probabil-
ity of collision with the first hand is lower.

Then, we update the first pose ranking by taking into account:

6.1. Pipeline 107

(a) (b)

FIGURE 6.8: On the left: an example of pose ranking. The
numbers associated to each pose are colored according to the
pose score, ranging from red for the worst pose up to green
for the best one. In this case, our method correctly selects
pose no. 2, i.e. j∗ = 2. In particular, the maximum distance
criterion discards poses no. 0, 1, 4 and 5. Pose no. 2 is then
chosen among the remaining poses due to its higher manip-

ulatibily index.
On the right: the hands holding the object before passing the

object from the first to the second hand.

• the manipulability index of the two-arms chain mj, in order to favor
poses easily reachable by the robot arms:

mj =
√

det(J(q∗j)J(q∗j)
T), (6.5)

where J is the jacobian of the kinematic chain, q∗j ∈ R2n are the joints
values of the two-arms chain which allow performing the handover
with the j-th pose and n is the number of DOFs of a single arm.

In summary, the two sequential rankings applied on the N candidates
provide as best pose that pose j∗ with the maximum distance from the first
hand and with the higher manipulability index of the two-arms chain (see
Fig. 6.8(a)).

6.1.5 Approach and handover

The robot exploits the joints values q∗j∗ , computed solving Eq. (6.3) which
correspond to the selected pose j∗, to move the arms toward the handover
pose. In addition, the second hand passes by an intermediate waypoint
so that to avoid its fingers hitting the object during the approach. The

108
Chapter 6. In-hand object localization using vision: bi-manual
handover

FIGURE 6.9: The iCub performing handover task.

waypoint is simply obtained by shifting the final pose at a fixed distance
from the object, along the x and z axis of the hand reference frame.

When the arms reach the final pose, the second hand grasps the object
by using the approach described in Section 6.1.1 (Fig. 6.8(b)). The second
hand pose j∗, in fact, aims at suitably locate the hand close to the object
surface with a proper orientation, leaving the actual grasping task to the
grasp controller. The grasp controller of the first hand maintains a stable
grasp using tactile feedback. It compensates possible perturbations due to
collisions between the object and the second hand, by adjusting the pose
of the object. This prevents the object from falling and it improves the
robustness of the task. Finally, when the second hand stably grasps the
object, the first hand opens and leaves the object in the second hand.

6.2 Results

In order to validate our approach, we tested the pipeline shown in Fig.
6.1 on the iCub humanoid robot (Fig. 6.9). Our implementation of the
handover pipeline is availble on GitHub1.

We carried out our experiments using a set of 5 objects, shown in
Fig. 6.10. The objects were deliberately selected among the YCB Object &
Model set [208] so as to be different in shape, dimensions and surface tex-
ture. We extracted the mesh models of the objects by applying the Poisson

1https://github.com/tacman-fp7/handover, DOI:105281/zenodo.437739.

https://github.com/tacman-fp7/handover, DOI:105281/zenodo.437739

6.2. Results 109

FIGURE 6.10: The set of objects used in the experiments be-
longing to the YCB Object & Model set. We refer to the objects
as: Sugar box, Chocolate box, Mustard box, Chips tube and

Little cup.

Surface Reconstruction algorithm [198] to the merged point clouds pro-
vided by the YCB dataset.

Without loss of generality, we illustrate the results obtained in case the
left hand and the right hand are, respectively, the first and the second hand
of the handover task.

We annotated the mesh model by using the Grasp-Studio library. In
particular, we used the implemented planner for computing the candidate
poses. We selected a subset of poses (Fig. 6.11) among the planner solu-
tions, discarding those that were visibly unstable. Then, we duplicated
and rotated the selected poses in order to deal with the object symmetries.
This is a crucial point, because multiple, valid solutions of the localization
problem are available for symmetric objects. All the models we generated
have several symmetries due to their shape. In addition, we only consider
the geometric properties of the models, without exploiting information
about surfaces color or texture. Our approach is based on geometrical
information since we assume that only the object models are available.
Fig. 6.12(a) provides an example of the minimum set of poses (for the
iCub right hand) we have to consider for box-like objects. Pose annotation
shown in Fig. 6.12(a) is in fact invariant with respect to 180-degree
rotations of the object along x-, y- or z- axis of its reference frame (located
in the object barycenter). Fig. 6.12(b) illustrates how the hand reference

110
Chapter 6. In-hand object localization using vision: bi-manual
handover

FIGURE 6.11: Some examples of poses generated with Grasp-
Studio. The final set of poses is obtained by multiplying the

basic poses according to the symmetry axes of each object.

(a) (b)

FIGURE 6.12: For box-like objects, 8 poses are enough to take
into account all the grasping scenarios that might happen,
due to the object symmetries (a). Fig. 6.12(b) illustrate the

reference frame of the right hand of the robot iCub.

6.2. Results 111

frame is attached to the iCub right hand. More poses are necessary
for cylindrical objects, due to their major symmetry. In conclusion, we
generated 8 poses for box-like object (Sugar, Chocolate and Mustard box),
24 for the long tube (Chips tube) and 16 for the small cup (Little cup). The
Grasp-Studio library generates poses suitable for power grasp tasks. In
this work, we make of a precision grip (as shown in Section 6.1.1) in which
the fingertips are in contact with the object surface. This is important so
that tactile feedback from the fingertip sensors can be used to stabilize the
object in the hand. For this reason, the poses computed with Grasp-Studio
are shifted far away from the object surface, along the x- and z-axis of
the hand reference frame of a fixed amount (for all the objects and poses)
which only depends on the fingers lengths.

In the following paragraphs, we at first show the effectiveness of the
stable grasp with tactile feedback. Afterwards, we show the results obtained
with the three main steps of our algorithm: point cloud filtering, in-hand
localization and pose selection. Then, we evaluate the reliability of the entire
pipeline computing the success rate of our approach for each object and in
different poses.

Stable grasp with tactile feedback

The stable grasp we implemented is crucial for the reliability of the
handover pipeline. The grasp stabilization is continuosly executed dur-
ing the entire handover: it avoids object slip while the arm moves and it
prevents the object from falling when it touches the other hand. In fact,
a change in the in-hand object pose after the localization would affect the
handover success. In order to test the effectiveness of our stable grasp,
we compared the handover success in presence of stabilization (Table 6.3)
with a baseline obtained in absence of stabilization, i.e. only by closing the
fingers until contact is detected on the tactile sensors (Table 6.1). This com-
parison highlights the effectiveness of our stable grasp since it doubles the
success rate of the handover test (from 20 - 50% of Table 6.1 up to 50 - 100%
of Table 6.3).

Another benefit of the stable grasp is that it is trained by demonstration

112
Chapter 6. In-hand object localization using vision: bi-manual
handover

TABLE 6.1: Success percentage of the handover task for each
object and for different poses, in absence of grasp stabiliza-

tion. Compare with Table 6.3.

Object Pose Success Pose Success

Sugar box Lateral 50% Top 50%
Chocolate box Lateral 60% Top 50%
Mustard box Lateral 40% Bottom 30%
Chips tube Lateral 30%
Little cup Lateral 20%

and, to a certain extent, implicitly takes into account the distribution of the
weight in the objects.

Point cloud filtering

During filtering process we make use of the coarse and the hand filter with
RGB coding, r = 0.001 and µ = 25. Fig. 6.13 shows the point clouds after
the coarse filter, on the top, and after the hand filter, on the bottom, for all
the objects.

Although we obtain good results with the hand filter, this is a heuristic
approach. The main weak point of the method arises when it is applied to
grayish objects (see gray portions of Sugar box and Chips tube of Fig. 6.13).
In these cases in fact, the point cloud saturation is not informative enough
for distinguishing among the points belonging to the object or to the robot
hand. A discussion on how we could eventually deal with grayish objects
is presented in Section 6.3.

In-hand localization

We select a subset of 100 points (i.e. L = 100) of the filtered point clouds for
the localization step. The object models in the estimated pose overlapped
to the corresponding point clouds are collected in Fig. 6.14. The average
MUPF execution time for each object is approximately 45 [s].

6.2. Results 113

FIGURE 6.13: An example of filtered point clouds after the
coarse filter, on the top, and after the hand filter, on the bot-
tom. The blue dots represent the final selected points. The
hand is correctly removed from the point clouds of all the ob-
jects. Sugar box and Chips tube are examples of objects with
grayish surface portions. Coherently with the filter behavior,
those parts are discarded together with the robot hand. Nev-
ertheless, the filtered point cloud is still representative of the

object for the localization algorithm.

FIGURE 6.14: An example of estimated object poses for all
the objects. Each mesh model is overlapped to the relative

point cloud.

114
Chapter 6. In-hand object localization using vision: bi-manual
handover

TABLE 6.2: Computation time for pose selection step.

Object Computation time [s] Object Computation time [s]

Sugar box 3.10 Choc. box 3.10
Mustard box 3.10 Chips tube 9.45
Little cup 7.02

FIGURE 6.15: Some example of grasping pose selection re-
sults for the set of objects. Each images shows the pose an-
notated on the object model in the estimated pose. The poses
are labeled with numbers, which are colored according to the
pose score, ranging from red for the worst pose up to green

for the selected pose.

Pose selection

Fig. 6.15 shows the results obtained with our pose selection approach.
For each object, the N candidates are overlapped on the camera image
according to the estimated pose. The poses are labeled with numbers.
Each number j is colored according to its score in the ranking, ranging
from red (worst pose) up to bright green (best pose). The selected pose is
indicated with a blue square. Table 6.2 collects the execution time required
by the pose selection process.

The tests demonstrate the effectiveness of our approach since the best
poses are located on the surfaces farther from the first hand and are better
reachable by the second hand with two-arms movements. For example, in
the bottom left image of Fig. 6.15, poses no. 0, 1, 6 and 7 have distances
larger from the first hand. However, only poses no. 1 and 6 (colored in
green) can be selected because they can be reached with a better joints

6.2. Results 115

configuration of the robot arms.

Pipeline reliability

We executed 10 trials for each object and for different poses. Table 6.3 re-
ports the percentage of success of the handovers (greater than 80% for the
majority of the experiments). We consider the task successfully achieved
if the object is held by the second hand without falling while the arm is
moving. Some snapshots of successful handovers are shown in Fig. 6.17.
We do not take into account the performance obtained with poses in which
the second hand is located on the top of the Mustard box, the Chips tube
and the Little cup. Due to the shape of their upper part and their slippery
surface, even very small errors in the final reached pose compromise the
success/outcome of the handover. These errors are mostly due to the er-
rors in kinematics of the robot and noise in the point cloud.

In Table 6.4, we detail the three main causes of the tests failures. First,
uninformative point clouds can be source of errors in object localization.
For instance, if only one of the 8 faces of the Sugar box or the Chocolate
box is acquired, multiple and wrong solutions of the localization algorithm
can properly fit the point clouds. The second critical issue is represented
by slippery objects, such as the Mustard box and the Chips tube. In this
case, little displacements between the desired and the reached pose can
lead to an unstable grasp and to failure. Finally, object size is crucial for
the handover success. In case the object size is comparable with the hand
dimensions, a fingers avoidance approach is necessary in order to prevent
the second hand from blocking the first hand while grasping the object.
The lack of such an avoidance approach in our method is the reason of the
low reliability of the handover task with the Little cup.

We also validated the robustness of our approach by executing the
handover with the object in different initial poses. We focused on the
Sugar and Chocolate boxes, because their shape allows significant different
grasps by the iCub hand. The other three objects can be instead grasped
mostly in the poses shown in Fig. 6.15 due to their slippery surface, their
dimensions and their shape. Fig. 6.16 shows the initial poses we took into
account for this test. In Table 6.5, we report the success rate among 10 trials

116
Chapter 6. In-hand object localization using vision: bi-manual
handover

for each different object pose. This test demonstrates that the reliability of
the handover is not affected by the initial object pose.

TABLE 6.3: Success percentage of the handover task for each
object and for different poses. We consider a handover suc-
cessfully achieved if the object is held by the second hand

without falling while the second arm is moving.

Object Pose Success Pose Success

Sugar box Lateral 90% Top 90%
Chocolate box Lateral 90% Top 100%
Mustard box Lateral 80% Bottom 80%
Chips tube Lateral 80%
Little cup Lateral 50%

TABLE 6.4: Main causes of handover failures.

Object Pose Failure source

Sugar box Lateral Uninformative point cloud
Top Uninformative point cloud

Chocolate box Lateral Uninformative point cloud
Top None

Mustard box Lateral Slippery object surface
Bottom Slippery object surface

Chips tube Lateral Slippery object surface
Little cup Lateral Fingers overlapping

6.3 Discussion

Hereafter we summarize the pipeline for the handover task designed by
integrating various modules that make use of visual and tactile feedback,
namely:

6.3. Discussion 117

(a) (b) (c)

(d) (e) (f)

FIGURE 6.16: Different initial poses of the object in the first
hand used for stressing our approach and testing its robust-

ness.

FIGURE 6.17: Examples of successful handovers.

118
Chapter 6. In-hand object localization using vision: bi-manual
handover

TABLE 6.5: Success percentage of the handover task for
Sugar and Chocolate box for different initial poses, enumer-
ated as shown in Fig. 6.16. We consider a handover suc-
cessfully achieved if the object is held by the second hand

without falling while the second arm is moving.

Object Initial Pose Success Object Initial Pose Success

Sugar box (a) 90% Choc. box (d) 90%
Sugar box (b) 80% Choc. box (e) 100%
Sugar box (c) 100% Choc. box (f) 90%

• a grasp controller, stabilizing the object in the robot hand using tactile
feedback;

• a point cloud filter, extracting 3D points lying on the object surface
from the closest blob in the robot view;

• an object localizer, the Memory Unscented Particle Filter, capable of
reliably estimating the object in-hand pose by using the 3D points
coming from vision;

• a pose selection strategy, which chooses the best pose for performing
the handover by maximizing the distance between the first and the
second hand and the manipulability index of a two-arms kinematic
chain.

We evaluated our method experimentally with the iCub humanoid robot,
showing that it provides a success percentage between 80% to 100% for
4 objects of the YCB Object & Model Set, different in shape, texture and
dimensions.

The pipeline design and the experimental evaluation we carried out
suggest perspectives for future work. One of the limitations of this work
is that it makes use of a saturation filter to separate the hand from the ob-
ject. This approach may fail when the object and the hand have similar
color distributions (specifically, low saturation). To overcome this limita-
tion, we could rely on an accurate kinematic model of the hand or hand
tracking techniques [209]. In the particular case of the iCub hand, such

6.3. Discussion 119

an approach could allow performing the removal of the robot hand also
from point clouds of grayish objects. In some cases, the robot had only a
partial view of the object, which correspond to an ambiguous point cloud
and wrong localizations. If the positions of the hand is known with high
accuracy, this can be fixed by considering the localization coming from the
fingers in touch with the object. Another extension consists in recognizing
the object autonomously. This could be done using techniques from com-
puter vision [210] or by fitting object models on the point cloud acquired
from the cameras and the contact points between the fingers and the ob-
jects [200]. A more advanced strategy for collisions detection between the
first and second hand could help in case of handovers of small objects. For
instance, instead of considering only the distance between the positions
of the first and the second hand, a better strategy could be to model the
hands with enveloping boxes, properly chosen to approximate shape of
the robot hand. As we already mentioned at the beginning of this Chap-
ter, the handover could be executed with the aim of re-grasp. Given the
desired object in-hand pose pd for executing a specific task with the sec-
ond hand, the pose for the second hand could be chosen also taking into
account the similarity of the pose candidates with respect to pd. For ex-
ample, in the scenario shown in Fig. 6.16(c), our pose selection criteria se-
lects the pose candidate located on the shortest side of the object and with
maximum distance with respect to the first hand. However, if the desired
pose pd is instead located on the top longest side2, this information could
be added as new constraint in our pose selection approach. The best pose
could be selected as the pose candidate more similar to the desired one, but
still with maximum manipulability index and the distance with respect to
the first hand in order to guarantee the safe execution of the task. Finally,
the handover pipeline could be extended to deal with unknown objects by
relying on the methodology that will be presented in Chapter 7, in that it
provides an approach to reconstruct the object model from a partial point
cloud and annotate grasping poses on it.

2Grasping the object shown in 6.16(c) on the top longest side is the best choice if the
final goal is to place it in vertical pose and not up-side down on a table.

121

Part IV

Dealing with unknown objects:
modeling and grasping with

superquadrics

123

Chapter 7

Superquadric object modeling
and grasping

In the previous parts of this Thesis work, we made the assumption to
know the model of the object to localize or manipulate. In addition, we
a priori annotated the object models with grasp candidates for perform-
ing manipulation tasks, such as bi-manual handover. Both these assump-
tions are often impractical for real-world applications. Moreover, the object
models we made use of are CAD1 models, consisting of triangular faces.
CAD models are very expressive but they require proper libraries for effi-
cient computation and the memorization of a large number of parameters,
i.e. the mesh vertices and edges.

For these reasons, we decided to address the problem of modeling and
grasping unknown objects. Even if high performance can be achieved in
manipulation in terms of speed, precision and reliability, if a very accu-
rate knowledge of the objects is provided, grasping of unknown objects or
whose pose is uncertain is still an open problem.

In this Chapter we propose a novel method for computing in real-
time both object models and grasping pose candidates starting from par-
tial point clouds. Instead of using CAD models, our approach rely on su-
perquadric functions. Superquadrics provide a mathematical representation
which is compact in the number of parameters and has beneficial proper-
ties for efficient computation. Although superquadrics have already been
used for this purpose [112, 113, 114, 115, 116], our approach differs from
previous works in that it makes use of superquadrics also for representing
the volume graspable by the robot hand and relies on this information for
the computation of a feasible grasping pose. Very often superquadrics are

1Computer-Aided Design.

124 Chapter 7. Superquadric object modeling and grasping

just used for the modeling and grasp candidates are computed using sim-
ulators [112, 113, 114] or simple geometric considerations [116] and then
ranked according to their reachability. Our approach instead computes a
unique feasible grasping pose for the object of interest.

The Chapter is organized as follows. In Section 7.1 and 7.2 we explain
respectively the modeling process and the grasping pose computation.
Sections 7.3 and 7.4 show two extra features that complete the proposed
modeling and grasping pipeline, summarized in Section 7.5. In Section 7.6
we carefully analyze the performance of the proposed method. Finally, in
Section 7.7 we provide some discussion about the method and suggestions
for future work.

7.1 Superquadric modeling

Superquadric functions have been introduced in computer graphics by
A.H. Barr in 1981 [100]. They are an extension of quadric surfaces and
can be distinguished in supertoroids, superhyperboloids and superellipsoids.
Superellipsoids are most commonly used in object modeling because they
define closed surfaces. Examples of elementary objects that can be repre-
sented with superellipsoids are depicted in Fig 7.1.

The best way to define a superellipsoid – which we will call simply
superquadric from now on – in an object-centered coordinate system is the
inside-outside function:

F(x, y, z, λ) =

((
x

λ1

) 2
λ5

+

(
y

λ2

) 2
λ5

) λ5
λ4

+

(
z

λ3

) 2
λ4

. (7.1)

As shown in Eq. (7.1) a superquadric is identified by only five parameters
λ = [λ1, . . . , λ5], three accounting for dimensions [λ1, . . . , λ3] and two for
the shape [λ4, λ5]. Fig. 7.2 shows how the exponents [λ4, λ5] affects the
shape of the superquadric. Here are the exponent values for some basic
shapes:

• ellipsoids: λ4 = λ5 = 1 ;

• parallelepipeds: λ4 → 0 and λ5 → 0;

• cylinders: λ4 = 1 and λ5 → 0.

7.1. Superquadric modeling 125

FIGURE 7.1: Superquadric functions can represent several
simple objects, ranging from boxes (on the right) to octae-

druses (on the left).

3

2

1

0.5

0.1

0.1 0.5 1 2 3
5

4

FIGURE 7.2: Examples of superquadrics with different values
of the parameters λ4, λ5.

In particular, if both λ4 and λ5 are smaller than 2, the superquadric has a
convex shape. From now on we will always assume 0 < λ4, λ5 < 2, since
convexity is a convenient property for optimization.

Before we referred to Eq. 7.1 as inside-outside function. This is because
it provides a simple test whether a given point lies inside or outside the
superquadric:

126 Chapter 7. Superquadric object modeling and grasping

• F < 1, the given point (x, y, z) is inside the superquadric;

• if F = 1 the corresponding point lies on the surface of the su-
perquadric;

• and if F > 1 the point lies outside the superquadric.

Furthermore, the inside-outside description can be expressed in a
generic coordinate system by adding six further variables, representing the
superquadric pose (three for translation and three Euler angles for orien-
tation), with a total of eleven independent variables, i.e. λ = [λ1, . . . , λ11].
We choose the RPY (roll-pitch-yaw) notation for the Euler angles.

7.1.1 Object modeling

The superquadricOwhich best represents the object to be grasped is recon-
structed from a single, partial 3D point cloud, acquired by a stereo vision
system. The most popular method of superquadric reconstruction from 3D
points was formerly proposed by Solina in 1990 [102]. The goal of object
modeling via superquadrics consists of finding those values of the param-
eters vector λ ∈ R11, so that most of the N 3-D points si = [xi, yi, zi] for
i = 1, . . . , N, acquired by means of the stereo vision system, lie on or close
to the superquadric surface. The minimization of the algebraic distance
from points to the model can be solved by defining a least-squares mini-
mization problem:

min
λ

N

∑
i=1

(√
λ1λ2λ3 (F(si, λ)− 1)

)2
, (7.2)

where (F(si, λ)− 1)2 imposes the point-superquadric distance minimiza-
tion, whereas the term λ1λ2λ3, which is proportional to the superquadric
volume, compensates for the fact that the previous equation is biased to-
wards larger superquadric.

The generic formulation of superquadrics allows for object modeling by
solving a single optimization problem (Eq. (7.2)), without requiring a-priori
information or making assumptions about the object shape.

In the literature Eq. (7.2) is usually solved via Levenberg-
Marquardt [211]. We use instead a nonlinear constrained optimization

7.2. Grasp pose computation 127

method implemented through the Ipopt software package [207].

7.1.2 Hand modeling

FIGURE 7.3: The volume graspable by the hand is repre-
sented as the ellipsoid H attached to the hand. The right

hand of the robot iCub is represented by the CAD model

A fictitious superquadric model is exploited to represent the volume
graspable by the hand. The shape and pose of such superquadric are cho-
sen by considering the anthropomorphic shape of the robot hand and its
grasping capabilities. A suitable shape for this purpose turns out to be the
ellipsoidH attached to the hand palm, as shown in Fig. 7.3.

7.2 Grasp pose computation

The solution of the grasping problem consists of a feasible pose of the robot
hand, which allows grabbing the object under consideration. The hand
pose can be represented with a 6D vector:

x = [xh, yh, zh, φh, θh, ψh], (7.3)

128 Chapter 7. Superquadric object modeling and grasping

where (xh, yh, zh) are the coordinates of the origin of the hand frame and
(φh, θh, ψh) are the RPY Euler angles, accounting for orientation.

The basic idea of our approach is to compute the solution by looking
for a pose x that makes the hand ellipsoid H overlap with the object su-
perquadricOwhile meeting a set of requirements that guarantee x is reach-
able by the robot hand.

The general formulation we propose can be described by the following
nonlinear constrained optimization:

min
x

L

∑
i=1

(√
λ1λ2λ3 (F(px

i , λ)− 1)
)2

,

subject to:

hi(ai, fi(px
1, . . . , px

L)) > 0,

f or i = 1, . . . , M + K.

(7.4)

At this regard, it is worth pointing out how such a problem could not be
solved with the Levenberg-Marquardt algorithm that is instead designed
for dealing with unconstrained optimization problems.

An example of superquadric model and grasping pose computed with
our approach is shown in Fig. 7.4. In the next Paragraphs, we report on the
meaning of all the mathematical quantities contained in Eq. (7.4).

-0.45

x
-0.35

-0.05

y

0z

-0.25

0.05

-0.15

FIGURE 7.4: An example of object modeling and grasp pose
computation with our approach for a box located vertically

on a table.

7.2. Grasp pose computation 129

(a)

-0.15

-0.1

-0.1

-0.05

z
[m

]

y [m]

0

x [m]
-0.05 -0.35

(b)

FIGURE 7.5: In Fig. (a), the reference frame (xh, yh, zh) at-
tached to the robot hand in RGB convention (xh is coloured
in red, yh in green, zh in blue). In Fig (b): the L points sam-
pled on the closest half of the hand ellipsoid H. The RGB
frame represents the hand pose, showing how the ellipsoid

H is attached to the hand.

7.2.1 Grasping avoiding object penetration

The cost function in Eq. (7.4) imposes the minimization of the distance be-
tween:

• the object superquadricO, represented by the inside-outside function
(F(·, λ)− 1),

• and L points px
i =

[
px

x,i, px
y,i, px

z,i

]
for i = 1, . . . , L, sampled on the

surface of the hand ellipsoidH, whose pose is given by vector x.

More precisely, the L points lie on the closest half of the ellipsoid H to
the hand (Fig. 7.5(b)). This design choice hinders the robot hand from
penetrating the object. In fact, if the points were uniformly sampled on
the entire H surface, the point-superquadric distance minimization could
place the ellipsoid H in the center of the object superquadric O and, con-
sequently, lead to the object penetration by the hand, in case O is bigger
than H (Fig. 7.6(a)). By contrast, our choice avoids this scenario. The
asymmetric distribution of the L points makes the distance minimization

130 Chapter 7. Superquadric object modeling and grasping

?QA?QA

(a) (b)

FIGURE 7.6: If the points are uniformly sampled on the el-
lipsoid H (i.e. the smallest ellipsoid in the plot), the mini-
mum distance between the points and the object surface can
be achieved by placing H in the centroid of the object su-
perquadricO. In case (a)O is bigger thanH, leading to object
penetration (the frame attached to the robot palm is inside
the object superquadric O). On the other hand, if the points
are sampled only on a portion of H surface as shown in case
(b), the distance minimization is achieved only by placing the
H surface (and then the hand frame) near the surface of O.

possible only if the portion of theH surface under consideration lies closer
to the O surface, thus avoiding object penetration with the robot hand
(Fig. 7.6(b)). The cost function we introduce is similar to the one exploited
for object model reconstruction in Eq. (7.2), although the optimization
variable in Eq. (7.4) is given by the hand pose x (in the coordinates of the
L points px

i), instead of the vector of superquadric parameters λ, that is
given by the object model.

7.2.2 Obstacle avoidance

The use of superquadrics and implicit functions helps us define avoidance
tasks. If the implicit functions modeling M obstacles under consideration
are given, obstacle avoidance can be taken into account by imposing M
constraints in the form of (7.4). Each term hi(ai, ·), for i = 1, . . . , M, is the
implicit function representing the i-th obstacle, such as a support on which

7.2. Grasp pose computation 131

the object stands. Each vector ai consists of the parameters of the i-th im-
plicit function and each fi(px

1, . . . , px
L) accounts for a generic dependency

on the L points px
i . The formulation displayed in Eq. (7.4) is general and

can be modified according to the problem we aim to address.
In our case, the only obstacle is the table on which the object is located,

hence M = 1 in Eq. (7.4). For the sake of simplicity, we refer to h1(a1, f1(·))
as h(a, f (·)). The table is modeled as a plane, whose implicit function is
thus linear and given by:

h(a, x, y, z) = a1 x + a2 y + a3 z + a4, (7.5)

with (x, y, z) a generic point.
We then define the function f (px

1, . . . , px
L) as follows. Let

(
xp, yp, zp

)
be

-0.19

z
[m

]

-0.05-0.35

y [m]x [m]

-0.09

-0.15-0.25

FIGURE 7.7: The frame in RGB convention represents the
plane frame (xp, yp, zp). The zp axis is parallel to the plane
normal and it is positive in the space region where the object

stands.

the reference system anchored to the plane to be avoided. Let zp be aligned
with the plane normal and positive in the space region where the object
lies (Fig. 7.7). We call px

i,p = [px
xp,i, px

yp,i, px
zp,i] for i = 1, . . . , L the points

expressed in the plane reference system
(
xp, yp, zp

)
. Table avoidance can

be achieved by forcing p̄x
p, the point with the smallest zp-coordinate in the

plane frame, to lie in the region above the plane representing the table.

132 Chapter 7. Superquadric object modeling and grasping

Thus, the constraint of Eq. (7.4) can be expressed as follows:

a p̄x
xp + b p̄x

yp + c p̄x
zp + d > 0,

with (p̄x
xp , p̄x

yp , p̄x
zp) = arg min

px
zp ,i

px
i,p. (7.6)

7.2.3 Specifications on pose reachability

An additional advantage of our formulation is the possibility of imposing
specifications on the robot pose, by adding further constraints to the opti-
mization problem. This is fundamental for the computation of poses that
can be actually reached by the robot. In fact, our formulation does not take
into account the robot kinematic and, thus, requires to explicitly impose
the final hand pose to belong to the robot workspace.

The coordinates of the hand position (xh, yh, zh) can be bounded with
proper lower and upper values representative of the robot workspace:

xh,l < xh < xh,u

yh,l < yh < yh,u

zh,l < zh < zh,u.

(7.7)

Specifications on the orientation can be instead formulated with additional
K constraints, by defining suitable hi(ai, ·) and fi(px

1, . . . , px
L) functions for

i = 1, · · · , K and increasing the total number of constraints of Eq. (7.4) up
to M + K.

