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The work presented in this thesis deals with the design and the implementation of 

Cartesian controllers for humanoid robotic platforms employing a model-based approach. 

The purpose was to achieve a modular architecture that allows coping robustly with all 

the issues that arise while controlling a humanoid robot in reaching and gazing tasks, such 

as the compliance with complex obstacles expressed both in joint and operational space, 

the quality of human likeness, the reliability and repeatability of the action, having at the 

same time as main requisite the attainment of significant performance in terms of speed 

and accuracy of the movements. Therefore it is illustrated how the proposed serial 

configuration composed of a nonlinear constrained optimizers with a minimum-jerk 

controller placed in cascade fulfills the given specifications. 

Moreover, despite the fact that these tools are fundamental for enabling the successive 

development of higher level modules exhibiting cognitive behaviors, the current research 

in robotics has not shown the same attention usually reserved for theoretical frameworks 

to their physical realizations that would address the problem from an organic standpoint, 

concentrating rather in solutions that remain specific to the single experiment, even not 

openly accessible in most of the cases, and finally not owning the desirable property of 

being scalable and portable to different platforms. The Cartesian controllers for reaching 

and gazing have been thus devised to respond to these central requirements and then put 

to tests on the iCub humanoid. 

Furthermore, the study conducted here have been also motivated by the idea that a solid 

model-based structure can truly represent a boost to learning which by contrast is 

dominantly applied in literature already at early stages without the resort to any a priori 

knowledge of the task, eventually producing weak results compared to the achievements 

of the traditional control policies. Modeling and learning can be profitably exploited in a 

common hierarchical architecture where the former paradigm serves to guarantee at low 
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level the robustness and the performance of the design, whereas the latter lets the system 

to adapt to the unknown offsets and perturbations that may occur at higher level while the 

robot interacts with the environment, when for instance it has to reaches for a target or 

gazes at a point in the space making mistakes that need to be compensated. The benefits 

that derive from this approach are demonstrated in the particular case of robot eye-hand 

coordination. 
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1.1     Motivation 

As researchers in the field of humanoid robotics we commonly find ourselves 

promising our funders that soon we will see the world populated by robots substituting 

humans in everyday tasks. At the same time – and quite sadly – in our laboratories 

students spend an enormous amount of time facing tasks that everyone considers quite 

easy or at least “already solved” in the literature. The problem is that, if on the one hand 

the scientific literature is full of papers describing techniques that solve virtually all 

possible tasks, on the other hand it is difficult to find the implementation of those 

techniques and use them out of the box. This is not to say that scientific papers are 

incorrect, do not contain good work or are not useful. It is true, however, that researchers 

put a lot of effort in writing papers and developing new techniques, but rarely concentrate 

on writing good implementations of these techniques and making them publicly available 

for comparison purposes or just as building blocks to work out more sophisticated tasks.  

In particular when we decided to implement a Cartesian Controller for the iCub 

platform we found that it was not as easy as we initially expected. In humanoid robotics 

we often deal with kinematics structures that have a large (and variable) number of 

degrees of freedom. The problem is further complicated because trajectories have to be 

computed quickly in real-time. Finally, humanoid robots are programmed to produce 

smooth movements. All these aspects rule out the possibility to resort to expensive off-

line solutions that are typically employed in industrial settings (Sciavicco and Siciliano 

2005). 

To deal with these issues we designed a novel Cartesian Controller for reaching and 

gazing tasks as detailed in Chapter 2 and Chapter 3 respectively, extending the Multi-

CHAPTER 1  
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Referential dynamical system approach (Hersch and Billard 2008) in two aspects. Firstly 

we have modified the trajectory generator to produce trajectories that have minimum-jerk 

profile. Secondly, we have applied an interior point optimization technique (Wätcher and 

Biegler 2006) to solve the inverse kinematics problem in real-time. We have shown that 

our solution has some advantages with respect to (Hersch and Billard 2008) and standard 

approaches in the literature (Chiaverini, Siciliano and Egeland 1994), (Liegeois 1977). 

We also conducted experimental comparisons between our implementation and publicly 

available software, demonstrating the performance gain of our technique in terms of 

smoothness, speed, repeatability and robustness. 

The choice of basically employing conventional methods taken from the control theory 

was also motivated by the need of partially reviewing the current trend in robotics. In 

fact, over the past years studies in developmental robotics such as the work of (D'Souza, 

Vijayakumar and Schaal 2001), (Rolf, Steil and Gienger 2010) and (Wrede, et al. 2010), 

to cite a few examples mainly involving the inverse kinematic problem, have been 

focusing more and more on the possibility to learn high dimensional maps for many 

different motor tasks, where the ultimate goal is to discard any kind of a priori 

physical/geometrical model in favor of the ability to generalize expressed by abstract 

paradigms widely used in machine learning. Despite the appealing property of being top-

down approaches that essentially require only a minimal description of the environment, 

it is a matter of fact that these paradigms suffer from a number of somewhat critical 

weaknesses, mainly regarding engineering aspects such as performance, repeatability and 

reliability issues. Figure 1-1 attempts to summarize the dichotomy between traditional 

control theories and learning applied to robotics. On one side the conventional approach 

depicts the robot brain as a hardwired machine, coded fairly in advance, merely 

processing the incoming inputs according to the preconceived model of the environment; 

on the opposite side, the robot brain is perceived much like a living plant that interacts 

with the surroundings to gather useful information in order to build up an internal 

representation of the reality. 
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Figure 1-1. The dichotomy between classical methods that rely on a priori models and AI 
paradigms (left) and the developmental approach that predicates the fundamental idea of 

solving tasks with the experience the system can gain through the interaction with the 
environment. 

 

The need to sidestep these difficulties naturally gives rise the idea of combining the 

advantages of "old-fashion" well-established techniques (control theory, nonlinear 

optimization, etc) with the benefits of learning-oriented methodologies (reservoir 

networks, support vector machines, locally-weighted regression) into a unique framework 

that ensures good performance indexes in achieving motor tasks through an accurate 

model-based design and at the same time enforces the capability of learning the errors 

and adapting to unmodeled circumstances. This view might shed a new light on the 

controversial relationship proposed by the sketch in Figure 1-1, where the conflict 

expressed by the big red “vs.” can be rather replaced by a proper slider bar that modulates 

from time to time the influence of each component (Figure 1-2). 

A clear demonstration of the effectiveness of such collaborative behavior between 

modeling and learning is presented in Chapter 5, where the problems of adaption to 

reaching errors and learning of robot eye-hand coordination are tackled starting from a 

robust model-based layer and then plugging on top simple machine learning techniques.  

Interestingly, this practical yet structured "workaround" that breeds from an 

engineering standpoint in the humanoid robotics can find conversely its conceptual 

motivation in cognitive sciences and researches in human behavior where the role of 
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internal representation of the world and the mechanisms that allow humans to react 

against unpredictable changes are fundamental topics constantly inquired. One of the 

major key point would be to understand to which extent humans rely on inherent models 

of their motor activities to then adjust results when perturbations come into play or 

predictions reveal to be wrong, and furthermore how new models might be built up on the 

basis of observations, eventually partially or even fully replacing old descriptions of the 

self motion as well as the environment. 

Therefore, inspired by hypotheses and experiments on humans, the perspective of 

blending model-based and learning-oriented policies in robotics may receive relevant 

guidelines for future researches. 

 

 

Figure 1-2. A sketch that evokes the proposed combination of modeling and learning as a 
dynamic slider setting up the correct mixture of ingredients between a priori knowledge and 

learning algorithms. 

 

In this context, a central component turns out to be the feedback: on one hand the 

feedback allows control systems to compensate for uncertainties and to be robust against 

disturbances while retaining the skill to accomplish tasks successfully; on the other hand 

it provides the error signals used by online algorithms to learn the deviations from the 

model. Once this errors map is properly explored, the closed loop part of the system that 

is dominant in the early stage can be ideally switched off promoting the feed forward 

element that corrects the model predictions with the knowledge acquired from the 

experience. The goal is to achieve tasks objectives more effectively compared to the case 
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of traditional closed-loop methods as for example to execute limbs movements extremely 

fast preserving precision, to overcome the limitation imposed by the feedback reading 

rate. 

 

1.2     Modularity 

The term modularity represents a key aspect that pervades the whole science in many 

different fields, and having a fairly general meaning makes it difficult to provide an 

accurate definition. We can then try to give an explanation by borrowing the idea of 

(Schilling 2000) for whom “modularity is a general systems concept, typically defined as 

a continuum describing the degree to which a system’s components may be separated and 

recombined; it thus refers to both the tightness of coupling between components, and the 

degree to which the rules of the system architecture enable (or prohibit) the mixing and 

matching of components”. 

 

 

Figure 1-3. The KUKA manipulator. From the basis to the end-effector only one basic 
mechatronic module is employed to actuate the whole set of the available degrees of freedom. 

 

There exist significant examples of applications of the modularity in diverse contexts: 

in biology, where the term may be used to refer to organisms that own an indeterminate 

structure wherein modules of various complexities are assembled without strict limits on 
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their number or placement such as the plants, or the focus may be not the morphology but 

rather the functionality of the low-level components as the genes that are able to act in a 

unified way; in mechanical design and specifically in robotics, where lately dexterous 

industrial manipulators (Figure 1-3) are conceived in such a way that their realization can 

rely on one single mechatronic module employed for each degree of freedom equipping 

the structure; in studies of primate perception of objects, where structural primitives of 

the ventral stream have been identified (Riesenhuber and Poggio 2000), showing out a 

general organization of the visual cortex in a series of layers, having a specialization of 

the simple units to specific functions; in software technology with the well-established  

design pattern methodology, where the modularity plays an important role guaranteeing 

the code reuse (the YARP middleware belongs to this category); even in mathematics, 

where the Fourier analysis, the orthogonal polynomials, the Spline interpolation, the 

Wavelet Multiresolution approximation (adopted in Chapter 6) are all examples of 

methods that employ particular modules such as sinusoids, orthonormal basis of 

polynomials, wavelets that properly combined together can describe a rich set of generic 

maps. 

 

 

Figure 1-4. A single module of the MOSAIC system within the multiple paired internal 
model. 
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However, in this thesis the central topic is represented by motor control, and also in this 

field interesting applications of modularity can be gathered and analyzed. In (Ijspeert, 

Crespi, et al. 2007) for instance the focus is in using numerical simulations and robots to 

get a better understanding of animal locomotion and movement control, and in using 

inspiration from biology to design novel types of robots and locomotion controllers.  

Further, in order to replicate in a mirroring manner the human ability to generate 

accurate and appropriate motor behaviors under many different and often uncertain 

environmental conditions, the MOSAIC model has been proposed (Wolpert and Kawato 

1998), whose architecture is intrinsically modular: it is based on multiple pairs of forward 

(predictor) and inverse (controller) models organized in a competitive way with a set of 

internal rules subject to a continuous update mechanism capable of selecting the right pair 

both prior to movement and subsequently during movement (Figure 1-4). The ability to 

correct online an inappropriate activation of modules while the model is presented with a 

novel shape-dynamic pairing is encapsulated as well. 

It has been extensively showed that notions and ideas from neurophysiological studies 

can be helpfully employed to provide the direct connection between cognition and 

intentionality with motor control encapsulated in the robot platform; consequently, to 

justify the modular approach in motor control one can refer to significant findings 

highlighted in the work of (Mussa-Ivaldi and Bizzi 2000) in which by analyzing some 

experiments the authors suggest the existence of motion primitives hardwired in the 

central nervous system (CNS) of frogs and rats. These primitives act on limbs in terms of 

muscle synergies, called spinal fields. These synergies have been characterized in terms 

of the isometric force fields elicited at the limb extremity. The main features observed in 

the experiments are the following: 

• Sensory-motor systems of frogs and rats are organized into a finite number of 

linearly combinable modules, called spinal fields; 

• Each spinal field recruits a specific pattern of muscles that direct the limb towards 

a given configuration, regardless of the initial condition; 

• Simultaneous activation of multiple spinal fields leads to the vectorial summation 
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of the corresponding force fields. 

There are therefore evidences that the complex nonlinearities that characterize the 

limbs of living creatures are somehow eliminated, since the CNS acts linearly, applying 

the superposition principle and showing out at the same time the robustness of control. 

 

 

Figure 1-5. Experiments conducted on frogs reveal the underlying modular nature of the 
Central Nervous System in handling motor commands. 

 

Inspired by these studies, (Nori and Frezza 2005) rethought the experimentally 

observed motion data under a control theory perspective, trying to answer the following 

questions: (1) which information about the system dynamics can be represented in a 

spinal field and how can it be used to perform a given action; (2) how does the CNS 

combine the elementary modules to generate different instances of the same action; (3) 

how are the modules activated and modified to reject external disturbances and adapt to 

changes in the system dynamics. Remarkably, the authors managed to identify some 

relevant properties of the modular control approach modeled in terms of motion 

primitives, whose final actionu is given as linear combination of elementary (but 

generally time-varying nonlinear) modules 1, K  depending on the current state 

 x t and responsible each for driving the system to the corresponding equilibrium points 
1, K
f fx x . They finally demonstrated that the problem of controlling complex systems is 
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simplified by recruiting two different parts, one ( K ) depending only on the system 

internal states and a second represented by the set of combinators depending only on the 

task to be executed. On this basis, the learning ability as well as the system robustness 

can be achieved by appropriately placing the set of K for performing a given action. 

In the context of this thesis the concept of modularity mainly involves two different 

kinds of topics. The first refers to the high-level hierarchical structure of the Cartesian 

controllers that are composed of a nonlinear real-time solver and the subsequent 

minimum-jerk controller, both treating each joint as a elemental module in the kinematic 

chain, being actuated or not depending on the task; thus, the modularity addresses the 

requirement of exhibiting the scalability property (the number of degrees of freedom is 

generic) and the portability property (the robotic platform along with its kinematic chain 

is generic too). The second aspect is strictly related to the argument of motion primitives 

inquired by (Nori and Frezza 2005). The last chapter indeed introduces a study on the 

trajectories encoding, which corresponds to a collection of methods aiming to represent a 

generic position or velocity profile by mean of coefficients that linearly combine suitable 

basis functions such as the wavelet functions. With this meaning, as detailed in Chapter 6, 

the wavelets can be thought to be the basic modules underlying an enhanced version of 

the designed controllers that instead of commanding instant by instant the system with the 

actual output computed on the basis of the feedback, describe the desired behavior at once 

in terms of expansion combinators, in a fully feed-forward manner. 

 

1.3     The CHRIS Project 

The work conducted for this thesis had as one of the main aims to support the European 

FP7 ICT project No. 215805 (CHRIS)1

                                                      
1 

 that addresses the fundamental issues which 

would enable safe Human Robot Interaction (HRI). Specifically this project deals with the 

problem of a human and a robot performing co-operative tasks in a co-located space 

where it is crucial to handle communication of a shared goal (verbally and through 

http://www.chrisfp7.eu  

http://www.chrisfp7.eu/�
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gesture), perception and understanding of intention (from dexterous and gross 

movements), cognition necessary for interaction, and active and passive compliance.  