At this aim, the orientation of the current hand pose x is expressed by
means of the x−, y−, z−axes (xh

x, yh
x, zh

x). We formulate K = 3 con-
straints, one for each axis2:

hx(ax, xx
h) > 0,

hy(ay, yx
h) > 0,

hz(az, zx
h) > 0.

(7.8)

2In this formulation, instead of using a function of the points sampled on the hand
ellipsoid (px

1 , . . . , px
L), we directly exploit the hand reference frame axis (xh

x, yh
x, zh

x).
Therefore, it is more accurate to say that the orientation constraints are expressed in terms
of hi(ai, f (x)) , instead of hi(ai, f (px

1 , . . . , px
L)), since the axes (xh

x, yh
x, zh

x) are directly
computed from the hand pose x.

7.2. Grasp pose computation 133

FIGURE 7.8: Cones identifying subregions of the space where
hand reference frame axes (xh, yh, zh) can range to identify
feasible orientations. Each cone is featured by an axis d and
an aperture α. The axes dx, dy, dz are expressed in the root
reference frame (xroot, yroot, zroot). The cone apertures and
axes of this image are just an example and do not represent

the real quantities.

hx(ax, ·), hy(ay, ·) and hz(az, ·) are the implicit functions of three different
cones representing subregions of the space where each axis (xx

h, yx
h, zx

h) can
range to identify feasible orientations (see Fig. 7.8). The parameters ax,ay

and az include the axis d and aperture α of each cone.
We recall that the implicit function of a cone evaluated in a generic point

P (Fig. 7.9) is given by:

h(d, α, p) = d · p− ‖d‖ ‖p‖ cos α, (7.9)

where p = ~OP is the vector connecting the vertex of the cone O with the
generic point P and the operator · stands for the dot product between vec-
tors. According to the value of h(d, α, p) we can assert that:

• the point P lays inside the cone if h(d, α, p) > 0 (Fig. 7.9(a));

• the point P lays on the cone surface if h(d, α, p) = 0 (Fig. 7.9(b));

• the point P lays outside the cone if h(d, α, p) < 0 (Fig. 7.9(c)).

134 Chapter 7. Superquadric object modeling and grasping

(a)

(b)

(c)

FIGURE 7.9: Examples of possible positions of a point P with
respect to a cone with axis d and aperture α.

7.2. Grasp pose computation 135

Combining Eq. (7.8) ad (7.9), we force the axes (xh, yh, zh) to belong to
the corresponding cones by imposing:

h(dx, αx, xx
h) = dxh · x

x
h − cos(αxh) > 0,

h(dy, αy, yx
h) = dyh · y

x
h − cos(αyh) > 0,

h(dz, αz, zx
h) = dzh · z

x
h − cos(αzh) > 0,

(7.10)

where both the cone axes (dxh , dyh , dzh) and hand reference frame axes (xh,
yh, zh) have unitary norm. In practice, Eq. (7.10) imposes the extremes of
the hand axes Xh, Yh, Zh - such that xh = ~OXh, yh = ~OYh, zh = ~OZh - to lay
inside the desired cones (Fig. 7.8).

The orientation constraints are general and can be adapted for the com-
putation of grasping poses for different robots by specifying proper cone
axes and apertures (d, α). The cone parameters can also be modified ac-
cording to the problem we aim to address. For instance, they could be
used to impose the grasp type, e.g. side or top grasp, for accomplishing
specific manipulation tasks.

7.2.4 Lifting objects

The theoretical formulation we presented thus far does not take into ac-
count dynamic constraints to let the robot actually lift the object. As an
initial approximation, the robot can physically lift an object if it places its
hand in proximity of the object geometric centroid (the object is assumed to
have a uniform density). In fact, in case the hand is located on an extremity
of the object, as in the examples illustrated in Fig. 7.10(c) and 7.10(d), the
probability that the object may fall while it is lifted is large. A possible solu-
tion could be adding a constraint to Eq. (7.4) to require the minimization of
the distance between the centroid of O and the ellipsoid H. However, in-
stead of a further constraint that might cause the overall execution time to
eventually increase, we can alternatively vary the dimensions ofH. Specif-
ically, when the largest dimension of the object superquadric O (say λ3) is
greater than the corresponding dimension of the ellipsoidH, (say λh,3, thus
λ3 > λh,3), then we resizeH, so that λh,3 = λ3. In this way, the dimensions
ofH and O implicitly impose a constraint on the reciprocal position of the
centroids of the two entities. A practical proof of the effectiveness of this
approach is provided in Fig. 7.10. If the ellipsoid H is stretched so as to

136 Chapter 7. Superquadric object modeling and grasping

-0.35

x [m]

-0.2

y [m]

-0.1

-0.15

-0.3

-0.1

z
[m

]

-0.05

0

(a)

-0.35

x [m]

-0.2

y [m]

-0.15

-0.1 -0.3

-0.1

z
[m

]

-0.05

0

(b)

-0.35

x [m]

-0.2

y [m]

-0.1

-0.15

-0.3

-0.1

z
[m

]

-0.05

0

(c)

-0.35

x [m]

-0.2

y [m]

-0.1

-0.15

-0.3

z
[m

] -0.1

-0.05

0

(d)

FIGURE 7.10: Stretching the ellipsoid H so as to amount the
longest dimension of the object superquadric O leads to a
grasping pose that eventually enables lifting the object, case
(a), without imposing additional constraints in Eq. (7.4). If a
smaller H was exploited, more solutions were acceptable for
the optimization problem, including some poses that do not
allow the robot to lift the object properly, such as case (c) and

(d).

amount the longest dimension of the object superquadric O (Fig. 7.10(a)),
the centroid ofH in the computed pose is close to the centroid of O.

7.2.5 Real-time computation and execution

The optimization problem we propose for the computation of proper
grasping pose is solved by the Ipopt package efficiently and with execution

7.3. Using prior on object shape for modeling 137

times compatible with the requirements of real-time applications (see Table
7.1 in Section 7.6.1). Even if the global solution of a non-linear constrained
optimization problem is not generally guaranteed, Ipopt package ensures
that a local minimizer is provided to the user.

Finally, the Cartesian controller available on the iCub [185] is responsi-
ble for providing suitable joint trajectories to reach for the grasping pose
found by our method.

7.3 Using prior on object shape for modeling

Our superquadric modeling approach processes a 3D partial point cloud
of the object. In order to extract the point cloud of the object of interest,
we make use of the recognition system described in [212], a segmentation
module [213, 214] and module reconstructing depth information [204] (see
Appendix A for more details).

As we use a recognition system for extracting the point cloud, we there-
fore are automatically provided with some information on the object shape
that can be useful for the modeling step. Even if our approach does not re-
quire any prior on object shape, we decided to encode this information to as-
sist the superquadric modeling process, with the final goal of making the
model more accurate (as it will be shown in Section 7.6.3).

Recall that object modeling consists in estimating the parameters vec-
tor λ ∈ R11 of a superquadric function through the optimization problem
of Eq. (7.1). A useful information to facilitate the optimization is to prop-
erly set the lower λl ∈ R11 and upper bounds λu ∈ R11 of the variables
to be estimated λ ∈ R11. Reasonable bounds for the object dimensions
(λ1, λ2, λ3) and position (λ6, λ7, λ8) can be extracted respectively from the
volume occupancy and the centroid of the 3D point cloud.

We can instead obtain proper bounds on the superquadric exponents
(λ4, λ5), if the object is similar to shape primitives, such as cylinders, par-
allelepipeds and spheres. Each shape is in fact identified by a specific cou-
ple (λ4, λ5) in the superquadric representation: (λ4, λ5)cyl = (1.0, 0.1) for
cylinders, (λ4, λ5)par = (0.1, 0.1) for parallelepipeds and (λ4, λ5)sph = (1.0,
1.0) for spheres (Fig. 7.11). Thus, we can use different lower and upper
bounds for the superquadric exponents according to the shape primitive

138 Chapter 7. Superquadric object modeling and grasping

 FIGURE 7.11: How superquadric shapes change according to
λ4 and λ5 values. We are interested only in convex objects,
thus λ4,min = λ5,min > 0.0 λ4,max = λ5,max < 2.0. For avoid-
ing difficulties with singularities we use the further bounds
λ4,min = λ5,min = 0.1 [102]. In this work we take into ac-
count the object shapes highlighted with blue frames. The
sharp-cornered shape of parallelepiped and cylinder shapes

are caused by λ4 = 0.1.

of the object. The bounds can be expressed as:

(λ4, λ5)l,shape = (λ4, λ5)shape − (∆l,4, ∆l,5)

(λ4, λ5)u,shape = (λ4, λ5)shape + (∆u,4, ∆u,5),
(7.11)

where the label shape stands for one of the shape primitives. The bounds
shown in Eq. (7.11) force the superquadric shape to be similar to one of the
shape primitives.

The (∆l,4, ∆l,5) and (∆u,4, ∆u,5) values are positive numbers introduced
in order to deal with the noise affecting the point cloud. In fact, an ob-
ject point cloud might be better represented by a superquadric with softer

7.3. Using prior on object shape for modeling 139

edges due to its noise. Fig. 7.12 shows an example of this phenomenon
while modeling a box. The noisy point of the box cloud is represented with
dots with the original color of the object and we provide two examples of
reconstructed superquadrics. In Fig. 7.12(a), we force the superquadric to
be a sharp-cornered parallelepiped, i.e. ∆l,4 = ∆u,4 = ∆l,5 = ∆u,5 = 0.0
and, thus, (λ4, λ5) = (0.1, 0.1). In this case, the optimization problem of
Eq. (7.2) estimates only 9 parameters (instead of 11), since λ4 and λ5 are
fixed. However, a sharp-cornered shape is not the best one for the point
cloud of interest. For this reason, the solution of the optimization prob-
lem does not correctly fit the point cloud and provides wrong dimensions
for the object. If we instead set ∆u,4 = ∆u,5 > 0 and ∆l,4 = ∆l,5 > 0, the
optimization problem has to estimate also λ4 and λ5, since they can range
in a non-zero interval. This allows properly fitting the point cloud with a
superquadric with softer edges, i.e. (λ4, λ5) > (0.1, 0.1), as result of the op-
timization problem (Fig. 7.12(b)). It’s important to highlight how actually
also the solution λ4 ' λ5 ' 0.1 can be provided by ∆u,4 = ∆u,5 > 0 and
∆l,4 = ∆l,5 > 0 if this is the shape best fitting the object point cloud (Fig.
7.13).

Next Paragraph reports how we properly trained the system so as to be
able to classify the object to be grasped according to its similarity to primary
shapes.

7.3.1 Object classifier

Object classification is formulated as a categorization problem and is
achieved by taking advantage of the recognition system described in
[212]. We employ the implementation currently in use on the iCub robot3

and, specifically, we adopt the ResNet-50 Convolutional Neural Network
model [215], trained on the ImageNet Large-Scale Visual Recognition Chal-
lenge [216] and available in the Caffe framework [217]4, as a feature ex-
tractor. A rectangular region around the object of interest is cropped from
the image by using an object segmentation method based on RGB infor-
mation. Each cropped image is fed to the network and encoded into a
1024-dimensional vector composed of the activations of the ’pool5’ layer.
In the considered recognition pipeline, the extracted vector representations

3https://github.com/robotology/himrep.
4https://github.com/KaimingHe/deep-residual-networks.

140 Chapter 7. Superquadric object modeling and grasping

(a) (b)

FIGURE 7.12: Two examples of superquadric models over-
lapped to the acquired object point cloud. Fig. (a) shows
the superquadric modeling the object obtained by setting
∆l,4 = ∆u,4 = ∆l,5 = ∆u,5 = 0.0. Consequentely, (λ4, λ5) are
fixed equal to (0.1, 0.1) and they are not estimated by the opti-
mization problem. Fig. (b) shows the superquadric modeling
the object by setting ∆l,4 = ∆l,5 = 0.0 and ∆u,4 = ∆u,5 = 0.4.
In this case, λ4 and λ5 are computed by solving the opti-
mization problem and corresponds to (0.25, 0.25). The su-
perquadric with softer edges shown in Fig. (b) better fits the

noisy object point cloud.

FIGURE 7.13: An example of superquadric modeling an ob-
ject and reconstructed by using (λ4, λ5) = (0.1, 0.1), ∆u,4 =
∆u,5 > 0 and ∆l,4 = ∆l,5 > 0. The estimated value of

λ4, λ5=(0.15, 0.13).

7.4. Best hand selection 141

are fed to a multiclass Support Vector Machine (SVM), which is trained to
categorize the objects according to their shape.

The training is performed on the fly in a supervised manner: a human
teacher shows a number of example objects to the robot, whose labels rep-
resent their shape categories. Fig. 7.14 depicts the objects used to train the
system on the three shapes under consideration. At test time, the object
is assigned to the class with maximum score produced by the SVM clas-
sifier, if this is above a certain threshold (set empirically), otherwise it is
considered a generic object. Importantly, the objects used for the graping
experiments are not part of the training set, i.e., they are fully novel when
presented to the robot.

FIGURE 7.14: Training set: 8 parallelepipeds, 8 cylinders and
8 spheres belonging to the YCB dataset and the iCub world

dataset [210].

7.4 Best hand selection

In case of robots equipped with two hands - as it holds for the iCub- com-
puting grasping poses for both the end-effectors helps enlarge the dexter-
ous workspace and, ultimately, the grasping capabilities. However, the
increased redundancy brings about a further complexity due to the need
for conceiving a principled way to determine which is the best hand to be
used for accomplishing the grasp. Depending on the object, in fact, the
robot can perform better grasps either with the right or with the left hand,
alternatively.

142 Chapter 7. Superquadric object modeling and grasping

The method described in Section 7.2 can be applied both on the right
and left hand. What is still missing thus far is an automatic way for se-
lecting the hand to be used given pose candidates for the right and the left
hand. At this aim, we propose to rely on the following cost:

Chand = w1Fhand + w2 Ep,hand + w3Eo,hand, (7.12)

that is inversely proportional to the pose quality. In other words, a lower
cost Chand stands for a better pose. The cost of Eq. (7.12) takes into account:

• The cost function of Eq. (7.4) evaluated in the computed grasping
pose xhand,

Fhand =

L

∑
i=1

(√
λ1λ2λ3 (F(px

i , λ)− 1)
)2∣∣∣

x=xhand
.

(7.13)

The higher Fhand, the worse the overlapping between the hand ellip-
soid and the object superquadric and, thus, the pose are. An example
is shown in Fig. 7.15.

• Ep,hand, the accuracy in reaching the desired position pd =

[xh, yh, zh]hand
5. Let p̂ be the position actually reachable by the robot,

the accuracy in position is obtained as follows:

Ep,hand = ‖pd − p̂‖ . (7.14)

• Eo,hand, that analogously represents the accuracy in reaching the de-
sired orientation od = [θh, φh, ψh]hand. The orientation error is com-
puted according to the procedure explained in [218], that is hereafter
summarized. Let Rd and R̂ respectively be the rotation matrices rep-
resenting the desired orientation of the hand and the one actually
reachable by the robot. The matrix representing the error in orienta-
tion is given by:

Rerror = Rd · R̂T. (7.15)

If we use the equivalent axis-angle representation (aerror, αerror) to ex-
press the information encoded in Rerror, the accuracy in reaching the

5Recall that xhand = [xh, yh, zh, θh, φh, ψh]hand.

7.4. Best hand selection 143

FIGURE 7.15: Example of object graspable only by the left
hand. The poses and the ellipsoids shown on the left and on
the right are respectively for the left and the right hand. The
object is located out of the right hand reachable workspace.
For this reason, the optimization problem is not able to find a
solution where the right ellipsoid is overlapped on the object

model. In this case we obtain Ff ,le f t < Ff ,right.

desired orientation can be computed as:

Eo,hand = ‖(aerror)‖ · sin (αerror). (7.16)

The three terms of the cost Chand are combined together with proper
positive weights w1, w2 and w3 to make the quantities comparable.

In summary, once pose candidates are computed for the right and
the left hand, we evaluate the costs Cright and Cle f t. The hand cho-
sen for grasping the object is the one providing the minimum cost, i.e.
arg min(Cright, Cle f t). In case both the pose candidates are both suitable for
grasping the object, the costs Cright and Cle f t might be very similar to each
other. Even in this case, our approach chooses the hand whose pose cost is
minimum, as shown in Fig 7.16.

144 Chapter 7. Superquadric object modeling and grasping

FIGURE 7.16: Example of grasping candidates with similar
costs Cright and Cle f t.

7.5 Final modeling and grasping pipeline

The modeling and grasping methods described respectively in Section 7.1
and 7.2 are the core part of a complete pipeline for executing the grasping
task on the iCub humanoid robot (Fig. 7.17). The pipeline steps are the
following:

1. A rectangular crop of the image is extracted from the camera images.
The categorization system classifies the cropped image according to
its similarity to shape primitives. We take into account three possible
shapes: cylinder, parallelepiped and sphere. All those objects that
cannot be well represented with a shape primitive are threated as
generic objects.

2. The object segmentation is used for extracting the relative 3D point
cloud from stereo vision.

3. The modeling approach computes the superquadric that better fits
into the object 3D points.

4. Our grasping approach finds a pose candidate for the right and left
hand by solving Eq. (7.4) and the pose costs Cright and Cle f t are eval-
uated.

5. The hand with minimum cost value is chosen for grasping the object

hand = arg min(Cright, Cle f t). (7.17)

7.6. Evaluation 145

3

4 5

FIGURE 7.17: The complete modeling and grasping pipeline.
The gray background of steps 4 and 5 represents the table on

which the object is located, that is modeled as a plane.

6. The robot uses the selected hand to reach for the grasping pose. Once
the final pose is reached, the robot close the fingers until a contact
is detected by the tactile sensors mounted on the fingertips. Then,
the tactile feedback on the fingertips is used continuosly to achieve a
stable grasp of the object [219] and the robot lifts the object.

7.6 Evaluation

In this Section, we report the analysis we performed in order to evaluate
the superquadric modeling and grasping pipeline proposed in this Chap-
ter.

We implemented on the iCub humanoid robot the pipeline shown in
Fig. 7.17. Our implementation of superquadric modeling6 so as grasp pose
computation7 is publicly available on GitHub and detailed in Appendix A.

6https://github.com/robotology/superquadric-model, DOI:10.5281/zenodo.262995.
7https://github.com/robotology/superquadric-grasp, DOI:10.5281/zenodo.263015.

https://github.com/robotology/superquadric-model
https://github.com/robotology/superquadric-grasp

146 Chapter 7. Superquadric object modeling and grasping

The dimensions of the ellipsoid we use for representing the volume
graspable by the iCub hand are related to the fingers lengths and the palm
dimensions. The ellipsoid pose in the hand frame is instead determined by
considering the fingers workspace.

The executed experiments can be summarized as follows:

• At first, we report for qualitative analysis some examples of object
models and grasping poses computed for a large set of objects gras-
pable by the iCub, together with statistics on the computation time
(Paragraph 7.6.1).

• We then test the reproducibility and robustness of the modeling and
grasping steps by performing different trials for some objects and an-
alyzing the similarity of the outcomes (Paragraph 7.6.2).

• Then, we show how the use of prior helps improve the model accu-
racy (Paragraph 7.6.3).

• Finally, we demonstrate how the use of two hands together with our
best selection approach leads to higher reliability in grasping objects
in generic poses (Paragraph 7.6.4).

7.6.1 Evaluation on multiple objects

The proposed approach has been tested on 18 objects (Fig. 7.18), including
objects of the YCB dataset [208]. The objects have been selected so as to be
graspable by the iCub: we discarded objects with slippery surfaces, that are
too large or too heavy for the robot hand and too small for being grasped
with a power grasp technique.

The quality of the estimated models and, therefore, of the pose candi-
dates strongly depend on the point cloud noise. In order to reduce such a
influence, we implemented the following expedients. First, the least square
formulation itself of Eq. (7.2) makes the model reconstruction approach
immune to white noise. Second, we reduce outliers effect on object model-
ing by pre-filtering the point clouds with the clustering algorithm Density-
Based Spatial Clustering of Applications with Noise (DBSCAN [220])8. Of
course, the use of single-view point clouds leads to rough models whose

8The C++ implementation we use is derived from the C implementation available at
https://github.com/gyaikhom/dbscan.

https://github.com/gyaikhom/dbscan

7.6. Evaluation 147

FIGURE 7.18: Object set used for testing our modeling and
grasping pipeline.

quality highly depends on the view angle during data acquisition. Fig.
from 7.19 to 7.22 show some examples of extracted point clouds, together
with the estimated superquadric models and grasping poses. In Table 7.1,
we report the average time among 10 trials required for reconstructing the
object model and computing the pose candidates. The average time re-
quired by the modeling is larger than the one reported in [221] since in the
current experiments we set the desired tolerance of the final modeling er-
ror to be an order of magnitude bigger with respect to [221]. Instead, the
average time required for the grasping poses computation is smaller than
the one shown in [90] thanks to code improvements.

148 Chapter 7. Superquadric object modeling and grasping

TABLE 7.1: Execution time for model reconstruction.

Object Modeling time [s] Grasp computation time [s]

Cylinder 0.15 0.09
Pig 0.31 0.06
Cat 0.16 0.12
Lettuce 0.18 0.26
Bear 0.12 0.12
Mustard box 0.24 0.23
Juice bottle 0.16 0.08
Sugar box 0.18 0.08
Jello box 1 0.23 0.16
Turtle 0.27 0.17
Meat can 0.18 0.05
Lego brick 0.21 0.05
Carrots 0.16 0.10
Cereal box 0.19 0.08
Jello box 2 0.24 0.06
Octopus 0.14 0.14
Dog 0.19 0.42
Ladybug 0.32 0.05

Table 7.1 indicates the average execution time across 10 trials for model
reconstruction process and grasping pose computation of each object.
Superquadric modeling is performed including prior information on
object shape and by using only 50 points uniformly sampled from the
object point clouds.

7.6. Evaluation 149

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 7.19: Some examples of superquadric models and
grasping pose candidates for the 18 objects of the test set.

150 Chapter 7. Superquadric object modeling and grasping

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 7.20: Some examples of superquadric models and
grasping pose candidates for the 18 objects of the test set.

7.6. Evaluation 151

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 7.21: Some examples of superquadric models and
grasping pose candidates for the 18 objects of the test set.

152 Chapter 7. Superquadric object modeling and grasping

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 7.22: Some examples of superquadric models and
grasping pose candidates for the 18 objects of the test set.

7.6. Evaluation 153

It is important to remark that the exploitation of 3D object models in
pose computation allows considering even those portions of the object oc-
cluded by vision, as illustrated in Fig 7.19(b) and 7.20(f), where the com-
puted poses bring the hand to touch the objects on the side and thus to
place the fingers on the back. This is a remarkable advantage, because
using only the visible portion of the object may lead to hand poses that
appear not natural from the standpoint of human-like reaching or even not
easily attainable for a humanoid robot, whose dexterity is often limited
compared with that of humans.

Another advantage of our method is that we model the base on which
the object is placed (e.g. the table), and impose constraints to avoid it in
the optimization problem (the constraint in Eq. (7.4)). This feature allows
the robot to grasp even small objects, without hitting the table with the fin-
gers, as it is the case of the objects in Fig. 7.20(b), 7.20(d) and 7.20(h) (these
objects are approximately 6 [cm] tall).

7.6.2 Robustness of the method

We select the subset of 6 objects shown in Fig. 7.23 in order to perform
experiments on the method robustness. The objects were deliberately se-
lected among the entire test set so as to be different in shape and dimen-
sions (Table 7.2).

TABLE 7.2: Object Dimensions.

Object Volume [m3] Object Volume [m3]

Cylinder 0.06× 0.06× 0.20 Ladybug 0.16× 0.08× 0.08
Cat 0.10× 0.10× 0.10 Lettuce 0.07× 0.07× 0.07
Bear 0.09× 0.09× 0.12 Turtle 0.16× 0.10× 0.06

Table 7.2 shows the dimensions of the object used in the experiments.

We compute the object models and grasping poses 10 times. The grasp-
ing poses computed for each object are compared in Fig. 7.24, where for
the sake of clarity we show only one reconstructed superquadric O for
each object, without showing the (overlapping) ellipsoidH that represents
the hand and the object point cloud. The poses computed in each trial
differ because the superquadrics that model the objects vary as a result of
variations in the object segmentation and point cloud. Nevertheless, Fig.

154 Chapter 7. Superquadric object modeling and grasping

(a) (b) (c)

(d) (e) (f)

FIGURE 7.23: Objects used for robustness evaluation.

7.24 demonstrates that the desired poses computed with different models
of the same object are affected by a small variability, thus guaranteeing a
high grade of similarity and therefore underpinning the robustness of our
method. For instance, the poses computed for object (a) are all very similar,
representing the best grasp for a cylinder shape, that is located on the side
at the middle of its height (Fig. 7.24(a)).

7.6. Evaluation 155

(a) (b)

(c) (d)

(e) (f)

FIGURE 7.24: For each object 10 poses are shown. The letters
identifying the different plots ((a) - (f)) correspond to differ-

ent objects, according to the notation of Fig. 7.23.

156 Chapter 7. Superquadric object modeling and grasping

7.6.3 The effect of prior on object shapes

In this Paragraph, our goal is to show the effect of prior information of the
object shape on the modeling output both in terms of final model quality.

FIGURE 7.25: Classification results on the test set. The objects
whose confidence is lower than a threshold for all the shape
primitives are not classified and are considered as generic ob-

jects from the superquadric modeling process.

Fig. 7.25 shows how the objects of the test set are classified using the
categorization system described in Paragraph 7.3.1. The objects that cannot
be modeled with a shape primitive are considered as generic objects in the
superquadric reconstruction step.

We noticed that prior information on object shapes helps obtain a finer
and more sharp-cornered model that is crucial for computing better grasp-
ing poses for parallelepipeds, cylinders and spheres. Fig. 7.26 highlights
how the use of prior on the object shape improves the model reconstructed
for a box (i.e. a parallelepiped). In particular, the box model shown in Fig.
7.26 (c) leads to pose candidates on the top or on the lateral surfaces of the
box, since the hand ellipsoid better overlaps on those portions of the ob-
ject superquadric. If, instead, we use the model of Fig. 7.26 (a), the model
made of rounded corners lets the final pose lie also on the box top corners
(Fig. 7.26 (b)).

Other examples of the improvements obtained with using prior on ob-
ject shapes are shown in Fig. 7.27.

7.6. Evaluation 157

-0.2z

-0.1

y

-0.5

x
(a)

-0.2

-0.1

z
y

-0.5

x
0

(b)

-0.2z

y

-0.1 -0.5

x
(c)

FIGURE 7.26: Superquadric models of the jello box 1 over-
lapped on the complete object point clouds (represented with
blue dots). We show the superquadric obtained without any
prior information on the object shape (Fig. (a)) and the rela-
tive grasping pose (Fig. (b)) and the same quantities obtained
with the prior information (Fig. (c)). The model obtained
with prior information has sharp-cornered shapes. The use
of prior information enable to significantly downsample the
object point cloud used for superquadric estimation (number
of points used=50) and to obtain better grasping poses, i.e.
located on the top surface of the box (Fig (c)) instead of on

the box corners (Fig. (b)).

158 Chapter 7. Superquadric object modeling and grasping

(a) (b)

(c) (d)

FIGURE 7.27: Some examples of the improvements obtained
in terms of model accuracy by using prior on object shape

(Fig.7.27(b) - 7.27(d)).

7.6. Evaluation 159

FIGURE 7.28: Pose costs for right hand and left hand of the
jello box 1 in different positions. The costs have been com-
puted sliding the object along the y axis of the robot reference
frame from the left (in red) to the right (in blue) workspace.

7.6.4 Enlarging the workspace using two hands

In order to evaluate the effectiveness of our automatic approach for select-
ing the hand for grasping the object, we evaluate the pose costs Cright and
Cle f t by varying the object position (with the same orientation) from the left
hand to the right hand workspace. The trend of the costs obtained with the
jello box 1 is shown in Fig. 7.28. As expected, the cost for each hand is
lowerer in the hand workspace and increase while the object position goes
towards the other hand workspace.

In addition, we executed the following experiment to show how the
pose computation for both the hands and the selection of the best hand for
grasping the object increases the number of successful grasps. We put the
object of interest in a fixed position reachable by both the hands and we
change only its orientation during each trial. Table 7.3 compares the suc-
cess rate if respectively, only one hand or two hands are used for grasping
the object. Even if the object is in a workspace sufficiently dexterous for the
both hands, its orientation and reconstructed model can favor one hand
with respect to the other, increasing the success percentage when the best
hand is automatically selected for grasping the object.

160 Chapter 7. Superquadric object modeling and grasping

TABLE 7.3: Experiment on best pose selection: Percentage of
successful grasps.

Object Success on Trials [%] Success on Trials [%]
One hand approach Automatic hand selection

Jello box 1 90% 100%
Jello box 2 80% 90%
Cereal box 70% 90%
Sugar box 70% 90%
Juice bottle 80% 90%
Cylinder 70% 100%
Lego brick 80% 90%
Meat box 60% 80%
Mustard box 70% 90%
Carrots 60% 80%
Dog 80% 90%
Octopus 90% 100%
Lettuce 70% 90%
Turtle 60% 80%
Cat 70% 80%
Bear 60% 100%
Ladybug 70% 90%
Pig 50% 70%

Table 7.3 shows the percentage of successful grasps, in case only one hand
is used for grasping the hand and the automatic selection of the hand is
implemented.

7.7 Discussion

In this Chapter, we proposed a novel approach for solving the grasping
problem of unknown objects. In short, the idea of our approach is to use
superquadrics to model the graspable volume of the hand and the objects
from vision. These models are then used to compute a proper grasping
pose solving a nonlinear constrained optimization problem. We showed
how to add constraints so that the set of possible poses is limited to those
that do not cause collisions with obstacles (e.g. the base on which the object
stands) and do not lead to object penetration. Our approach is sufficiently
generic to deal with objects and obstacles of different shape and size, and
enables to specify further requirements on the robot pose by adding new
constraints. In addition, we refined the superquadric modeling technique
by using prior information on the object shape. The prior information

7.7. Discussion 161

is provided by a visual object classifier we trained and integrated in the
pipeline employing the recognition system of [212]. We finally proposed a
pose cost for automatically selecting the best hand for grasping the object
among two pose candidates for the right and the left hand.

We evaluated the improved pipeline on 18 real objects with the iCub
humanoid robot. The experiments highlight how the overall success rate
of the entire pipeline is nearly 85%. The main source of failures is repre-
sented by the uncalibrated eye-hand system of the robot that entails non-
negligible misplacements of the robot hand when reaching for the target
pose. This problem is peculiar of humanoid robots in that elastic elements
lead to errors in the direct kinematics computation. Moreover, robots with
moving cameras, such as the iCub platform, need to deal with errors in the
visual estimation of the object pose due to imprecise knowledge of the cam-
eras extrinsic parameters. These errors can be compensated by closed loop
control techniques of the end-effector resorting to a visual feedback. At this
regard, we improved the grasping reliability by integrating the visual ser-
voing technique shown in [222], where the desired poses computed from
stereo vision are accurately reached by the robot end-effector thanks to the
use of a precise end-effector pose estimate over time (see Appendix B).

This Chapter reported exhaustive tests of the proposed techniques on
the iCub humanoid robot. However, the approach does not depend on the
platform and is portable to other humanoid robots. Good evidence of this
is given by the implementation and testing of the same approach for the
R1 robot (Fig. 7.29). Porting the modeling and grasping approach to this
new robot just required the proper sizing of the hand ellipsoidH. We plan
to execute more modeling and grasping tests on R1 in the next future.

The pipeline we propose in this Chapter can be extended in several
ways. At first, we are aware of the fact that a trajectory plan for reaching
the final pose is still missing in our work. A viable solution is to use our
approach also for computing a set of waypoints, together with the final
grasping pose. At this aim, superquadrics could be used to model obsta-
cles, and their avoidance added as optimization constraints as shown in
Section 7.2. Another extension is the formulation of a supervised learning
method for automatically discriminate good grasping poses. Our approach
in fact only selects the best pose between two candidates, even if neither of
them is suitable for grasping the object.

162 Chapter 7. Superquadric object modeling and grasping

FIGURE 7.29: R1 grasping a wine paper bottle in a kitchen.

A strong limitation of the approach described in this section is that it
works under the assumption that the object of interest can be well repre-
sented by a single superquadric. This does not hold generally for object
with non-convex shapes, such as tools. As we will show in Chapter 8 the
object model can be refined by using a set of superquadrics in place of only
a single superquadric [104, 105]. This way, we can accurately model more
complex and concave objects and, thus, compute proper grasping pose also
on specific object portions.

163

Chapter 8

Modeling and grasping more
complex objects using multiple
superquadrics

The modeling and grasping pipeline described in Chapter 7 has been
shown to be effective on a large number of simple objects. In summary, the
method consists of estimating a single superquadric function representing
the object and using such a model for computing a grasping pose for the
robot hand.

The effectiveness of the approach relies on the assumption that the es-
timated superquadric is representative enough of the object volume and
shape. As already mentioned in Section 7.1, our modeling process makes
use only of convex superquadrics. This choice is prompted by the fact that
convexity is a desirable property in optimization. In addition, considering
also concave superquadrics does not increase their representative power
in practical applications since non-convex superquadrics mostly represent
shapes that are very uncommon in reality (Fig. 8.1). As a result, the model-
ing and grasping approaches described in the previous Chapter work effec-
tively when applied on objects whose overall volumes and shapes can be
properly represented or approximated with a single convex superquadric.
Unfortunately, many everyday objects do not satisfy this hypothesis.

In order to remedy such a limitation, this Chapter proposes a novel
extension of the modeling and grasping pipeline described in Chapter 7
to deal with more complex objects, i.e. objects that cannot be properly
represented with a single superquadric. The leading idea of this contribu-
tion is to model objects with multiple superquadrics and use them as finer
models to compute grasping pose candidates for specific portions of the

164
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

FIGURE 8.1: Non-convex superquadrics, i.e. with λ4, λ5 >
2.0, represent shapes that are very uncommon in everyday

objects.

object. While the usage of multiple superquadrics is common to other
works [105, 106, 112, 113], the modeling and grasping algorithms we de-
sign are novel in various respects, as it will be discussed in Section 8.4.
Unlike the contributions presented thus far, the content of this Chapter is
current under development. Our intention is to show the status of the ap-
proach and the interesting results that have been achieved.

The Chapter is organized as follows. Section 8.1 describes the new mod-
eling process, that entails the estimation of multiple superquadrics for rep-
resenting the object. In Section 8.2 we show how the grasping method
described in Chapter 7 can be adapted to deal with multi-superquadrics
object models. Section 8.3 reports a careful evaluation of the proposed ap-
proaches and Section 8.4 ends the Chapter discussing the current limita-
tions and some ideas for improvements.

8.1 Multi-superquadrics modeling

The goal of multi-superquadric modeling is to estimate the minimum num-
ber S and the parameters of the superquadrics necessary for properly rep-
resenting an object. The algorithm we propose in this Chapter consists of
three steps that are detailed in the following Paragraphs:

8.1. Multi-superquadrics modeling 165

1. Creating the superquadric-tree ST (Paragraph 8.1.1). The object point
cloud is iteratively split in smaller portions using dividing planes and
the corresponding superquadrics are estimated (Algorithm 4).

2. Inferring which of the dividing planes actually separate object por-
tions that should be represented with different superquadrics, due to
specific geometric properties (Paragraph 8.1.2, Algorithm 5).

3. Generating the final S superquadrics (Paragraph 8.1.3). The original
object point cloud is split using only the selected planes and a su-
perquadric for each portion is reconstructed (Algorithm 6).

The entire modeling process is obtained by executing consecutively Algo-
rithms 4 - 5 - 6.

8.1.1 Creating the superquadric-tree

The superquadric tree ST is a binary tree with given height H containing

∑H
h=0 2h nodes. The node with height h = 0, named N0, is the root of the

tree. Every node, except for the leaves (i.e. nodes with height h = H), has
a left and right child. We refer to nodes with height h > 0 as

Nside,h, (8.1)

where side ∈ {l, r} indicates whether the node is a left or right child with
respect to its father and h is the height of the node. Fig. 8.2 shows an
example of superquadric-tree with H = 3.

Each node Nside,h contains the following quantities:

• A portion of the object point cloud pcside,h;

• The relative superquadric Sside,h;

• The plane pside,h passing through the point cloud barycenter and per-
pendicular to the axis with maximum inertia.

The root N0 instead contains the entire object point cloud p0 = pc.
The superquadric-tree is generated according to the following procedure,
outlined in Algorithm 4.

For each node Nside,h for h = 0, . . . , H − 1 and for side ∈ {le f t, right}:

166
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

FIGURE 8.2: An example of superquadric-tree with height
H = 3.

1. We compute the plane pside,h passing through the barycenter of the
point cloud pcside,h and perpendicular to its axis with maximum iner-
tia.

2. The point cloud pcside,h is then split in two portions pcl,h+1 and pcr,h+1

using the plane computed in step 1 and they are stored respectively
in the node children Nl,h+1 and Nr,h+1.

3. Finally, the superquadrics Sl,h+1 and Sr,h+1 are estimated by fitting
respectively pcl,h+1 and pcr,h+1 and are stored in the nodes Nl,h+1

and Nr,h+1.

Fig. 8.3 reports the superquadric-tree computed for a tool.

8.1.2 Inferring the splitting planes

This step is the core part of the proposed multi-superquadric modeling
method. The basic idea is to identify among the superquadric-tree planes
{{pside,h}H−1

h=0 }side∈l,r those planes that divide the object point cloud pass-
ing through relevant regions. Our intuition suggests to consider as relevant
those regions of the point clouds that correspond to a change of concav-
ity and/or dimensions. We refer to the corresponding planes as splitting
planes. Fig. 8.4 shows some examples of desired splitting planes.

Instead of relying on point cloud properties, we find the splitting planes
using the superquadric-tree introduced in the previous Paragraph. This
way, the approach is more robust to possible point cloud noise in that the

8.1. Multi-superquadrics modeling 167

Algorithm 4 Generating the superquadric-tree ST
1: Data: Object point cloud pc, desired final tree height H;
2: Initialize the root point cloud with the object point cloud, i.e. p0 = pc

and compute the superquadric S0 fitting the entire point cloud.
3: Initialize height of the tree h = 0.
4: while h < H do:
5: for side ∈ {l, r} do:
6: if h = 0 then:
7: Compute the plane ph;
8: else
9: Compute the plane pside,h;

10: end if
11: Split the point cloud pcside,h into pcl,h+1 and pcr,h+1;
12: Compute a superquadric for each portion Sl,h+1 and Sr,h+1;
13: Store both the point clouds pcl,h+1 and pcr,h+1 and the
14: superquadrics Sl,h+1 and Sr,h+1 in the children nodes
15: Nl,h+1 and Nr,h+1.
16: h = h + 1;
17: end for
18: end while
19: Output: the superquadric-tree ST with height H.

FIGURE 8.3: An example of superquadric tree computed for
a tool (on the left). The corresponding object representation
using different numbers of superquadrics is shown on the
right. The object point cloud is represented with green dots.

168
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

FIGURE 8.4: Some examples of desired splitting planes rep-
resented with blue lines.

reconstructed superquadrics are able to filter zero-mean noise of the point
clouds. This kind of noise in fact generates a rippling effect on the point
cloud. Since the superquadric is estimated by solving a least square prob-
lem (see Eq. (7.2)), the superquadric surface turns out to approximate the
mean of the noisy point cloud.

Our basic idea consists of marking as splitting planes those dividing
pairs of superquadrics having some of their dimensions different to each
other, avoiding separating point cloud regions that can actually be well
represented with a single superquadric.

Hereafter we describe in detail the methodology adopted to infer if the
plane pside,h−1 is a splitting plane by analyzing geometric properties of the
superquadrics Sl,h and Sr,h of the children nodes. In the final description of
the algorithm we will refer to this methodology as the differentDimensions(·,
·) function. The procedure consists of the following steps:

• Given the superquadrics Sl,h and Sr,h with orientations Rl,h =

[xl,h, yl,h, zl,h] and Rr,h = [xr,h, yr,h, zr,h], we pair each axis of Sl,h with
the axis of Sr,h that is parallel to. In case none of the axes of Sr,h is
parallel to the axes of Sl,h, we pair the axes providing the maximum
dot product. This information is encoded in a rotation matrix Rl

r, i.e.
Rl,h = Rl

rRr,h (Fig. 8.5).

• Let’s refer to the dimensions of Sl,h and Sr,h respectively as diml =

(λl,1, λl,2, λl,3) and dimr = (λr,1, λr,2, λr,3). According to its defini-
tion, the matrix Rl

r also encodes the information to reorder the vector
dimr in dimr = Rl

r · dimr so that diml[i] and dimr[i] for i = 1, . . . , 3 cor-
respond to the dimensions along the axes of the two superquadrics
that are parallel among each other (Fig. 8.6).

• We then check the similarity between diml and dimr. Superquadrics
with similar dimensions should be merged and, therefore, the plane

8.1. Multi-superquadrics modeling 169

that led to their generation is not a splitting plane. However, it is im-
portant to stress out that not all the superquadric dimensions should
be compared. In particular, if the parallel axes of the i-th pair are
contiguous1, the respective dimensions diml[i] and dimr[i] can be ar-
bitrary (Fig. 8.6). In summary, we compare the dimensions diml[i]
and dimr[i] for each pair i of not contiguous parallel axes. If those di-
mensions are comparable (within a given tolerance µ), i.e. |diml[i] -
dimr[i]| < µ, the plane pside,h−1 is not considered a splitting plane.

FIGURE 8.5: Matrix Rl
r encodes the information of which axes

of superquadric Sr are parallel to axes of Sl . In this particular
example Rl

r = [0, 1, 0;−1, 0, 0; 0, 0, 1].

The differentDimensions(·, ·) function is applied to each node Nside,h for
h = H− 1, . . . , 0. If the application of this function returns that the plane of
node Nside,h is a splitting plane, a further step is required, as shown in the
example of Fig. 8.7. The plane pl,1 of nodeNl,1 is a splitting plane since the
children superquadrics Sl,2 and Sr,2 do not satisfy the conditions on their
dimensions to be mergeable. In this case, it is important to check the rela-
tionship between the dimensions of one of the children superquadrics and
its uncle superquadric. The uncle of a node is defined as the brother of its
father. More formally, ifNside,h is the father ofNl,h+1 andNr,h+1, their uncle
is Nside,h, where side = right if side = le f t and viceversa. Still referring to
the example of Fig. 8.7, the uncle ofNl,2 andNr,2 isNr,1. Due to the process
of generation of the superquadric-tree, one of the nephew is contiguous to
the uncle, Nr,2 in this case. We apply then the differentDimensions(·, ·) func-
tion to the uncle Nr,1 and its closest nephew Nr,2. If their dimensions sat-
isfy the similarity condition we explained before, this means that the plane
p0 of the grandfather (and father) N0 of Nr,2 (and Nr,1) is not a splitting

1In other words, if they lie approximately on the same line, i.e. besides being parallel
two of their extremes are close to each other.

170
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

FIGURE 8.6: Example showing why the dimensions along
parallel and contiguous axes can be arbitrary. In this exam-
ple, the left superquadric Sl have the x-axis parallel to y-axis
of the right superquadric Sr, i.e. xl parallel to yr, and yl par-
allel to xr. The axes −xl and −yr are also contiguous. The di-
mensions to be compared are just diml [1] with dimr[1], since
they are the dimensions along parallel but not contiguous
axes. Their dimensions are similar, therefore the plane is not
relevant for splitting the point cloud. If we instead compared
also diml [0] with dimr[0] our algorithm would say that the

plane is a splitting plane, since |diml [0] - dimr[0]| > µ.

plane, as happens in the case of Fig. 8.7. In the opposite case instead also
the plane p0 of the grandfather (and father) N0 is considered a splitting
plane.

Fig. 8.8 explains the reason why comparing the dimensions of one child
with its uncle is required in case the plane of the father is a splitting plane.
Checking the plane p0 with differentDimensions(·, ·) function applied to Sl,1

and Sr,1 would return a positive answer. The superquadric Sl,1 is in fact
quite big in order to cover the entire point cloud portion pcl,1 and very dif-
ferent in dimensions2 with respect to the brother superquadric Sr,1. If we
go further in the approximation however, we obtain that a finer represen-
tation of point cloud pcl,1 generates two superquadrics Sl,2 and Sr,2, one of
which very similar in dimensions to its uncle Sr,1. This happens because
the plane pl,1 cuts the point cloud in a relevant part - corresponding of a
change of dimensions - while plane p0 is applied on a point cloud portion
without any change of dimensions or concavity.

2For the sake of simplicity, from now on we will simply say that two superquadrics
have similar or different dimensions if they satisfy or not the conditions previously ex-
plained.

8.1. Multi-superquadrics modeling 171

FIGURE 8.7: Example of comparison between nephew and
uncle superquadric for a hammer (point cloud in Fig. 8.8).
The superquadrics Sl,2 and Sr,2 do not satisfy the dimensions
criteria, therefore the plane of Nl,1 is a splitting plane. After
comparing the superquadric of the node uncle Nr,1 with the
closest nephew Sr,2, it turns out that the plane of node N0 is
not important for splitting the point cloud, in that the two

superquadrics do satisfy the dimensions criteria.

The final Algorithm for finding the splitting planes is detailed in Algo-
rithm 5. In summary, we proceed bottom-up, starting from the tree level
with height h = H − 1.

Then, for each node Nside,h for side = {l, r} and h = H − 1, . . . , 0:

1. We evaluate the function differentDimensions(·, ·) on Sl,h+1 and Sr,h+1.

2. If the superquadrics are different in dimensions, the plane of the fa-
ther pside,h is a splitting plane. We then evaluate the function different-
Dimensions(·, ·) on Snephew,h+1 and Suncle,h. In case the test highlights
that also Snephew,h+1 and Suncle,h are different in dimensions, also the
plane pside,h−1 is a splitting plane.

3. If instead the superquadrics are similar in dimensions, the plane of
the father pside,h is not important for splitting the point cloud.

172
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

Algorithm 5 Inferring splitting planes

1: Data: Superquadric-tree ST , with height H generated with Alg. 4;
2: Data: Threshold µ for differentDimensions(·, ·) function;
3: Initially all the planes {{pside,h}0

h=H−1}side∈{l,r}} are considered not im-
portant for splitting the point cloud;

4: for h = H − 1, . . . , 0 and side ∈ {l, r} do:
5: if pside,h is not a splitting plane then:
6: Apply differentDimensions(Sl,h+1,Sr,h+1);
7: if differentDimensions(Sl,h+1,Sr,h+1) returns false then:
8: Plane pside,h is not a splitting plane;
9: else

10: Plane pside,h is a splitting plane;
11: Compute differentDimensions(Snephew,h+1,Sside,h),
12: where Snephew,h+1 is the closest superquadric among
13: Sl,h+1,Sr,h+1 with respect to their uncle Sside,h;
14: if differentDimensions(Snephew,h+1,Sside,h) returns false then:
15: Plane pside,h−1 is not a splitting plane;
16: else
17: Plane pside,h−1 is a splitting plane;
18: end if
19: end if
20: end if
21: end for
22: Output: Splitting planes for cutting the point cloud.

8.2. Multi-superquadrics grasping 173

FIGURE 8.8: Different multi-superquadric models obtained
using different planes of the superquadric-tree. Case a)
shows the multi-superquadric model when only plane p0 is
considered a splitting plane. The model of case b) instead
is obtained by cutting the point cloud both with p0 and pl,1
planes. Case c) can be instead obtained after comparing the
closest nephew with its uncle superquadrics (see Fig. 8.7)
and concluding that only pl,1 is important for splitting the

point cloud.

8.1.3 Generating the final superquadrics

Once the splitting planes for cutting the object point cloud has been com-
puted, we use them to divide the point cloud into S regions and we fit a
superquadric for each region (Algorithm 6).

8.2 Multi-superquadrics grasping

Modeling a single object with S superquadrics allows distinguishing por-
tions with different volumes, shapes and, therefore, grasping properties.
In order to fully exploit the information encoded in the object model, the

174
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

Algorithm 6 Computation of the final S superquadrics

1: Input: Superquadric-tree ST obtained from Algorithm 4 and splitting
planes computed with Algorithm 5;

2: Cut the object point cloud using the splitting planes and generating S
point clouds pcnew,i for i = 1, . . . ,S ;

3: for i = 1, . . . ,S do:
4: if pcnew,i ∈ {{pcside,h}H

h=0}side∈{l,r} and thus it belongs to ST then:
5: Set the superquadric Sside,h as one of the final S superquadrics;
6: else
7: Compute the superquadric fitting the new point cloud pcnew,i;
8: end if
9: end for

10: Output: Final S superquadrics modeling the object.

robot hand pose x = [xh, yh, zh, φh, θh, ψh]
3 for grasping the object is ob-

tained by executing the following two steps:

• a grasping pose candidate is computed for each object region p rep-
resented by the superquadric Sp;

• the best grasping pose among the S candidates is selected according
to a given proper criterion.

In Paragraph 8.2.1 we show how to compute each grasping candidate by
extending the optimization problem presented in Section 7.2. Then, Para-
graph 8.2.2 reports on the criteria used for selecting the best pose among
the grasping candidates.

8.2.1 Grasping pose candidates computation using multi-

superquadric models

The result of the modeling process described in Section 8.1 is an object
model consisting of S superquadrics. The first step of the new grasp-
ing pose computation approach consists of computing a pose candidate
xp ∈ R6 for each object portion represented by the superquadric Sp, while
avoiding the other superquadrics Sk for k = 1, . . . ,S and k 6= p. Thereby,
the S grasp candidates xp for p = 1, . . . , S are computed by solving S opti-
mization problems:

3The orientation of the robot hand pose is expressed with Euler angles.

8.2. Multi-superquadrics grasping 175

for p = 1, . . . ,S

Solve :

min
x

L

∑
i=1

(√
λ1,pλ2,pλ3,p

(
Fp(px

i , λp)− 1
))2

,

s. t.:

hi(ai, fi(px
1, . . . , px

L)) > 0

for i = 1, . . . , M + K,√
λ1,kλ2,kλ3,k

V

∑
i=1

(Fk (vx
i , λk)− 1)) > 0

for k = 1, . . . , S and k 6= p.

(8.2)

The structure of each optimization problem p is very similar to the original
one proposed in Eq. (7.4). Hereafter, we explain the mathematical quanti-
ties more relevant for dealing with a multi-superquadric object model. The
extensive explanation of the other components is available in Section 7.2.

• The cost function
(√

λ1,pλ2,pλ3,p
(

Fp(px
i , λp)− 1

))2 imposes the
overlapping between the hand ellipsoid H (introduced in Section
7.1.2) and the superquadric Sp, named target superquadric Tp. Tp

is the superquadric - and thus the object region - where we want the
grasping pose xp to be located. The target superquadric Tp is rep-
resented by the inside-outside function Fp(·, λp), where λp are the
11 parameters representing the superquadric shape, dimensions and
pose.

• The constraints hi(ai, fi(px
1, . . . , px

L)) > 0 for i = 1, . . . , M + K rep-
resent with a unique generic formulation the K = 3 constraints on
the orientation (Section 7.2.3) and the unique constraint (M = 1) for
the avoidance of the support on which the object is located (Section
7.2.2)4. These constraints does not depend on the superquadrics in-
volved and thus are the same in the S optimization problems.

4For the sake of clarity, in this formulation we only report the constraints that we used
for the evaluation of our approach, three for the orientation and one for avoiding the
support on which the object is located. Our formulation however could deal also with
additional constraints.

176
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

• The constraints
√

λ1,kλ2,kλ3,k ∑V
i=1
(

Fk
(
vx

i , λk)− 1
))

> 0 for k =

1, . . . , S and k 6= p form the core part of Eq. (8.2). For each op-
timization problem p with target superquadric Tp, they impose the
avoidance of the other S − 1 superquadrics Sk for k = 1, . . . , S and
k 6= p. These superquadrics are named obstacle superquadrics OSk

and are represented by the inside-outside function Fk(·, λk) with pa-
rameters λk. The left side of these constraints is very similar to the
cost function since they both rely on the inside-outside function of
superquadrics. The cost function imposes the hand ellipsoid H to be
overlapped onto the target superquadric Tp by minimizing the distance
between the points px

1, . . . , px
L sampled on H and the superquadric

Tp itself (see Section 7.2 for more details). The constraints instead
are used to locate the hand palm and fingers outside each obstacle su-
perquadric OSk for k = 1, . . . , S and k 6= p, by imposing the average
value of inside-outside function of the superquadric evaluated in the
points vx

1 , . . . , vx
V to be positive5. The quantities vx

i for i = 1, . . . V
are used for representing in a compact way the robot hand and fin-
gers occupancy in pose x. In particular, we use the following V = 5
points (Fig. 8.9):

– The palm center v1 = [xh, yh, zh].

– The palm edges, given by:

v2 =v1 +
wp

2
yh,

v3 =v1 −
wp

2
yh,

(8.3)

where wp is the palm width and yh is the y−axis of the hand
reference frame in pose x.

– The thumb fingertip position:

v4 = v1 ± ltzh, (8.4)

where lt is the thumb length and zh is the z−axis of the hand
reference frame in pose x. The sign ± varies according to the

5 As said in Chapter 7, the inside-outside function F(λ, ·) representing a superquadric
provides a way to check if a given point p ∈ R3 lays inside (F(λ, p) < 0), outside
(F(λ, p) > 0) or on (F(λ, p) = 0) the surface of the superquadric.

8.2. Multi-superquadrics grasping 177

(a)

(b)

FIGURE 8.9: Points used for representing right hand and fin-
gers occupancy. The hand reference frame is represented
with the RGB convention (xh colored in red, yh in green, zh
in blue) Fig 8.9(a) shows how the edges vi for i = 1, . . . , 5 are
computed. Fig 8.9(b) helps to understand how these quan-
tities are representative of the hand and fingers volume oc-
cupancy. During the execution of the grasp the thumb is
aligned with zh of the hand reference frame, unlike the con-

figuration shown in Fig. 8.9(b)

178
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

hand taken into account, since z-axes of the two hand reference
frames have opposite directions.

– The middle fingertip position:

v5 = v1 + lmxh, (8.5)

where lm is the middle finger length and xh is the x−axis of the
hand reference frame in pose x.

Thank to this simple representation we impose the robot hand and
fingers in the grasp candidate xp not to lay inside the other obstacle
superquadrics OSk and thus, other object portions.

In summary, each solution xp for p = 1, . . . , S is computed in order to :

• make the hand ellipsoidH overlapped on the target superquadric Tp;

• avoid the support on which the object is located;

• provides a reachable orientation;

• avoid the other S− 1 obstacle superquadricsOSk for k = 1, . . . , S and
k 6= p.

Fig. 8.10 shows an example of the grasp candidates computation for a
tool represented with two superquadrics (S = 2). Two optimization prob-
lems are formulated and solved. First, i.e. p = 1 (Fig. 8.10(a)), the handle of
the tool is the target superquadric T1 and the head of the tool is the only ob-
stacle superquadricOS2. The solution x1 is located on the tool handle such
that to avoid the head of the tool (Fig. 8.10(b)). In the second optimization
problem (p = 2) instead, the head of the tool is the target superquadrics T2

and the handle is considered the obstacle OS1 (Fig. 8.10(c)). In this case
the final solution x2 is located on the head of the tool (see Fig 8.10(d)). In
both the optimization problems, the solutions are computed by avoiding
the support on which the object is located and providing an orientation
reachable by the robot hand.

8.2. Multi-superquadrics grasping 179

 (a) (b)

 (c) (d)

FIGURE 8.10: Example of left hand grasp candidates com-
puted for an object represented with two superquadrics. The
poses are represented with the RGB convention (xh colored
in red, yh in green, zh in blue). Fig. 8.10(a) shows the target
superquadric T1 and the obstacle superquadricsOS2 used in
the first optimization problem, i.e. p = 1. Fig. 8.10(b) reports
the relative solution x1. In the second optimization problem
instead (p = 2), the handle of the tool is the obstacle OS1
and the head is the target T2 (Fig. 8.10(c)). The solution x2 is

therefore located on the head of the tool (Fig. 8.10(d)).

180
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

8.2.2 Best pose selection with multi-superquadric models

The best grasping pose is selected among the S candidates xp for p =

1, . . . , S as the pose xp∗ that minimizes the cost C̄p:

xp∗ = arg min
p
C̄p, (8.6)

with
C̄p = w1Fp,xp + w2 Epos,p + w3Eo,p + w4

S− 1
∑k Fk,xp

. (8.7)

The cost C̄p of Eq. (8.7) is a generalization of the cost C proposed in Eq.
(7.12) for selecting the best hand and can be expressed as:

C̄p = C + w4
S− 1

∑k Fk,xp

, (8.8)

where, for the sake of clarity, we remove the subscript hand from the cost
C (originally defined as Chand) since thus far we just want to select the best
pose among the candidates computed for the same hand. After, we explain
how to use this cost to select the best hand for grasping an object modeled
with multiple superquadrics.

The new cost C̄p takes into account:

• The cost function of Eq. (8.2) evaluated in the solution xp,

Fp,xp =

L

∑
i=1

(√
λ1,pλ2,pλ3,p

(
Fp(px

i , λp)− 1
))2∣∣∣

x=xp
.

(8.9)

The higher Fp,xp , the worse the overlapping between the hand ellip-
soidH and the target superquadric Tp and, thus, the pose are.

• Epos,p, the accuracy in reaching the desired position posp,d =

[xh, yh, zh]p (see Section 7.4 for more details).

• Eo,p, the accuracy in reaching the desired orientation od,p =

[θh, φh, ψh]p, as explained in Section 7.4.

• The average distance between the S− 1 obstacle superquadrics OSk,
for k = 1, . . . S and k 6= p and the robot hand in the pose xp, defined

8.2. Multi-superquadrics grasping 181

as follow:

1
S− 1 ∑

k
Fk,xp with k = 1, . . . , S and k 6= p, (8.10)

where

Fk,xp =
5

∑
i=1

(√
λ1,kλ2,kλ3,k (Fk(vx

i , λk)− 1)
)∣∣∣

x=xp
. (8.11)

The larger the value of Eq. (8.11), the further the robot hand and fin-
gers with pose xp are from the obstacle superquadrics and, therefore,
the better xp is. Consequently, in the cost expression C̄p of Eq. (8.6) we
use the reciprocal of (8.10). This way, for larger values of Eq. (8.11),
we obtain lower costs C̄p.

This term is the core part of the cost C̄p. It is in fact fundamental
to select the best grasping pose xp∗ such that there are no collisions
between the robot hand and other portions of the object, represented
by the obstacle superquadrics.

The weights w1, w2, w3, w4 > 0 are then properly chosen in order to make
the cost terms comparable among each other.