The project is based on the essential premise that it will be ultimately beneficial to the 

socioeconomic welfare to generate service robots capable of safe co-operative physical 

interaction with humans. The key hypothesis is that safe interaction between human and 

robot can be engineered physically and cognitively for joint physical tasks requiring co-

operative manipulation of real world objects. 

 

 

Figure 1-6. The robotic platforms used within the CHRIS project. From left to right: iCub, 
BERT2, and HRP2. 

 

A diverse set of disciplines have been brought together to realize an inter-disciplinary 

solution. The starting point for understanding cooperative cognition is from the basic 

building blocks of initial interactions, those of young children. Engineering principles of 

safe movement and dexterity have been explored on the three available robot platforms 

(see Figure 1-6) hosted by the project partners2

                                                      
2 The partners of the CHRIS project are: (1) Istituto Italiano di Tecnologia (IIT) in Genoa, Italy; 

(2) University of West England (UWE-BRL) in Bristol, UK; (3) University of Bristol (UoB-BRL) in 

Bristol, UK; (4) Centre National de la Recherche Scientifique (CNRS) in Toulouse, France; (5) 

, and developed with principles of 
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language, communication and decisional action planning where the robot reasons 

explicitly with its human partner.  

In particular, in the context of safe HRI it is essential that robots have the capability to 

perceive their environment, extrapolate information and utilize this to move safely around 

their environment and in coordination with their human counterpart. To achieve that, it is 

required to investigate the construction of a controller for a humanoid robot which 

includes learning from examples while retaining safety. The controller must be modular 

in the extent exposed in the previous paragraph, so that a higher level decisional planner 

can appropriately sequence and rely on it to perform more complicated goals.  

 

1.4     The iCub Platform 

Even though the approach presented in this thesis owns as its primary goal the 

requirement to generically address any direct and inverse kinematic problem with serial 

link chains, the experiments reported herein were performed mainly on the iCub platform 

(Metta, Vernon, et al. 2008), a humanoid robot (Figure 1-7) shaped as a human child with 

53 degrees of freedom. The iCub was designed to investigate cognitive robotics and 

particularly to study manipulation so most of the mechanical complexity is in the arms 

and hands, which are actuated by a total of 16 motors each (9 and 7 in the hand and arm 

respectively). The iCub is equipped with cameras, force sensors, and gyroscopes. All the 

software running on the iCub – including the software specifically developed during the 

thesis work – is released open-source (GPL) and is freely available for download with the 

aim to advance the research in robotics by sharing algorithms, results and accumulate an 

open archive of experimental facilities. 
 

                                                                                                                                                 

Max Planck Gesellschaft  zur Foerderung der Wissenschaften (MPG) in Leipzig, Germany; (6) 

Institut National de la Santé et de la Recherche Médicale (INSERM) in Lyon, France. 
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Figure 1-7. The iCub robot. 
 

1.5     The YARP Middleware 

Software modules in the architecture are interconnected using YARP (Fitzpatrick, Metta 

and Natale 2007), an open source library written to support software development in 

robotics. In brief YARP provides an intercommunication layer that allows processes 

running on different machines to exchange data. Data travels through named connection 

points called ports.  Communication is platform and transport independent: processes are 

not aware of the details of the underlying operating system or protocol and can be 

relocated at will across the available machines on the network (Figure 1-9).  

 

 

Figure 1-8. The physical network of machines running YARP modules that control the robot. 
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More importantly, since connections are established at runtime it is easy to dynamically 

modify how data travels across processes, add new modules or remove existing ones. 

Interface between modules is specified in terms of YARP ports (i.e. port names) and the 

type of data these ports receive or send (respectively for input or output ports).  This 

modular approach allows minimizing the dependency between algorithm and the 

underlying hardware/robot; different hardware devices become interchangeable as long as 

they export the same interface.  

Finally, YARP is written in C++, so it is normally used as a library in C++ code. 

However, any application that has a TCP/IP interface can talk to YARP modules using a 

standard data format. Within the CHRIS project this turned out to be of fundamental 

importance as it allowed to “glue” together different applications into a single integrated, 

working system. 

 

 

Figure 1-9. An example of complex flow chart designed specifically for the CHRIS project, 
containing YARP modules along with their allocation and connections. 
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1.6     Thesis Outline 

The remaining is organized as follows: Chapter 2 deals with the implementation details 

of the Cartesian controller employed to execute reaching task, whereas Chapter 3 inherits 

the same principles treating the gaze control problem; Chapter 4 introduces the important 

elements of software development that took the majority of the efforts of this thesis 

aiming to provide the modular architecture to be used by all the partners; in Chapter 5 

two experiments are analyzed where the devised model-based components and machine 

learning are profitably used in combination to tackle the errors compensation issue, and 

specifically the adaption to reaching unknown offsets and the robot eye-hand markerless 

coordination; finally, Chapter 6 reports a method for encoding trajectory that resorts to 

the wavelet Multiresolution approximation with the ultimate goal to perform motor 

control at high level in a feed-forward fashion. 
 

 



 
 
 
 
 

CHAPTER 2 – THE CARTESIAN CONTROLLER 
 

25 
 

 

2.1     Introduction 

The problem addressed in this chapter regards in its most general formulation the 

design of a controller capable of steering the robot end-effector to track a desired 

trajectory as sketched in Figure 2-1. 

 

 

Figure 2-1. Tracking a desired trajectory with a lemniscate shape in the operational space. 
For better understanding the figure shows two configurations of the arm: the lower one 
depicts the starting pose, whilst the upper one shows the commanded hand orientation 

during the task. 

 

Given the Cartesian position of a target object, reaching is performed in two separate 

modules (Figure 2-2). The first stage employs a nonlinear optimization technique to 

CHAPTER 2  
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determine the arm joints configuration that achieves the desired pose (i.e. end-effector 

position and orientation). The second stage consists of a biologically inspired kinematic 

controller that computes the velocity of the motors to produce a human-like quasi-straight 

trajectory of the end-effector. In the following these two modules composing the structure 

of the proposed Cartesian controller are analyzed in depth. 

 

 

Figure 2-2. Diagram of proposed Cartesian controller. 

 

2.2     The Solver: the IpOpt Solution 

We consider the general problem of computing the value of joint encoders * nq    in 

order to reach a given position 3
dx   and orientation 4

d   of the end-effector 

(where d  is represented in axis/angle notation3

 

). At the same time, the computed 

solution has to satisfy a set of given constraints expressed as inequalities. Formally this 

problem can be stated as follows: 

      
 

2

2

*
rest restarg min

s.t. ,

T

L U

n d
q

d x

q K q q q W q q

x K q

q q q
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


     

 

 





 (2.1) 

                                                      
3 In axis/angle representation any rotation is described by a unit vector , indicating the direction 

of rotation, and an angle  that accounts for the magnitude of rotation around the axis according to 

the right-hand rule. 

Hence it holds:  3, , 1, 0,
T

d          
    
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where xK and K  are the forward kinematic functions that respectively compute the 

position and the orientation of the end-effector from the joint angles q ; restq is a preferred 

joint configuration4 W, is a diagonal matrix of weighting factors,  is a positive scalar 

weighting the influence of restq and  is a parameter for tuning the precision of the 

movement: typically 1   and 5 410 ,10       . Moreover, the solution to problem 

(2.1) has to comply with a set of additional constraints: for example, we required that the 

solution lies between lower and upper bounds ( , n
L Uq q   ) of physically admissible 

values. 

In our case the joints vector has 10 components (7 joints for the arm, 3 joints for the 

torso) and we have chosen the value of restq so that the torso of the robot when controlled 

is as close as possible to the vertical position. We proposed to use an interior point 

optimization technique to solve the problem(2.1), in particular we used IpOpt (Wätcher 

and Biegler 2006), a public domain software package designed for large-scale nonlinear 

optimization. 

This approach owns the following advantages: 

 

1. Quick convergence.  IpOpt is reliable and fast enough to be employed in real-

time as demonstrated in the remainder, especially compared to more traditional iterative 

methods such as the Cyclic Coordinate Descent (CCD) (Wang and Chen 1991) adopted 

by Hersch et al. 

 

2. Scalability. The intrinsic capability of the optimizer to treat nonlinear problems 

in any arbitrary number of variables is here exploited to make the controller’s structure 

easily scalable with the dimension n of the joint space. For example, it is possible to 

switch at run-time from the control of the 7-DOF iCub arm to the complete 10-DOF 

                                                      
4 Notably, when restq remains unspecified within the task, it can be suitably employed to minimize 

also the displacement with respect the current joint configuration in order to take into account 

energy consumption considerations. 
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structure inclusive of the torso or to any combination of the joints depending on the task. 

 

3. Automatic handling of singularities and joint limits. This technique 

automatically deals with singularities in the arm Jacobian and joint limits, and can find 

solutions in virtually any working conditions. 

 

4. Tasks hierarchy. The task is split in two subtasks: the control of the orientation 

and the control of the position of the end-effector. Different priorities can be assigned to 

the subtasks. In our case the control of the position has higher priority with respect to the 

orientation subtask (the former is handled as a nonlinear constraint and thus is evaluated 

before the cost) because we deemed that to accomplish a successful grasp which is the 

ultimate goal of reaching for a humanoid it is central to cope with circumstances when the 

final object is attainable in position and thus can be touched, but the orientation cannot be 

reached perfectly at the same time. 
 

5. Description of complex constraints. It is easy to add new constraints as linear 

and/or nonlinear inequalities either in task or joint space. In the case of the iCub, for 

instance, we added a set of constraints that avoid breaking the tendons that actuate the 

three joints of the shoulder: these tendons indeed are shared among the joints, whose 

movements are thus limited by the tendons lengths within a compact subset of the convex 

hull described by the physical joints bounds (Parmiggiani, et al. 2009). Thereby, three 

linear inequalities hold among the shoulder joints that are conveniently included into (2.1) 

taking the form shl C q L   , being shq the vector of the three shoulder joints, l, L 

the lower and upper limits imposed by the tendons lengths and C a suitable 3-by-3 matrix. 

 

2.3     The Controller: Design of Minimum-Jerk Solution 

The goal of the controller’s module is to determine the smooth velocity profiles in the 

joint space which steer the arm from the current posture q  to the final configuration *q , 
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while at the same time ensuring that the joints lie within well defined limits. This can be 

obtained by applying the Multi-Referential Dynamical Systems approach (Hersch and 

Billard, Reaching with Multi-Referential Dynamical Systems 2008), in which two 

dynamical controllers, one in joint space and one in task space, evolve concurrently 

(Figure 2-3). The coherence constraint between the two tasks – providing that x Jq   is 

guaranteed at each instant with J the Jacobian of the forward kinematic map – is 

enforced with the Lagrangian multipliers method and can be used to modulate the relative 

influence of each controller (i.e. to avoid joint angles limits). The advantage of such a 

redundant representation of the movement is that a quasi-straight trajectory profile can be 

generated for the end-effector in the task space reproducing a human-like behavior 

(Abend, Bizzi and Morasso 1982), (Flash and Hogan 1985), while retaining converge 

property and robustness against singularities (Hersch and Billard, Reaching with Multi-

Referential Dynamical Systems 2008). 

 

 

Figure 2-3. Multi-Referential scheme.  K  is the forward kinematic map. 

 

In (Hersch and Billard, Reaching with Multi-Referential Dynamical Systems 2008) the 

two controllers are implemented with Vector-Integration-To-Endpoint (VITE) models 
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(Bullock and Grossberg 1988), which approximate the neural signal commanding a pair 

of agonist-antagonist muscles and whose behavior is regulated by a second order 

differential equation as follows: 

 

  
  

,
d

d

q q q q

x x x x

 

 

          

 

 

 (2.2) 

 

where the first equation of (2.2) holds in the joint space, whereas the second equation 

holds in the task space; moreover,  is the damping factor and   is the stiffness. 

 According to the implementation in (Hersch and Billard, Reaching with Multi-

Referential Dynamical Systems 2008), the angular velocities, output of the coherence 

constraint block, are integrated to generate position references which are then sent to a 

second cascade controller that is in charge of yielding the velocity profiles in closed loop 

with a proportional law (Figure 2-4). 

Aside from the connection to biological evidences, a second significant merit of this 

approach is the description of the model given as a compact and autonomous dynamic 

equation which makes the controller implementation straightforward and robust against 

external perturbation of the movement creating an attractor landscape towards the goal, 

i.e. the target configuration (Ijspeert, Nakanishi and Schaal, Movement Imitation with 

Nonlinear Dynamical Systems in Humanoid Robots 2002). On the other hand, the 

specific choice of a coupled second order dynamic systems in cascade with a P controller 

entails a major disadvantage when applied to the control of a robotic limb: notably, the 

generated velocity profiles become less human-like as the required execution time 

becomes shorter. When a fast response is requested, trajectories approach an exponential 

response (typical of a first order dynamical system), irrespectively of how the controller’s 

parameters are tuned; therefore, the corresponding velocities are no longer bell-shaped, 

having a steep acceleration at the beginning followed by a slow decay. The reason is 

twofold: primarily a second order system cannot reproduce the smoothness typical of 

biological motion (Flash and Hogan 1985) (for example it does not impose zero 
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acceleration at starting point) and secondly the presence of the proportional controller 

reduces the performances since it cannot guarantee the velocities computed by the 

coherence constraint block. As result fast movements tend to be jerky producing 

unwanted vibrations. 

 

 

Figure 2-4. Schematic of implemented Multi-Referential VITE controllers in the work of 
(Hersch and Billard, Reaching with Multi-Referential Dynamical Systems 2008). 

 

To overcome these limitations, we maintained the multi-referential approach and 

replaced the VITE with more complex controllers which reproduce a trajectory that 

resemble a minimum-jerk profile both in joint and task space: movements are still 

represented and controlled in multiple frames of reference but preserve a smooth (bell 

shaped) velocity profile. To this end one might consider to rely on a trajectory generator 

which codes for example the minimum-jerk profile over the time interval T and specific 

starting and ending points 0, dx x : in literature (Hoff and Arbib 1992) it is well known 

that the desired shape depicted in Figure 2-5 (red lines) is given by the following fifth 

order polynomial: 
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   
3 4 5

0 0 10 15 6 .d
t t t

x t x x x
T T T

    
                                 

 (2.3) 

 

The seeming straightforwardness of this formulation hides a number of somewhat 

important issues that need to be taken into account by an effective design: it is required 

indeed to generate an internal temporal scale t  that has to be reinitialized any time the 

feedback is acquired modifying the coefficients of (2.3) on-line; moreover, the feedback 

turns out to be mandatory since the coherence block disturbs the true velocity command 

causing eventually drifts if not compensated by feedback. Therefore, a regulator appears 

to be a more natural answer for the task and joint space minimum-jerk elements. Possibly 

the generator (2.3) can be applied as the feed-forward component of the regulator, 

operating merely on the target position and leaving a PID to take into account the 

feedback: even so the PID would work hard to stabilize the response against the drift, 

delivering velocities that do not comply with the requisite of human-likeness. This 

ultimately suggests devising a controller that intrinsically embeds the desirable property 

of smoothness. 