The optimization problems proposed in Eq. (8.2) can be used for com-
puting grasping poses both for the right and left hand for a total of 2S
candidates. The best grasping pose xp,hand∗ can be then selected as:

xp,hand∗ = arg min
hand

min
p
C̄p,hand. (8.12)

with

C̄p,hand = w1Fp,xp,hand + w2 Epos,p,hand + w3Eo,p,hand + w4
S− 1

∑k Fk,xp,hand

, (8.13)

p = 1, . . . , S,

and
hand = {right, le f t}.

182
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

8.3 Evaluation

This Section reports the experiments we performed for evaluating the
multi-superquadric modeling and grasping approaches proposed in this
Chapter. The next two Paragraphs group respectively the results on the
modeling process (Paragraph 8.3.1) and the grasping pose computation
(Paragraph 8.3.2).

8.3.1 Multi-superquadric models

The multi-superquadric modeling has been tested on 23 objects also in-
cluding objects that cannot be grasped by the iCub robot due to their di-
mensions or weight. The goal of this analysis is in fact to check the effec-
tiveness of the modeling technique regardless of the grasping application.
Some objects point cloud are noiseless and have been downloaded from
the YCB [208] and ShapeNet [223] datasets. Other point clouds have been
instead acquired with the stereo vision system of the iCub and are, there-
fore, quite noisy.

Figs. 8.11 - 8.15 collect the outcomes of the multi-superquadric mod-
eling, in particular showing the leaves of the superquadric-tree ST - i.e.
all the superquadrics corresponding to nodes with height H - and the final
S superquadrics. In Table 8.1, we report the times required for the com-
putation of the final model and of each intermediate step (i.e. Algorithms
4 - 5 - 6) with tree height H = 3. The modeling times are higher than
the one obtainable with the single-superquadric modeling process (Table
7.1), since the new method entails the computation of a large number of
superquadrics. In particular, Table 8.1 points out how actually Algorithm
4 is the most expensive step of the modeling process from a computational
viewpoint. In fact, especially if no new superquadrics need to be estimated
in Algorithm 6, the total computation time coincides with the time required
for executing Algorithm 4.

The multi-superquadric modeling algorithm relies on some parame-
ters, such as the tree height H of the superquadric-tree ST (Paragraph
8.1.1) and the threshold µ used in the differentDimensions(·, ·) function
(Paragraph 8.1.2). The tree height H is indirectly set by the user via the
specification of the maximum number of superquadrics desired for the ob-
ject model Smax. The tree height is then obtained as H = blog2 Smaxc. The

8.3. Evaluation 183

(a) Tool 1, µ = 0.03 [m].

(b) Tool 2, µ = 0.03 [m].

(c) Lego brick, µ = 0.03 [m].

(d) Big box, µ = 0.03 [m].

(e) Soap bottle, µ = 0.03 [m].

FIGURE 8.11: The superquadric leaves of the superquadric-
tree ST (in the center) and the final multi-superquadric
model (on the right) obtained for noiseless point clouds from

YCB dataset with height H = 3.

184
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

(a) Spray cleaner, µ = 0.015 [m].

(b) Drill, µ = 0.015 [m].

(c) Mustard bottle, µ = 0.015 [m].

(d) Hammer , µ = 0.015 [m].

(e) Banana , µ = 0.015 [m].

FIGURE 8.12: The superquadric leaves of the superquadric-
tree ST (in the center) and the final multi-superquadric
model (on the right) for noiseless point clouds from YCB

datasets with height H = 3.

8.3. Evaluation 185

(a) Bottle , µ = 0.015 [m].

(b) Key, µ = 0.03 [m].

(c) Hammer 2, µ = 0.015 [m].

(d) Shoe, µ = 0.015 [m].

(e) Guitar, µ = 0.015 [m].

FIGURE 8.13: The superquadric leaves of the superquadric-
tree ST (in the center) and the final multi-superquadric
model (on the right) for noiseless point clouds from

ShapeNet and YCB datasets with height H = 3.

186
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

(a) Mustard bottle (noisy), µ = 0.03 [m].

(b) Drill (noisy), µ = 0.03 [m].

(c) Pig plush, µ = 0.03 [m].

(d) Teddy bear, µ = 0.03 [m].

FIGURE 8.14: The superquadric leaves of the superquadric-
tree ST (in the center) and the final multi-superquadric
model (on the right) with height H = 3 for noisy point

clouds, i.e. acquired from the iCub stereo system.

8.3. Evaluation 187

(a) Tiger plush, µ = 0.03 [m].

(b) Turtle plush, µ = 0.03 [m].

(c) Lego brick (noisy), µ = 0.03 [m].

(d) Soap bottle (noisy), µ = 0.03 [m].

FIGURE 8.15: The superquadric leaves of the superquadric-
tree ST (in the center) and the final multi-superquadric
model (on the right) with height H = 3 for noisy point

clouds, i.e. acquired from the iCub stereo system.

188
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

TABLE 8.1: Execution time for multi-superquadric modeling.

Object Total time [s] Alg. 4 [s] Alg. 5 [s] Alg. 6 [s]

Tool 1 1.04 1.03 8 ·10−4 3 · 10−5

Tool 2 0.51 0.50 4 ·10−4 3 · 10−5

Lego brick 0.86 0.85 7·10−4 3 · 10−5

Big box 1.59 1.58 8 ·10−4 3 · 10−5

Soap bottle 1.23 1.22 8 ·10−4 3 · 10−5

Spray cleaner 1.24 1.23 1 ·10−3 6 · 10−5

Drill 1.10 1.09 1 ·10−3 6 · 10−5

Mustard bottle 1.28 1.28 9 ·10−4 3 ·10−5

Hammer 1.15 1.14 1 ·10−3 0.27
Banana 0.96 0.95 9 ·10−4 3 ·10−5

Bottle 1.48 1.47 1 ·10−3 0.17
Key 1.29 1.28 1 ·10−3 0.18
Hammer 2 0.63 0.62 1 ·10−3 3 ·10−5

Shoe 1.08 1.07 1 ·10−3 0.11
Guitar 1.43 1.42 1 ·10−3 0.23
Mustard b. (noisy) 1.18 1.17 8 ·10−4 3 · 10−5

Drill (noisy) 1.28 1.27 1 ·10−3 3 · 10−5

Pig plush 1.21 1.20 7 ·10−4 3 · 10−5

Teddy bear 1.17 1.17 7 ·10−3 1 ·10−4

Tiger plush 1.12 1.11 9 ·10−4 3 · 10−5

Turtle plush 1.07 1.06 1 ·10−3 4 · 10−5

Lego brick (noisy) 0.48 0.47 1 ·10−3 2 · 10−3

Soap bottle (noisy) 1.38 1.38 1 ·10−3 0.33

Table 8.1, we report the time for the computation of the final model and of
each intermediate step of the multi-superquadric modeling, with tree
height H = 3.

value H is however computed by taking into account a lower bound for
the maximum number of superquadrics Smax in order to guarantee that a
significant number of points is contained in each point cloud regions used
in the superquadric fitting. The larger H is and the finer the object model
can potentially be. Nonetheless, the threshold µ turns to be the parameter
mostly responsible of the final accuracy of the reconstructed model. This
threshold is used to discriminate whether superquadrics have similar di-
mensions and, thus, if the plane that led to their generation is relevant or
not for splitting the point cloud. Using smaller thresholds leads to finer

8.3. Evaluation 189

models made of a larger number of superquadrics. Fig. 8.16 shows the ef-
fect of varying the threshold µ. In general, we noticed that noiseless point
clouds of objects featured by small details require a smaller threshold in
order to obtain fine models. Instead, when the point cloud is noisy, larger
thresholds are necessary to remove unnecessary superquadrics from the fi-
nal model. In Section 8.4 we discuss a possible approach to automatically
infer a correct threshold µ.

8.3.2 Multi-superquadric grasping poses

Grasping pose computation with multi-superquadric object models has
been tested on 16 objects, selected among the 23 used for the modeling
evaluation by discarding those objects too big with respect to the iCub
hand. Even if all the objects under consideration have proper dimensions
for being grasped by the iCub, they might be too heavy for real tests. How-
ever, this first simulative analysis aims at evaluating the effectiveness of
the proposed method on a larger set of objects. In the next future, we are
planning to perform experiments on the iCub only using objects actually
graspable by the robot.

Figs. 8.17 - 8.18 - 8.19 collect the object models and grasping poses com-
puted with the proposed approach. For each object, the S grasp candi-
dates, their costs C̄p and the best selected pose xp∗ (highlighted in green)
are shown6. Table 8.2 reports the times for obtaining a single candidate
and for the entire grasping pose computation. The total time is nearly S
times the time required for obtaining a single grasp candidate. The total
time could be improved by computing the S grasp candidates in parallel.

A key point of the grasping pose computation presented in this Chapter
is the introduction in the optimization problem of suitable constraints for
taking into account all the superquadrics of the object model. We recall that
the solution xp of the p-th optimization problem is computed by imposing
the overlapping between the hand ellipsoidH and the target superquadric
Tp and the avoidance of the other superquadrics OSk for k = 1, . . . , S and

6 For the sake of clarity of representation, the pose candidates have been computed
only for one hand, according whether the object is better graspable with the left or right
hand.

190
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

(a) µ = 0.02
[m].

(b) µ = 0.015
[m].

(c) µ = 0.01
[m].

(d) µ = 0.02 [m]. (e) µ = 0.015 [m]. (f) µ = 0.005 [m].

(g) µ = 0.03 [m]. (h) µ = 0.02 [m]. (i) µ = 0.01 [m].

(j) µ = 0.03 [m]. (k) µ = 0.02 [m]. (l) µ = 0.01 [m].

FIGURE 8.16: Examples of models obtained with different µ
values. In each example the superquadric-tree is computed
with height H=3 and the threshold µ decreases from left to

right.

8.3. Evaluation 191

(a) Soap bottle.

(b) Drill.

(c) Mustard bottle.

(d) Spray cleaner.

FIGURE 8.17: Multi-superquadric models and grasping can-
didates computed with noiseless point clouds of the YCB

datasets.

192
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

(a) Lego brick.

(b) Hammer.

(c) Tool 1.

(d) Tool 2.

(e) Banana.

FIGURE 8.18: Multi-superquadric models and grasping can-
didates computed with noiseless point clouds of the YCB

datasets.

8.3. Evaluation 193

(a) Drill (noisy).

(b) Turtle plush.

(c) Teddy bear.

(d) Tiger plush.

FIGURE 8.19: Multi-superquadric models and grasping can-
didates computed with noisy point clouds.

194
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

(a) Soap bottle (noisy).

(b) Pig plush.

(c) Mustart bottle noisy.

FIGURE 8.20: Multi-superquadric models and grasping can-
didates computed with noisy point clouds.

8.3. Evaluation 195

TABLE 8.2: Execution time for grasping pose computation.

Object Single comput. time [s] Total comput. time [s]

Soap bottle 0.25 0.51
Drill 0.27 0.97
Mustard bottle 0.03 0.06
Spray cleaner 0.08 0.28
Lego brick 0.25 0.60
Hammer 0.13 0.25
Tool 1 0.26 0.65
Tool 2 0.15 0.33
Banana 0.18 0.40
Drill (noisy) 0.12 0.22
Turtle plush 0.11 0.25
Teddy bear 0.13 0.29
Tiger plush 0.06 0.15
Soap bottle (noisy) 0.15 0.49
Pig plush 0.20 0.42
Mustard b. (noisy) 0.17 0.36

Table 8.2 indicates the time for computing a single grasp candidate xp
(central column) and the final solution xp∗.

k 6= p (obstacle superquadrics) with the robot palm and fingers. To support
this choice, in Fig. 8.21, we report an example comparison between:

• The grasp candidates computed by solving the S optimization prob-
lems of (8.2) (Fig 8.21(a));

• The poses obtained by simply applying the single-superquadric
grasping pose computation of Eq. (7.4) on each superquadric Sp

of the model and thus ignoring the presence of the other S − 1
superquadrics during the computation (Fig 8.21(b)).

Ignoring the presence of the other S− 1 superquadrics does not guarantee
the grasp candidates to be located outside the obstacle superquadrics and
indeed they might lay inside portions of the object, as happens in the ex-
ample shown in Fig 8.21(b).

Taking into account all the superquadrics belonging to the object model
is crucial also during the selection of the final pose xp∗. Fig. 8.22 shows an
example of outputs of the best pose selection (highlighted in green) when
using:

196
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

(a) (b)

FIGURE 8.21: Comparison between grasping candidates
computed: 1) by solving the optimization problems of
(8.2) and, therefore, imposing the avoidance of the obstacle
superquadrics (Fig 8.21(a)) and 2) by applying the single-
superquadric grasping pose computation of Eq. (7.4) on each
superquadric Sp of the model (Fig 8.21(b)). In case 2) , we
ignore the presence of the other S− 1 superquadrics during

the computation.

• the cost C̄ defined in Eq. (8.7), that includes the average distance
between the hand palm and fingers and the obstacle superquadrics
(Fig 8.22(a));

• and the cost C = C̄ −w4 S−1
∑k Fk,xp

, that ignores any spatial relationships
between the robot hand and the obstacle superquadrics (Fig 8.22(b)).

The best poses selected using C are often worse since they might be
located quite close to the obstacle superquadrics, as shown in Fig 8.22(b)
where the pose on the bottom superquadric is selected. The solutions
of the optimization problems of (8.2) are necessary located outside the
obstacle superquadrics - thanks to the constraints - but they still might
be quite close to their surfaces (this might happen due to the presence of
the other constraints of the optimization problem, such as the avoidance
of the support on which the object is located, as in Fig 8.22(b)). In
practical grasping applications, it is better to avoid such a poses since
they are more likely to lead to a collision between the robot hand and
the object while reaching for the desired pose. If the average distance
with respect to the obstacle superquadrics is not taken into account
there is no guarantee that those poses are low-ranked during the final

8.3. Evaluation 197

(a) (b)

FIGURE 8.22: Comparison between pose candidates cost
when cost C̄ (on the left) and C (on the right) are used. When
cost C is used grasp candidates close to the surface of obsta-
cle superquadrics might be selected as best pose if they pro-
vide good overlapping and reachability, as happens in the
case on the right where the grasping pose computed for the
bottom superquadric is selected (highlighted in gree). How-
ever, these poses are likely to lead to collision between the
hand and the object. Using instead cost C̄ for selecting poses
more distance from the obstacle superquadrics leads to safer
poses, such as the one selected in the left image, which is lo-

cated on the top superquadric.

198
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

selection, since they could anyway provide a good overlapping of the
hand ellipsoidH and target superquadric Tp and be reachable by the robot.

It is also interesting to analyze the benefits that the multi-superquadric
grasping approach of this Chapter brings with respect to the method based
on single-superquadric models described in Chapter 7. Figs. 8.23 and 8.24
collect and compare the grasping poses computed when using the single-
and multiple- superquadric approaches. When the objects are poorly repre-
sented with a single superquadric (Fig 8.23), the grasping pose computed
using such a model is likely to be completely wrong. Some other objects
instead (Fig 8.24), even if better represented with multiple superquadrics,
can be approximated also with a single superquadric. In these cases, the
grasping poses computed with the multi-superquadric approach better fit
the object surface but those computed using single superquadric models
can be effective for the grasping task as well. This depends mostly on the
object softness and texture: plushes for example can also be grasped us-
ing poses computed with a single superquadric model because they can
deform under fingers pressure. However, using finer object models for
computing grasp candidates also for this kind of objects allows for a better
control on the object portion on which the hand should be located.

8.4 Discussion

In this Chapter, we presented an extension of the single superquadric mod-
eling and grasping techniques able to deal with more complex objects. The
main limitation of the approach described in Chapter 7 is the assumption
that the object can be properly represented with a single superquadric,
hypothesis that unfortunately does not hold for several everyday objects.
This encouraged us to design a new algorithm capable of generating finer
object models, made of multiple superquadrics.

The modeling method proposed in this Chapter is able to infer auto-
matically the minimum number and the parameters of the superquadrics
required for modeling the object with higher accuracy than using a sin-
gle superquadric. This is achieved by iteratively splitting the object
point cloud with simple geometrical criteria, fitting a superquadric for
each portion and building the so-called superquadric-tree ST (Paragraph

8.4. Discussion 199

(a) (b)

(c) (d)

(e) (f)

FIGURE 8.23: Comparison between grasping poses com-
puted by modeling tools with single- and multiple-

superquadric models.

200
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

(a) (b)

(c) (d)

(e) (f)

FIGURE 8.24: Comparison between grasping poses com-
puted by modeling soft objects with single- and multiple-

superquadric models.

8.4. Discussion 201

8.1.1). The structure of the superquadric-tree is then used to infer whether
the portions of the point cloud need to be represented with different
superquadrics or can be merged together.

Once a multi-superquadric model is provided, a grasp candidate for
each superquadric is computed and the best one for performing the task is
selected. Both the multi-superquadric grasp poses computation and selec-
tion extend the approaches described in Section 7.2 and 7.4 in order to deal
with multi-superquadric models.

The problem of modeling an object with multiple superquadrics has
been addressed in some previous works [105, 106, 112, 113]. In particu-
lar, in [105] the authors proposed a splitting and merging approach, which
has been exploited, with slight modifications, also in [106, 112, 113]. The
basic idea of the algorithm consists of proceeding at first top-down by split-
ting the point cloud and fitting a superquadric for each resulting portion.
During the merging step, the algorithm merges each superquadric with its
neighbors and the merged superquadric that provides the best improve-
ment in representing that object portion is selected. This step is repeated
going bottom-up until a final model accuracy is reached. The algorithm
presented in [112] implements the splitting and merging procedure of [105]
using a binary tree to limit the possible merging combinations. In [106] in-
stead the number of neighbors taken into account during each merging
trial are reduced using k-nearest neighbor algorithms. Even though ev-
ery work presents some different features, they all rely on checking if each
merging step produces an improvement in the model. This kind of condi-
tion is hard to verify, as it requires the definition of a reconstruction error
with respect to the point cloud, independent from the superquadric size
and point cloud noise. This is the reason why our approach deviates from
the standard merging approach proposed in [105] and aims instead at find-
ing the splitting planes for cutting the object point cloud.

To the best of our knowledge, this is the first work which proposes an
approach for computing grasp candidates using multiple superquadrics.
The works using multiple superquadrics for grasping the object make use
of grasp candidates generator such as GraspIt! [112]. Other works that in-
stead compute grasping candidates by exploiting superquadric properties
focus only on single superquadric models [115, 116].

We tested our approach on a large number of objects, including also

202
Chapter 8. Modeling and grasping more complex objects using
multiple superquadrics

objects from the YCB and ShapeNet datasets. Even if exhaustive experi-
ments on the real robot to test the effectiveness of the models and grasping
poses are still missing, the methods provide promising results, as shown
in Section 8.4.

We are however aware of some of the limitations the method pre-
sented in this Chapter is affected by, especially regarding the modeling
process. The final model accuracy in fact strongly depends on the setting
of the threshold µ (Paragraph 8.1.2) used to discriminate whether a pair of
superquadrics have similar dimensions and, consequently, can be merged
in the final model. Even though inferring the proper µ value to obtain an
accurate model for a specific object is fast and intuitive, it is instead very
hard to find a unique value µ suitable for different kind of objects (Fig.
8.13) and point cloud qualities (Fig. 8.12 vs Figs. 8.14 and 8.15). How-
ever, it is worth pointing out how setting a quite small threshold µ leads to
over-segmentation of the objects and thus to models still effective for the
grasping task. A possible way to avoid a manual setting of the threshold is
to rely on a classifier properly trained to predict the optimal value µ for dif-
ferent object classes, following a similar approach to the one proposed in
Section 7.3.1 to improve and speed up the single superquadric estimation
using prior on object shapes.

Another limitation of the modeling process, affecting also the grasp
pose computation, is the computation time. Together with code improve-
ments and parallelization, a considerable advancement in this respect
could be provided by the adaption of learning framework. A CNN could
learn single superquadrics to speed up their reconstruction and another
network could be trained to identify where to split the object point cloud
for making the multiple superquadric modeling more robust. At this re-
gard, some works proposing 3D and 2D object portions segmentation for
the affordance problem [224, 225] could be adapted to identify how to split
object portions in volumetric and shape proprierties relevant for the more
general grasping task.

203

Part V

Deep Reinforcement Learning for
manipulation

205

Chapter 9

The exploration problem in Deep
Reinforcement Learning and its
relevance in manipulation

The research activity described thus far in this Thesis addresses the prob-
lem of autonomous manipulation by relying on model-based approaches
where the problem is partitioned into simpler sub-problems. This is the
standard way-to-go in robotics but it is actually very different from how
humans learn to manipulate objects. Humans do not learn separately
how to segment objects, reconstruct their models and compute poses for
grasping them. Instead, the solution of each problem is achieved at the
same time with experience, learning from trials and errors. For this rea-
son, the interest in alternative approaches based on learning has been in-
creasingly growing lately in robotic community, in particular in context of
manipulation [4, 5, 6, 157, 158, 167]1. However, the application of learning
to robotics has been encouraged also by its potentials. First of all, such a
framework can simplify robot actions planning by designing general pur-
pose algorithms with proper cost functions. It also allows better exploiting
the sensors and robots DOFs especially when not easy to be modeled. Fi-
nally, learning algorithms can potentially adapt constantly to the environ-
ment where the robot operates.

Deep Reinforcement Learning (RL) provides a mathematical formula-
tion that well lends itself to model the properties of humans of learning
from theirs mistakes and encodes the potentials listed above. This is the

1 The interest in learning is much wider in robotics. Deep Learning is nowadays the
state of the art in computer vision and Deep Reinforcement Learning is applied for solving
other classic robotics problems, such as locomotion.

206
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

reason of my interest in Deep RL, with the aim to cast the model-based
techniques described thus far in this Thesis into a more general learning
framework in the next future.

This Chapter collects the activities I carried out at Berkeley Artificial
Intelligence Research Lab (BAIR), UC Berkeley, under the supervision of
Prof. Pieter Abbeel. During my internship I studied and practiced with
Deep Reinforcement Learning with the high-level goal to understand its
effectiveness and potential for improving robots manipulation skills.

The Chapter is organized as follows. Section 9.1 introduces the
Reinforcement Learning setting2 focusing on the exploration problem,
which is the topic I worked on during my internship. Section 9.2 sum-
marizes a project I was involved in which addresses explicitly robotic
manipulation and solves the exploration problem by exploiting human
demonstrations. Section 9.3 describes the main project I worked on during
my internship: how to use information properly learned from the solution
of prior tasks for encouraging exploration in a new task. Finally, Section 9.4
discusses the current limitations of these works and ideas for future work
on these topics.

9.1 Problem formulation

Reinforcement Learning is well-suited for robotic applications as it is con-
cerned with learning the actions an agent has to execute for performing
a desired task. Unlike supervised learning where the labels of the training
set provide a supervision to the learning algorithm, in the Reinforcement
Learning framework the algorithms are provided only with a reward func-
tion R, which indicates to the learning agent when it is acting well, and
when it is acting poorly. In grasping applications for instance, the reward
function might give the robot positive rewards when moving the end-
effector towards the object to grasp, and negative rewards for moving in
the opposite direction. The reinforcement learning algorithm is supposed
to figure out how to choose actions over time so as to obtain large rewards.

2 In this Chapter we refer to Deep RL and RL interchangeably. To be precise, Deep
RL is the combination of RL together with deep networks. Deep networks are extremely
helpful when, for example, the algorithm is asked to learn from raw inputs, such as vision,
without any hand-engineered features or domain heuristics.

9.1. Problem formulation 207

Reinforcement Learning is usually posed in the formalism of Markov
Decision Processes (MDPs). A Markov Decision Process is a tuple:

M = {S ,A,Psa, R, γ, ρ0}, (9.1)

where:

• S ⊆ Rn is the set of states the system can experience. For example,
in manipulation tasks this could include all the possible end-effector
and fingers poses together with the object position. In this Chapter,
we assume the states to be known and available. The more general
scenario where only observations are available is modeled with the
Partially Observed MDPs, and, even if more realistic, is out of the scope
of this Chapter.

• A ⊆ Rm is the set of actions the agent can execute, e.g. the joint
angles velocities of the robot arm and hand.

• Psa : S ×A → S is the transition dynamics, which can be stochastic,
i.e. the distribution over what states the system transitions to if the
action a is taken in state s. The transition dynamics can be known or
not, leading to two different families of RL algorithms, respectively
named model-based and model-free approaches. From now on we al-
ways assume this distribution not to be provided and, thus, it can be
accessed only by sampling.

• R : S ×A → R is the reward function, which evaluates the effective-
ness of action a taken in state s with respect to the task to accomplish.

• γ ∈ [0, 1] is the so-called discount factor, that is required in infinite
horizon tasks whereas it can be omitted if the task is executed in a
finite number of steps3.

• ρ0 is the probability distribution over initial states.

The MDP is used to model systems where the execution of an action
at at time t leads to the transition from the state st to the state st+1 starting

3As shown in Eq. (9.2), in infinite-horizon tasks the discount factor < 1 is necessary to
make the sum ∑∞

t=0 γtRt finite. In case of finite horizon tasks instead, that sum is auto-
matically finite: ∑T

t=0 γtRt.

208
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

FIGURE 9.1: Markov Decision Process graphical model.

FIGURE 9.2: Reinforcement Learning scheme. The policy π
performs an action At so as to maximize the reward Rt, being
in state St. The execution of At makes the system transition

to the state St+1 and a new reward Rt+1 is provided.

from an initial condition s0 and according to the transition distribution Psa,
i.e. st+1 ∼ Psa (Fig. 9.1).

The goal of RL is to estimate a policy π : S → A, i.e. a mapping from
the states to the actions (Fig. 9.2), so as to maximize the expected return
during the execution of the task:

η(π) = Eπ,M

[
∞

∑
t=0

γtRt

]
. (9.2)

For a complete formulation of the Reinforcement Learning setting we also
define:

9.1. Problem formulation 209

• The value function:

Vπ(s) = Eπ,M

[
∞

∑
t=0

γtRt | s0 = s

]
(9.3)

i.e. the expected sum of discounted rewards upon starting in state s,
and taking actions according to π.

• The Q-function:

Qπ(s, a) =Eπ,M

[
∞

∑
t=0

γtRt | s0 = s, a0 = a

]
=

EM
[

R(s, a)
]
+ Es′∼Psa

[
Vπ(s′)

] (9.4)

that provides the expected total reward of the agent when starting in
state s and picking action a.

• The advantage function:

Aπ(s, a) = Qπ(s, a)−Vπ(s). (9.5)

The three functions above introduced are fundamental for the design
of the main RL algorithms and we will refer to them in the next Sections.
A careful description of the most popular RL algorithm is however out of
the scope of this Thesis work. We refer to [159] for a complete discussion
of the topic.

The problem we focus on in this Chapter is the so-called exploration
problem or, in other words, how to efficiently explore the state space in order to
fast experience the rewards.

The effectiveness of RL algorithms strongly depends on the design of
the reward functions. This is in fact the only information our agent re-
ceives regarding the quality of the actions it performs. Designing the re-
ward function is not trivial in real world applications. While the reward
in game playing tasks is constantly available during their execution being
the game score, in practical applications the rewards that can be easily ob-
tained are mostly indicator functions for task completion. In the grasping
task for example, such a indicator can provide 1 when the robot is holding

210
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

the object and 0 otherwise. Unfortunately, this kind of rewards, also called
sparse task completion rewards, provide poor information during the training
of the policy. How can the policy learn the actions to perform the task, if
it receives non-zero rewards only when the task is accomplished? For this
reason, in practice, various forms of shaped rewards that incorporate human
priors on how to accomplish the task might be required to make progress
on the learning problem. Even if very helpful in many applications, reward
shaping is often quite difficult also requiring to deal with a well structured
environment. Shaping the rewards for a pick-and-place task for example
is not trivial (as shown in Section 9.2). The rewards should take into ac-
count the distance between the hand palm, fingertips and the object and
from the object itself to its final desired position. Even if this might look
easy, it actually requires some tuning of parameters for weighting differ-
ently each reward term. In addition, we need to track the position of the
object, that might be complicated due to possible vision occlusions during
the execution of the task4. It also might happen that the shaped reward we
manage to define actually depends only on a portion of the state. When
the state dimensionality is large (n >> 10), instead of searching the solu-
tion by exploring the entire state, it would be more efficient to focus only
on that portion of the state responsible for the rewards following proper
exploration strategies. For example, if a robot is asked to move a specific
object in a cluttered scenario towards a goal position, moving all the objects
is not convenient. It would instead be more efficient to play only with the
object of interest. The case when learning is performed from raw images is
even more explanatory. In this case the state is very large and redundant:
all the pixels representing the background are in fact very likely to provide
useless information for the solution of the task.

In the next Sections, we describe two different strategies for address-
ing the problem of exploration in presence of sparse rewards and high-
dimensional state space: using human demonstrations (Section 9.2) and
learning the latent representation of the state that mostly affects the re-
ward function from prior tasks (Section 9.3). The work presented in Sec-
tion 9.2 particularly focuses on the exploration problem for dexterous

4It is important to clarify that this is actually a problem in case of POMDPs, i.e. when
the entire state of the system is not available. As we said before, this scenario is out of the
scope of our work, but it is actually what we encounter in real world applications. It is
therefore relevant taking into account these issues during the motivation of our study.

9.2. Learning complex dexterous manipulation with Deep
Reinforcement Learning and demonstrations

211

manipulation tasks.

9.2 Learning complex dexterous manipulation

with Deep Reinforcement Learning and

demonstrations

Multi-fingered dexterous manipulators are crucial for robots to function in
human-centric environments, due to their versatility and potential to en-
able a large variety of contact-rich tasks, such as in-hand manipulation,
complex grasping, and tool use. However, this versatility comes at the
price of high dimensional observation and action spaces, complex and dis-
continuous contact patterns, and under-actuation during non-prehensile
manipulation. This makes dexterous manipulation with multi-fingered
hands a challenging problem.

Dexterous manipulation behaviors with multi-fingered hands have pre-
viously been obtained using model-based trajectory optimization meth-
ods [226, 227]. However, these methods typically rely on accurate
dynamics models and state estimates, which are often difficult to ob-
tain for contact rich manipulation tasks, especially in the real world.
Reinforcement learning provides a model agnostic approach that circum-
vents these issues. Indeed, model-free methods have been used for acquir-
ing manipulation skills [228, 229], but thus far have been limited to simpler
behaviors with 2-3 finger hands or whole-arm manipulators, which do not
capture the challenges of high-dimensional multi-fingered hands.

We find that existing RL algorithms can indeed solve these dexterous
manipulation tasks, but require significant manual effort in reward shap-
ing. In addition, the sample complexity of these methods is very poor,
thus making real world training infeasible. To overcome this challenge,
we propose to augment the policy search process with a small number of
human demonstrations collected in virtual reality (VR). In particular, we
find that pre-training a policy with behavior cloning, and subsequent fine-
tuning with policy gradient along with an augmented loss to stay close to
the demonstrations, dramatically reduces the sample complexity, enabling
training within the equivalent of a few real-world robot hours. Although
success remains to be demonstrated on hardware, our results in this work

212
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

indicate that DRL methods when augmented with demonstrations are a
viable option for real-world learning of dexterous manipulation skills.

Our main contributions are:

• We demonstrate, in simulation, dexterous manipulation with high-
dimensional human-like five-finger hands using model-free DRL. To
our knowledge, this is the first empirical result that demonstrates
model-free learning of tasks of this complexity.

• We show that with a small number of human demonstrations, the
sample complexity can be reduced dramatically and brought to levels
which can be executed on physical systems.

In the next Paragraphs, we briefly report the main contributions and re-
sults of this work. An exhaustive explanation and evaluation of the contri-
butions is provided in [180].

9.2.1 Dexterous manipulation tasks

The real world presents a plethora of interesting and important
manipulation tasks. While solving individual tasks via custom manipula-
tors in a controlled setting has led to success in industrial automation, this
is less feasible in an unstructured settings like the home. Our goal is to pick
a minimal task-set that captures the technical challenges representative of
the real world. We present four classes of tasks - object relocation, in-hand
manipulation, tool use, and manipulating environmental props (such as
doors). Each class exhibits distinctive technical challenges, and represent a
large fraction of tasks required for proliferation of robot assistance in daily
activities – thus being potentially interesting to researchers at the intersec-
tion of robotics and machine learning. All our task environments expose
hand (joint angles), object (position and orientation), and target (position
and orientation) details as observations, expect desired position of hand
joints as actions, and provides an oracle to evaluate success. We now de-
scribe the four classes in light of the technical challenges they present.

9.2. Learning complex dexterous manipulation with Deep
Reinforcement Learning and demonstrations

213

FIGURE 9.3: Object relocation – move the blue ball to the
green target. Task is considered successful when the object

is within epsilon-ball of the target.

FIGURE 9.4: In-hand manipulation – reposition the blue pen
to match the orientation of the green target. Task is con-
sidered successful when the orientations match within tol-

erance.

FIGURE 9.5: Door opening – undo the latch and swing the
door open. Task is considered complete when the door

touches the door stopper at the other end.

FIGURE 9.6: Tool use – pick up and hammer with significant
force to drive the nail into the board. Task is successful when

the entire length of the nail is inside the board.

214
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

Object relocation (Fig. 9.3)

Object relocation is a major class of problems in dexterous manipulation,
where an object is picked up and moved to a target location. The princi-
pal challenge here from an RL perspective is exploration, since in order to
achieve success, the hand has to reach the object, grasp it, and take it to the
target position – a feat that is very hard to accomplish without priors in the
form of shaped rewards or demonstrations.

In-hand Manipulation – Repositioning a pen (Fig. 9.4)

In hand-manipulation maneuvers like re-grasping and re-positioning ob-
jects involve leveraging the dexterity of a high DOF manipulator to effec-
tively navigate a difficult landscape filled with constraints and disconti-
nuities imposed by joint limits and frequently changing contacts. Due to
the large number of contacts, conventional model-based approaches which
rely on accurate estimates of gradients through the dynamics model strug-
gle in these problem settings. The major challenge in these tasks represents
the complex solutions needed for different maneuvers. For these reason,
sampling based DRL methods with rich neural network function approxi-
mators are particularly well suited for this class of problems.

Manipulating Environmental Props (Fig. 9.5)

Real-world robotic agents will require constant interaction and
manipulation in human-centric environments. Tasks in this class in-
volve modification of the environment itself - opening drawers for
fetching, moving furniture for cleaning, etc. The solution is often multi-
step with hidden subgoals (e.g undo latch before opening doors), and
lies on a narrow constrained manifold shaped primarily by the inertial
properties and the under actuated dynamics of the environment.

Tool Use – Hammer (Fig. 9.6)

Humans use tools such as hammers, levers, etc. to augment their capabili-
ties. These tasks involve co-ordination between the fingers and the arm to
apply the tool correctly. Unlike object relocation, the goal in this class of
tasks is to use the tool as opposed to just relocating it. Not all successful

9.2. Learning complex dexterous manipulation with Deep
Reinforcement Learning and demonstrations

215

grasp leads to effective tool use. Effective tool use requires multiple steps
involving grasp reconfiguration and careful motor co-ordination in order
to impart the required forces.

9.2.2 Demo Augmented Policy Gradient (DAPG)

In this work, we use a combination of RL and imitation learning to solve
complex dexterous manipulation problems. To reduce sample complexity
and help with exploration, we collect a few expert demonstrations using a
VR system, and incorporate these into the RL process. We first present the
base RL algorithm we use for learning and then describe our procedure to
incorporate demonstrations.

Natural Policy Gradient

In this work, we primarily consider policy gradient methods, which are a
class of model-free RL methods. In policy gradient methods, the parameters
θ of the policy πθ are directly optimized to maximize the objective η(θ) -
defined in Eq. (9.2) - using local search methods such as gradient ascent.
In particular, for this work we consider the NPG algorithm [230, 231, 232].
First, NPG computes the vanilla policy gradient, or REINFORCE [233] gra-
dient:

g =
1

NT

N

∑
i=1

T

∑
t=1
∇θ log πθ(ai

t|si
t)Âπ(si

t, ai
t, t). (9.6)

Secondly, it pre-conditions this gradient with the (inverse of) Fisher Infor-
mation Matrix [230, 234] computed as:

Fθ =
1

NT

N

∑
i=1
∇θ log πθ(ai

t|si
t)∇θ log πθ(ai

t|si
t)

T, (9.7)

and finally makes the following normalized gradient ascent update [231,
232, 235]:

θk+1 = θk +

√
δ

gTF−1
θk

g
F−1

θk
g, (9.8)

where δ is the step size choice. A number of pre-conditioned policy gradi-
ent methods have been developed in literature [230, 231, 232, 235, 236, 237,
238] and in principle any of them could be used.

216
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

Augmenting RL with demonstrations

Although NPG with an appropriately shaped reward can somewhat solve
the tasks we consider, there are several challenges which necessitate the
incorporations of demonstrations to improve RL:

1. RL is only able to solve the tasks we consider with careful, laborious
task reward shaping.

2. While RL eventually solves the task with appropriate shaping, it re-
quires an impractical number of samples to learn - in the order of a
100 hours for some tasks.

Combining demonstrations with RL can help combat both these issues.
Demonstrations help alleviate the need for laborious reward shaping, help
guide exploration and decrease sample complexity of RL. We propose the
demonstration augmented policy gradient (DAPG) method which incor-
porates demonstrations into policy gradients in two ways.

Pretraining with behavior cloning

Policy gradient methods typically perform exploration by utilizing the
stochasticity of the action distribution defined by the policy itself. If the
policy is not initialized well, the learning process could be very slow with
the algorithm exploring state-action spaces that are not task relevant. To
combat this, we use behavior cloning (BC) [239, 240] to provide an in-
formed policy initialization that efficiently guides exploration. Use of
demonstrations circumvents the need for reward shaping often used to
guide exploration. This idea of pretraining with demonstrations has been
used successfully in prior work [241], and we show that this can dramat-
ically reduce the sample complexity for dexterous manipulation tasks as
well. BC corresponds to solving the following maximum-likelihood prob-
lem:

maximize
θ

∑
(s,a)∈ρD

ln πθ(a|s), (9.9)

where ρD denotes the demonstrations data
{

s(i)t , a(i)t , s(i)t+1, r(i)t

}
(t indexes

time and i indexes different trajectories). The optimizer of the above objec-
tive, called the behavior cloned policy, attempts to mimic the actions taken

9.2. Learning complex dexterous manipulation with Deep
Reinforcement Learning and demonstrations

217

in the demonstrations at states visited in the demonstrations. In practice,
behavior cloning does not guarantee that the cloned policy will be effec-
tive, due to the distributional shift between the demonstrated states and
the policy’s own states [242]. Indeed, we observed experimentally that the
cloned policies themselves were usually not successful.

RL fine-tuning with augmented loss

Though behavior cloning provides a good initialization for RL, it does not
optimally use the information present in the demonstration data. Different
parts of the demonstration data are useful in different stages of learning,
especially for tasks involving a sequence of behaviors. For example, the
hammering task requires behaviors such as reaching, grasping, and ham-
mering. Behavior cloning by itself cannot learn a policy that exhibits all
these behaviors in the correct sequence with limited data. The result is that
behavior cloning produces a policy that can often pick up the hammer but
seldom swing it close to the nail. The demonstration data contains valu-
able information on how to hit the nail, but is lost when the data is used
only for initialization. Once RL has learned to pick up the hammer prop-
erly, we should use the demonstration data to provide guidance on how to
hit the nail. To capture all information present in the demonstration data,
we add an additional term to the gradient:

gaug = ∑
(s,a)∈ρπ

∇θ ln πθ(a|s)Aπ(s, a)+

∑
(s,a)∈ρD

∇θ ln πθ(a|s)w(s, a).
(9.10)

Here ρπ represents the dataset obtained by executing policy π on the MDP,
and w(s, a) is a weighting function. This augmented gradient is then used
in Eq. (9.8) to perform a co-variant update. If w(s, a) = 0 ∀(s, a), then
we recover the policy gradient in Eq. (9.6). If w(s, a) = c ∀(s, a), with
sufficiently large c, it reduces to behavior cloning, as in Eq. (9.9). How-
ever, we wish to use both imitation and Reinforcement Learning, so we
require an alternate weighting function. The analysis in [243] suggests
that Eq. (9.6) is also valid for mixture trajectory distributions of the form
ρ = αρπ + (1− α)ρD. Thus, a natural choice for the weighting function
would be w(s, a) = Aπ(s, a) ∀(s, a) ∈ ρD. However, it is not possible to

218
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

compute this quantity without additional rollouts or assumptions [244].
Thus, we use the heuristic weighting scheme:

w(s, a) = λ0λk
1 max
(s′,a′)∈ρπ

Aπ(s′, a′) ∀(s, a) ∈ ρD,

where λ0 and λ1 are hyperparameters, and k is the iteration counter. The
decay of the weighting term via λk

1 is motivated by the premise that ini-
tially the actions suggested by the demonstrations are at least as good
as the actions produced by the policy. However, towards the end when
the policy is comparable in performance to the demonstrations, we do not
wish to bias the gradient. Thus, we asymptotically decay the auxiliary ob-
jective. We empirically find that the performance of the algorithm is not
very sensitive to the choice of these hyperparameters. For all the experi-
ments, λ0 = 0.1 and λ1 = 0.95 was used.

9.2.3 Results

Our results study how RL methods can learn dexterous manipulation
skills, comparing several recent algorithms and reward conditions.
First, we evaluate the capabilities of RL algorithms to learn dexterous
manipulation behaviors from scratch on the tasks outlined in Section
9.2.1. Subsequently, we demonstrate the benefits of incorporating human
demonstrations with regard to faster learning and ability to cope with
sparse task completion rewards. A more detailed analysis and further ex-
periments are reported in [180].

Experimental setup

To test our algorithm, we use a high degree of freedom dexterous manipu-
lator and a virtual reality demonstration system which we describe below.

We use a simulated analogue of a highly dexterous manipulator –
ADROIT [245], which is a 24-DoF anthropomorphic platform designed for
addressing challenges in dynamic and dexterous manipulation [227, 246].
The first, middle, and ring fingers have 4 DoF. Little finger and thumb have
5 DoF, while the wrist has 2 DoF. Each DoF is actuated using position con-
trol and is equipped with a joint angle sensor.

9.2. Learning complex dexterous manipulation with Deep
Reinforcement Learning and demonstrations

219

Our experimental setup uses the MuJoCo physics simulator [247]. The
stable contact dynamics of MuJoCo [248] makes it well suited for contact
rich hand manipulation tasks. The kinematics, the dynamics, and the sens-
ing details of the physical hardware were carefully modeled to encourage
physical realism. In addition to dry friction in the joints, all hand-object
contacts have planar friction. Object-fingertip contacts support torsion and
rolling friction. Though the simulation supports tactile feedback, we do not
use it in this work for simplicity, but expect that its use will likely improve
the performance.

Reinforcement Learning from Scratch

We aim to address the following question in this experimental evaluation:

• Can existing RL methods cope with the challenges presented by the
high dimensional dexterous manipulation tasks?

In order to benchmark the capabilities of DRL with regard to the dex-
terous manipulation tasks outlined in Section 9.2.1, we evaluate the NPG
algorithm described briefly in Section V, and the DDPG algorithm [249],
which has recently been used in a number of robotic manipulation sce-
narios [229, 250, 251]. Both of these methods have demonstrated state of
the art results in popular DRL continuous control benchmarks, and hence
serve as a good representative set. We score the different methods based
on the percentage of successful trajectories the trained policies can gener-
ate, using a sample size of 100 trajectories. We find that with sparse task
completion reward signals, the policies with random exploration never ex-
perience success (except in the in-hand task) and hence do not learn.

In order to enable these algorithms to learn, we incorporate human pri-
ors on how to accomplish the task through careful reward shaping. With the
shaped rewards, we find that NPG is indeed able to achieve high success
percentage on these tasks (Fig. 9.7), while DDPG was unable to learn suc-
cessful policies despite considerable hyperparameter tuning. DDPG can
be very sample efficient, but is known to be very sensitive to hyperparam-
eters and random seeds [252], which may explain the difficulty of scaling
it to complex, high-dimensional tasks like dexterous manipulation.

220
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

0 20 40 60 80 100
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

Object Relocation

0 5 10 15 20
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

In-hand Manipulation (Pen)

0 5 10 15 20
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

Door Opening

0 5 10 15 20
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

Tool Use (Hammer)
DDPG
DDPG (shaped)
NPG
NPG (shaped)

FIGURE 9.7: Performance of pure RL methods – NPG and
DDPG, with sparse task completion reward and shaped re-
ward. Sparse reward setting is primarily ineffective in solv-
ing our task set (expect in-hand manipulation). Incorporat-
ing human priors using reward shaping helps NPG get off

the ground, but DDPG sill struggles to find success.

Although incorporation of human knowledge via reward shaping is
helpful, the resulting policies are too sample inefficient to be useful for
training on the physical hardware.

Reinforcement Learning with Demonstrations

In this section we aim to study the following questions:

1. Does incorporating demonstrations via DAPG reduce the learning
time to practical timescales?

2. How does DAPG compare to other model-free methods that incorpo-
rate demonstrations, such as DDPGfD [250]?

We employ the DAPG algorithm in Section 9.2.2 on the set of hand tasks
and compare with the recently proposed DDPGfD method [250]. DDPGfD
builds on top of the DDPG algorithm, and incorporates demonstrations
to bootstrap learning by: (1) Adding demonstrations to the replay buffer;
(2) Using prioritzed experience replay; (3) Using n-step returns; (4) Adding
regularizations to the policy and critic networks. Overall, DDPGfD has
proven effective on arm manipulation tasks with sparse rewards in prior
work, and we compare performance of DAPG against DDPGfD on our
dexterous manipulation tasks.

For this Section of the evaluation we use only sparse task completion re-
wards, since we are using demonstrations. With the use of demonstrations,
we expect the algorithms to implicitly learn the human priors on how to
accomplish the task. Fig. 9.8 presents the comparison between the differ-
ent algorithms. DAPG convincingly outperforms DDPGfD in all the tasks
well before DDPGfD even starts showing signs of progress. Furthermore,

9.3. Learning state representations for improving exploration 221

0 2 4 6 8 10
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

Object Relocation

0 2 4 6 8 10
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

In-hand Manipulation (Pen)

0 5 10 15 20
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

Door Opening

0 2 4 6 8 10
Robot Hours

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

Tool Use (Hammer)
BC only
DDPGfD
BC init + NPG (ours)
DAPG (ours)

FIGURE 9.8: Performance of RL with demonstrations meth-
ods – DAPG(ours) and DDPGfD. DAPG significantly outper-
forms DDPGfD. For DAPG, we plot the performance of the
stochastic policy used for exploration. At any iteration, the
performance of the underlying deterministic policy will be

better.

TABLE 9.1: Sample and robot time complexity of DAPG
(ours) compared to RL (Natural Policy Gradient) from
scratch with shaped (sh) and sparse task completion reward
(sp). N is the number of RL iterations needed to achieve 90%
success rate, Hours represent the robot hours needed to learn
the task. Each iteration is 200 trajectories of length 2 seconds

each.

Method DAPG (sp) RL (sh) RL (sp)

Task N Hours N Hours N Hours

Relocation 52 5.77 880 98 ∞ ∞
Hammer 55 6.1 448 50 ∞ ∞
Door 42 4.67 146 16.2 ∞ ∞
Pen 30 3.33 864 96 2900 322

DAPG is able to train policies for these complex tasks in under a few robot
hours Table 9.1. In particular, for the object relocation task, DAPG is able
to train policies almost 30 times faster compared to learning from scratch.
This indicates that RL methods in conjunction with demonstrations, and in
particular DAPG, are viable approaches for real world training of dexter-
ous manipulation tasks.

9.3 Learning state representations for improving

exploration

When no task demonstrations are available, exploration of the state space
is a crucial component in RL algorithms [169, 170, 253, 254, 255, 255, 256,

222
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

257, 258], and remains notoriously difficult for problems with high dimen-
sionality or sparse reward functions.

Most prior works assume that exploration is performed with no prior
knowledge about the solution of the task. This assumption is not necessar-
ily realistic and surely does not hold for humans that constantly use their
knowledge and past experience to solve new tasks.

The idea of exploiting knowledge from prior tasks to fast adapt to the
solution of a new task is a new promising approach already widely used
in Deep RL [173, 259], specifically for addressing the exploration problem
[174].

Driven by this motivation, the scenario we take into account in this
Chapter is the following:

• We consider a family of tasks sampled from a distribution PT.

• We assume N tasks T1, . . . , TN ∼ PT to be already solved, and to have
access to the states visited during each training {S(i)}N

i=1 together
with the experienced rewards signals {R(i)}N

i=1. The set of states S(i)

of the i-th task includes all the trajectories τ
(i)
t experienced during

each training step t:
S(i) = {τ(i)

t }
tmax
t=1 , (9.11)

with tmax the number of training steps, τ = {s0 ∈ Rn, . . . , sl ∈ Rn}
and l the length of each trajectory. Analogously for the rewards R(i):

R(i) = {r(i)t }
tmax
t=1 , (9.12)

with tmax the number of training steps, r = {R0 ∈ R, . . . , Rl ∈ R}
and l the length of each trajectory.

• The goal is to efficiently use the information that can be extracted
from the N tasks for fast exploration during the solution of a new
task TN+1 ∼ PT.

The key idea of this work consists of learning from the N prior tasks a
latent representation z ∈ Rp (p < n) of that portion of the state mostly
affecting the experience of rewards. During the solution of the new task
TN+1, the latent representation z is then considered the subregion of the
state on which to focus the exploration.

At this aim, we design:

9.3. Learning state representations for improving exploration 223

• A multi-headed framework for reward regression on the tasks
T1, . . . , TN ∼ PT to encode in the shared layers of the network the
latent representation z.

• A novel exploration strategy consisting of the maximization of the
entropy over the latent representation z rather than over the entire
state space.

In the next Paragraphs the multi-headed regression (9.3.1) and the
exploration strategy (9.3.2) are presented. Some preliminary experiments
supporting our intuitions are shown in Paragraph 9.3.3. Even if the
reported results are not enough for a complete evaluation of the method,
we consider the contributions presented in this work to be promising and
thus inspiring for new projects.

9.3.1 Learning the latent representation z

We assume N tasks to be sampled from the same distribution PT. An ex-
ample of task distribution is given by the object-pusher task (Fig. 9.9): a
manipulator is required to push one specific object (among other objects)
towards a target position. Each task can differ in the initial objects and
goal positions. Our intuition suggests that tasks sampled from the same
distribution PT must share some common information useful for the solu-
tion of a new task TN+1 ∼ PT. In our example, we can easily notice that
moving the object of interest is what really matters for the task solution,
regardless of the other objects positions. Althought it might be easy some-
times to derive similar arguments, inferring a proper latent representation
is not straightforward in general, especially for harder tasks. A possible
way to extract this information is to make use of the reward signals col-
lected during the solution of N past tasks. Proper reward functions in fact
incorporate the information leading to the solution of the tasks.

At this aim, we design a multi-headed network (Fig. 9.10) where:

• The states {S(i)}N
i=1 collected during the training of the N tasks are

the network input.

• The network has some shared layers (with parameters αshared) fol-
lowed by N separate heads (with parameters α1, . . . αN).

224
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

FIGURE 9.9: An example of 2D object-pusher environment.
The task consists of moving the green object towards the tar-
get, represented with a red square. Only the gray pusher is
actuated and it is responsible for the movements of the other

objects.

FIGURE 9.10: Multi-headed network for reward regression
on N tasks.

9.3. Learning state representations for improving exploration 225

• Each head outputs R̂(i) = hαi(hαshared(S
(i))) are the estimate of the

reward signals R(i) of the i-th task.

• The output of the shared layers is the latent variable z = hαshared(s),
with z ∈ Rp and s ∈ {S(i)}N

i=1 ⊆ Rn. The network is designed so
as to bottleneck the output of the shared layers and obtain a latent
variable with lower dimension with respect to the states (p < n).

The shared layers and the heads of the network can be convolutional
or shallow neural networks, according to whether the inputs {S(i)}N

i=1 are
images or not, as it will be shown in Section 9.3.3.

The idea underlying the structure of such a network is that the shared
layers should be able to learn what is important in the reward function,
regardless of the specific task. The latent variable z = hαshared(s) should
then represent that portion of the state responsible for experiencing the
rewards. Moreover, the multi-headed structure prevents overfitting and
allows better generalization.

The network training is formulated as a regression problem on each
head:

min
α

N

∑
i=1

∑
R∈R(i)

R̂∈R̂(i)

∥∥R− R̂
∥∥2, (9.13)

where α = {αshared, α1, . . . , αN}.

9.3.2 Exploration via maximum-entropy bonus on the

latent variable z

A family of strategies for speeding up state space exploration consist of
adding a bonus B(s)[170, 255, 256, 257, 258] to the reward function R(s)5:

R(s)new = R(s) + γB(s), (9.14)

where γ is a scaling factor for properly weighting the bonus with respect
to the original reward. The goal of the bonus is to drive the learning algo-
rithm when no or poor rewards R(s) are provided. A possible choice for

5In this Chapter, we only consider rewards depending on the state, but this could be
extended to the case of rewards depending also on the actions.

226
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

B(s) is the entropy H(·) over the state distribution p(s) [256]:

R(s)new = R(s) + γH(p(s)), (9.15)

with H(p(s)) = Ep(s)[−log(p(s))]. The policy π resulting from training
with R(s)new maximizes both the original reward and the entropy over the
state space density distribution p(s). Maximizing the entropy of a distri-
bution entails making the distribution as uniform as possible. The uniform
distribution on a finite space is in fact the maximum entropy distribution
among all continuous distributions that are supposed to be in the same
space. This results in encouraging the policy to explore states not visited
yet.

Even if reasonable, the choice of visiting all the possible states is not ef-
ficient when dealing with state space with high dimensionality or rewards
that can be experienced only in a small subregion of the space. Maximiz-
ing the entropy over the portion of space responsible for the rewards is
more efficient. For this reason, the augmented reward function we use for
exploration is given by:

R(s)new = R(s) + γH(p(z)), (9.16)

where z = hαshared(s) ∈ Rp (p < n) is the latent representation learned
from prior tasks (Paragraph 9.3.1). Maximizing the entropy only over z
is much more efficient because it represents the only portion of the state
responsible for the rewards and has lower dimensionality with respect to
the states s ∈ Rn.

In order to estimate the density entropy H(p(z)) = Ep(z)[−log(p(z))],
we use a Variational AutoEncoder (VAE) [260] (Fig. 9.11). The loss used
to train a VAE provides in fact a good estimation of log(p(z)) at the end
of the training. Hereafter, we explain how it is possible to obtain such an
approximation and how to use it for computing the entropy H(p(z)).

The structure of the VAE is the following:

• The input of the encoder qψ(v|·) is the latent representation z =

hαshared(s). The procedure to learn hαshared(·) has been presented in
Paragraph 9.3.1.

9.3. Learning state representations for improving exploration 227

FIGURE 9.11: Variational Autoencoder.

• v is latent variable reconstructed by the VAE, i.e. the output of the en-
coder and input of the decoder . This quantity is not relevant for our
formulation since we are not interested in dimensionality reduction.
We just mention it for the sake of completeness.

• The output ẑ of the decoder pφ(·|v) is the reconstruction of the input
z.

The loss minimized during VAE training [261] is given by:

L(ψ, φ) = −Eqψ(v|z)[log(pφ(ẑ|v)] + DKL(qφ(v|z)||p(v)), (9.17)

where DKL is the Kullback-Leibler divergence between the encoder distri-
bution qφ(v|z) and the distribution p(v). The first term of Eq. (9.17) is the
reconstruction loss, or expected negative log-likelihood. This term encour-
ages the decoder to learn to reconstruct the data. The second term is a
regularizer that measures the information lost when using qφ(v|z) to rep-
resent p(v). In variational autoencoders p(v) is chosen to be a standard
Normal distribution p(v) = N(0, 1).

The VAE loss function in Eq. (9.17) can be proved to be equal to the
negative evidence lower bound (ELBO) [260], that is defined as:

− ELBO = −log(p(z)) + DKL(qφ(v|z)||p(v|z)). (9.18)

p(v|z) cannot be computed analytically, because it describes the values of
v that are likely to provide a sample similar to z using the decoder. The KL
divergence imposes the distribution qφ(v|z) to be close to p(v|z). If we use
an arbitrarily high-capacity model for qφ(v|z), we can assume that - at the
end of the training - qφ(v|z) actually match p(v|z) and the KL-divergence
term is close to zero [260]. As a result, the final loss function of the VAE
can be expressed as:

L(ψ, φ) = −ELBO ' −log(p(z)), (9.19)

228
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

therefore providing a good approximation of −log(p(z)). Recalling that
the entropy H(·) of a distribution p(z) is given by:

H(p(z)) = Ep(z)[−log(p(z))], (9.20)

we can therefore augment our reward function as follows:

Rnew(s) = R(s)− ELBO = R(s)− log(p(z)). (9.21)

Using Policy Gradient6 for training the policy π parametrized in θ, the
maximization problem to be solved can be formulated as:

max
θ

Epθ(a,s)[R(s)− log(pθ(z))] = max
θ

E(pθ(a,s)[R(s)] + H(pθ(z)), (9.22)

where H(pθ(z)) = Epθ(a,s)[−log(pθ(hαshared(s)))]. The expectation is com-
puted with respect to the trajectories (a, s) ∼ pθ(a, s) obtained by running
the current policy πθ. For the sake of completeness, we should remark that
our VAE reconstructs pθ(z), the distribution of the trajectories in z obtained
by executing the current policy πθ, instead of p(z) the distribution of the
variable z. As shown in Algorithm 7, the VAE is in fact trained at each
training step of Policy Gradient with the data collected by running the cur-
rent policy πθ and is therefore fed with trajectories z ∼ pθ(z), depending
on the current policy, instead of samples z ∼ p(z)7. Consequently, our ap-
proach maximize H(pθ(z)) instead of H(p(z)), encouraging the policy to
generate different trajectories in z instead of visiting new z values.

The final exploration algorithm is summarized in Algorithm 7 and
graphically represented in Fig. 9.12.

6Policy gradient methods are a family of reinforcement learning techniques that rely
upon optimizing parametrized policies with respect to the expected return (long-term
cumulative reward) by gradient descent.

7To be exact, the data we collect are in terms of the state s and the latent variable z are
computed as z = hαshared(s).

8Trust Region Policy Optimizer is an algorithm similar to natural Policy Gradient
methods that is effective for optimizing large nonlinear policies such as neural networks.

On policy methods evaluate or improve the same policy that is used to make decisions,
whereas off policy methods evaluate or improve a policy different from one that was used
to generate the data.