We took inspiration from the feedback formulation of the minimum-jerk trajectory as 

the solution of an optimal control problem as reported in (Shadmehr and Wise 2005), 

where a third order linear time-varying (LTV) differential equation is derived: 

 

     3 2 3

0 1 0 0

0 0 1 0

60 36 9 60

.d

T tT t T t T t

x x

x x x

x x

  
  

   
   
   
                                           
   
   
      



 

 

 (2.4) 

 

The weak point of (2.4) is that it contains coefficients whose values become infinite 
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whent approaches the execution timeT . To sidestep this difficulty, we decided to 

employ a linear time-invariant (LTI) system of the same order whose parameters are 

tuned to better approximate a minimum jerk trajectory: in other words we sought the third 

order differential system that is the best time-invariant version of (2.4) minimizing the 

same jerk measure over the interval 0,T   . Formally, we started from the parametric 

equation of the trajectory expressed in the form: 

 
       1 1 2 2 3 3exp exp exp ,dx t C t C t C t x          (2.5) 

 

that is a particular solution of a stable third order differential system with three 

independent real negative poles i . The selection of real negative roots stems from the 

objective to identify a stable system and avoid damped resonant terms since we require a 

monotonic trend to the target, without overshoots, as it comes to be relevant for joints 

limits avoidance; in addition, oscillating components certainly introduce jerkiness in the 

response. 

On the other hand, the function in (2.5) takes into account only the specific case of 

three roots with multiplicity 1; the remaining two cases, i.e. (1) one simple and one 

double root and (2) one root with multiplicity 3, will be treated afterwards in order to gain 

a complete insight of the problem. 

The coefficients iC can be determined for the special case 1dx  and  0 0x 

without any loss of generality, by imposing the following initial conditions: 

    

 
 
 

   

1
1 2 3

1 2 1 3
1 2 2 3

3 1 2
1

0 0
1

0 0 .

0 0

x C

x C

Cx

 
 

   
 

                                        





 (2.6) 

 

Therefore, defined  1M t the measure of the squared jerk  2
1x t accumulated up to 

time t as: 
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   2
1 1

0

,
t

M t x d    (2.7) 

we seek for a solution to the following minimization problem: 

 

  

 

λ
λ

3

1
*

2 1

3

1 1

P1 : arg min

0, 1,2,3

s.t. , .

1 1

i

i j
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i

i j

x







 





 
 
    
 
  
      



 (2.8) 

 

The first constraint in P1 imposes that the system is stable, whereas the second 

constraint requires the independence of all the roots, that is strictly necessary to solve the 

linear system for the coefficients and, further, allows us to write the solution as in (2.5). 

These latter nonlinear bounds can be profitably simplified by resorting to suitable 

continuously differentiable inequalities such as: 

 

 2
22

exp ,
i j 




        
 (2.9) 

 

which, depending on the values assigned to  and 2 , guarantees that the roots are non 

coincident (e.g. 310  and 2 0.1  imply 310i j    ). 

Finally, the third constraint in P1 forces the solution to reach the steady-state value of 1 

with a “rate” specified by the parameter 1 . Without this lower bound on  1 1x , any 

possible monotonically increasing function would be allowed, even those functions with 

very slow time constants. In other words, by setting the parameter 1 we are able to tune 

the final execution time which, in our case, will be as close as possible to 1. It is worth to 

point out that the quantity  1M   in (2.8) can be easily resolved as function of the 
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roots since the (2.5) is known, but more importantly its gradient has a close formula in i

that enables to carry out the minimization with reliable gradient-based methods.  

To complete the treatment the method has to be applied also to the remaining two 

cases: 

 

1) One single root 1 and one double root 2 . The general solution takes the well 

known form: 

 
       2 1 1 2 2 3exp exp .x t C t t C C t          (2.10) 

 

Thus the problem is modified slightly in: 

 

  

 

λ
λ

2
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2
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1 2

1 2

2 1

P2 : arg min

0, 0
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1 1

M

x




 

 





 
      
     



 (2.11) 

 

2) One root with multiplicity 3. As consequence we have: 

    

     3 1 2 3
2exp .x t t C C t C t       (2.12) 

 

The problem simplifies accordingly in: 

 

  

 
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3 1
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 (2.13) 
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Figure 2-5. Comparison between the responses of the 3rd

 

 order dynamical time-invariant 
system found through the minimization (blue) and the responses of the minimum-jerk model 

(red). 

We ran then an optimization algorithm to solve P1, P2, and P3 for several values of the 

parameter 1 relying on an interior-point algorithm as well: in Table 2-1 for each problem 

the resulting roots are reported along with the ratio    idealiM M  that gives a 

measure of quality of our estimate in terms of amount of jerk with respect to the ideal 

model. By inspecting the outcomes, it follows that the three roots, solution of P1, tend to 

collapse into the root of multiplicity 3 which solves the problem P3 and converges on the 

best result; conversely, an approach based on P2 does not lead to good upshots. 

Figure 2-5 compares the trajectories (position, velocity and the measure  M t ) of the 

ideal minimum-jerk model against those obtained with the time-invariant system derived 

with our approach by selecting 0.1   (we retrieved * 5.322   ). As expected the 

LTI system approximates the ideal minimum-jerk position trajectory, having in particular 

a slightly faster onset followed by slower convergence to the steady state. At the same 

time, however, it provides a very good compromise between smoothness and simplicity 

of implementation. 
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1  Roots i     idealiM M   

– P1 P2 P3 P1 P2 P3 

0.01

  1 0.99xi   

8.417

8.403

8.399







 
 
 
 
 
  

 
(2)16.140

5.424





 
 
   

 (3)8.406  10.886  65.512  10.929  

0.05

  1 0.95ix   

6.333

6.278

6.275







 
 
 
 
 
  

 
(2)11.687

3.774





 
 
   

 (3)6.295  2.576  11.166  2.575  

0.1 

  1 0.9ix   

5.339

5.319

5.309







 
 
 
 
 
  

 
(2)9.727

3.052





 
 
   

 (3)5.322  1.112  4.014  1.112  

Table 2-1. Results of optimization carried out on the problems P1, P2, and P3. The roots 
multiplicity is indicated in the superscript. 

 

Once the root * is known, it is possible to compute the elements of the dynamic 

matrix A  and input matrix B  and write the controller in the canonical form extended to 

the case of generic execution timeT : 
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     



 

 




(2.14) 

 

The coefficients      * * *, ,a b c   can be computed from the expansion of the 

characteristic polynomial ofA in the case 1sT  :  
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       3* 3 * 2 * *c b a            (2.15) 

 

Note how the unique non-null element ofB is completely determined for convergence 

reasons and equal to the opposite of  * 3a T . 

 

 

Figure 2-6. Comparison between step responses of VITE (blue) and minimum-jerk controller 
(green), providing the same velocity peak. The 3rd

 

 order system has a faster convergence and 
an (almost) bell-shaped velocity profile. 

The system response in t T  is equal to the 90% of the steady-state value as 

enforced by the constraint, and the transient can be considered extinguished for

1.5t T  .  

The first important result achieved by this controller is visible in Figure 2-6: it is clear 

that minimum-jerk controllers can provide, especially for fast movements, smooth 

velocity profiles that are more similar to the desired human-like prototypes if compared to 

the profiles generated by the VITE model. 

 

2.4     Implementation Issues 

The algorithm follows faithfully the three steps in (Hersch and Billard, Reaching with 
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Multi-Referential Dynamical Systems 2008) that are briefly resumed hereafter: 

 

1) At any time instant the Multi-Referential controller receives the desired target found 

by the optimization process, the current value of fbq (and  fb fbx K q ) and 

computes the corresponding velocity profiles in the joint space dq  and task space dx

by integrating the VITE models (2.2). 

 

2) Since the two controllers evolve independently, the trajectories are unlikely to satisfy 

the kinematic constraint given by d dx Jq  . The coherence is thus enforced by 

computing the joint velocities that solve the following minimization problem which is 

proved to have a single minimum since it reveals to be a positive quadratic 

optimization problem under linear constraint: 

 

       1
min

2

s. t. ;

t t

T Td d d d
t t q t t t t x t t

q ,x

t t

q q W q q x x W x x

x Jq

         



 

       

 

 (2.16) 

 

By applying the Lagrangian multipliers method we can compute a closed form 

solution: 

 

   11 1 1
1

d T T d d
t t q x q t tq q W J W JW J x Jq

  
         (2.17) 

 

with qW  and xW appropriate semi-definite diagonal matrices as defined in step 3. 

 

3) The matrices qW  and xW can be profitably used to give different importance to the 

joint or task space constraints. This can be exploited for example to implement a 

mechanism for joints limits avoidance. Normally qW  and xW  are set so that the task 

space constraint has higher priority and the arm follows a straight path. When one of 

the joints approaches a limit, however, qW  is increased so that the joint space 
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constraint assumes more importance. Formally when the thi  joint angle is within the 

bounds the corresponding weight i
q qw W is close to zero; conversely, when the 

arm gets closer to one of the joint limits, the element i
qw  becomes larger, until, 

eventually, the ratio i
x qw w goes to zero. In the latter situation, since the controller 

evolves in a convex space, the arm is guaranteed to respect the joint limits: for this 

reason it is crucial that the controllers produce monotonically increasing trajectories 

without overshoots. 

In (Hersch and Billard, Reaching with Multi-Referential Dynamical Systems 2008) 

this modulation is achieved by imposing that at each time instant the following 

relation holds: 

 

min

max min

1
1 cos 2 ,

2

i i
x
i i i
q

w q q

w q q
 
               

 (2.18) 

 

where is a convenient normalization constant whose value is typically around 0.01. 

Furthermore, a possible strategy for modulating the weights is setting 1
xW  equal to 

identity matrix and 1
qW  equal to the right-hand side of (2.18). 

 

 

Figure 2-7. A): transfer function of the LTI minimum-jerk model. B): an insight of the joint 
space minimum-jerk controller implemented in closed-loop form. 
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In our implementation two main exceptions arise with respect to the aforementioned 

steps, which are reported below: 

 

1. The need to constantly read the feedback fbq motivated the authors of (Hersch 

and Billard, Reaching with Multi-Referential Dynamical Systems 2008) to introduce a P 

controller with the purpose to keep the generation of trajectories and their execution as 

two separated functionalities, preventing the evolution of the feedback from interfering 

with the internal state of the VITE. This brought about a series of drawbacks we have 

analyzed in section 2.3.  

 

 

Figure 2-8. The implemented shaping policy for the joints limits avoidance (green) and the 
original cosine law (blue) used in Hersch et al. 

 

In order to adhere to the original diagram of Figure 2-3, an alternative solution has been 

explored that transforms the structure of our model as represented in Figure 2-7 (B), 

where for sake of clearness only the joint space minimum-jerk controller is presented: 

from case A that corresponds to the state-space model in (2.14) we migrated to the system 

B that owns exactly the same transfer function    dq s q s written in A, taking now the 

actual error between the target and the feedback as input. The pure integrator plays the 
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role of the mechanical plant that integrates the received command and returns the current 

feedback. All the remaining unmodeled dynamics and uncertainties are represented by the 

term D, whose effects are rejected by the closed-loop system. The disturbance introduced 

in the minimum-jerk controller by the coherence constraint is compensated similarly: as a 

matter of fact, the signal computed through the Lagrangian multipliers does not act like a 

feed-forward component, but rather perturbs the controller. To conclude, the closed-loop 

structure realizes exactly the scheme of the multi-referential approach and ensures that 

the current robot’s position is correctly fed back in the system. 

 

2. The modulation of weighting matrices that appear in the coherence reinforcement 

and serve for the handling of joints limits avoidance is achieved by imposing a cosine 

shaping relation. Nonetheless, to better exploit the whole arm workspace it is advisable to 

assign high priority to the Cartesian controller in a portion of the joint space that is as 

large as possible. To this end we adopted a different weighting policy made of a flat 

region connected with hyperbolic tangent functions whose decay rate is much steeper 

than the original cosine law (see (2.19) and (2.20)), as illustrated in Figure 2-8, showing 

out its benefits in the execution of quasi-straight Cartesian trajectories for point-to-point 

motion as demonstrated by experiments.  
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 (2.19) 

with: 



 
 
 
 
 

CHAPTER 2 – THE CARTESIAN CONTROLLER 
 

43 
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 (2.20) 

 

2.5     Experimental Results 

According to the RobotCub open-source philosophy the whole software developed by 

the project partners was made available to the wide community of iCub users; this 

facilitates the collaboration and promotes the development of new algorithms. As result, a 

collection of libraries and modules targeting different fields (vision processing, motor 

development, machine learning, etc) has been circulating among partners of the 

RobotCub Consortium who can easily reuse code for their research activities without 

having to be concerned with the implementation details. In this respect it has been almost 

immediate and much valuable comparing on the same shared platform the performance of 

our Cartesian controller5 with the VITE-based system6

                                                      
5 The stand-alone application of Minimum-Jerk Cartesian controller used to obtain the presented 

experimental results is named iKinArmCtrl and relies on the iKin library. It is available from the 

repository: 

 whose modules can be 

downloaded from public repositories. Additionally, we included in the assessment a 

further controller as an example of a more conventional strategy making use of the typical 

Damped Least-Squares (DLS) rule (Deo and Walker 1992) coupled with a secondary task 

that comprises the joints angles limits by means of the gradient projection method (Ho-

https://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCub. 
6 A version of the code developed in (Hersch and Billard, Reaching with Multi-Referential 

Dynamical Systems 2008) that accepts target points expressed in the iCub standard reference 

frame can be downloaded from the repository: 

https://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/papers/pattacini2010. 

https://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCub�
https://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/papers/pattacini2010�
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Yul, Byung-Ju and Yungjin 2007). This solution employs the third-party package 

Orocos7

In the first experiment we put to the test the three selected schemes in a point-to-point 

motion task wherein the iCub arm was actuated in 7-DOF mode and whose end-effector 

was controlled both in position and orientation. It came out that paths produced by our 

controller and the DLS-based system are well restricted in narrow tubes of confidence 

intervals and are quite repeatable; conversely the VITE is affected by a much higher 

variability. 

, a tool for robot control that implements the DLS approach (used by some 

partners of the RobotCub Consortium) and whose public availability and compliance with 

real-time constraints justified its adoption as one of the reference controllers. 

 

Figure 2-9. Point-to-point Cartesian trajectories executed by the three controllers: the VITE-
based method produces on average the blue line, the minimum-jerk controller result is in 

green, the DLS system using Orocos in red. Bands containing all the measured paths within a 
confidential interval of 95% are drawn in corresponding colors. Controllers settings are 

T=2.0 s for the minimum-jerk system, α=0.008, β=0.002, KP=3 for the VITE, and µ=10-5

 

 for 
the damping factor of the DLS algorithm. 