9.3. Learning state representations for improving exploration 229

Algorithm 7 Maximum-entropy bonus exploration

1: Initialize the policy πθ0 ;
2: Initialize the VAE encoder and decoder qφ(v|·) and pψ(·|v);
3: Let’s define rt = {R0, . . . , Rl} and τt = {s0, . . . , sl}, with l the trajectory

length (in case f rollouts are executed l is f times the trajectory length);
4: Use one on policy PG algorithm (TRPO [235] in our case 8);
5: for t = 1, . . . , tmax do
6: Collect data (τt, rt) running πθt ;
7: Compute rt,new = rt − ELBO(zt−1);
8: Update policy parameters according the algorithm in use:
9: for θt → θt+1

10: Compute the latent representation zt = hαshared(τt);
11: Train VAE on zt.
12: end for

FIGURE 9.12: Maximum-entropy bonus exploration on a
learned latent representation z. Note that hαshared(·) was
trained offline, using the data collected during the solution
of prior tasks. During the maximum-entropy bonus explo-

ration algorithm its parameters are kept fixed.

230
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

9.3.3 Preliminary results

The method proposed in the previous Paragraphs has been tested on the
object-pusher environment (Fig. 9.9), where:

• The goal is to push the green object (identified as object no. 0) to-
wards the red target.

• The environment state includes the objects (o0, . . . , o6), pusher (p) and
target9 (g) 2D positions:

s = [o0, o1, . . . , o6, p, g]. (9.23)

The 2D space of the environment is finite and continuous.

• The action space is 2D and continuous, allowing the pusher to move
forward - backward and laterally.

• The reward function is given by:

R = Rpusher(o0) = 1{d(o0, g) < δ}d(o0, g)2, (9.24)

where d(o0, g) is the Euclidean distance between the green object and
the target. The reward is then > 0 only when the object is sufficiently
close to the target, i.e. in the circle with center g and radius δ. The
value δ regulates the sparsity of the rewards.

• Different tasks of this environment differ in the initial object positions
and target position.

In the next Paragraphs, we first show the multi-headed framework pre-
sented in Paragraph 9.3.1 to be able to learn a latent representation z for
the position of the object of interest o0, responsible for the reward function
Rpusher. Then, we experimentally find that the exploration method pro-
posed in Paragraph 9.3.2 is more efficient than other exploration strategies
in our testing environment.

9The target position is constant during time.

9.3. Learning state representations for improving exploration 231

Learning the latent representation z for the object-pusher environment

In order to learn the latent representation z, we use the data (S(i), R(i))N
i=1

collected during the training of N = 30 different object-pusher tasks10.
Since the rewards (R(i) = R(i)

pusher)
N
i=1 are sparse (as shown in Eq. (9.24)), the

N tasks are sampled so that the initial object of interest and target position
of all the tasks cover as much as possible the 2D environment. This is
necessary to ensure that the sparse rewards are experienced across the N
tasks in the entire 2D space for proper generalizing during the training of a
new task.

The multi-headed neural network trained for learning z has:

• Two shared hidden layers with dimensions [M, M/4], with M = 16
and ReLu activations, for representing hαshared(·).

• Heads with two hidden layers each with dimensions [M/4, M] and
ReLu activations, representing each hαi(·).

We recall that the network input is given by the collected states {S(i)}N
i=1

and we perform regression on the rewards {R(i)}N
i=1 using the different

heads for estimating {R̂(i)}N
i=1 (see Fig. 9.10). The training is performed

using Adam optimizer and batch size 100.
At the end of the training, i.e. once each head is able to properly pre-

dict the rewards of the i-th task given the states, we can experimentally
demonstrate that the output of the shared layers z = hαshared(s) represents
the portion of the state responsible for the rewards. In this simple envi-
ronment, it is clear that the reward function is directly affected only by the
position of the object of interest o0. We therefore expect our latent repre-
sentation z = hαshared(s) to encode this information. In order to check the
correct behavior of hαshared(·) we perform the following tests, that we refer
to as relative distances analysis. We feed the learned shared layers hαshared(·)
with three different sets of data:

• S1: m states obtained by varying only the object of interest position
o0:

S1 = {s1, . . . , sm}, (9.25)

10To fasten the training, we use dense rewards during the N training, including also
the distance between the pusher p and the object of interest o0 and setting δ to be very
large. We then compute the sparse rewards R(i) from the dense rewards, removing the
extra information.

232
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

with si = {o0,i, o1 . . . , o7, p, g} for i = 1, . . . , m.

• S2: m states obtained by varying only the position of another object
o1:

S1 = {s1, . . . , sm}, (9.26)

with si = {o0, o1,i . . . , o7, p, g} for i = 1, . . . , m.

• S3: m states obtained by varying only the manipulator position p:

S1 = {s1, . . . , sm}, (9.27)

with si = {o0, o1 . . . , o7, pi, g} for i = 1, . . . , m.

The entity of each variation (si − si−1 for i = 2, . . . , m) is the same in the
three data sets S1, S2, S3.

We call the output of the shared layers respectively:

Z1 = hαshared(S1),

Z2 = hαshared(S2),

Z3 = hαshared(S3),

(9.28)

with Zi = {z1, . . . , zm} for i = 1, 2, 3.
For each set Zi we compute the following quantities:

Di = {dl,j}m,m
l,j=1, for i = 1, 2, 3 (9.29)

where
dl,j = zl − zj. (9.30)

Di therefore contains the distance of each output collected in Zi with re-
spect to the other outputs still belonging to Zi, for total of m × m values
for each Di. We refer to these quantities as relative distances. Larger relative
distances correspond to outputs z1, . . . , zm very different among each other
and then, able to well represents variations in the corresponding inputs
s1, . . . , sm.

Fig. 9.13 shows the relative distances D1, D2, D3 respectively in green,
blue and magenta. Each radial line l for l = 1, . . . , m corresponds to
{dl,j}m

j=1 and each dot of each line to the j-the distance dl,j. We can infer
from the plot that the learned latent representation z is more sensitive to

9.3. Learning state representations for improving exploration 233

FIGURE 9.13: Relative distances analysis of the learned latent
representation z when using (S(i), R(i))N

i=1. D1 (green) con-
tains the relative distances when feeding hαshared(·) with dif-
ferent position of the object of interest o0, D2 (blue) with dif-
ferent positions of another object and D3 (magenta) with dif-

ferent pusher positions.

the variation of the object of interest position (S1), since the green relative
distances D1 are larger than the others. This is evident in the plot because
the distances dl,j between the dots of each radial green line are larger,
making the green circle have a larger radius. The radius of the green,
blue and magenta circles therefore represent the sensitivity of the latent
representation z = hαshared(s) with respect to the three set of data S1, S2, S3.
In summary, this test proves that the latent variable z actually represents
the portion of the state responsible for the rewards, as it is more sensitive
to variations of the object of interest position.

234
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

Remarkably, our framework is suitable to perform multi-headed regres-
sion also on images. This is very relevant because it allows obtaining a
latent representation z with a much lower dimension with respect to the
entire image. In fact, the variation of only a few pixels (the green block) is
actually responsible for variations of the rewards. Factoring out, informa-
tion leads to considerably reduce the space where to perform exploration
when, for instance, the state is not completely accessible and we are there-
fore forced to learn from raw images (that is closer to practical applica-
tions).

We train a multi-headed convolutional neural network with the data set
(I(i), R(i))N

i=1, including, instead of the states visited, the images collected
during the training of the N past tasks. The images size is 84× 84. The
CNN structure used in this case is the following:

• two convolutional (conv) layers11 with leaky Relu activations fol-
lowed by two fully connected layers (FC) of dimensions (192,48) with
leaky Relu activations for the shared part hαshared(·);

• two FC layers of dimensions (48, 48) with leaky Relu activations for
each head hαi(·).

We perform the training using Adam optimizer and batch size 50. In order
to perform the relative distances analysis, the set S1, S2, S3 now contains the
images when varying respectively, only the object of interest, another object
or the pusher. The outputs Z1, Z2, Z3 and the distances D1, D2, D3 can be
computed as shown in Eqs. (9.28) - (9.30), just using the new hαshared(·)
function. Fig. 9.14 confirms that the multi-headed framework is able to
learn a proper latent variable z also regressing on images.

Maximum-entropy bonus exploration

As motivated in Paragraph 9.3.2, we propose to encourage exploration by
maximizing the entropy over the latent representation H(pθ(z)). In order
to support our intuition, we perform the following analysis:

11 The conv layers parameters are: filter size: 3, depth of the output volume: 16, stride
to slide the filter: 2, padding:"same", i.e. the output size is the same of the input.

9.3. Learning state representations for improving exploration 235

FIGURE 9.14: Relative distances analysis of the learned latent
representation z when using (I(i), R(i))N

i=1. D1 (green) con-
tains the relative distances when feeding hαshared(·) with dif-
ferent position of the object of interest o0, D2 (blue) with dif-
ferent positions of another object and D3 (magenta) with dif-

ferent pusher positions.

• We train three policies π1, π2, π3 in order to maximize the rewards:

R1 = H(pθ(o0)),

R2 = H(pθ(z)),

R3 = H(pθ(s)).

(9.31)

The three policies are therefore trained in order to make respectively
the distribution of the trajectories of the 1) object of interest position o0,
2) the latent representation z p and 3) the entire state s as uniform as
possible. The policies are trained by using Algorithm 7, with Rnew =

R1, R2 and R3 and, when rewards R1 and R3 are used, without using

236
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

FIGURE 9.15: 100 pusher trajectories obtained when running
the trained policy π, π2, π3. The initial position object the

object of interest o0 is represented with a red square.

the learned latent representation z but directly feeding the VAE with,
respectively, o0 and s to estimate−log(pθ(o0)) and−log(pθ(s)). Figs.
9.15 and 9.16 reports the trajectories followed by the pusher and the
object of interest o0 when running the three trained policies. When the
policy is asked to maximize only the object of interest trajectories, the
pusher (green trajectories in Fig. 9.15) focuses the efforts in moving
towards the object of interest (whose initial position is represented
with a red square). The consequent object trajectories are shown in
green in Fig. 9.16. Analogous trajectories both for the pusher and the
object are generated by π2, obtained by maximizing R2 = H(pθ(z))

9.3. Learning state representations for improving exploration 237

FIGURE 9.16: Object trajectories obtained when running 100
times each trained policy π, π2, π3. The number of trajecto-
ries shown is less than 100 for each policy because not all the
policy executions lead to movements of the object of interest.

(in magenta in 9.15 and 9.16), meaning that our latent representation
correctly encodes the position of the object of interest. The pusher
in the other cases instead explores the entire state and the object is
rarely pushed (blue trajectorie in 9.15 and 9.16).

238
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

• We train three policies π1, π2, π3 in order to maximize the following
rewards:

R1 = Rpusher(o0) + H(pθ(o0)),

R2 = Rpusher(o0) + H(pθ(z)),

R3 = Rpusher(o0) + H(pθ(s)),

(9.32)

with radius of the circle in which the reward is different from zero

FIGURE 9.17: Average returns η(θ) with different reward
bonus.

δ = 0.1 (see Eq. (9.24)). Fig. 9.17 reports the average returns η(θ) (de-
fined in Eq. (9.2)) obtained when training π1, π2 and π3. We consider
the training curve obtained with reward R1 as an oracle, because in
this case the task is solved by maximizing the entropy of the exact
portion o0 responsible for the rewards. The training curve obtained
when training π3 is instead the baseline, since the policy is required
to maximize the entropy over the entire state s. The plot shows that
maximizing R2 = Rpusher(o0) + H(pθ(z)) (i.e. our approach, summa-
rized in Algorithm 7) leads to performance almost as good as using

9.3. Learning state representations for improving exploration 239

the oracle and considerably better than running the baseline. This is
at the same time a proof of the effectiveness of our learned latent rep-
resentation z and of our maximum-entropy bonus exploration strat-
egy.

• We finally compare our approach (Algorithm 7) with some basic
baselines in Fig. 9.18. We respectively report the average return dur-
ing training of:

1. Our approach, shown in Algorithm 7.

2. TRPO with Maximum-entropy bonus over the entire state s.

3. TRPO with Maximum-entropy bonus over the action state. In
this case the policy is encouraged to perform all the possible ac-
tions, making the actions distribution as uniform as possible.

4. TRPO with no exploration bonus in the reward function.

FIGURE 9.18: Average return η(θ) of our approach and some
basic baselines. We do not show the standard deviation to

facilitate the reading of the plot.

240
Chapter 9. The exploration problem in Deep Reinforcement
Learning and its relevance in manipulation

Even if a more intensive evaluation of the approach is required to en-
sure its effectiveness (e.g. on different environments and training from raw
images), the results shown thus far prove that, at least for the considered
environment, we are able to learn the latent representation z and that the
maximum-entropy bonus on this variable benefits for exploration, making
our intuitions promising for future applications.

A possible future application regards the more realistic task of grasping
objects standing on a table. Training a RL algorithm to solve this kind
of task with sparse rewards is pretty challenging, due to the difficulty in
efficiently exploring high-dimensional state spaces. Exploration could be
improved by focusing only on a subspace of the values allowed for the
robot arm joints. Intuitively, this subspace could include those joints values
that lead to end-effector positions close to the table and make the fingers
move in a coordinated manner. In fact, exploring regions of the space far
away from the table are useless for the solution of the task, such as moving
randomly the fingers. While it is very hard to hand-craft a mathematical
formulation for such a state subspace, our approach provides a possible
solution by directly learning from the solution of analogous tasks a latent
representation that encodes the relevant subspace.

9.4 Discussion

This Chapter collects the description of two different projects addressing
the problem of exploration in RL, i.e. how to efficiently explore the state
space to speed up the experience of rewards and, consequently, the solu-
tion of the task. The method reported in Section 9.2 faces the exploration
problem relying on human demonstrations. In the detail, the proposed
method, DAPG, incorporates demonstrations into policy gradient meth-
ods. The empirical results we carried out highlight that our DAPG algo-
rithm acquires policies that are substantially more robust than those ob-
tained with other state of the art algorithms. Furthermore, we found that
DAPG can be up to 30x more sample efficient than RL from scratch with
shaped rewards. DAPG is able to train policies for the tasks we considered
in under 5 hours, which is likely practical to run on real systems. Although
success remains to be demonstrated on real hardware, the complexity of
the tasks in our evaluation and the sample-efficiency of our DAPG method

9.4. Discussion 241

makes this work a significant step toward practical real-world learning of
complex dexterous manipulation. In future work, we aim at learning poli-
cies on real hardware systems, further reducing sample complexity by us-
ing novelty based exploration methods, and processing only raw visual
inputs and tactile sensing.

In Section 9.3, we proposed a novel exploration algorithm that, instead
of relying on human demonstrations, leads effectively the training of the
desired task by using information learned from the solution of similar prior
tasks. In particular, we proposed a multi-headed network (Section 9.3.1)
capable of learning in its shared layers the portion of state space respon-
sible for experiencing the reward in the task family of interest. This infor-
mation was then encoded into an exploration algorithm based on entropy
maximization (Section 9.3.2). Preliminary tests (Section 9.3.3) showed that
the proposed method leads to a faster solution of new tasks sampled from
the task distribution under consideration. The promising results encour-
age us to extend this work in the next future by including processing from
raw pixels and tests on more complex tasks, such as robotic manipulation.

243

Part VI

Conclusions

245

Chapter 10

Conclusions and future work

In this work of Thesis, we proposed possible solutions to some key sub-
problems of autonomous manipulation, focusing on how to process per-
ceptive information for interacting with objects.

The first contribution is the design of a novel 6-DOF tactile object
localization algorithm based on recursive Bayesian estimation, named the
Memory Unscented Particle Filter (MUPF) (Chapter 4). The proposed algo-
rithm is capable of localizing tridimensional objects through 3D contact
points collected on the object surface with good overall performance and
by exploiting a reduced number of particles. The MUPF algorithm relies on
the Unscented Particle Filter suitably adapted to the localization problem
of interest. We implemented a probabilistic description of tactile sensors
in terms of likelihood and measurement function allowing respectively to
evaluate the quality of the current estimate and predict the measurement
given the estimated state. In addition, the standard UPF algorithm has
been modified by the inclusion of a suitable sliding memory (hence the
name MUPF) of past measurements in the update of the particle impor-
tance weights. In this respect, it was found that the memory feature is cru-
cial for a careful exploitation of the available contact point measurements
with consequent improvement of localization accuracy. Performance eval-
uation, carried out via simulation and experimental tests, demonstrated
that the algorithm is reliable and has good performance also in presence of
measurement noise.

The MUPF has been successfully applied also on a challenging tactile
recognition task (Chapter 5). Tactile object recognition has been formulated
as a localization problem applied to multiple objects, where the solution is
provided by the object whose localization error is the lowest among all the
considered objects. This approach has been tested on a set of objects very

246 Chapter 10. Conclusions and future work

similar in shape and dimensions both using simulated and real measure-
ments.

The second main contribution of this work is given by the
implementation of a pipeline for the execution of the handover task on the iCub
humanoid robot (Chapter 6). In practice, the robot is asked to pass an ob-
ject (whose model is known) from one hand on to the other. The pipeline
can be summarized as follows. The robot grasps the desired object with
the first hand and it controls the grasp using tactile feedback. The MUPF
then estimates the object in-hand pose using a partial 3D point cloud of the
object extracted with stereo vision. The MUPF in fact just requires to be fed
with 3D points collected on the object surface, including also point clouds.
The object model is a-priori annotated with a set of grasping poses reach-
able by the second hand. After the object is localized, the candidates are
ranked according to proper criteria and the best pose for performing the
handover is then selected. The method has been experimentally evaluated
with the iCub humanoid robot, showing that it provides a high success rate
for some objects of the YCB dataset different in shape, texture and dimen-
sions.

As further contribution, we designed and implemented on the robot
iCub an object modeling and grasping pipeline based on superquadric func-
tions (Chapter 7). The leading idea of the approach is to use superquadrics
to represent both the volume graspable by the robot hand and the ob-
ject of interest. While the former is given a priori as it depends only on
the hand geometry, the latter is estimated from an object partial point
cloud. A proper grasping pose is then obtained by overlapping the su-
perquadric representing the volume graspable by the robot hand onto the
object superquadrics while meeting some orientation and obstacle avoid-
ance constraints (e.g. avoidance of the support on which the object is lo-
cated). The pipeline has been tested on a large number of objects, including
also YCB objects, computing a grasp candidate for both the left and right
hand and then choosing the best one according to a proper cost function.

The first implementation of the modeling and grasping pipeline envis-
ages the use of a single superquadric for modeling the object. Since rep-
resenting some objects with a single superquadric leads to too rough or
even wrong models, we extended the modeling and grasping methods to

Chapter 10. Conclusions and future work 247

deal with multi-superquadric object representation (Chapter 8). The multi-
superquadric model is obtained by iteratively splitting the object point
cloud with simple geometrical criteria, fitting a superquadric for each por-
tion and building the so-called superquadric-tree ST . The structure of
the superquadric-tree is then used to infer whether the portions of the
point cloud need to be represented with different superquadrics or can be
merged together. The computation of the grasping pose can be instead
performed by extending the technique proposed for single-superquadric
models to deal with more superquadrics. A grasp candidate is computed
for each superquadric of the model and the best one according to proper
criteria is then selected for performing the grasp. The approaches have
been tested on a larger number of objects in simulation.

The conclusive Chapter 9 collected the activities carried out at Berkeley
Artificial Intelligence Research Lab (BAIR). In particular, we reported
on the work carried out during a joint Deep RL project on robotic
manipulation and the development of a new algorithm addressing the
exploration problem in Reinforcement Learning.

The contributions detailed in this work of Thesis suggest several per-
spectives for future work. As mentioned in Chapter 4, the Memory Un-
scented Particle Filter is agnostic to the source of measurement, taking ad-
vantage of the 3D points collected on the object surface. It has been used
in fact for localizing objects using tactile measurements (Chapter 4) or 3D
point clouds acquired by means of stereo vision (Chapter 6). A possible
extension which we are currently working on is to combine visual and tactile
information to estimate the object pose. Object point clouds can be for exam-
ple used for localizing initially the object. While interacting with the ob-
jects instead, tactile information is exploited to assist or even replace visual
feedback in order to cope with possible occlusions.

Another possible future application of the methods developed in this
work of Thesis is the combination of the handover pipeline with the su-
perquadric modeling and grasping approach in order to perform handover
of unknown objects. The object in-hand point cloud could be in fact used for
reconstructing the superquadric object model. The grasping pose compu-
tation could be then modified so as to adapt to the handover requirements.

248 Chapter 10. Conclusions and future work

A limitation of the superquadric modeling and grasping pipeline pre-
sented in Chapters 7 and 8 is given by the fact that no supervision on the
quality of the object model and the grasping pose is provided. In particu-
lar, we showed how to select the best hand for grasping an object but we
make no previsions for deciding whether both poses are unsatisfactory and
should be discarded. A viable solution to quantify the quality of object mod-
els and grasping poses is to rely on supervised learning techniques after proper
data collection and labeling. Another benefit the learning framework could
introduce is in terms of computation time for multi-superquadric models.
A 3D CNN could be trained with a proper dataset to generate complex multi-
superquadric models processing the object point cloud and comply with real-
time requirements.

An alternative approach to deal with ineffective grasping poses is to cast the
problem of grasp candidates improvement in the Deep RL framework. The
reward to be maximize could be formulated as the quality of the grasping
pose, in terms of grasp stability and the ability of lifting the object (informa-
tion retrievable via touch and vision). The reward should guide towards
the modifications of the grasping pose components allowing only small
deviations from the initial pose retrieved with the superquadric method.
This way, the training on the real robot should be safe, since no random
poses or movements could be executed by the robot.

Concluding, the study presented in this work of Thesis suggests how
remarkable improvements in autonomous manipulation could be attained
by means of combining classical or model-based methods with the recent data-
driven approaches developed into learning framework.

249

Part VII

Appendix

251

Appendix A

Superquadric modeling and
grasping pipeline:
implementation

Even though the object modeling and grasping approach described in
Chapter 7 is designed for a generic humanoid robot, we developed a com-
plete software architecture for executing this approach on the iCub hu-
manoid robot. We provide some details about the implementation in this
Appendix.

We designed two modules, namely superquadric-model1 and
superquadric-grasp2, which implement, respectively, the modeling and
the grasping approached described in Chapter 7. Our leading idea is to
develop a self-contained code that provides query services to the user. In
this respect, our code handles only the information strictly necessary for
the superquadric modeling and grasping approach and minimizes the
dependencies from external modules. The user is asked to write a wrapper
code, that communicates with the two modules and makes them properly
interact. In this respect, we provide a tutorial code3, implementing a
possible use case of our modules, that can be adapted by the user to fit in
his own pipeline.

The implementation of a complete modeling and grasping pipeline re-
quires the use of external modules for point cloud computation. Several
modules developed by the iCub community implement the image pro-
cessing necessary for point cloud extraction. Hereafter, we report the main

1https://github.com/robotology/superquadric-model.
2 https://github.com/robotology/superquadric-grasp.
3https://github.com/robotology/superquadric-grasp-example.

https://github.com/robotology/superquadric-model
 https://github.com/robotology/superquadric-grasp
https://github.com/robotology/superquadric-grasp-example

252
Appendix A. Superquadric modeling and grasping pipeline:
implementation

steps of the complete pipeline. For the sake of clarity, we recall a graphical
example of the pipeline execution in Fig. A.1. The entire commented code
is available on Github4, together with a detail description on how to run
the code in the README.md file.

• The object is classified according to its similarity to a primary shape
through the classifier system5 properly trained as shown in Section
7.3.1. The object label, together with information on its 2D bounding
box, are stored by the Object Property Collector6 ([262]). The wrapper
code is given the object class by the user and uses it for asking the
object property collector for the relative 2D bounding box.

• The 2D blob of the object is computed by the lbpExtract module, once
it is provided with the bounding box information. This uses Local
Binary Pattern (LBP) ([213]) in order to analyze the texture of what
is in the robot view (a table in our experimental scenario). Then, the
general blob information allow using grabCut algorithm ([214]) to
properly segment all the objects on the table.

• Given the 2D blob, the wrapper code reconstructs the 3D point cloud
by querying the Structure from Motion module ([181]). This module
uses a complete Structure From Motion (SFM) pipeline for the com-
putation of the extrinsics parameters between two different views.
These parameters are then used to rectify the images and to compute
a depth map.

• Then, the wrapper code asks the superquadric-model to estimate the su-
perquadric modeling the object by sending the acquired point cloud
and the object label to the module.

• Once the superquadric is estimated, the user code asks the
superquadric-grasp module to compute pose candidates for grasping
the object and the corresponding costs.

• Finally, the user can ask the superquadric-grasp to perform the grasp-
ing task by selecting the best hand.

4https://github.com/robotology/superquadric-grasp-demo.
5https://github.com/robotology/iol/tree/master/src/himrepClassifier.
6https://github.com/robotology/icub-main/tree/master/src/modules/objectsPropertiesCollector.

https://github.com/robotology/superquadric-grasp-demo
https://github.com/robotology/iol/tree/master/src/himrepClassifier
https://github.com/robotology/icub-main/tree/master/src/modules/objectsPropertiesCollector

Appendix A. Superquadric modeling and grasping pipeline:
implementation

253

Fig. A.2 outlines the structure of the entire pipeline, following the steps
described in this Section.

3

4 5

FIGURE A.1: Outcomes of the modeling and grasping
pipeline. 1) The object is stored by the object property col-
lector with the label box. LbpExtract provides the 2D blob of
the object. 2) The 3D point cloud is extracted from the dis-
parity map, by querying the Structure From Motion module.
3) The superquadric modeling the object is reconstructed. 4)
The grasping pose for the right and left hand are computed.
5) The best hand for grasping the object is selected. 6) The

robot grasps the object.

254
Appendix A. Superquadric modeling and grasping pipeline:
implementation

FIGURE A.2: Modules communication for the
implementation of the modeling and grasping pipeline.

255

Appendix B

Grasping pose computation with
superquadrics for markerless
visual servoing on unknown
objects

The superquadric modeling and grasping approach described in Chapter
7 has been intensively tested on the iCub humanoid robot providing an av-
erage success percentage of 85% on 18 objects. Although competitive with
other grasping state of the art techniques, the pipeline reliability can still be
improved. As already mentioned in Section 7.7, we noticed that the main
source of failures is not given by the modeling and grasping outcomes but
instead is represented by the uncalibrated eye-hand system of the robot
that entails non-negligible misplacements of the robot hand when reach-
ing for the target pose. This problem is peculiar of humanoid robots in
that elastic elements lead to errors in the direct kinematics computation.
Moreover, robots with moving cameras, such as the iCub platform, need to
deal with errors in the visual estimation of the object pose due to imprecise
knowledge of the cameras extrinsic parameters.

This Appendix briefly shows how these errors can be compensated by
closed loop control techniques of the end-effector resorting to a visual feed-
back. In particular, a recursive Bayesian filtering technique, based on Se-
quential Monte Carlo (SMC) filtering, estimates the 6D pose of the robot
end-effector without the use of markers [209]. Then, an image-based visual
servo control commands the robot end-effector precisely toward the grasp-
ing pose computed using superquadrics [222].

Going into the details both of the robot end-effector pose estimator and

256
Appendix B. Grasping pose computation with superquadrics for
markerless visual servoing on unknown objects

image-based visual servo control does not fall within the scope of this The-
sis. For the full explanation of the methods we refer to [209] and [222].
Hereafter we report the complete modeling and grasping pipeline embed-
ding markerless visual servoing for precise pose reaching. The pipeline is
outlined in Fig. B.1 and consists of the following steps:

S1. Our modeling approach reconstructs a superquadric representing the
object by using a 3D partial point cloud acquired from stereo vision.

S2. The estimated model is exploited by the pose computation method
for providing a grasping pose1.

S3. An open loop phase brings the robot’s end-effector in the proximity
of the object and in the cameras field-of-views.

S4. The 3D model-aided particle filter of [209] estimates the end-effector
pose using RGB images.

S5. Visual servoing [222] uses the particle filter output of S4. in order to
reach for the pose computed in S2..

S6. Reaching completes and the robot grasps the object.

1The current implementation can only deal with the right robot hand but the method
is general and it is straightforward the extension to two hands.

Appendix B. Grasping pose computation with superquadrics for
markerless visual servoing on unknown objects

257

S2S2S2

FIGURE B.1: Block representation of the proposed markerless
visual servoing framework on unknown objects.

259

Bibliography

[1] Aristotle. In De partibus animalium, volume 687a 7, ca. 340 BC.

[2] Giorgio Metta, Lorenzo Natale, Francesco Nori, Giulio San-
dini, David Vernon, Luciano Fadiga, Claes Von Hofsten, Kerstin
Rosander, Manuel Lopes, José Santos-Victor, et al. The iCub hu-
manoid robot: An open-systems platform for research in cognitive
development. Neural Networks, 23(8):1125 – 1134, 2010.

[3] Richard S Sutton, Andrew G Barto, Francis Bach, et al. Reinforcement
learning: An introduction. MIT press, 1998.

[4] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-
to-end training of deep visuomotor policies. The Journal of Machine
Learning Research, 17(1):1334–1373, 2016.

[5] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine,
and Pieter Abbeel. Deep spatial autoencoders for visuomotor
learning. In 2016 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 512–519. IEEE, 2016.

[6] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and
Deirdre Quillen. Learning hand-eye coordination for robotic grasp-
ing with deep learning and large-scale data collection. The Interna-
tional Journal of Robotics Research, 37(4-5):421–436, 2018.