                                                      
7 The kinematic component of Orocos project is reachable here: http://www.orocos.org/kdl. 

http://www.orocos.org/kdl�
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Figure 2-9 highlights what reported for a set of 10 trials of a typical reaching task 

where the right hand is moved from the rest posture towards a location in front of the 

iCub waist with the palm turned downward; Table 2-2summarizes the measured in-target 

errors for the three cases: all the controllers behave satisfactory, but the DLS achieves 

lower errors because operates continuously on the current distance from the target dx , 

being virtually capable of canceling it at infinite time. On the contrary, strategies based 

on the interaction with an external solver bind the controller module to close the loop on 

an approximation dx of the real target that is determined by the optimization tolerances as 

in (2.1). 

Regarding the analysis of human-likeness, the new proposed Cartesian controller 

outperforms both the traditional and the VITE-based solution thanks to the regulator 

design – so near to the ideal minimum-jerk model – and also as consequence of the wider 

working region where the task space module can function due to the replacement of the 

shaping policy. It is indeed clear from Figure 2-9 how the trajectory commanded by the 

minimum-jerk controller (green line) approaches much more a quasi-straight path 

whereas the red and the blue lines oscillate before reaching the target. 

 

Controller Position Error Orientation Error 
Mean Radius of 

Trajectory Band 

VITE-based 31.3 1.4 10 mm   0.041 0.05rad  10 10.8mm  

Min-Jerk-based 33.0 1.4 10 mm   0.048 0.008 rad  2.5 1.5mm  

DLS-based 31.3 1.4 10 mm   0.016 0.028 rad  2.0 1.36mm  

Table 2-2. Mean errors along with the confidence levels at 95% computed when the target is 
attained. An average measure of the variability of executed path is also given for the three 

controllers. 

 

This important aspect becomes evident also once the velocity of the end-effector in the 

operational space is drawn as shown in Figure 2-10 : the velocity profiles have been 
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computed in post-processing from the indirect acquisition of the end-effector coordinates 

by reading the joints encoders’ values (i.e.      x t K q t and then have been 

filtered to remove the high-frequency components (with a cutting frequency of 2.5 Hz). 

The superposition with the curve of the ideal minimum-jerk prototype (sketched black 

line), identified by knowing the starting and the ending points of the motion, underlines 

the good level of similarity of our implementation (green line) and, at the same time, the 

discrepancy of the other two methods which show a very sharp onset and a remarkable 

asymmetry of the response. Table 2-3 sums up the jerk measures computed in the 

Cartesian space: a factor of 43.8% is gained with respect to the VITE system and even a 

factor of 69% is achieved against the DLS. 

 

 

Figure 2-10. Magnitude of the end-effector velocity in the operational space: blue for VITE, 
red for DLS and green for minimum-jerk controller. The point-to-point task begins at t=1 s. 

 

The second evaluation was concerned with the dynamical characteristics of the DLS 

and minimum-jerk controllers. In particular, we verified their capabilities to track in 

position a quite fast reference trajectory given in the operational space while keeping the 

orientation of the end-effector constant; unfortunately, we did not manage to test the 
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VITE algorithm as we experienced that the implemented CCD solver was not fast enough 

to run in real-time. 

 

Controller 
22 22 exactmodelcart

2 2
1 1

d vd v
d d

dt dt
 

              
   

VITE-based 71.86  

Min-Jerk-based 40.33  

DLS-based 131.06  

Table 2-3. Relative measures of the jerk in the operational space given as the ratio between 
the integral of the squared second derivative of the Cartesian velocity for the three 

controllers and the same quantity computed for the exact minimum-jerk model. 

 

 

Figure 2-11. Controllers’ responses while tracking a lemniscates shape: minimum-jerk 
controller in green, DLS in red. The resulting trajectories of 10 trials are shown for the two 

time periods Tp

 

. 

The target passed to the controllers evolved along a lemniscate-shaped trajectory 

(Figure 2-11), completing one cycle with two different time periods: PT in {30, 15} 
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seconds. In the first experiment ( 30 sPT  ), the minimum-jerk Controller ran with the 

parameter T  set to 2.0 s and accomplished the task considerably well; the DLS method 

deviated somehow from the reference and did not perform with the same accuracy. When 

the target moved faster ( 15 sPT  ), the minimum-jerk Controller still behaved better, 

in the sense that the gap between the executed curve and the reference was lower 

compared to the DLS case, as we reduced the parameter T  to 1.5 s in order to get a 

quicker response; on the other side, the DLS reactivity remained unchanged lacking of an 

analogous built-in tuning. 

 

 

Figure 2-12. A plot of solver computation time during tracking of the lemniscate-shaped 
trajectory: the end of first and second cycle (respectively EOC1 and EOC2) is visible in the 

figure. 

 

Notably, it is crucial to mention for this kind of test that IpOpt is able to comply with 

the stringent real-time constraints and eventually allows closing the loop of Figure 2-2. 

During tracking the average computation time for the case 15 sPT   is below 20 ms 

(on a multi-core Intel (R) Xeon with 2.27 GHz of clock frequency); this allows 

performing tracking with a constant solver rate of 33 Hz and a controller rate of 100 Hz. 

Interestingly, only a small latency is experienced at the beginning of the first cycle when 

the starting position of the end-effector is far from the target: this is expected since the 



 
 
 
 
 

CHAPTER 2 – THE CARTESIAN CONTROLLER 
 

49 
 

optimization algorithm starts from an initial “guess” that is far from the solution and takes 

a longer convergence time.  However, the initial overhead is acceptable (< 50 ms), and 

does not cause a significant degradation of the real-time performance. 
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3.1     Introduction 

The Gaze Controller is a fundamental tool that lies at the basis of any attentive systems 

designed specifically for the field of humanoid robotics (Ruesch, et al. 2008), (Natale, et 

al. 2005). Its goal is to allow the robot to focus its gaze on salient objects that might be of 

some relevance for the task to be executed or just to prompt the robot curiosity towards 

the exploration of surrounding environment in order to foster learning through interaction 

and experience. In this context it comes out quite significantly that the coordinated 

motion of the eyes and the head must be reasonably fluent and fast to deal with rapidly 

variable cues, such as motion, colors, moving shapes and/or templates, in order to point at 

the objects whose features are considered central and eventually increase the knowledge 

of the world collected by the robot. 

Lately in literature there has appeared an increasing number of significant works 

addressing the problem of controlling an anthropomorphic head: notably the proposed 

implementations are inspired from studies conducted on humans since the final aim is to 

mimic the coordinated movements of the eye-head system. Therefore (Maini, et al. 2008) 

designed the controller block diagram directly on the basis of the independent gaze 

control model originally introduced by (Goossens and Van Opstal 1997) as the outcome 

of empirical evidences gathered on humans to then confirm the initial hypotheses and 

validate their experimental achievements by carrying out a comparison with physiological 

data. By contrast, (Lopes, et al. 2009) applied an approach that resorted more to well-

established theory such as optimal control and feedback controller design to realize a 

system exhibiting the peculiar features of a human gaze. 

CHAPTER 3  
THE GAZE CONTROLLER 
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An interesting method that attempted to walk off from traditional groundings makes 

use of nonlinear dynamics and chaos theory (Duran, Kuniyoshi and Sandini 2008) with a 

formalism introduced in the middle of 80’s by (Kaneko and Tsuda 2001) that employs the 

so called Coupled Map Lattices (CML), a set of nodes globally coupled in space and 

whose temporal evolution is guided by the well known logistic map which is responsible 

for the development of chaotic behaviors. By suitably linking the visual stimuli together 

with the input of this chaotic field and analogously the output of the lattice straight with 

the motor torque commands it has been demonstrated the emergence of a surprising self-

organized capability of the system in controlling the axes of a simulated eye to perform 

smooth pursuit in tracking scenarios. 

 

 

Figure 3-1. iCub looks at a ball in the 3D space, having his fixation point (FP) placed right at 
the center of the target object.  

 

In the context of this thesis, having a somewhat robust framework for coping with 

control of the robot’s limbs in the operational space draws naturally the interest to the 

possibility of applying the same concepts also to the control of robot’s gaze. In fact, as 

better explained in the remainder of the chapter, one can think of the fixation point, i.e. 

the point in the Cartesian space where the robot is currently looking at, as a virtual end-
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effector that can freely moves according to the values assigned to the head joints (3 for 

the neck and 3 for the eyes). Hence, this time, the inverse kinematic problem for the gaze 

consists in finding those values of the joints that allows the robot to fixate a given 3D 

location in the space (Figure 3-1), whereas the orientation of the head is less meaningful 

to be given, or even it can be left unspecified to the underneath controller in order to meet 

the requirement of providing a bio-plausible gaze motion for which basically the eyes 

move with quick saccades to the target and then counter-rotate to compensate for the 

slower neck movements. 

Consequently, if for the Cartesian controller outlined in Chapter 2 the fundamental 

contribution was mainly due to the system’s robustness and the quality of experimental 

results compared to other implementations, since the coupled solver-controller structure is 

not new in the area of reaching researches, here, differently, for the gaze control problem 

the advancement is represented appropriately by the architecture itself, that actually 

introduces an element of novelty, being a solution not already pursued in this domain. 

Moreover, another important aspect that prominently motivated this work was the need 

to develop a gaze manager that behaved smoother with respect to the implementation on 

the iCub that was currently available (Lopes, et al. 2009), and further to also rationalize 

the commands interface exposed at the user level which turned to be rather complex and  

cumbersome. The last section of the chapter reports indeed the experiments executed on 

the platform in pretty the same comparative manner as those regarded the Cartesian 

controller, demonstrating how performance gains have been achieved. 

 

3.2     Gaze Shifts in Humans 

It is worth briefly recapping at this point some relevant behaviors that can be easily 

observed in humans while performing gazing tasks. 

To foveate a visual target in the periphery, human gaze shifts are carried out with 

combined eye and head movements so as it is widely reported in literature: (Guitton and 

Volle 1987), (Phillips, et al. 1995), (Tweed, Glenn and Vilis 1995), (Freedman and 
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Sparks 2000), and finally (Goossens and Van Opstal 1997). If described in terms of 

functional movements gaze shifts typically consist of at least one rapid eye movement 

(saccade) followed by a slower head movement in the same direction. The gaze is then 

stabilized after the saccade by a vestibular driven slow phase that is present until the head 

comes to rest. 

 

 

Figure 3-2. Human saccadic responses. Typical examples of a visually evoked (left-hand 
traces) and an auditory-evoked (right-hand traces) gaze shift towards a target. Both eyes and 

head were initially aligned with the straight-ahead fixation spot. The position (1st and 3rd 
columns) and velocity (2nd and 4th

 

 columns) traces are aligned with stimulus onset. Note the 
different scale for head velocities. 

 In Figure 3-2 it is shown the typical temporal evolution of eye and head displacements 

along with the resulting gaze as described in (Goossens and Van Opstal 1997): the two 

phases of the coordinated movement are plainly highlighted, as the achievement of the 

visual target is firstly obtained with the saccadic movement of the eye and then the gaze 

stable fixation is maintained for the counter-rotating movement of the eye. 
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3.3     The Cartesian Formulation of the Gaze Problem 

To introduce the reader to the gaze inverse problem, here are resumed some useful 

quantities normally used to describe the gaze posture for the iCub platform whose 

formulation remains anyhow at a general  level and thus can be easily applied to different 

robots. 

Given the kinematic structure of the torso and head parts (see Figure 3-3) it is possible 

to extract the parametric description of thez -axes outgoing from the cameras planes (the

8z -axes depicted in blue in Figure 3-3), which are generally not co-planar. 

 

 

Figure 3-3. Kinematic description of the iCub head. Rotation axes attached to the joints are 
reported in blue. 

 

Therefore, called lo the center of the left camera plane and lz the axis perpendicular to 

the left camera plane, and analogously ro and rz for the right camera, the lines  ll t  and 

 rr t outgoing from the camera planes are in their respective parameters lt and rt the 

following: 
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: ;

: .

l l l

r t r

l o t z

r o t z

 

 
 (3.1) 

 

Being lp  the point of l  given for the value *
lt that minimizes the distance from the line

r and, similarly, rp the point over r given for the specific value *
rt minimizing the 

distance froml , then the fixation point FP can be finally found as the mean point 

between lp  and rp . 

Thus, from the two separate minimizations it simply derives that: 
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 (3.2) 

and in conclusion: 

 
* *

2 2
l r l l l r r rp p o t z o t z

FP
   

   (3.3) 

 

 

Figure 3-4. Example of a possible gazing configuration of the eyes as projected in the 
transverse plane: the eye-specific pan L and R are linked to form the couple given by the 

version sV and vergence gV  angles. The version angle is computed starting from the middle 
point of the baseline connecting the two eyes. 
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Obviously, all the quantities , ,, ,l r l ro z and *
,l rt depend on the current robot joint 

configuration torso neck eyes, ,
T

q q q   . However, concerning the eyes kinematic, this 

description has to be provided not with regard to the usual Denavit-Hartenberg eyes joints 

variables 4
eyesq    – representing the tilt and the pan for the left (

   eyes eyes1 , 2
T

q q   ) and right cameras (    eyes eyes3 , 4
T

q q   ) – but rather in the 

usual human-like gaze reference frame, since the eyes are actuated in a coupled manner 

so that their cumulative 4 degrees of freedom reduce to the triplet composed of the 

common tilt , the version sV and the vergence gV  angles, as in Figure 3-4. 

The conversion formulas are given by: 

 

   
   

   

eyes eyes

eyes eyes

eyes eyes

1 3

2 4
,

2

2 4

s

g

q q

q q
V

V q q

      

 (3.4) 

 

where the expression for version sV – as computed by DSPs at firmware level – holds 

only for small angles for which the tangent function can be conveniently replaced by its 

linear approximation. 

With these premises the gaze inversion problem can be stated as the procedure that 

allows finding the suitable vector neck, , ,
T

s gq q V V    that solves the following 

optimization: 

 

 
6

2* argmin d FP
q

q FP K q


 


 (3.5) 

 

being 3
dFP   a desired fixation point to be attained in the 3D Cartesian space and 

FPK the forward gaze map that returns the current robot fixation point known the head 

configuration 3
neckq   comprising the tilt, the pan and the yaw of the neck, and in 

addition the eyes configuration , ,
T

s gV V   . It is worth recalling here that the 
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dimensionality of the input space of (3.5) is 6, whereas the dimensionality of the output 

space (i.e. the task space) is 3; hence the problem turns out to be intrinsically redundant. 

Once the (3.5) is solved, a controller is in charge of commanding the motors in velocity 

mode to steer the system from its initial position to the final joints position ensuring 

smooth movements that aim at reducing the jerk, resorting basically to the same method 

discussed in Chapter 2. 

For a further simplification, the task (3.5) can be profitably divided in two sub-

problems, mirroring somehow the underlying structure that encompasses two sub-systems 

moving independently, i.e. the head and the eyes. This approach leads to the design 

choice of having two distinct solvers as explained hereafter. 