[7] Shan Luo, Joao Bimbo, Ravinder Dahiya, and Hongbin Liu. Robotic
tactile perception of object properties: A review. Mechatronics, 48:
54–67, 2017.

[8] Qiang Li, Robert Haschke, and Helge Ritter. A visuo-tactile control
framework for manipulation and exploration of unknown objects.
2015.

260 BIBLIOGRAPHY

[9] Chuanyu Yang and Nathan F Lepora. Object exploration using vi-
sion and active touch. In Intelligent Robots and Systems (IROS), 2017
IEEE/RSJ International Conference on, pages 6363–6370. IEEE, 2017.

[10] Kuan-Ting Yu and Alberto Rodriguez. Realtime state estimation
with tactile and visual sensing application to planar manipulation. In
2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 7778–7785. IEEE, 2018.

[11] Adithyavairavan Murali, Yin Li, Dhiraj Gandhi, and Abhinav Gupta.
Learning to grasp without seeing. arXiv preprint arXiv:1805.04201,
2018.

[12] Huaping Liu, Yuanlong Yu, Fuchun Sun, and Jason Gu. Visual–
tactile fusion for object recognition. IEEE Transactions on Automation
Science and Engineering, 14(2):996–1008, 2017.

[13] Per Jenmalm, Seth Dahlstedt, and Roland S Johansson. Visual and
tactile information about object-curvature control fingertip forces
and grasp kinematics in human dexterous manipulation. Journal of
Neurophysiology, 84(6):2984 – 2997, 2000.

[14] Ardesheer Talati, Francisco J Valero-Cuevas, and Joy Hirsch. Visual
and tactile guidance of dexterous manipulation tasks: an FMRI study
1, 2. Perceptual and motor skills, 101(1):317 – 334, 2005.

[15] Ravinder S Dahiya, Giorgio Metta, Maurizio Valle, and Giulio San-
dini. Tactile sensing - from humans to humanoids. IEEE Transactions
on Robotics, 26(1):1–20, 2010.

[16] Hanna Yousef, Mehdi Boukallel, and Kaspar Althoefer. Tactile sens-
ing for dexterous in-hand manipulation in robotics - A review. Sen-
sors and Actuators A: physical, 167(2):171–187, 2011.

[17] Mark R Cutkosky, Robert D Howe, and William R Provancher. Force
and tactile sensors. In Springer Handbook of Robotics, pages 455–476.
Springer, 2008.

[18] Alin Drimus, Gert Kootstra, Arne Bilberg, and Danica Kragic. Design
of a flexible tactile sensor for classification of rigid and deformable
objects. Robotics and Autonomous Systems, 62(1):3–15, 2014.

BIBLIOGRAPHY 261

[19] Zhanat Kappassov, Juan-Antonio Corrales, and Véronique
Perdereau. Tactile sensing in dexterous robot hands. Robotics
and Autonomous Systems, 74:195–220, 2015.

[20] Liang Zou, Chang Ge, Z Wang, Edmond Cretu, and Xiaoou Li. Novel
tactile sensor technology and smart tactile sensing systems: A re-
view. Sensors, 17(11):2653, 2017.

[21] Nawid Jamali, Marco Maggiali, Francesco Giovannini, Giorgio
Metta, and Lorenzo Natale. A new design of a fingertip for the iCub
hand. In 28th IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2705 – 2710, Hamburg, Germany, 2015.

[22] Alexander Schmitz, Perla Maiolino, Marco Maggiali, Lorenzo Na-
tale, Giorgio Cannata, and Giorgio Metta. Methods and technolo-
gies for the implementation of large-scale robot tactile sensors. IEEE
Transactions on Robotics, 27(3):389 – 400, 2011.

[23] Nicholas Wettels, Veronica J Santos, Roland S Johansson, and Ger-
ald E Loeb. Biomimetic tactile sensor array. Advanced Robotics, 22(8):
829 – 849, 2008.

[24] Gereon H Büscher, Risto Kõiva, Carsten Schürmann, Robert
Haschke, and Helge J Ritter. Flexible and stretchable fabric-based
tactile sensor. Robotics and Autonomous Systems, 63:244–252, 2015.

[25] Micah K Johnson and Edward H Adelson. Retrographic sensing for
the measurement of surface texture and shape. In IEEE Conference
onComputer Vision and Pattern Recognition (CVPR), 2009, pages 1070–
1077. IEEE, 2009.

[26] Micah K Johnson, Forrester Cole, Alvin Raj, and Edward H Adel-
son. Microgeometry capture using an elastomeric sensor. In ACM
Transactions on Graphics (TOG), volume 30, page 46. ACM, 2011.

[27] Wenzhen Yuan, Siyuan Dong, and Edward H Adelson. Gelsight:
High-resolution robot tactile sensors for estimating geometry and
force. Sensors, 17(12):2762, 2017.

262 BIBLIOGRAPHY

[28] PC Gaston and T Lozano-Perez. Tactile recognition and localization
using object models. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 6(3):257 – 265, 1983.

[29] W Eric L Grimson and Tomas Lozano-Perez. Model-based recogni-
tion and localization from sparse range or tactile data. The Interna-
tional Journal of Robotics Research, 3(3):3 – 35, 1984.

[30] Olivier D Faugeras and Martial Hebert. A 3-D recognition and po-
sitioning algorithm using geometrical matching between primitive
surfaces. In 8th International Joint Conference on Artificial Intelligence
(IJCAI), volume 2, pages 996 – 1002, Karlsruhe, Germany, 1983.

[31] Klaas Gadeyne and Herman Bruyninckx. Markov techniques for ob-
ject localization with force-controlled robots. In 10th International
Conference on Advanced Robotics (ICAR), pages 91 – 96, Budapest,
Hungary, 2001.

[32] Siddharth R Chhatpar and Michael S Branicky. Particle filtering
for localization in robotic assemblies with position uncertainty. In
18th IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3610 – 3617, Edmonton, Canada, 2005.

[33] Craig Corcoran and Robert Platt Jr. A measurement model for track-
ing hand-object state during dexterous manipulation. In 27th IEEE
International Conference on Robotics and Automation (ICRA), pages 4302
– 4308, Anchorage, Alaska, 2010.

[34] Anna Petrovskaya and Oussama Khatib. Global localization of ob-
jects via touch. IEEE Transactions on Robotics, 27(3):569 – 585, 2011.

[35] Anna Petrovskaya, Oussama Khatib, Sebastian Thrun, and An-
drew Y Ng. Bayesian estimation for autonomous object
manipulation based on tactile sensors. In 23rd IEEE International Con-
ference on Robotics and Automation (ICRA), pages 707 – 714, Orlando,
Florida, 2006.

[36] Maxime Chalon, Jens Reinecke, and Martin Pfanne. Online in-hand
object localization. In 26th IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 2977 – 2984, Tokyo, Japan,
2013.

BIBLIOGRAPHY 263

[37] Joao Bimbo, Petar Kormushev, Kaspar Althoefer, and Hongbin Liu.
Global estimation of an object’s pose using tactile sensing. Advanced
Robotics, 29(5):363 – 374, 2015.

[38] Michael C Koval, Nancy S Pollard, and Siddhartha S Srinivasa. Pose
estimation for planar contact manipulation with manifold particle
filters. The International Journal of Robotics Research, 34(7):922–945,
2015.

[39] Michael C Koval, Matthew Klingensmith, Siddhartha S Srinivasa,
Nancy S Pollard, and Michael Kaess. The manifold particle filter for
state estimation on high-dimensional implicit manifolds. In Robotics
and Automation (ICRA), 2017 IEEE International Conference on. IEEE,
pages 4673–4680, 2017.

[40] Giulia Vezzani, Ugo Pattacini, Giorgio Battistelli, Luigi Chisci, and
Lorenzo Natale. Memory unscented particle filter for 6-DOF tactile
localization. IEEE Transactions on Robotics, 33(5):1139–1155, 2017.

[41] Joao Bimbo, Shan Luo, Kaspar Althoefer, and Hongbin Liu. In-hand
object pose estimation using covariance-based tactile to geometry
matching. IEEE Robotics and Automation Letters, 1(1):570–577, 2016.

[42] Artem Molchanov, Oliver Kroemer, Zhe Su, and Gaurav S Sukhatme.
Contact localization on grasped objects using tactile sensing. In In-
telligent Robots and Systems (IROS), 2016 IEEE/RSJ International Con-
ference on, pages 216–222. IEEE, 2016.

[43] Yitao Ding, Julian Bonse, Robert Andre, and Ulrike Thomas. In-hand
grasping pose estimation using particle filters in combination with
haptic rendering models. International Journal of Humanoid Robotics,
15(01):1850002, 2018.

[44] Gregory Izatt, Geronimo Mirano, Edward Adelson, and Russ
Tedrake. Tracking objects with point clouds from vision and touch.
In Robotics and Automation (ICRA), 2017 IEEE International Conference
on, pages 4000–4007. IEEE, 2017.

[45] Nawid Jamali and C Sammut. Majority voting: Material classifi-
cation by tactile sensing using surface texture. IEEE Transaction on
Robotics, 27(3):508 – 521, 2011.

264 BIBLIOGRAPHY

[46] Sergio Decherchi, Paolo Gastaldo, Ravinder S. Dahiya, Maurizio
Valle, and Rodolfo Zunino. Tactile-data classification of contact ma-
terials using computational intelligence. In 25th IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 635
—- 639, 2012.

[47] Hongbin Liu, X. Song, J. Bimbo, L. Seneviratne, and K. Althoefer.
Surface material recognition through haptic exploration using an in-
telligent contact sensing finger. In 25th IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 52 – 57, 2012.

[48] R. S. Fearing and T. O. Binford. Using a cylindrical tactile sensor for
determining curvature. In IEEE Transaction Robotics and Automation,
volume 7, pages 806 – 817, 1991.

[49] R Andrew Russell and Simon Parkinson. Sensing surface shape by
touch. In Robotics and Automation, 1993. Proceedings., 1993 IEEE Inter-
national Conference on, pages 423–428. IEEE, 1993.

[50] M Charlebois, K Gupta, and Shahram Payandeh. Shape description
of curved surfaces from contact sensing using surface normals. vol-
ume 18, pages 779–787. SAGE Publications, 1999.

[51] Peter K Allen and Kenneth S Roberts. Haptic object recognition
using a multi-fingered dextrous hand. In Robotics and Automation,
1989. Proceedings., 1989 IEEE International Conference on, pages 342–
347. IEEE, 1989.

[52] Peter K Allen and Paul Michelman. Acquisition and interpretation
of 3-d sensor data from touch. volume 6, pages 397–404. IEEE, 1990.

[53] M Charlebois, K Gupta, and Shahram Payandeh. Shape description
of general, curved surfaces using tactile sensing and surface normal
information. In Robotics and Automation, 1997. Proceedings., 1997 IEEE
International Conference on, volume 4, pages 2819–2824. IEEE, 1997.

[54] Giulia Vezzani, Massimo Regoli, Ugo Pattacini, and Lorenzo Natale.
A novel pipeline for bi-manual handover task. Advanced Robotics, 31
(23-24):1267–1280, 2017.

BIBLIOGRAPHY 265

[55] Hongbin Liu, Xiaojing Song, Thrishantha Nanayakkara, Lakmal D
Seneviratne, and Kaspar Althoefer. A computationally fast algo-
rithm for local contact shape and pose classification using a tactile
array sensor. In Robotics and Automation (ICRA), 2012 IEEE Interna-
tional Conference on, pages 1410–1415. IEEE, 2012.

[56] AR Jimenez, AS Soembagijo, Dominiek Reynaerts, Hendrik
Van Brussel, R Ceres, and JL Pons. Featureless classification of tac-
tile contacts in a gripper using neural networks. volume 62, pages
488–491. Elsevier, 1997.

[57] Shan Luo, Wenxuan Mou, Min Li, Kaspar Althoefer, and Hongbin
Liu. Rotation and translation invariant object recognition with a tac-
tile sensor. In IEEE Sensors 2014, pages 1030–1033. IEEE, 2014.

[58] Stefan Escaida Navarro, Nicolas Gorges, Heinz Wörn, Julian Schill,
Tamim Asfour, and Rüdiger Dillmann. Haptic object recognition for
multi-fingered robot hands. In Haptics Symposium (HAPTICS), 2012
IEEE, pages 497–502. IEEE, 2012.

[59] Massimo Regoli, Nawid Jamali, Giorgio Metta, and Lorenzo Natale.
Controlled tactile exploration and haptic object recognition. In Ad-
vanced Robotics (ICAR), 2017 18th International Conference on, pages
47–54. IEEE, 2017.

[60] Huaping Liu, Di Guo, and Fuchun Sun. Object recognition using tac-
tile measurements: Kernel sparse coding methods. IEEE Transactions
on Instrumentation and Measurement, 65(3):656–665, 2016.

[61] Alexander Schmitz, Yusuke Bansho, Kuniaki Noda, Hiroyasu Iwata,
Tetsuya Ogata, and Shigeki Sugano. Tactile object recognition using
deep learning and dropout. In Humanoid Robots (Humanoids), 2014
14th IEEE-RAS International Conference on, pages 1044–1050. IEEE,
2014.

[62] Shan Luo, Wenxuan Mou, Kaspar Althoefer, and Hongbin Liu. It-
erative closest labeled point for tactile object shape recognition. In
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Con-
ference on, pages 3137–3142. IEEE, 2016.

266 BIBLIOGRAPHY

[63] Marianna Madry, Liefeng Bo, Danica Kragic, and Dieter Fox. St-
hmp: Unsupervised spatio-temporal feature learning for tactile data.
In Robotics and Automation (ICRA), 2014 IEEE International Conference
on, pages 2262–2269. IEEE, 2014.

[64] Rui Li and Edward H Adelson. Sensing and recognizing surface tex-
tures using a gelsight sensor. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1241–1247, 2013.

[65] Zachary Pezzementi, Erion Plaku, Caitlin Reyda, and Gregory D
Hager. Tactile-object recognition from appearance information. IEEE
Transactions on Robotics, 27(3):473–487, 2011.

[66] Hongbin Liu, Juan Greco, Xiaojing Song, Joao Bimbo, Lakmal
Seneviratne, and Kaspar Althoefer. Tactile image based contact
shape recognition using neural network. In Multisensor Fusion and In-
tegration for Intelligent Systems (MFI), 2012 IEEE Conference on, pages
138–143. IEEE, 2012.

[67] Yoshihito Koga and Jean-Claude Latombe. Experiments in dual-arm
manipulation planning. In IEEE International Conference on Robotics
and Automation, pages 2238–2245. IEEE, 1992.

[68] Yoshihito Koga and Jean-Claude Latombe. On multi-arm
manipulation planning. In IEEE International Conference on Robotics
and Automation, pages 945–952. IEEE, 1994.

[69] Yoshihito Koga, Koichi Kondo, James Kuffner, and Jean-Claude
Latombe. Planning motions with intentions. In Proceedings of the
21st Annual Conference on Computer Graphics and Interactive Techniques,
pages 395–408. ACM, 1994.

[70] Kris Hauser and Jean-Claude Latombe. Multi-modal motion plan-
ning in non-expansive spaces. The International Journal of Robotics
Research, 29(7):897–915, 2010.

[71] Andrew Dobson and Kostas E Bekris. Planning representations
and algorithms for prehensile multi-arm manipulation. In Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on,
pages 6381–6386. IEEE, 2015.

BIBLIOGRAPHY 267

[72] Oliver Kroemer, Christian Daniel, Gerhard Neumann, Herke
Van Hoof, and Jan Peters. Towards learning hierarchical skills for
multi-phase manipulation tasks. In Robotics and Automation (ICRA),
2015 IEEE International Conference on, pages 1503–1510. IEEE, 2015.

[73] Joao Silvério, Leonel Rozo, Sylvain Calinon, and Darwin G Cald-
well. Learning bimanual end-effector poses from demonstrations
using task-parameterized dynamical systems. In Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages
464–470. IEEE, 2015.

[74] Benjamin Balaguer and Stefano Carpin. Bimanual regrasping from
unimanual machine learning. In IEEE International Conference on
Robotics and Automation, pages 3264–3270. IEEE, 2012.

[75] Weiwei Wan and Kensuke Harada. Developing and comparing
single-arm and dual-arm regrasp. IEEE Robotics and Automation Let-
ters, 1(1):243–250, 2016.

[76] Jean-Philippe Saut, Mokhtar Gharbi, Juan Cortés, Daniel Sidobre,
and Thierry Siméon. Planning pick-and-place tasks with two-hand
regrasping. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4528–4533. IEEE, 2010.

[77] G Maria Gasparri, Filippo Fabiani, Manolo Garabini, Lucia Pallot-
tino, M Catalano, Giorgio Grioli, R Persichin, and Antonio Bicchi.
Robust optimization of system compliance for physical interaction
in uncertain scenarios. In 2016 IEEE-RAS 16th International Confer-
ence on Humanoid Robots (Humanoids), pages 911–918. IEEE, 2016.

[78] Weiwei Wan and Kensuke Harada. Achieving high success rate
in dual-arm handover using large number of candidate grasps,
handover heuristics, and hierarchical search. Advanced Robotics, 30
(17-18):1111–1125, 2016.

[79] Kaijen Hsiao, Sachin Chitta, Matei Ciocarlie, and E Gil Jones.
Contact-reactive grasping of objects with partial shape information.
In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, pages 1228–1235. IEEE, 2010.

268 BIBLIOGRAPHY

[80] Ellen Klingbeil, Deepak Rao, Blake Carpenter, Varun Ganapathi, An-
drew Y Ng, and Oussama Khatib. Grasping with application to an
autonomous checkout robot. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 2837–2844. IEEE, 2011.

[81] Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon, Francois R
Hogan, Maria Bauza, Daolin Ma, Orion Taylor, Melody Liu, Eudald
Romo, et al. Robotic pick-and-place of novel objects in clutter with
multi-affordance grasping and cross-domain image matching. In
2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 1–8. IEEE, 2018.

[82] Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt.
Grasp pose detection in point clouds. The International Journal of
Robotics Research, 36(13-14):1455–1473, 2017.

[83] Jean-Daniel Boissonnat. Geometric structures for three-dimensional
shape representation. ACM Transactions on Graphics (TOG), 3(4):266–
286, 1984.

[84] Herbert Edelsbrunner and Ernst P Mücke. Three-dimensional alpha
shapes. ACM Transactions on Graphics (TOG), 13(1):43–72, 1994.

[85] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A new
voronoi-based surface reconstruction algorithm. In Proceedings of the
25th annual conference on Computer graphics and interactive techniques,
pages 415–421. ACM, 1998.

[86] Jonathan C Carr, Richard K Beatson, Jon B Cherrie, Tim J Mitchell,
W Richard Fright, Bruce C McCallum, and Tim R Evans. Reconstruc-
tion and representation of 3d objects with radial basis functions. In
Proceedings of the 28th annual conference on Computer graphics and inter-
active techniques, pages 67–76. ACM, 2001.

[87] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Surface reconstruction from unorganized points, vol-
ume 26. ACM, 1992.

[88] Michael Kazhdan and Hugues Hoppe. Screened poisson surface re-
construction. ACM Transactions on Graphics (ToG), 32(3):29, 2013.

BIBLIOGRAPHY 269

[89] Jacob Varley, Chad DeChant, Adam Richardson, Joaquín Ruales, and
Peter Allen. Shape completion enabled robotic grasping. In Intelli-
gent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference
on, pages 2442–2447. IEEE, 2017.

[90] G. Vezzani, U. Pattacini, and L. Natale. A grasping approach based
on superquadric models. In 34th IEEE International Conference on
Robotics and Automation (ICRA), pages 1579–1586, 2017.

[91] Zoltan-Csaba Marton, Dejan Pangercic, Nico Blodow, Jonathan
Kleinehellefort, and Michael Beetz. General 3d modelling of novel
objects from a single view. In Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pages 3700–3705. IEEE,
2010.

[92] Miao Li, Kaiyu Hang, Danica Kragic, and Aude Billard. Dexterous
grasping under shape uncertainty. Robotics and Autonomous Systems,
75:352–364, 2016.

[93] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee.
Perspective transformer nets: Learning single-view 3d object recon-
struction without 3d supervision. In Advances in Neural Information
Processing Systems, pages 1696–1704, 2016.

[94] Jason Rock, Tanmay Gupta, Justin Thorsen, JunYoung Gwak,
Daeyun Shin, and Derek Hoiem. Completing 3d object shape from
one depth image. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2484–2493, 2015.

[95] Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman,
and Josh Tenenbaum. Marrnet: 3d shape reconstruction via 2.5 d
sketches. In Advances in neural information processing systems, pages
540–550, 2017.

[96] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. Shape
completion using 3d-encoder-predictor cnns and shape synthesis. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
volume 3, 2017.

270 BIBLIOGRAPHY

[97] Minhyuk Sung, Vladimir G Kim, Roland Angst, and Leonidas
Guibas. Data-driven structural priors for shape completion. ACM
Transactions on Graphics (TOG), 34(6):175, 2015.

[98] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston.
Generative and discriminative voxel modeling with convolutional
neural networks. arXiv preprint arXiv:1608.04236, 2016.

[99] Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hierarchical
surface prediction for 3d object reconstruction. In 3D Vision (3DV),
2017 International Conference on, pages 412–420. IEEE, 2017.

[100] Alan H Barr. Superquadrics and angle-preserving transformations.
IEEE Computer graphics and Applications, 1(1):11–23, 1981.

[101] Alan H Barr. Global and local deformations of solid primitives. In
Readings in Computer Vision, pages 661–670. Elsevier, 1987.

[102] Ales Jaklic, A. Leonardis, and F. Solina. Segmentation and recovery
of superquadrics. Computational imaging and vision, 20, 2000.

[103] Andrew J Hanson. Hyperquadrics: smoothly deformable shapes
with convex polyhedral bounds. Computer vision, graphics, and im-
age processing, 44(2):191–210, 1988.

[104] Kester Duncan, Sudeep Sarkar, Redwan Alqasemi, and Rajiv Dubey.
Multi-scale superquadric fitting for efficient shape and pose recovery
of unknown objects. In IEEE International Conference om Robotics and
Automation (ICRA), pages 4238 – 4243, 2013.

[105] Laurent Chevalier, Fabrice Jaillet, and Atilla Baskurt. Segmentation
and superquadric modeling of 3d objects. 2003.

[106] Marcus Strand, Zhixing Xue, Marius Zoellner, and Rüdiger Dill-
mann. Using superquadrics for the approximation of objects and its
application to grasping. In Information and Automation (ICIA), 2010
IEEE International Conference on, pages 48–53. IEEE, 2010.

[107] Georg Biegelbauer and Markus Vincze. Efficient 3d object detec-
tion by fitting superquadrics to range image data for robot’s object
manipulation. In Robotics and Automation, 2007 IEEE International
Conference on, pages 1086–1091. IEEE, 2007.

BIBLIOGRAPHY 271

[108] Ales Leonardis, Ales Jaklic, and Franc Solina. Superquadrics for seg-
menting and modeling range data. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 19(11):1289–1295, 1997.

[109] Dimitrios Katsoulas, Christian Cea Bastidas, and Dimitrios Kos-
mopoulos. Superquadric segmentation in range images via fusion
of region and boundary information. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(5):781–795, 2008.

[110] Konstantinos Moustakas, Dimitrios Tzovaras, and Michael Gerassi-
mos Strintzis. Sq-map: Efficient layered collision detection and hap-
tic rendering. IEEE Transactions on Visualization & Computer Graphics,
(1):80–93, 2007.

[111] Nilanjan Chakraborty, Jufeng Peng, Srinivas Akella, and John E.
Mitchell. Proximity queries between convex objects: an interior point
approach for implicit surfaces. IEEE Transactions on Robotics, 24(1):
211– 220, 2008.

[112] Corey Goldfeder, Peter K. Allen, Claire Lackner, and Raphael Pelos-
sof. Grasp planning via decomposition trees. In IEEE International
Conference om Robotics and Automation (ICRA), pages 4679 – 4684,
2007.

[113] Tiberiu T. Cocias, Sorin M. Grigorescu, and Florin Moldoveanu.
Multiple-superquadrics based object surface estimation for grasping
in service robotics. In 13th International Conference on Optimization of
Electrical and Electronic Equipment (OPTIM), pages 1471 – 1477, 2012.

[114] Ana Huamán Quispe, Benoît Milville, Marco A Gutiérrez, Can Er-
dogan, Mike Stilman, Henrik Christensen, and Heni Ben Amor. Ex-
ploiting symmetries and extrusions for grasping household objects.
In Robotics and Automation (ICRA), 2015 IEEE International Conference
on, pages 3702–3708. IEEE, 2015.

[115] Abhijit Makhal, Federico Thomas, and Alba Perez Gracia. Grasp-
ing unknown objects in clutter by superquadric representation. In
2018 Second IEEE International Conference on Robotic Computing (IRC),
pages 292–299. IEEE, 2018.

272 BIBLIOGRAPHY

[116] PD Nguyen, Fabrizio Bottarel, Ugo Pattacini, Matej Hoffmann,
Lorenzo Natale, and Giorgio Metta. Merging physical and social in-
teraction for effective human-robot collaboration. Humanoid Robots
(Humanoids), 2018.

[117] Jurij Slabanja, Blaž Meden, Peter Peer, Aleš Jaklič, and Franc Solina.
Segmentation and reconstruction of 3d models from a point cloud
with deep neural networks. 2018.

[118] Karun B Shimoga. Robot grasp synthesis algorithms: A survey. The
International Journal of Robotics Research, 15(3):230–266, 1996.

[119] Antonio Bicchi and Vijay Kumar. Robotic grasping and contact: A
review. In ICRA, volume 348, page 353. Citeseer, 2000.

[120] Anis Sahbani, Sahar El-Khoury, and Philippe Bidaud. An overview
of 3d object grasp synthesis algorithms. Robotics and Autonomous Sys-
tems, 60(3):326–336, 2012.

[121] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic.
Data-Driven Grasp Synthesis - A Survey. IEEE Transactions on
Robotics, 30(2):289–309, 2015.

[122] John R Napier. The prehensile movements of the human hand. The
Journal of bone and joint surgery. British volume, 38(4):902–913, 1956.

[123] Ilaria Gori, Ugo Pattacini, Vadim Tikhanoff, and Giorgio Metta.
Ranking the good points: A comprehensive method for humanoid
robots to grasp unknown objects. In Advanced Robotics (ICAR), 2013
16th International Conference on, pages 1–7. IEEE, 2013.

[124] Ilaria Gori, Ugo Pattacini, Vadim Tikhanoff, and Giorgio Metta.
Three-finger precision grasp on incomplete 3d point clouds. In
Robotics and Automation (ICRA), 2014 IEEE International Conference on,
pages 5366–5373. IEEE, 2014.

[125] Andrew Miller and Peter K. Allen. Graspit!: A versatile simulator
for robotic grasping. IEEE Robotics and Automation Magazine, 11(4):
110– 122, 2004.

BIBLIOGRAPHY 273

[126] Andrew T Miller, Steffen Knoop, Henrik I Christensen, and Peter K
Allen. Automatic grasp planning using shape primitives. In Robotics
and Automation, 2003. Proceedings. ICRA’03. IEEE International Confer-
ence on, volume 2, pages 1824–1829. IEEE, 2003.

[127] Raphael Pelossof, Andrew Miller, Peter Allen, and Tony Jebara. An
svm learning approach to robotic grasping. In Robotics and Automa-
tion, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on,
volume 4, pages 3512–3518. IEEE, 2004.

[128] Jonathan Weisz and Peter K Allen. Pose error robust grasping from
contact wrench space metrics. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 557–562. IEEE, 2012.

[129] Rosen Diankov. Automated construction of robotic manipulation
programs. 2010.

[130] Renaud Detry, Emre Baseski, Mila Popovic, Younes Touati, N Kruger,
Oliver Kroemer, Jan Peters, and Justus Piater. Learning object-
specific grasp affordance densities. In Development and Learning,
2009. ICDL 2009. IEEE 8th International Conference on, pages 1–7. IEEE,
2009.

[131] Luis Montesano, Manuel Lopes, Alexandre Bernardino, and José
Santos-Victor. Learning object affordances: from sensory–motor co-
ordination to imitation. IEEE Transactions on Robotics, 24(1):15–26,
2008.

[132] Antonio Morales, Eris Chinellato, Andrew H Fagg, and Angel P
Del Pobil. Using experience for assessing grasp reliability. Interna-
tional Journal of Humanoid Robotics, 1(04):671–691, 2004.

[133] Ashutosh Saxena, Justin Driemeyer, and Andrew Y Ng. Robotic
grasping of novel objects using vision. The International Journal of
Robotics Research, 27(2):157–173, 2008.

[134] Ashutosh Saxena, Lawson LS Wong, and Andrew Y Ng. Learning
grasp strategies with partial shape information. In AAAI, volume 3,
pages 1491–1494, 2008.

274 BIBLIOGRAPHY

[135] Jeannette Bohg and Danica Kragic. Learning grasping points with
shape context. Robotics and Autonomous Systems, 58(4):362–377, 2010.

[136] Microsoft, “Kinect- xbox.com”. www.xbox.com/en-US/KINECT.

[137] Primesense. www.primesense.com.

[138] Maxime Adjigble, Naresh Marturi, Valerio Ortenzi, Vijaykumar
Rajasekaran, Peter Corke, and Rustam Stolkin. Model-free and
learning-free grasping by local contact moment matching. In IEEE-
RSJ International Conference on Intelligent Robots and Systems, IEEE,
2018.