 

3.4     The Neck Solver 

To redirect the neck in order to expose the forehead as much as possible to the target 

fixation point it is useful to consider the line that outgoes from the virtual point co placed 

at middle of the baseline connecting the two eyes whose Cartesian position is given by 

 

,
2

l r
c

o o
o


  (3.6) 

 

and whose direction cz is parallel to the 8z -axes in Figure 3-3 when the eyes tilt, version, 

and vergence angles are all zero, and remains fixed in the frame attached to the head. 

Consequently, in the context of head-based control it suffices to solve the following 

task: 

 

 
3

neck

*
neck arg min .c c d

q c d

z o FP
q

o FP

       



 (3.7) 

 

It is quite straightforward to recognize that the argument of (3.7) corresponds exactly to 
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the cosine of the angle   between the unitary axis cz and the vector c dd o FP   and 

assumes the minimum 1 when cz and d are anti-parallel. 

The input space dimensionality of (3.5) boils down to 3 as specified in (3.7), 

nonetheless the dimensionality of the modified task space changes to 28

 

, since the neck 

tilt and pan are sufficient to exhaustively tackle the (3.7), so that the new problem is still 

affected by a certain amount of redundancy. To better cope with the exceeding degree of 

freedom represented by the neck yaw, the (3.7) can be transformed in the following 

nonlinear optimization and treated relying on the IpOpt package: 

3
neck

2*
neck neck neck

neck neck neck

arg min

cos 1
s.t. ,

d

L U

q
q q q

q q q

 


 

     



 (3.8) 

 

with  a suitable small number in the range 5 410 ,10  
   as in the problem (2.1). 

The (3.8) codes the objective of (3.7) as a nonlinear constraint and introduces a new 

function to minimize that takes into account the distance of the solved configuration from 

a user-specified set of “resting” neck joints values neckdq . As already discussed in 

Chapter 2, a constraint owns clearly higher priority with respect to the objective function 

and thus plays the role of a primary task: this ensures that the objective function is 

minimized only after all the given constraints are satisfied (if possible).  

Interestingly, the resting configuration can be determined at run-time before starting the 

IpOpt computation according to the current output of the inertial sensor mounted aboard 

the iCub as in Figure 3-5. Through the inertial sensor readouts, indeed, the direction of 

the gravity can be expressed in the head reference frame and, in case it varies as result for 

                                                      
8 The problem (3.7) concerns indeed the goal of aligning two vectors in the 3D space, hence the 

task space of (3.7) is bi-dimensional. 
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example of the displacements induced by the torso movements, the desired resting 

configuration can be effectively modified and made dependent on the sensor’s output in 

order to maintain as much as possible the head posture stable with respect to the gravity. 

This head stabilization mechanism reveals to be a fairly helpful feature in many 

practical situations when the robot is required to execute grasping and crawling tasks, or 

more generally tasks that entail an exploration of the surroundings, since the whole body 

motion is prone to interfere quite significantly with the appearance of the objects acquired 

by the cameras that in turn are processed by the vision algorithms. 

The final neck joints configuration as computed by solving the problem (3.8) represents 

the target attractor for the second-stage joints controller described later in section 3.6. 

 

 

 

Figure 3-5. Location of the inertial sensor within the iCub head. 

 

 

3.5     The Eyes Solver 

It is possible to specialize the equation (3.5) for the eyes solver as follows: 
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 
2* '

eyes eyesargmin ,
eyes

d FPq
q FP K q   (3.9) 

 

where '
FPK is the forward gaze map computed over the redefined eyes part joints triplet 

eyes , ,
T

s gq V V    as independent variables. 

Because the output space is of dimensionality 3 so as the dimensionality of the input 

space, the sub-task (3.9) is not redundant. It thus stems that it is convenient to solve the 

(3.9) by simply resorting to the pseudo-inverse algorithm. In particular, the final joints 

configuration is determined as the vector where the following iterative time-discrete 

equation converges: 

 

   
1

# '
eyes eyes eyes .

t t td FPq q T G J FP K q


       (3.10) 

 

with T the integration sample time and G a suitable gain; #J is the pseudo-inverse of 

the Jacobian of the gaze forward map  '
eyes eyesFPJ K q q   . 

The convergence rate of (3.10) is very quick thanks to the low dimensionality of the 

search space and provides the reference trajectory as it evolves over time to be tracked by 

the second-stage controller. 

 

Employing the Vestibular-Ocular Reflex (VOR) 

Notably, retaining the framework of equation (3.10), it is already possible to bring in a 

term cq  to account for the counter-rotation required to compensate the head movement; 

the complete formulation is thus the following: 

 

   
1

# '
eyes eyes eyes .

t t td FP cq q T G J FP K q q


         (3.11) 

 

The component cq  is estimated considering how through the gyroscope readouts 

, ,
T

x y z     of the inertial sensors – which moves jointly with the head – a measure of 
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the velocity of the actual fixation point cv can be inherited. In this respect it is possible to 

demonstrate that it holds: 

 
     ,c x I d I y I d I z I d Iv x FP c y FP c z FP c            (3.12) 

 

being  , ,I I Ix y z the frame attached to the inertial sensors in the location Ic with respect 

to the root frame. The term cq is finally given by #
c cq J v and it represents a sort of 

Cartesian implementation of the so called vestibular-ocular reflex (VOR) present in the 

human eye-head coordination as for example described in (Rosander and von Hofsten 

2000).  

 

3.6     The Neck-Eyes Controller 

As anticipated previously in this chapter, the second-stage controller is in charge of 

delivering the proper velocity profiles to command the robot’s motor, given the desired 

attractor point (found by the optimizer) to be achieved in the neck configuration space as 

well as the reference trajectory (computed by the pseudo-inverse) to be tracked in the 

eyes joints space. Concerning the latter, the reason why the reference joint velocity 

yielded by the pseudo-inverse is integrated and passed to the controller instead of directly 

fed back into the robot system is that the pseudo-inverse produces exponential trajectories 

that are inherently jerky and evolve according to the values of parameter G in (3.10) and 

(3.11) that does not have a direct link to the movement time. 

To reduce the jerkiness and obtain a final easy-to-use tuning of the fundamental 

parameters the controller’s baseline analyzed in Chapter 2 is here adopted again and its 

structure is replicated twice, one to deal with the control of the neck, one to control the 

eyes as in the following: 
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 

 

neckneck
2 3 2

neck neck neck neck

eyeseyes

2 3 2
eyes eyes eyes eyes

)
s s

)
s s

d

d

a Tq
a

q q c T b T

a Tq
b

q q c T b T




  




  





(3.13) 

 

The controllers’ equations are provided in terms of Laplace transfer functions that 

return as output the velocity profiles taking as input the actual error in the configuration 

spaces; the values of coefficients , ,a b andc are identical to the values computed for the 

Cartesian controller in Chapter 2, whereas two different parameters, neckT and eyesT , 

serve to specify the point-to-point movements time: usually eyes neckT T . 

 

 

Figure 3-6. Profiles obtained with the gaze controlled to perform a quick saccade starting 
approximately at t=40.08 s. Top graph (FP) – The target Cartesian position is depicted in red 
for the three components; the current fixation point coordinates x (black), y (blue), z (green) 
are also shown, being expressed in the root reference frame. Middle graph (neck) – The neck 

joints values are traced to reach the desired configuration as solved by the optimizer: the pan 
is in black, the tilt in blue, the yaw in green. Bottom graph (eyes) – The movements of the eyes 

are shown: pan in green, tilt in blue and vergence in black. 
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Differently from the implementation studied in Chapter 2, it does not exist here any 

explicit resort to a controller devoted to shape the trajectory of the fixation point in the 

Cartesian space, so that the Multi-Referential approach is not required. 

Finally, to handle the counter-rotation of the eyes improving the coordination with the 

head motion, it is necessary to subtract the feed-forward term cq (due to the VOR) to the 

output  eyesq t of the controller (3.13)-b. 

Figure 3-6 shows a simulation of how the solvers and controllers succeed in handling a 

request for a quick saccade: in the first phase (approximately for40.08 s 40.42 st 

) the eyes move rapidly and the robot’s fixation point almost attains the target; at the 

same time the neck starts the motion at a lower velocity compared to the eyes’ velocity. 

In the last phase ( 40.42 st  ) the neck concludes its motion while the eyes continue to 

counter-rotate to keep the fixation point on the target. 

 

The Oculo-Collic Reflex (OCR) as Recovery for the VOR 

At this point it has to be mentioned that it is fairly straightforward to device a sort of 

recovery strategy for the eyes counter-rotation in case of a failure or even the absence of 

the inertial sensor. In fact, the velocity commands generated by the neck controller can be 

considered as a further feed-forward signals available at the eyes solver’s stage to be 

employed as a suitable kinematic equivalent of the inertial sensor’s readouts. In other 

words, knowing the neck velocity neck tilt pan yaw, ,
T

q       as the output of the neck 

controller and the orientation of the corresponding rotation axes tilt pan,z z and yawz along 

with the centers of the relative reference frames tilt pan,o o and yawo from the kinematic 

description of the robot, the formula (3.12) for cv can be replaced by the following: 

 

   
 

tilt tilt tilt pan pan pan

yaw yaw yaw ,

c d d

d

v z FP o z FP o

z FP o

 



      

 
 (3.14) 

 

which analogously embodies the Cartesian implementation of the so called oculo-collic 
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reflex (OCR) present in the human eye-head coordinated behavior. 

 

3.7     Additional Coordinate Systems 

It has been shown that the designed Gaze Controller is inherently Cartesian since it 

drives the system with the aim to attain a specified fixation point in the 3D space. 

Nevertheless in many cases it reveals to be worthwhile having the possibility to express 

targets in different coordinate systems, such as the angular system and the image pixel 

coordinates. To achieve that a simple coordinate’s transformation is required, that is 

capable of extracting from the input target the three Cartesian components to be passed to 

the underlying controller. Therefore, while retaining the Cartesian structure of the solver-

controller couple, further additional coordinate systems detailed hereafter are also 

implemented as a higher level layer. 

 

Angular Coordinate System 

The target has to be given as a combination of angular quantities and specifically: the 

azimuth , the elevation  and the vergence angle gV . The angular reference frame is 

head-centered, i.e. it is attached at the middle point between the two cameras ( co  as 

defined in section 3.4), owning the same orientations of the cameras axes and it can be 

either absolute, when it refers to a fixed position of the torso and head, or relative to the 

current torso and head configuration. 

There exist simple transformations from the angular domain to the Cartesian space; for 

example, considering the absolute head-centered case, the final 3D fixation point dFP  

can be retrieved as follows: 

 

 gaze 0, , 0, ,
Th r

d r h gFP T R R T K V 
     (3.15) 

 

where gazeK is the gaze forward map computed in the fixed torso-head position with only 
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the input vergence applied, r
hT is the homogeneous matrix that accounts for the position 

of the output of the gazeK map in the head fixed reference frame,   1h r
r hT T


 , and 

finallyR andR are the matrices that account for the rotation of the given azimuth and 

elevation angles, respectively,  in the head fixed frame. 

 

Image Pixel Coordinate System: the Monocular Case 

By knowing the camera intrinsic parameters and relying on the pinhole model of an 

ideal camera, it is possible to back-project the 2D coordinates of an image pixel provided 

within one image plane into the corresponding pointP in the 3D space with respect to a 

given reference frame (Ma, et al. 2004). 

In fact the 3D point coordinates expressed in the homogeneous form are given by the 

following operation: 

 
1

1 0 0 0

0 0 1 0 0

0 0 1 0 0 1 0 1
1

x x
r

y y e

r

X
fs fs o u

Y
fs o T v

Z





                                                                                   


 (3.16) 

 

where  ,u v is the pixel coordinates of the point P ,   is the depth ofP in the eye’s 

reference frame, r
eT is the homogeneous transformation from the root frame to the eye’s 

frame,  ,x yo o are the coordinates of the principal point in pixels,  ,x yfs fs is the size 

of unit length in horizontal and vertical pixels and finally fs is the skew of the pixel often 

close to zero. The overall result of the transformation can be represented by a simple 

linear application 1 . 

Generally all the parameters are known except for , which in turn requires an a-priori 

knowledge of the distance of the physical point from the camera image plane. 

Consequently, in a framework where the robot is equipped with two cameras and the 

control relies on a monocular approach, such as the one described above, commands in 
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this modality will move the gaze so that when in fixation the pointP will end up being at 

the center of the drive camera but still not aligned with the center of the second camera. 

 

Image Pixel Coordinate System: the Stereo Case 

Usually in a stereo strategy vision algorithms are able to achieve an inference of the 

distance of an acquired object by comparing the disparity produced on the two images 

planes by the object’s features. Provided that the two identified salient points  ,l lu v and 

 ,r ru v within the left and right image plane, respectively, correspond to the same 

physical pointP , it is then possible to overcome the problem of the monocular method 

by putting in place a continuous closed loop process based on  visual cues that converge 

to the configuration where the pixel coordinates of P will coincide with the center of the 

image plane both for the left and the right camera. 

This convergent mechanism is indeed implemented at each iteration i  by the following 

three sub-steps executed in a row, once for example the left camera is selected to be the 

drive one: 

 

 

  
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 





             

    

 (3.17) 

 

It is evident as in the first step 1i  of (3.17) the prediction of the 3D point iFP  at the 

iteration i  is computed based on the monocular formula and the current estimation of the 

unknown distance i  of iFP  from the drive camera (left, in this case). The point iFP is 
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then used to command a gaze motion through the Cartesian controller (step 2i ): the 

function lookAtFixationPoint() gives indeed the target iFP to both the eyes and neck 

solver-controller couples working purely in the Cartesian space in order to generate a new 

or correct an ongoing gaze motion. Finally the updating third phase 3i  comes into play 

employing a discrete proportional-integral (PI) controller – with sample time T  and 

gains PK and IK – to adjust the estimation of   for the next iteration 1i  according to 

the current displacement error i i
r r xe u o   measured with respect to the center of the 

image in the non-drive camera plane (right, in this case). 

Remarkably, proceeding from iteration i  to iteration 1i  , the visual signals used in 

the closed loop, i.e.   1
, , ,

i i
l l r ru v u v

 
, vary as result of the independent motion of the 

object responsible for originating the cues themselves, as well as the ego-motion of the 

robot caused by the command in (3.17)- 2i , and thus they have to be provided by reliable 

vision algorithms not reported in the description of the process. 

 

 

Figure 3-7. The output of the vision algorithm: A) the filter is searching for the best 
occurrence of a red circled object in the scene without actually having found it yet; B) the 

filter finds the object (highlighted by a green circle) and starts to track it. 

 

As far as the vision cues are consistently guaranteed, the process (3.17) is conveniently 

repeated until the error in pixels in both the camera image planes goes under a given 

threshold relying on the robust convergence ensured by the PI controller. In this respect, 

indeed, a positive error 0i
re   (i.e. i

r xu o ) corresponds to the situation where the 
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object of interest is located farther to the cameras than the current fixation point iFP , 

correctly eliciting an increment on the estimation of 1i  according to (3.17)- 3i ; 

conversely, a negative error 0i
re   yields a decrement of 1i  which turns out to be in 

the correct direction since for i
r xu o the object of interest lies closer to the cameras 

with respect to the current fixation point. On the other hand, when the right camera is 

chosen to be the drive one, in order to keep the values of PK and IK positive and more 

importantly to still enforce the correspondence between the distance of the object of 

interest from the cameras and the sign of the error, the displacement error on the left 

image plane can be appropriately defined as i i
xl le o u  . 

To sum up, the main difference of the stereo approach compared to the monocular 

method is that whereas the latter can operate just with one single command (executing 

actually a saccade), the former requires a continuous stream of information to run in 

closed loop: consequently, in stereo mode a quick initial saccade is followed by a smooth 

pursuit behavior managed by the PI controller, ensuring the convergence and guiding the 

gaze towards the target. 

 

3.8     Experimental Results 

In this section experimental results of the presented Gaze Controller9 (hereinafter 

referred as GC1) conducted on the iCub are reported with particular reference to a 

comparison with the Gaze Controller10

                                                      
9 The software module implementing the Gaze Controller designed during this thesis work is 

available on line from within the iCub main repository: 

 developed by (Lopes, et al. 2009) (hereinafter 

referred as GC2) which exploits a full-state feedback structure with a linear gain matrix in 

order to realize a human-like motion with neck-eye coordination. 

https://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCub/main/src/modules/iKinGazeCtrl. 
10 The software code from (Lopes, et al. 2009) is available from within the iCub contribution 

repository: 

https://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCub/contrib/src/controlGaze. 

https://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCub/main/src/modules/iKinGazeCtrl�
https://robotcub.svn.sourceforge.net/svnroot/robotcub/trunk/iCub/contrib/src/controlGaze�
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Case Study I: Tracking a Moving 3D Target 

The first case study gives an account of how well GC1 performs tracking of a moving 

Cartesian target on the real robot. 

Besides GC1, the software setup comprises also a vision module (Taiana, et al. 2010) 

capable of detecting objects of specific color and shape features (e.g. red ball as in Figure 

3-7) relying on a particle filter that in turn accurately and quickly predicts the center 

position within the image plane and estimates the 3D location of the object from 

geometric considerations (knowing the radius of the ball and how it is projected on the 

image plane allows to retrieve the distance of the ball from the camera). 

 

 

Figure 3-8. Profiles generated by GC1 while tracking the red ball in the 3D space. Top graph 
(FP) – Plot of the 3D Cartesian positions: target (red), x (black), y (blue), z (green) with 

respect the waist-based reference frame. Middle graph (neck) – Neck joints trajectories: tilt 
in blue, pan in black, yaw in green. Bottom graph (eyes) – Eyes joints trajectories: tilt in blue, 

pan in green, vergence in black. 

 

The predicted 3D output Cartesian position of the particle filter while the object of 

interest is being moved by an operator is directly fed to GC1, producing the results 
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reported in Figure 3-8. 

By analyzing the logged data it derives that GC1 is capable of perfectly tracking the 

Cartesian point as determined by the visual filter with an average error of less than 1cm

(it has to be consider that the reference trajectory is affected by noise, especially on the x

component which mainly accounts for the distance from the eyes) and with a delay of 

approximately200ms . 

Remarkably, this case study does not apply to GC2 due to the fact that GC2 does not 

handle Cartesian inputs. 

 

Figure 3-9. Neck pan (top) and eyes pan (bottom) for the saccadic test. Trajectories yielded 
by GC1 are shown in green, whilst profiles generated by GC2 are in blue. 

 

Case Study II: Comparison GC1 vs. GC2 on Saccadic Movements 

The first comparative analysis between GC1 and GC2 regards the behavior of the two 

controllers dealing with simple saccadic movements commanded in angular reference 

frame, where an azimuth of 40 degrees is requested to the robot starting from the 

conventional resting position (i.e. all head joints zeroed). The controllers’ parameters are 

tuned in order to achieve their best working conditions.  
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Clearly from the plot in Figure 3-9 GC1 performs better than GC2 both in terms of 

velocity to reach for the target and in terms of smoothness of the trajectory, since the 

profiles generated by GC1 approximate minimum-jerk trajectories whereas the curves 

produced by GC2 resemble an exponential behavior. 

Interestingly, the eyes movement yielded by GC2 (the peak is reached after 140 ms) is 

slightly faster than the corresponding eyes movement of GC1 (the peak is reached after 

180 ms): this can be explained by the fact that GC2 commands the saccade in position at 

high level software control, thus not requiring a continuous reading of the feedback, 

whereas GC1 is a pure velocity controller that needs the position feedback to attain the 

target. On the other hand, the difference in timing results does not turn to be significant in 

terms of human-likeness given that the rapid human saccades last at maximum 200 ms. 

 

 

Figure 3-10. From top-left to bottom-right: an excerpt of a complete images sequence logged 
during the experiment of case study III. iCub gazes at the target ball held in its left hand 

while the left arm is moving following a predefined trajectory. 

 

Case Study III: Comparison GC1 vs. GC2 on Tracking a Moving Object in the 

Image Planes 

The experimental setup is here marginally modified with respect to the previous case 

where an operator moves randomly the target in front of the robot, since now it is 

required to have a somewhat repeatable input target profiles in order to perform 
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consistent comparisons between the controllers. 

 

 

Figure 3-11. The trace of the red ball centroid as acquired within the drive image (with 
resolution 320x240) throughout the motion: in green is reported the trace of GC1, in blue the 
trace of GC2; finally in magenta are shown the trailing points of GC2 trace approaching the 

center at the end of trajectory. 

 

The adopted solution is to have iCub holding the red ball in its hand (Figure 3-10) and 

then to rely on the arm Cartesian controller capable of following a suitable trajectory in 

the operational space, to finally let the gaze controllers track the projection of the ball in 

the cameras. The 3D trajectory appositely identified to be tracked by the left arm 

controller (with a point-to-point movement time of 1.25 s) is the following: 
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where  , ,r r rP x y z is the point moving over time t on the specified path expressed 

with respect the standard root reference frame of the robot, with length units given in 

meters, and T=3.33 s the trajectory period. The orientation of the hand is kept constant by 

the arm controller in such a way that the target ball stays visible during the entire 

trajectory. Moreover, in this phase the arm controller is allowed to command only the arm 

and not the torso to not hinder the gaze movements. 

 

Figure 3-12. Left (left) and right (right) traces for the stereo tracking in the case study III: 
GC1 results are shown in green, whereas GC2 results are reported in blue. 

 

The plot of Figure 3-11 represents the image plane of the drive camera with a 

resolution of 320x240 pixels in the case of tracking with monocular approach. The graph 

shows the centroid of the red ball given in pixels as it is acquired by the particle filter in 

the case of GC1 (green) and GC2 (blue): obviously the less scattered is the plot around 

the center of the image, the more effective is the tracking. It results that the average 

values with the corresponding confidence intervals at 95% for the distribution produced 

by GC1 are (157.7 ± 25, 117 ± 23.5) pixels, whereas GC2 distribution verifies (159.7 ± 

54.1, 107.7 ± 39.24) pixels; that is, the GC2 results are almost twice spread compared to 

the GC1 case. 
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Particularly, unlike GC1, the GC2 performance are not sufficient to keep the centroid 

of the object in fovea for a trajectory period T=3.33 s, since, as it appears from Figure 

3-11, the resulting blue profile in the image plane encompasses the center without 

actually achieving it, except at the end of the experiment when the target ball comes to 

the rest state being easily approached by the GC2 trace (as shown by the trailing points 

colored in magenta). 

 

 

Figure 3-13. The torso yaw profile as logged during experiment for the case study IV: it is 
seen as an external disturbance by GC1. 

 

Analogously, the experiment can be run for the stereo case, where two instances of the 

particle filters operate on the two different images; their outputs are thus sent to the 

controllers obtaining the results depicted in Figure 3-12, which tend to be quite similar to 

the behaviors recorded for the monocular test, highlighting once more the higher 

performance achieved by GC1against GC2. 

 

Case Study IV: Robustness against External Perturbations to the Gaze Motion 

In order to verify whether GC1 is robust against perturbations induced on the gaze 

motion, a simple variation to the experiment described in case study III has been put in 

place that foresees the use of the torso yaw joint by the arm controller. The trajectory to 
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be tracked by the arm end-effector is the same as (3.18), but this time the torso movement 

is enabled and produces unwanted rotations on the eye-head structure that need to be 

compensated. 

 

Figure 3-14. The trace of GC1 (green) in monocular visual tracking task when the torso yaw 
is also actuated. Trace in blue highlights how GC2 is not able to cope with external 

perturbation in the gaze control problem. 

 

Figure 3-13 depicts the perturbation signal caused by the torso movement on the gaze 

as it evolves during the arm tracking task (for a span of the torso yaw of approximately 20 

degrees), whereas Figure 3-14 demonstrates how GC1 is capable of coping with the 

external disturbance in the monocular visual tracking task, being still able of achieving 

small errors within the image plane of the camera. 

Unfortunately it was not possible to put GC2 to the same test as it eventually comes out 

that the source of stimulated disturbance brings GC2 into a region where it somehow 

ceases to work. 
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4.1     Introduction 

This chapter illustrates the design carried out to provide proper YARP-based tools such 

as C++ libraries and interfaces to handle the direct and inverse kinematic problems as 

well as provide a well structured environment to address the task space control of the 

robot limbs and gaze. 

Throughout the period of the research object of this thesis a great effort and emphasis 

have been put in the software development with the goal of achieving a mature product 

characterized by a high-level of reliability and performance.  

 

 

4.2     The iKin Library: Tools for Serial-Link Kinematic Chains 

A library called iKin has been developed in order to provide a general framework for 

the solution of both forward and inverse kinematic tasks of generic serial-link chains. 

iKin is a C++ YARP-based package available on the public repository, conceived to be 

as independent as possible from the mathematical routines YARP relies on, enforcing the 

concept of modularity and providing the interface with external software in the easiest 

way. 

A great effort has been put into organizing iKin as a wide, reliable and flexible set of 

kinematic primitives fully documented11

                                                      
11 The documentation of iKin classes is available on line here: 

 to be used to deal with any serial-link chains 

http://eris.liralab.it/iCub/main/dox/html/group__iKin.html 
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(provided the description in standard Denavit-Hartenberg convention) with the target of 

becoming a major reference for the software community. In this respect, a number of 

European laboratories hosting an iCub have been already reported for being using iKin 

for research purposes; just to cite a few: the Synthetic Perceptive, Emotive and Cognitive 

Systems (SPECS) in Barcelona12, the Computer Vision Lab (VisLab) at Istituto Superior 

Técnico in Lisbon13, the U846 laboratory at Stem-cell and Brain Research Institute 

(INSERM) in Lyon14, the Learning Algorithms and Systems Laboratory (LASA) at École 

Polytechnique Fédérale in Lausanne15, the Laboratory of Autonomous Robotics and 

Artificial Life (LARAL) at the Institute of Cognitive Sciences and Technologies of the 

National Research Council in Rome16, the Centre for Robotics and Neural Systems 

(CRNS) at the University of Plymouth17, the Adaptive Systems Research Group at the 

University of Hertfordshire18

Moreover, the property of being a general purpose tool for forward and inverse 

kinematics allows iKin to be employed by researchers who study robotics with platforms 

different from iCub, such as the BERT2 at Bristol Robotics Laboratory (BRL)

. 

19; in the 

near future the goal is to use iKin also with Jido and HRP2 robots hosted by the 

Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS) in Toulouse20

 

. 

iKin consists of the following four separated modules: 

                                                      
12 http://specs.upf.edu  
13 http://www.isr.ist.utl.pt/vislab  
14 http://www.sbri.fr (partner of the CHRIS project) 
15 http://lasa.epfl.ch  
16 http://laral.istc.cnt.it  
17 http://tech.plym.ac.uk/SoCCE/CRNS  
18 http://adapsys.feis.herts.ac.uk  
19 http://www.brl.ac.uk (partner of the CHRIS project) 
20 http://www.laas.fr (partner of the CHRIS project) 

http://specs.upf.edu/�
http://www.isr.ist.utl.pt/vislab�
http://www.sbri.fr/�
http://lasa.epfl.ch/�
http://laral.istc.cnt.it/�
http://tech.plym.ac.uk/SoCCE/CRNS�
http://adapsys.feis.herts.ac.uk/�
http://www.brl.ac.uk/�
http://www.laas.fr/�
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1) iKinFwd: comprises the definitions of the main C++ classes (link, chain, limb) 

devoted to the computation of forward kinematics, along with the required methods 

for adding and removing links, blocking and unblocking chain’s degrees of freedom, 

manipulating joints constraints, querying for end-effector positions and analytical or 

geometric Jacobian relying on selectable notations for the orientation: the Euler 

angles or axis-angle representation. 

 

2) iKinInv: collects a wide range of algorithms for finding the joints configuration 

which achieve a given end-effector pose to cope with the inverse kinematics problem; 

poses with only the translational part defined or poses with also specified orientation 

are both handled. 

 

Hereafter a list of the implemented algorithms is given: 

 

a) Steepest descent gradient with fixed gain; 

b) Steepest descent gradient with variable gain; 

c) Levenberg-Marquardt (LM) algorithm also known as the Damped Least Squares 

(Deo and Walker 1992); 

d) Levenberg-Marquardt algorithm with boundary functions implemented through a 

gradient projected method (Ho-Yul, Byung-Ju and Yungjin 2007). 

e) Some strategies based on the GNU Scientific Library (GSL), such as the Nelder-

Mead simplex (Nelder and Mead 1965) and the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method(Fletcher 1970). 

f) The Multi-Referential dynamical systems approach (see Chapter 2) addressing 

the control problem is provided within this module. 

 

3) iKinIpOpt: contains the C++ classes required to interface with IpOpt to allow 

describing the inversion problem as a nonlinear constrained optimization task as 

detailed in Chapter 2. 
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4) iKinSlv: exports C++ classes for on-line solution of the inverse kinematic problem 

specifically tailored for the iCub limbs (i.e. the arms and the legs). On-line solvers 

run as daemons which connect to the robot to retrieve information on the current 

joints configuration (along with their bounds) and by requesting a desired pose with 

queries forwarded through YARP ports return the corresponding target configuration 

in the joint space. 

 

 

 

Figure 4-1. The modular Cartesian Interface architecture. Arrows are depicted representing 
the information flows exchanged between the three components of the interface, namely the 

client, the server and the solver. 

 

As ending remark, it is worth mentioning that the code implementing the Gaze 

Controller structure exposed in Chapter 3 has been also developed based on the iKin 

package. 

 

4.3     YARP Interfaces 

To simplify use (and re-use) of the methods designed in Chapter 2 and Chapter 3, 
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YARP has been extended to support dedicated interfaces to the realized Cartesian and 

Gaze controllers. This extension consisted in widening the existing joint level motor 

control interfaces to include the task space control of the arm as well as the control of the 

gaze. The purpose was twofold: (1) achieve better modularity and (2) hide the 

implementation details of the controllers behind a set of simple interfaces methods. 

 

 

 

Figure 4-2. The Gaze Interface architecture. Arrows are depicted representing the 
information flows. 