[139] Gabriel Thomas Bell and Theodore Creighton Armstrong. Amazon
picking challenge. 2015.

[140] Nikolaus Correll, Kostas E Bekris, Dmitry Berenson, Oliver Brock,
Albert Causo, Kris Hauser, Kei Okada, Alberto Rodriguez, Joseph M
Romano, and Peter R Wurman. Analysis and observations from the
first amazon picking challenge. IEEE Transactions on Automation Sci-
ence and Engineering, 15(1):172–188, 2018.

[141] Carlos Hernandez, Mukunda Bharatheesha, Jeff van Egmond, Ji-
hong Ju, and Martijn Wisse. Integrating different levels of automa-
tion: Lessons from winning the amazon robotics challenge 2016.
IEEE Transactions on Industrial Informatics, pages 1–11, 2018.

[142] Douglas Morrison, Adam W Tow, M McTaggart, R Smith, N Kelly-
Boxall, S Wade-McCue, J Erskine, R Grinover, A Gurman, T Hunn,
et al. Cartman: The low-cost cartesian manipulator that won the
amazon robotics challenge. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 7757–7764. IEEE, 2018.

[143] Deepak Rao, Quoc V Le, Thanathorn Phoka, Morgan Quigley, At-
tawith Sudsang, and Andrew Y Ng. Grasping novel objects with
depth segmentation. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, pages 2578–2585. IEEE, 2010.

[144] Jeannette Bohg, Matthew Johnson-Roberson, Beatriz León, Javier
Felip, Xavi Gratal, Niklas Bergström, Danica Kragic, and Antonio

www.xbox.com/en-US/KINECT
www.primesense.com

BIBLIOGRAPHY 275

Morales. Mind the gap-robotic grasping under incomplete obser-
vation. In IEEE International Conference on Robotics and Automation
(ICRA) Location: Shanghai, Date: May 09-13, 2011, pages 686–693.
IEEE, 2011.

[145] Dirk Kraft, Nicolas Pugeault, Emre Başeski, Mila Popović, Dan-
ica Kragić, Sinan Kalkan, Florentin Wörgötter, and Norbert Krüger.
Birth of the object: detection of objectness and extraction of object
shape through object–action complexes. International Journal of Hu-
manoid Robotics, 5(02):247–265, 2008.

[146] Antonio Morales, Pedro J Sanz, Angel P Del Pobil, and Andrew H
Fagg. Vision-based three-finger grasp synthesis constrained by hand
geometry. Robotics and Autonomous Systems, 54(6):496–512, 2006.

[147] Mario Richtsfeld and Markus Vincze. Grasping of unknown objects
from a table top. In Workshop on Vision in Action: Efficient strategies for
cognitive agents in complex environments, 2008.

[148] Philipp Schmidt, Nikolaus Vahrenkamp, Mirko Wächter, and Tamim
Asfour. Grasping of unknown objects using deep convolutional neu-
ral networks based on depth images. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 6831–6838. IEEE,
2018.

[149] Joseph Redmon and Anelia Angelova. Real-time grasp detection
using convolutional neural networks. In Robotics and Automation
(ICRA), 2015 IEEE International Conference on, pages 1316–1322. IEEE,
2015.

[150] Jeffrey Mahler, Florian T Pokorny, Brian Hou, Melrose Roderick,
Michael Laskey, Mathieu Aubry, Kai Kohlhoff, Torsten Kröger, James
Kuffner, and Ken Goldberg. Dex-net 1.0: A cloud-based network
of 3d objects for robust grasp planning using a multi-armed bandit
model with correlated rewards. In Robotics and Automation (ICRA),
2016 IEEE International Conference on, pages 1957–1964. IEEE, 2016.

[151] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard
Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. Dex-net

276 BIBLIOGRAPHY

2.0: Deep learning to plan robust grasps with synthetic point clouds
and analytic grasp metrics. Robotics: Science and Systems (RSS), 2017.

[152] Jeffrey Mahler, Matthew Matl, Xinyu Liu, Albert Li, David Gealy,
and Ken Goldberg. Dex-net 3.0: Computing robust robot vacuum
suction grasp targets in point clouds using a new analytic model and
deep learning. arXiv preprint arXiv:1709.06670, 2017.

[153] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech
Zaremba, and Pieter Abbeel. Domain randomization for transferring
deep neural networks from simulation to the real world. In Intelligent
Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on,
pages 23–30. IEEE, 2017.

[154] Josh Tobin, Lukas Biewald, Rocky Duan, Marcin Andrychowicz,
Ankur Handa, Vikash Kumar, Bob McGrew, Alex Ray, Jonas Schnei-
der, Peter Welinder, et al. Domain randomization and generative
models for robotic grasping. In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 3482–3489. IEEE,
2018.

[155] Kuan Fang, Yunfei Bai, Stefan Hinterstoisser, Silvio Savarese, and
Mrinal Kalakrishnan. Multi-task domain adaptation for deep
learning of instance grasping from simulation. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 3516–3523.
IEEE, 2018.

[156] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai,
Matthew Kelcey, Mrinal Kalakrishnan, Laura Downs, Julian Ibarz,
Peter Pastor, Kurt Konolige, et al. Using simulation and domain
adaptation to improve efficiency of deep robotic grasping. In
2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 4243–4250. IEEE, 2018.

[157] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine.
Deep reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates. In Robotics and Automation (ICRA), 2017
IEEE International Conference on, pages 3389–3396. IEEE, 2017.

BIBLIOGRAPHY 277

[158] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexan-
der Herzog, Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal
Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. arXiv
preprint arXiv:1806.10293, 2018.

[159] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. 2011.

[160] Gerald Tesauro. Temporal difference learning and td-gammon. Com-
munications of the ACM, 38(3):58–68, 1995.

[161] Nate Kohl and Peter Stone. Policy gradient reinforcement learning
for fast quadrupedal locomotion. In Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004 IEEE International Conference on, volume 3,
pages 2619–2624. IEEE, 2004.

[162] Andrew Y Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie
Schulte, Ben Tse, Eric Berger, and Eric Liang. Autonomous inverted
helicopter flight via reinforcement learning. In Experimental Robotics
IX, pages 363–372. Springer, 2006.

[163] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A
Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Ried-
miller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529,
2015.

[164] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. nature,
529(7587):484, 2016.

[165] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep
blue. Artificial intelligence, 134(1-2):57–83, 2002.

[166] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David
Gondek, Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric
Nyberg, John Prager, et al. Building watson: An overview of the
DeepQA project. AI magazine, 31(3):59–79, 2010.

278 BIBLIOGRAPHY

[167] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner,
Gabriel Barth-Maron, Matej Vecerik, Thomas Lampe, Yuval Tassa,
Tom Erez, and Martin Riedmiller. Data-efficient deep reinforcement
learning for dexterous manipulation. arXiv preprint arXiv:1704.03073,
2017.

[168] Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. In-
trinsically motivated reinforcement learning. In Advances in neural
information processing systems, pages 1281–1288, 2005.

[169] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing
exploration in reinforcement learning with deep predictive models.
arXiv preprint arXiv:1507.00814, 2015.

[170] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul,
David Saxton, and Remi Munos. Unifying count-based exploration
and intrinsic motivation. In Advances in Neural Information Processing
Systems, pages 1471–1479, 2016.

[171] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon
Sidor, Richard Y Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and
Marcin Andrychowicz. Parameter space noise for exploration. arXiv
preprint arXiv:1706.01905, 2017.

[172] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob
Menick, Ian Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis
Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

[173] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic
meta-learning for fast adaptation of deep networks. arXiv preprint
arXiv:1703.03400, 2017.

[174] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and
Sergey Levine. Meta-reinforcement learning of structured explo-
ration strategies. arXiv preprint arXiv:1802.07245, 2018.

[175] Herke Van Hoof, Tucker Hermans, Gerhard Neumann, and Jan Pe-
ters. Learning robot in-hand manipulation with tactile features. In
Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International Con-
ference on, pages 121–127. IEEE, 2015.

BIBLIOGRAPHY 279

[176] Andrew Sendonaris and COM Gabriel Dulac-Arnold. Learning from
demonstrations for real world reinforcement learning. arXiv preprint
arXiv:1704.03732, 2017.

[177] Matej Vecerík, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier
Pietquin, Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe,
and Martin A Riedmiller. Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards.
CoRR, abs/1707.08817, 2017.

[178] Matthew E Taylor, Halit Bener Suay, and Sonia Chernova. Integrat-
ing reinforcement learning with human demonstrations of varying
ability. In The 10th International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pages 617–624. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2011.

[179] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. Overcoming exploration in
reinforcement learning with demonstrations. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 6292–6299.
IEEE, 2018.

[180] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia
Vezzani, John Schulman, Emanuel Todorov, and Sergey Levine.
Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. Robotics: Science and Systems (RSS),
2018.

[181] Sean Ryan Fanello, Ugo Pattacini, Ilaria Gori, Vadim Tikhanoff,
Marco Randazzo, Alessandro Roncone, Francesca Odone, and Gior-
gio Metta. 3D stereo estimation and fully automated learning of
eye-hand coordination in humanoid robots. In Humanoid Robots (Hu-
manoids), 2014 14th IEEE-RAS International Conference on, pages 1028–
1035, Madrid, Spain, 2014. IEEE.

[182] Alberto Parmiggiani, Marco Maggiali, Lorenzo Natale, Francesco
Nori, Alexander Schmitz, Nikos Tsagarakis, Jose Santos Victor,
Francesco Becchi, Giulio Sandini, and Giorgio Metta. The design of
the icub humanoid robot. International journal of humanoid robotics, 9
(04):1250027, 2012.

280 BIBLIOGRAPHY

[183] Ugo Pattacini, Francesco Nori, Lorenzo Natale, Giorgio Metta, and
Giulio Sandini. An experimental evaluation of a novel minimum-
jerk cartesian controller for humanoid robots. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 1668–1674.
IEEE, 2010.

[184] Alessandro Roncone, Ugo Pattacini, Giorgio Metta, and Lorenzo Na-
tale. A cartesian 6-dof gaze controller for humanoid robots. In
Robotics: Science and Systems, volume 2016, 2016.

[185] The YARP cartesian interface. description available at Cartesian Inter-
face.

[186] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. Yarp: yet an-
other robot platform. International Journal of Advanced Robotic Systems,
3(1):8, 2006.

[187] S.Y. Chen. Kalman filter for robot vision: A survey. IEEE Transactions
on Industrial Electronics, 59(11):4409 – 4420, 2012. ISSN 0278-0046. doi:
10.1109/TIE.2011.2162714.

[188] Rudolph Van Der Merwe, Arnaud Doucet, Nando De Freitas, and
Eric Wan. The unscented particle filter. In Advances in Neural Infor-
mation Processing Systems 13, pages 584 – 590. 2001.

[189] Kaijen Hsiao, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Task-
driven tactile exploration. In 6th Conference on Robotics: Science and
Systems, pages 66 – 72, Zaragoza, Spain, 2010.

[190] Niccoló Tosi, Olivier David, and Herman Bruyninckx. Action se-
lection for touch-based localisation trading off information gain and
execution time. In 31st IEEE International Conference on Robotics and
Automation (ICRA), pages 2270 – 2275, Hong Kong, China, 2014.

[191] Simon J. Julier and Jeffrey K. Uhlmann. Unscented filtering and non-
linear estimation. Proceedings of the IEEE, 92(3):401–422, 2004. ISSN
0018-9219. doi: 10.1109/JPROC.2003.823141.

[192] Simon J Julier and Jeffrey K Uhlmann. New extension of the Kalman
filter to nonlinear systems. In AeroSense ’97, pages 182 – 193, Orlando,
Florida, 1997.

http://eris.liralab.it/brain/icub_cartesian_interface.html
http://eris.liralab.it/brain/icub_cartesian_interface.html

BIBLIOGRAPHY 281

[193] Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduc-
tion to sequential Monte Carlo methods. In Springer, editor, Sequen-
tial Monte Carlo methods in practice, pages 3 – 14. 2001.

[194] Simon J. Julier and Jeffrey K. Uhlmann. Unscented filtering and non-
linear estimation. Proceedings of the IEEE, 92(3):401–422, 2004. ISSN
0018 – 9219. doi: 10.1109/JPROC.2003.823141.

[195] Jane Liu and Mike West. Combined Parameter and State Estimation in
Simulation-Based Filtering, pages 197–223. Springer New York, New
York, NY, 2001.

[196] Saikat Saha, Yvo Boers, Hans Driessen, Pranab Kumar Mandal, and
Arunabha Bagchi. Particle based MAP state estimation: A compari-
son. In 12th International Conference on Information Fusion (FUSION),
pages 278 – 283, Seattle, USA, 2009.

[197] Johann Prankl, Aitor Aldoma, Alexander Svejda, and Markus
Vincze. RGB-D object modelling for object recognition and track-
ing. In 28th IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 96 – 103, Hamburg, Germany, 2015.

[198] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson
surface reconstruction. In 4th Eurographics Symposium on Geometry
Processing (SGP), volume 7, pages 61 – 70, Cagliari, Italy, 2006.

[199] Yang Chen and Gerard Medion. Object modelling by registration of
multiple range imagesy. Image Vision Computing, pages 145 – 155,
1991.

[200] Giulia Vezzani, Nawid Jamali, Ugo Pattacini, Giorgio Battistelli,
Luigi Chisci, and Lorenzo Natale. A novel Bayesian filtering ap-
proach to tactile object recognition. In 16th IEEE International Confer-
ence on Humanoid Robotics, pages 256 – 263, Cancun, Mexico, 2016.

[201] Giorgio Metta, Giulio Sandini, David Vernon, Lorenzo Natale, and
Francesco Nori. The iCub humanoid robot: an open platform for re-
search in embodied cognition. Proc. 8th Work. Perform. Metrics Intell.
Syst., pages 50–56, 2008. ISSN 00426989. doi: http://dx.doi.org/10.
1145/1774674.1774683.

282 BIBLIOGRAPHY

[202] Massimo Regoli, Ugo Pattacini, Giorgio Metta, and Lorenzo Na-
tale. Hierarchical grasp controller using tactile feedback. In IEEE-
RAS 16th International Conference on Humanoid Robots, pages 387–394.
IEEE, 2016.

[203] Alessandro Roncone, Matej Hoffmann, Ugo Pattacini, and Giorgio
Metta. Automatic kinematic chain calibration using artificial skin:
self-touch in the icub humanoid robot. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on, pages 2305–2312. IEEE,
2014.

[204] Sean Ryan Fanello, Ugo Pattacini, Ilaria Gori, Vadim Tikhanoff,
Marco Randazzo, Alessandro Roncone, Francesca Odone, and Gior-
gio Metta. 3d stereo estimation and fully automated learning of eye-
hand coordination in humanoid robots. In 14th IEEE-RAS Interna-
tional Conference on Humanoid Robots, pages 1028–1035. IEEE, 2014.

[205] Nikolaus Vahrenkamp, Manfred Kröhnert, Stefan Ulbrich, Tamim
Asfour, Giorgio Metta, Rüdiger Dillmann, and Giulio Sandini.
Simox: A Robotics Toolbox for Simulation, Motion and Grasp Plan-
ning. In International Conference on Intelligent Autonomous Systems
(IAS), pages 585–594, 2012.

[206] Jacques Denavit. A kinematic notation for lower-pair mechanisms
based on matrices. Transactions of the ASME. Journal of Applied Me-
chanics, 22:215 – 221, 1955.

[207] Andreas Wächter and Lorenz-T Biegler. On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical programming, 2006. ISSN 0025-5610.

[208] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa,
Pieter Abbeel, and Aaron M. Dollar. Benchmarking in manipulation
research: The ycb object and model set and benchmarking protocols.
In preprint available athttps://arxiv.org/abs/1502.03143, 2015.

[209] Claudio Fantacci, Ugo Pattacini, Vadim Tikhanoff, and Lorenzo Na-
tale. Visual end-effector tracking using a 3d model-aided particle
filter for humanoid robot platforms. In Intelligent Robots and Systems

BIBLIOGRAPHY 283

(IROS), 2017 IEEE/RSJ International Conference on, pages 1411–1418.
IEEE, 2017.

[210] Giulia Pasquale, Carlo Ciliberto, Lorenzo Rosasco, and Lorenzo Na-
tale. Object identification from few examples by improving the in-
variance of a deep convolutional neural network. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 4904–4911.
IEEE, 2016.

[211] Jorge J Moré. The levenberg-marquardt algorithm: implementation
and theory. In Numerical analysis, pages 105–116. Springer, 1978.

[212] Giulia Pasquale, Carlo Ciliberto, Francesca Odone, Lorenzo Rosasco,
and Lorenzo Natale. Teaching icub to recognize objects using deep
convolutional neural networks. volume 43, pages 21–25, 2015.

[213] Timo Ojala, Matti Pietikäinen, and David Harwood. A comparative
study of texture measures with classification based on featured dis-
tributions. Pattern recognition, 29(1):51–59, 1996.

[214] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut:
Interactive foreground extraction using iterated graph cuts. In ACM
transactions on graphics (TOG), volume 23, pages 309–314. ACM, 2004.

[215] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[216] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Im-
agenet large scale visual recognition challenge. International Journal
of Computer Vision, 115(3):211–252, Dec 2015. ISSN 1573-1405.

[217] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Dar-
rell. Caffe: Convolutional architecture for fast feature embedding.
In Proceedings of the 22nd ACM international conference on Multimedia,
pages 675–678. ACM, 2014.

284 BIBLIOGRAPHY

[218] Lorenzo Sciavicco and Bruno Siciliano. Modelling and control of robot
manipulators. Springer Science & Business Media, 2012.

[219] Massimo Regoli, Ugo Pattacini, Giorgio Metta, and Lorenzo Na-
tale. Hierarchical grasp controller using tactile feedback. In IEEE-
RAS 16th International Conference on Humanoid Robots, pages 387–394.
IEEE, 2016.

[220] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al.
A density-based algorithm for discovering clusters in large spatial
databases with noise.

[221] Giulia Vezzani, Ugo Pattacini, Giulia Pasquale, and Lorenzo Natale.
Improving superquadric modeling and grasping with prior on object
shapes. In 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 6875–6882. IEEE, 2018.

[222] Claudio Fantacci, Giulia Vezzani, Ugo Pattacini, Vadim Tikhanoff,
and Lorenzo Natale. Markerless visual servoing on unknown objects
for humanoid robot platforms. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 3099–3106. IEEE, 2018.

[223] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanra-
han, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shu-
ran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet:
An Information-Rich 3D Model Repository. Technical Report
arXiv:1512.03012 [cs.GR], Stanford University — Princeton Univer-
sity — Toyota Technological Institute at Chicago, 2015.

[224] Mia Kokic, Johannes A Stork, Joshua A Haustein, and Danica Kragic.
Affordance detection for task-specific grasping using deep learning.
In Humanoid Robotics (Humanoids), 2017 IEEE-RAS 17th International
Conference on, pages 91–98. IEEE, 2017.

[225] Thanh-Toan Do, Anh Nguyen, and Ian Reid. Affordancenet: An end-
to-end deep learning approach for object affordance detection. In
2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 1–5. IEEE, 2018.

BIBLIOGRAPHY 285

[226] Igor Mordatch, Zoran Popović, and Emanuel Todorov. Contact-
invariant optimization for hand manipulation. In ACM SIG-
GRAPH/Eurographics symposium on computer animation, pages 137–
144. Eurographics Association, 2012.

[227] Vikash Kumar, Yuval Tassa, Tom Erez, and Emanuel Todorov.
Real-time behaviour synthesis for dynamic hand-manipulation. In
Robotics and Automation (ICRA), 2014 IEEE International Conference on,
pages 6808–6815. IEEE, 2014.

[228] Herke Van Hoof, Tucker Hermans, Gerhard Neumann, and Jan Pe-
ters. Learning robot in-hand manipulation with tactile features. In
Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International Con-
ference on, pages 121–127. IEEE, 2015.

[229] Shixiang Gu, Ethan Holly, Timothy P. Lillicrap, and Sergey Levine.
Deep reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates. In ICRA, 2017.

[230] S. Kakade. A natural policy gradient. In NIPS, 2001.

[231] Jan Peters. Machine learning of motor skills for robotics. PhD Disser-
tation, University of Southern California, 2007.

[232] Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and
Sham M Kakade. Towards generalization and simplicity in contin-
uous control. In Advances in Neural Information Processing Systems,
pages 6550–6561, 2017.

[233] Ronald J. Williams. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Machine Learning, 8(3):229–
256, 1992.

[234] Shun-Ichi Amari. Natural gradient works efficiently in learning.
Neural computation, 10(2):251–276, 1998.

[235] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. Trust region policy optimization. In International
Conference on Machine Learning, pages 1889–1897, 2015.

286 BIBLIOGRAPHY

[236] J. Andrew Bagnell and Jeff G. Schneider. Covariant policy search. In
IJCAI, 2003.

[237] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing,
71(7-9):1180–1190, 2008.

[238] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. CoRR,
abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.

[239] Dean Pomerleau. ALVINN: an autonomous land vehicle in a neural
network. In NIPS 1988], pages 305–313, 1988.

[240] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bern-
hard Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew
Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and
Karol Zieba. End to end learning for self-driving cars. CoRR,
abs/1604.07316, 2016. URL http://arxiv.org/abs/1604.07316.

[241] Jan Peters and Stefan Schaal. Reinforcement learning of motor
skills with policy gradients. Neural Networks, 21(4):682–697, 2008.
doi: 10.1016/j.neunet.2008.02.003. URL https://doi.org/10.1016/

j.neunet.2008.02.003.

[242] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction
of imitation learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international conference on ar-
tificial intelligence and statistics, pages 627–635, 2011.

[243] Sham Kakade and John Langford. Approximately optimal approxi-
mate reinforcement learning. In ICML, 2002.

[244] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and
J Andrew Bagnell. Deeply aggrevated: Differentiable imitation
learning for sequential prediction. 2017.

[245] Vikash Kumar, Zhe Xu, and Emanuel Todorov. Fast, strong and com-
pliant pneumatic actuation for dexterous tendon-driven hands. In
Robotics and Automation (ICRA), 2013 IEEE International Conference on,
pages 1512–1519. IEEE, 2013.

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1604.07316
https://doi.org/10.1016/j.neunet.2008.02.003
https://doi.org/10.1016/j.neunet.2008.02.003

BIBLIOGRAPHY 287

[246] Vikash Kumar, Emanuel Todorov, and Sergey Levine. Opti-
mal control with learned local models: Application to dexterous
manipulation. In Robotics and Automation (ICRA), 2016 IEEE Inter-
national Conference on, pages 378–383. IEEE, 2016.

[247] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics
engine for model-based control. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pages 5026–5033.
IEEE, 2012.

[248] Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools for
model-based robotics: Comparison of bullet, havok, mujoco, ode
and physx. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 4397–4404. IEEE, 2015.

[249] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nico-
las Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wier-
stra. Continuous control with deep reinforcement learning. CoRR,
abs/1509.02971, 2015. URL http://arxiv.org/abs/1509.02971.

[250] Matej Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier
Pietquin, Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe,
and Martin A. Riedmiller. Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards.
CoRR, abs/1707.08817, 2017. URL http://arxiv.org/abs/1707.

08817.

[251] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. Overcoming exploration in
reinforcement learning with demonstrations. pages 6292–6299, 2018.

[252] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau,
Doina Precup, and David Meger. Deep reinforcement learning that
matters. CoRR, abs/1709.06560, 2017. URL http://arxiv.org/abs/

1709.06560.

[253] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. Overcoming exploration in
reinforcement learning with demonstrations. arXiv preprint
arXiv:1709.10089, 2017.

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1707.08817
http://arxiv.org/abs/1707.08817
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1709.06560

288 BIBLIOGRAPHY

[254] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip
De Turck, and Pieter Abbeel. Curiosity-driven exploration in deep
reinforcement learning via bayesian neural networks. arXiv preprint
arxiv.1605.09674, 2016.

[255] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Ope-
nAI Xi Chen, Yan Duan, John Schulman, Filip DeTurck, and Pieter
Abbeel. #Exploration: A study of count-based exploration for deep
reinforcement learning. In Advances in Neural Information Processing
Systems, pages 2753–2762, 2017.

[256] Justin Fu, John Co-Reyes, and Sergey Levine. Ex2: Exploration with
exemplar models for deep reinforcement learning. In Advances in
Neural Information Processing Systems, pages 2577–2587, 2017.

[257] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck,
and Pieter Abbeel. Vime: Variational information maximizing ex-
ploration. In Advances in Neural Information Processing Systems, pages
1109–1117, 2016.

[258] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell.
Curiosity-driven exploration by self-supervised prediction. In Inter-
national Conference on Machine Learning (ICML), volume 2017, 2017.

[259] Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro
Fujita, Tamim Asfour, and Pieter Abbeel. Model-based
reinforcement learning via meta-policy optimization. arXiv preprint
arXiv:1809.05214, 2018.

[260] Diederik P Kingma and Max Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

[261] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

[262] Clément Moulin-Frier, Tobias Fischer, Maxime Petit, Grégoire
Pointeau, Jordi-Ysard Puigbo, Ugo Pattacini, Sock Ching Low,
Daniel Camilleri, Phuong D. H. Nguyen, Matej Hoffmann,
Hyung Jin Chang, Martina Zambelli, Anne-Laure Mealier, An-
dreas C. Damianou, Giorgio Metta, Tony J. Prescott, Yiannis Demiris,

BIBLIOGRAPHY 289

Peter Ford Dominey, and Paul F. M. J. Verschure. Dac-h3: A proac-
tive robot cognitive architecture to acquire and express knowledge
about the world and the self. IEEE Transactions on Cognitive and De-
velopmental Systems, 2017. URL http://arxiv.org/abs/1706.03661.

http://arxiv.org/abs/1706.03661

	Abstract
	Publications
	Acknowledgements
	Preface
	I Introduction
	The importance of perception and autonomous manipulation
	Vision and motivation
	Contribution and outline

	What is the stage of autonomous manipulation?
	Tactile object localization and recognition
	Tactile object localization
	Tactile object recognition

	Bi-manual coordination
	Object modeling from vision
	Autonomous grasping
	Deep Reinforcement Learning for autonomous manipulation

	The iCub humanoid robot and its key components for manipulation
	iCub upper body
	Perception system
	Vision
	Tactile sensors
	Proprioception

	The Cartesian controller
	Yarp

	II A novel tactile object localization algorithm: the Memory Unscented Particle Filter
	Memory Unscented Particle Filter for 6-DOF Tactile Object Localization
	Mathematical background
	The Unscented Particle Filter

	Problem formulation
	Considerations on the motion model
	Measurement model

	The Memory Unscented Particle Filter
	Algorithm validation
	Simulation setup
	Performance evaluation
	Simulation results
	Experimental setup
	Experimental results
	Further analysis

	Discussion

	Applications of the Memory Unscented Particle Filter to object tactile recognition
	Methodology
	Recognition as multi-object localization

	Data Acquisition
	Results
	Simulation results
	Experimental results

	Discussion

	III Bi-manual coordination: a new pipeline for the execution of handover tasks
	In-hand object localization using vision: bi-manual handover
	Pipeline
	Stable grasp with tactile feedback
	Point cloud acquisition and filtering
	In-hand localization
	Pose selection
	Approach and handover

	Results
	Discussion

	IV Dealing with unknown objects: modeling and grasping with superquadrics
	Superquadric object modeling and grasping
	Superquadric modeling
	Object modeling
	Hand modeling

	Grasp pose computation
	Grasping avoiding object penetration
	Obstacle avoidance
	Specifications on pose reachability
	Lifting objects
	Real-time computation and execution

	Using prior on object shape for modeling
	Object classifier

	Best hand selection
	Final modeling and grasping pipeline
	Evaluation
	Evaluation on multiple objects
	Robustness of the method
	The effect of prior on object shapes
	Enlarging the workspace using two hands

	Discussion

	Modeling and grasping more complex objects using multiple superquadrics
	Multi-superquadrics modeling
	Creating the superquadric-tree
	Inferring the splitting planes
	Generating the final superquadrics

	Multi-superquadrics grasping
	Grasping pose candidates computation using multi-superquadric models
	Best pose selection with multi-superquadric models

	Evaluation
	Multi-superquadric models
	Multi-superquadric grasping poses

	Discussion

	V Deep Reinforcement Learning for manipulation
	The exploration problem in Deep Reinforcement Learning and its relevance in manipulation
	Problem formulation
	Learning complex dexterous manipulation with Deep Reinforcement Learning and demonstrations
	Dexterous manipulation tasks
	Object relocation (Fig. 9.3)
	In-hand Manipulation – Repositioning a pen (Fig. 9.4)
	Manipulating Environmental Props (Fig. 9.5)
	Tool Use – Hammer (Fig. 9.6)

	Demo Augmented Policy Gradient (DAPG)
	Natural Policy Gradient
	Augmenting RL with demonstrations
	Pretraining with behavior cloning
	RL fine-tuning with augmented loss

	Results
	Experimental setup
	Reinforcement Learning from Scratch
	Reinforcement Learning with Demonstrations

	Learning state representations for improving exploration
	Learning the latent representation z
	Exploration via maximum-entropy bonus on the latent variable z
	Preliminary results
	Learning the latent representation z for the object-pusher environment
	Maximum-entropy bonus exploration

	Discussion

	VI Conclusions
	Conclusions and future work

	VII Appendix
	Superquadric modeling and grasping pipeline: implementation
	Grasping pose computation with superquadrics for markerless visual servoing on unknown objects
	Bibliography