 

Concerning the Cartesian Interface21

                                                      
21 The documentation of the Cartesian Interface is available on line here: 

 for the task space arm control, by separating the 

trajectory generator from the solver it is possible to run the controller part directly on the 

robot (i.e. on the PC104 hub) and reduce latencies associated with the network. We thus 

obtained a considerable gain in controller performance. Running the controller on board 

of the PC104 allowed attaining a factor of about 50% performance increase with respect 

to the standard YARP module accessing the iCub through the network. We adopted a 

http://eris.liralab.it/iCub/main/dox/html/icub_cartesian_interface.html.  

http://eris.liralab.it/iCub/main/dox/html/icub_cartesian_interface.html�
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client/server architecture (Figure 4-1). The client exports the Cartesian Interface as it is 

seen by the user. Accessing the client at this level is as easy as creating a C++ object and 

calling its methods. Through YARP the client implements the request of the user by 

dispatching them to the Server and, hidden to the user, the Solver object. The Server runs 

locally on the robot and implements the core of the control based on the Multi-Referential 

approach (since the controller sends velocity commands to the low-level hardware, 

latencies at this point are crucial). The hidden part is represented by the Solver which 

computes the set points for the Server using IpOpt; since this process is computationally 

expensive, it is advisable to run the Solver on a separated, powerful machine (as the 

output of the Solvers are set-points, latencies at this level are less critical). 

 

Likewise, the Gaze Interface22

Figure 4-2

 has been devised in order to enable the user to control 

the robot gaze resorting to simple C++ methods calls, which in turn hide the protocol 

details and the information marshalling inside the implementation. Differently with 

respect to the Cartesian Interface architecture, the Gaze Interface does not need a 

distinction between the Solver and the Server parts, having the two components 

encapsulated in the same module iKinGazeCtrl (see ) running on the cluster. 

This is motivated by the fact that the resources aboard the PC104 are somewhat limited 

and to a certain extent at least half of the mechanical inertias the gaze controller has to 

deal with – e.g. the iCub eyes – do not require stringent closed-loop reactivity in velocity 

mode. 

Nevertheless, by virtue of YARP modularity approach, the module iKinGazeCtrl can be 

launched on the robot hub with no additional design effort, when for example due to 

constant improvements in the technology the PC104 will be replaced by more powerful 

boards. 

 

                                                      
22 The documentation of the Gaze Interface is available on line here: 

http://eris.liralab.it/iCub/main/dox/html/icub_gaze_interface.html 

http://eris.liralab.it/iCub/main/dox/html/icub_gaze_interface.html�
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4.4     Grasping: The Action Primitives Library 

To tackle the problem of grasping we focused on a typical scenario described in the 

context of the CHRIS project: a human and a robot performing cooperative actions on 

objects placed on a table (Figure 4-4). The design of the grasping architecture has been 

broken down in two main parts: A reaching module, whose responsibility is to bring the 

hand of the robot close to the object, and a grasping module that controls the movement 

of the fingers and detects if and when the fingers apply enough force to the object surface. 

We have thus developed a library that relies on the YARP Cartesian Interface and 

realizes a further abstraction layer that expose to the user a collection of action primitives 

(such as reach(), grasp(), tap(), … ) along with an easy way to combine them together to 

form higher level actions and eventually execute more sophisticated tasks. 

 

Central to the Action Primitives library23

Figure 4-3

 is the concept of action. An action is a 

“request” for execution of three tasks (as depicted in ): 

 

 

Figure 4-3. A diagram explaining the core characteristics of the Action Primitives library. 

                                                      
23 The documentation of Action Primitives library is available on line here: 

http://eris.liralab.it/iCub/main/dox/html/group__ActionPrimitives.html  
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1. It can ask to steer the arm to a specified pose, hence performing a motion in the 

task space; 

2. It can command the execution of some predefined finger sequences in the joint 

space and identify it with a tag; 

3. It can ask the system to wait for a specified time interval; 

 

Evidently, the arm motion in the task space (task of type 1) is executed exploiting the 

Cartesian controller devised in Chapter 2. 

Besides, the library offers the possibility to specify if the action involves the execution 

of a task of type 1 simultaneously with a task of type 2. Action requests are stored in an 

action queue and served with a First In First out policy. The idea is to provide a 

mechanism to program and execute sequences of actions as combinations of movements 

of the arm (type 1), movements of the fingers (type 2) or coordinated movement of both 

arm and fingers (type1+type2).  

 

 

 

Figure 4-4. A grasping sequence. From top-left to bottom-right, an object is placed on the 
table, the robot moves the hand above the object and closes the hand. When a successful 

grasp is detected the robot lifts the object and eventually drops it. 
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An important aspect to point out is that at the moment the finger positions that realize 

the grasp actions should be known (and tuned) in advance. However we are planning to 

include a learning stage that eventually will allow to automatically adapting the motion of 

the fingers to novel objects. In Figure 4-4 we report a sequence that shows the robot 

grasping an object. 

 

The Detection Problem 

In absence of tactile feedback Nori (Schmitz, et al. 2010) designed an algorithm that 

performs contact detection using the springs mounted in the distal phalanges of the hand. 

Due to the elastic coupling between the phalanges of the fingers24

 

, the fingers passively 

adapt when they encounter an obstacle (i.e. when they touch the surface of an object). 

The amount of “adaptation” can be indirectly estimated from the encoders on the joints of 

the fingers. In other words, the idea is to measure the discrepancy between the finger 

motion in presence of external obstacles (e.g. objects or the other fingers) and the one that 

would result in normal operation (in absence of obstacles/free movement). In a calibration 

phase we estimate the (linear) relationship between the joints of the fingers in absence of 

contact. In normal operation, we detect contact by comparing how much this model fits 

the current encoder readings. 

Calibration Phase 

The purpose of the calibration is to fit a linear model to the encoders of the joints that 

are mechanically coupled. In order to be as general as possible, it is assumed that the data 

are genericn dimensional vectors, here indicated as nq   . The dimension n depends 

                                                      
24 On the iCub fingers are made up of three phalanges that we call proximal, middle and distal. 

With the exception of the ring and little fingers, the middle and distal phalanges are mechanically 

coupled with an elastic element and actuated by a single motor. In the ring and little fingers all 

phalanges are mechanically coupled, and a single motor is responsible for the actuation. 
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on the number of joints actuated by a single motor: for the thumb, index and middle 

fingers 2n  , whereas for the ring and little fingers 6n  . The parametric linear 

model used to fit the data is: 

 

min max:   ,         [ , ],r q k k t t t t   0 1  (4.1) 

 

wheret is the free parameter to be chosen in min, maxt t   . Another possible representation 

for this model can be obtained by observing that it represents a line r  (i.e. a one 

dimensional subspace) embedded in a n dimensional vector space. Therefore, it can be 

represented as the intersection of planes. The general implicit equation of a plane   in 
n

 is: 

1 1 2 2:     .... .n na q a q a q c      (4.2) 

 

Since the plane is a 1n  dimensional subspace, the intersection of k  planes is a 

n k dimensional subspace. Therefore, a line r can be represented by intersecting 

1n  planes: 
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  (4.3) 

 

However, the representation of a line by means of the coefficients in (4.3) is redundant. 

It can be shown that an equivalent non-redundant implicit representation is the following: 
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which corresponds to the following parametric model: 

 
:   ,r q k k t  0 1  (4.5) 

 

with 1t q and: 
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 (4.6) 

 

Given a set 1, Nq q of observations, the parameters ,1ia and ic are estimated by solving 

the following least squares optimization: 

 

2,1 ,1
2

2
,1 1

,..., 1 2,...,

min .
n

n

N n
i i

j j j
a a i jc c

a q q c
 

    (4.7) 

 

These parameters are then converted to 0k and 1k by means of equation (4.6). Moreover, 

points of the minimum distance are computed as follows: 

 
* argmin , 1 ,j
j

t
t k k t q j N    0 1   (4.8) 

 

which corresponds to: 

 
*, *

1 , 1 .j
jq k k t j N   0   (4.9) 

Accordingly, the span of the allowed values fort is determined as follows: 

 



 
 
 
 
 

CHAPTER 4 – SOFTWARE TOOLS DEVELOPMENTS 
 

87 
 

* *
max min

1 1
max , min .j j

j N j N
t t t t

 
 

 

 (4.10) 

 

Similarly, the maximum and the minimum distance from the model is computed as: 

 
*, *,

max min
1 1

max , min .j j j j

j N j N
q q q q q q

 
   

 

 (4.11) 

 

Figure 4-5 shows the result of an example calibration carried out on the two distal 

joints of the iCub thumb. The two joints are represented by blue dots: clearly, they 

roughly lie on a linear manifold represented by the red line, whilst the distances from this 

manifold are depicted with green lines. Therefore by measuring the deviation from the 

linear manifold and by applying proper thresholds, this method allows to detect contacts 

with objects during grasping tasks and to safely stop the fingers preventing damage. 

 

 

 

Figure 4-5. The linear manifold that models the coupled distal joints of the thumb. 
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5.1     Introduction 

The Cartesian Interface presented in Chapter 4 and conceived to control the iCub limbs 

embeds a structure that relies deeply on a model-based methodology taking advantage of 

the a priori knowledge of the body schema. Likewise, an analogous interface has been 

designed to cope with the control of the robot gaze, making use of the same kind of 

approach. As result of such good representation of the mechanical parts, the produced 

movements are fast, precise, reliable and repeatable over time, and perhaps more 

importantly we are able to take into account a number of constraints specific to the 

platform such as the mutual bounds of the shoulder’s tendons lengths and the self-

collision issue that let the robot interact with the surrounding environment safely, 

accomplishing complex visuo-haptic tasks. 

The attained performances are undoubtedly higher than the results obtained by 

applying pure learning-oriented algorithms both in its off-line and on-line 

implementation, considering robustness, repeatability and reliability issues. On the other 

hand, any method that exploits only an assigned and fixed description of the reality 

cannot compensate for unmodeled dynamics and unknown offsets that may affect the 

computation causing sensible degradation in how precise the task is executed in real 

circumstances. A meaningful example of such scenario refers to the light mechanical 

misalignment of the relative position of the iCub eyes with respect to nominal 

configuration that is responsible along with the uncalibrated stereo cameras for generating 

heavy perturbations in tasks where the robot is requested to reach for a target whose 

CHAPTER 5  
TACKLING THE ADAPTION PROBLEM WITH 
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position in the operational space is computed by the vision system. 

Many other references can be provided to comparable situations for which techniques 

resorting to conventional control theories do not suffice to achieve the objectives 

satisfyingly. For this reason, given the model-based layer that ensures good 

performances, the ultimate goal would be to put on top a further machine learning (ML) 

oriented structure capable of adapting the behavior to unknown quantities and changes in 

the environment. 

A profitable example of such interaction between the model design approach and the 

ML world is the autonomous learning of eyes-hand coordination that would improve the 

reaching accuracy by building a map which relates the points in the cameras image planes 

and the proper offsets required to compensate for the final target as the arm moves in the 

3D space. The learning of the map can be effectively performed on-line by the robot in an 

autonomous manner (e.g. with Support Vector Machines (Gijsbert, Metta and Rothkrantz 

2010)) by following its own hand using for example reliable cues such as motion, without 

actually retaining any markers as, conversely, it is usually done in the literature (Hersch, 

Sauser and Billard 2008), (Nori, Natale, et al. 2007). This desirable feature that surely 

enriches the robot capabilities with a preliminary self-adaptive behavior is the matter of 

this chapter together with the investigation of a further task that has been explored in the 

same direction since it well addresses the set of scenarios envisaged within the CHRIS 

project, and specifically: the possibility to construct on-line a simple 2D map to adjust the 

errors the robot naturally commits while reaching for a target placed on a table, exploiting 

at the same time the available force control routines to realize a sort of coaching phase 

that an operator carries out directly on the robot with the aim to teach it the correct 

position by simply exerting forces on the limbs. 

As evident from the title of the chapter and highlighted previously in this paragraph, 

the results attained hereafter, even with their relevance, have to be considered as a very 

first attempts towards an emerging perspective where model-based and learning-oriented 

policies can be usefully integrated and combined in robotics, paving the way in long term 

for promising future works. 
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Nevertheless, prior to going deeply through the descriptions of these two “blending” 

experiments it is necessary to provide a brief outline of the available force sensing 

features employed in the iCub for the human-robot teaching exercise and, rather, to give 

more details about the solution developed for the motion detector which has been 

extensively used for the autonomous eyes-hand markerless coordination. 

 

5.2     Force/Torque Sensing 

The objective of force/torque sensing within the current scope is to implement in the 

robot the active force control that aims at modifying software wise the compliance of the 

manipulator to satisfy the requirements of different interaction tasks, such as the contact 

detection and the coaching. 

To achieve active compliance standard industrial approaches employ an F/T sensor 

located at the end effector of the manipulator. The obvious assumption in this case is that 

the robot interaction with the environment only occurs at the tool level. 

 

 

 

Figure 5-1. A schematic representation of the iCub showing the location of the force/torque 
sensors. 
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The iCub robot instead is arranged with a solution that embodies both the benefits of 

F/T and joint torque sensing (Metta, Vernon, et al. 2008). It mounts indeed a 6-axes F/T 

sensor at the beginning of the kinematic chain of each limb as it is visible in Figure 5-1; 

this makes the robot sensitive also to external forces occurring at different level (not only 

at the end-effector) and also gives information about the real torque acting on the joint, 

due to the limb dynamic. The drawback is that, if not compensated, the internal dynamic 

forces are detected as external forces (something that does not happen when the F/T 

sensor is placed at the end-effector). Moreover, to properly balance external forces acting 

on the whole arm, the knowledge of their point of application is required. The latter 

information is not available without tactile feedback but due to the nature of the 

experiments described in the following it is plausible to assume that all external forces are 

applied at the end-effector. 

The method that provides the estimation of contact forces detection is explained in 

(Fumagalli, Randazzo, et al. 2010) and is briefly detailed hereafter. 

The wrench sF measured at the sensor reference frame denoted <s>, is the sum of two 

terms, one due to the limb internal dynamics, the other due to an external wrench eF (see 

Figure 5-2). As previously pointed out, the assumption here is that eF  is the unique 

external perturbation and that this perturbation is applied in a known reference frame, 

denoted <e>, attached at the end-effector. Expressing all these quantities in <s>, we can 

conclude that the measurement 6
sF    can be decomposed as follows: 

 

,s s s
s e iF F F   (5.1) 

 

where 6s
iF   is the contribution of the manipulator internal dynamics to our 

measurements s
sF . Moreover, it can be shown that (Sciavicco and Siciliano 2005): 

 

     , ,s
i F F FF M q q C q q q g q      (5.2) 

 

where nq   is the generalized coordinate’s vector describing the configuration of the 
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limb, here assumed composed of n DOF. The internal force s
iF depends on joint position

q , velocities q and acceleration qand can be decomposed in the sum of an inertial term

  6 n
FM q   , a gravitational term  Fg q and a Corioli’s term  ,FC q q .  

 

 

Figure 5-2. A sketch depicting the wrench measured at F/T sensor’s location along with its 
projection at the end-effector. The sensor <s>, base <b> and end-effector <e> frames are 

also reported. 

 

In (Fumagalli, Gijsberts, et al. 2010) a method to approximate the internal dynamic 

equation (5.2)  is provided relying on a parameter estimation technique, so that the 

measure s
eF  is simply given by: 

 

 , , .s s s
e s iF F F q q q    (5.3) 

 

The Action Primitives library conveniently encapsulates this force control layer making 

available to the user the possibility to sense contact with external elements of the 

environment. 
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5.3     Independent Motion Detection 

The independent motion detection is the discipline concerned with the automatic 

identification of independently moving objects within a scene acquired by a moving 

camera. This is the typical scenario the robot has to tackle when it gazes at its moving 

hand for the task described in the first paragraph: a motor babbling of the end-effector 

generates motion cues within the pair of the equipped cameras that in turn can be 

exploited to relate the location of the projected points in the image planes with the 3D 

position of the hand in the Cartesian space. Since the head is supposed to widely moves 

while keeping the hand in fixation it is necessary to rely on a robust algorithm capable of 

eliminating the effect of the egomotion in the scene. 

Presently in literature (and interesting survey has been conducted by (Irani and 

Anandan 1998)) not many algorithms cope with the stringent requisite of being real-time 

compliant and, more eminently, their implementation are not currently accessible. 

The proposed method stems from an analysis of the optical flow problem with a 

particular emphasis on the approach exploited by the Lucas-Kanade algorithm (Lucas and 

Kanade 1981). In the following an exhaustive overview of this classic technique is 

presented, followed by the idea which led to the definition of our framework. 

It is important to underline that coauthor of the design and the development of the 

framework along with all the analyses reported in this section was Carlo Ciliberto, a PhD 

student researching at RBCS department of IIT, with whom a constant, tight and fruitful 

collaboration has come about. 

 

Lucas-Kanade Optical Flow 

The study of optical flow deals with the problem of evaluating motion across streams 

of images. Such motion is usually induced on the image plane by the actual dynamics 

interesting the elements in the observed scene. A typical example illustrating this 

situation is a robot exploring its surroundings and consequently generating apparent 

motion in the image stream acquired from the embarked cameras. In these contexts it can 
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result necessary to understand exactly how the observed motion takes place. This can be 

partially inferred from the analysis of the optical flow, which is defined as the field of 

instantaneous velocities on the image plane reference frame. 

Under the reasonable assumption that image sampling is performed at sufficiently high 

frequency, it can be accepted that the appearance continuity property holds. In other 

words, it is legitimate to expect that within small time intervals, the appearance of 

elements in the scene does not vary dramatically and it is thus possible to track points 

across subsequent frames based exclusively on their visual appearance. This property can 

be expressed more formally through the equation 

 
     , , with 1,I p t t I p t t t t t       (5.4) 

 

where  ,I t is the image function at time t (usually representing pixel brightness) and 

 p t is the projection on the image plane at time t of a point in the scene. 

Deriving the image function   ,I p t t with respect to time, we obtain: 

 

0,p
I

I p
t


   


  (5.5) 

 

where p  is the vector of the derivatives with respect to the u and v main directions of 

the image plane and p represents the planar velocity of point p . As can be noticed, 

equation (5.5)  has an infinite number of solutions, implying that the sole punctual 

information is insufficient to determine the exact velocity of any point on the image 

plane. However, it can be assumed that locally points behave similarly and thus that in 

sufficiently small neighborhoods, instant velocities are almost identical. Velocity p of a 

point p can hence be approximated by setting a window W around it and then solving the 

least-squares minimization problem: 

 

2

2ˆ min ,p t
w

p I w I


 


 (5.6) 
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where pI and tI are matrices whose rows are respectively the gradient pI and the 

derivative I t  computed on each point w in W . 

When the left pseudoinverse †
pI of pI exists, equation (5.6) is solved by taking

†ˆ
p tp I I . Existence of †

pI is not always guaranteed depending on the spatial appearance 

of the neighbors of p . In particular, it can be shown that in order for †
pI to exist, both 

partial derivatives of the image along theu andv axes need to be different from zero in 

some point of the nearness of p .  

 

 

 

Figure 5-3. Illustration of typical failure conditions in the optical flow computation: (a) 
Egomotion rotations (top) usually induce homogeneous and uniform flows on the image 

stream while independent rotations (bottom) frequently cause the Lucas-Kanade assumption 
of local constant velocity to not usually hold (the red square windows encompass a detail of 

such behavior). (b) Failures due to occlusion depend on the relation between image sampling 
frequency and the speed at which such event happens: if the occluding object is moving 

slowly (top), differences in the neighborhood of the occlusion are smaller than those 
exhibited in the case of higher velocities (bottom). 
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Failure Analysis 

From the discussion above, corners appear the most suitable points over which 

compute optical flow with the Lucas-Kanade algorithm. However in practice, even corner 

tracking is not always successful. As a general rule, in order to verify that the optical flow 

of a point has been correctly estimated, the original image patch around that point is 

compared to the patch in the new image where the point is supposed to have been moved. 

A similarity measure is then used to evaluate whether tracking is correctly performed or 

not. It is thus interesting to analyze in general when the Lucas-Kanade algorithm fails and 

why. Conclusions from this investigation will lead directly to the method we are 

proposing to perform independent motion detection.  

 

The main circumstances in which errors in the evaluation process of the optical flow 

arise are three: 

1. The instantaneous velocity of the point is too large with respect to the window 

where motion is being considered. Hence tI loses its meaning of temporal 

derivative. 

2. The motion around the point has a strong rotational component and thus, even 

locally, the assumption regarding the similarity of velocities falls. 

3. The point is occluded by another entity and obviously it is impossible to track 

it in the subsequent frame. 

 

The first type of tracking failure depends exclusively on the scale of the neighborhood 

where optical flow is computed. This issue is usually solved by the so-called pyramidal 

approach (Bouguet 2004) which applies the Lucas-Kanade method at multiple image 

scales. This allows evaluating iteratively first larger velocities and then smaller ones. 

The second kind of tracking failure is generally a consequence of motion independent 

from the observer. Figure 5-3(a) depicts a comparison between the typical rotational 

effects on the image generated respectively by egomotion (upper image) and independent 

motion (lower image). As can be noticed, egomotion has a global effect on the image 
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stream, producing optical flows that result smooth and locally almost constant. On the 

other hand, independent motion affects only specific areas of the image plane, 

introducing local distortions when it is the case of rotations. 

The third situation in which Lucas-Kanade fails is caused by an object moving 

(actively by independent motion or passively by egomotion) between the observer and the 

target point. In this context the main role in determining whether optical flow has been 

successfully computed is played by the speed at which such occlusion takes place. As 

shown in Figure 5-3(b), if the occluding object moves slowly with respect to the image 

sampling frequency, the window around the target point remains almost unaltered even 

when the point disappears behind the object. However, as the event happens faster, larger 

portions of the neighborhood get covered, eventually causing the similarity measure 

between original and tracked window to decrease.   

 

 

Figure 5-4. (Left) The uniform static grid of nodes depicted in red where computing the 
standard Lucas-Kanade algorithm according to the new proposed method. The operator 
waves a can generating independent motion cue that in turn stimulates the superimposed 

nodes resulting in green; the centroid of the detected blob is also automatically extracted and 
highlighted in blue. (Right) The output of motionCUT can drive a coarse segmentation of the 

moving object. 

 

 

It has to be noted that also in this context, errors in the optical flow evaluation are 

usually caused by independent motion. This depends on the fact that aside from 
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pathological cases, elements in the scene lie generally sufficiently far from the observer 

so that the process of occlusion due to egomotion happens too slowly to allow the 

similarity measure to go under the predefined threshold. 

 

The Cover-Uncover Trick 

We propose a method to detect independent motion which derives directly from our 

observations on optical flow25

The main concern regarding this analysis is the selection of those points over which try 

to compute the optical flow. While corners are the best choice for the standard Lucas-

Kanade algorithm thanks to their structure, in our context we look for points over which 

tracking is likely to fail as soon as one of the conditions discussed previously is met, i.e. 

the flow inconsistencies due to rotations or occlusions. With these premises we named 

our method motionCUT, being CUT the acronym for Cover-Uncover Trick, a concise yet 

evocative definition that captures the essence of the procedure revealing its simplicity: 

independent moving agents in the scene can be easily recognized by inspecting the effect 

of their motion at the frontier with fixed elements of the environment (see 

. As a matter of fact, the fundamental idea underlying our 

approach is to take into consideration the points in the image where the Lucas-Kanade 

algorithm fails, as they are likely to identify image patches where independent motion is 

actually occurring, rather than those over which it succeeds. 

Figure 5-3(b)) 

where episodes of occlusion of parts of the background (cover) and their corresponding 

re-emergence (uncover) mostly appear. 

To this end, we consider a uniform grid of points placed on the image plane and 

compute the optical flow with these grid nodes as pivots (Figure 5-4). In this framework 

point selection is done regardless of their appearance and thus, the majority of them will 

not be corners but rather weaker points in the sense of Lucas-Kanade tracking.  

                                                      
25 We actually came across a promising indication of the benefit of using a static grid for motion 

detection while we were struggling with the ordinary Lucas-Kanade method during nightly 

experiments. 
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Ideally we could consider each image pixel as the node of a dense grid. However, as 

experimental results on independent motion detection show similar results for relatively 

sparser grids, it is often wiser to ease the computational effort by choosing not too dense 

grids. 

Nonetheless, the process of taking the elements of the grid depending only on their 

position expose the system to the risk of having points where the pseudoinverse of pI  

does not exist and it is therefore impossible to compute the optical flow. However, as 

mentioned earlier, this happens for points whose neighborhood have a specific shape: 

regarding pure edges, by virtue of Equation (5.5) we can obtain the patch's velocity along 

the direction normal to the edge itself and try to approximately track the point using this 

information. For uniform image patches though, motion cannot be estimated and it is just 

assumed to be zero. 

As noticed, the points of the regular grid are quite susceptible to motion 

inconsistencies, responding positively - in the sense that the optical flow computation 

fails over them - when they lie near to an image patch where independent motion is 

occurring. In order to eliminate false positives we take in consideration only areas of the 

image plane where clusters of nodes respond contemporaneously. This implies that if a 

single point is responding but no other point near it is, that point is considered a false 

positive and it is eliminated from the list of possible locations where independent motion 

is occurring. 

Our independent motion detection procedure can be finally described by the following 

steps: 

• A uniform grid is placed over the image and for every couple of consecutive 

frames the Lucas-Kanade optical flow is computed over each grid element. 

• The nodes over which Lucas-Kanade fails are taken as potential independent 

motion locations. In order to eliminate temporary false positives, only points 

which are located nearby at least n  other positive responding points (where n  

is a parameter chosen a priori) are considered locations of the image over 

which independent motion has occurred. 



 
 
 
 
 

CHAPTER 5 – TACKLING THE ADAPTION PROBLEM WITH MACHINE LEARNING: 
PRELIMINARY RESULTS 

 

100 
 

 

 

Figure 5-5. A strip of images recorded during a real time stereo tracking of a walker: six 
images are shown in their temporal sequence from L1 to L6 as taken from the left camera, 

whereas images from R1 to R6 represent the corresponding acquisitions from the right 
camera. The walking person is highlighted with a green blob using the result of motionCUT 

detection. 

 

The utmost plainness of the motionCUT concept is very well suited for one of the main 

goals of this work that is to achieve independent motion detection in a real-time 

architecture. Accomplishing Lucas-Kanade computation in a traditional fashion foresees 

indeed the dynamic identification of the corner points and the successive least-squares 

solution of Equation (5.6); by contrast, our method discards precisely the first critical 

searching phase by adopting a static grid of nodes over which the least-squares 

computation is performed. As result of this further improvement, motionCUT can 

effectively run in real-time26

Figure 5-5

 processing input images at the same frame rate of the 

cameras acquisition, that is 30 Hz, as reported in  for a traditional stereo 

tracking task of a walking person in a highly cluttered background. 

 

5.4     Adaption to Reaching Errors in CHRIS Scenarios 

The typical scenario foreseen within the CHRIS project where the robot is requested to 

                                                      
26 A multi-core Intel (R) Xeon machine with 2.27 GHz of clock frequency has been employed for 

the experiments. Remarkably, on this machine we measured an average processing time for a 

single image of 15 ms, meaning that motionCUT is capable of running up to 66 Hz. 
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reach for objects and cooperate with humans for a shared goal is vividly depicted in 

Figure 5-6: small toys such as colored cars, sponge balls and boxes with handle are 

placed on top of a table to then let the robot grasp them in order to change their location 

or execute higher level actions as for instance the cover/uncover game. 

 

 

Figure 5-6. (Left) A snapshot showing iCub interacting with small toys and humans in the 
context of CHRIS scenario. (Right) A scene of the cover/uncover game is captured where 

iCub has to detect the toy car to be covered with the box present in the bottom-right corner 
of the image. 

 

A requisite to allow the robot interact with the environment is to acquire and learn the 

visual appearance of the objects of interest. Interestingly, in this regard, the motionCUT 

can be profitably adopted to carry out a rough segmentation based on the motion cue, 

which then can guide the successive acquisition of the object template through the 

commercial vision system SpikeNetTM

Figure 5-7

 (Thorpe, et al. 2004), a real-time package that uses 

a spiking neural network technology to provide fast recognition of objects in an image. 

As exemplified in , in fact, the operator waves the toy in the view field of the 

robot in order to catch its attention; the output of motionCUT is capable of defining a 

suitable area encompassing the object that is finally refined by a conventional Canny 

algorithm for edge-detecting (Canny 1986), exploiting the fact that the background 

appearance is fairly uniform. The result of this process is directly fed into the SpikeNetTM 

network. 
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Figure 5-7. The process of object’s template acquisition is represented in these three 
successive pictures. (A) The operator captures the robot’s attention generating motion cue 

with the object. (B) The output of motion detection is employed for a coarse segmentation of 
the object. (C) The template is refined and acquired by SpikeNetTM

 

. 

Contact Detection with Environment 

Notably, under the assumption that the robot manipulates objects on a flat table, it is 

convenient to employ a homographic projection to estimate the 3D Cartesian coordinates 

of the target to be attained from the 2D coordinates of the template’s centroid as provided 

by a monocular vision perception system27

Clearly, having an embodied platform, it would be preferable and valuable to avoid any 

static calibration procedure aimed at finding this relative distance which is obviously 

subject to the contingent components used for the apparatus: e.g. the type of the table and 

the configuration of the robot, particularly if it stands on a pole or not. Conversely, the 

iCub should be able to autonomously explore its “playground”, adapting to the unknown 

height of the said table surface. 

. To this end, it is necessary to know the 

relative height of the table with respect to the root reference frame of the robot. 

Figure 5-8 reports how the most intuitive way can be 

engaged to proactively discover this quantity: iCub simply touches the table being 

capable of stopping its motion as soon as a contact is detected by the force sensing 

                                                      
27 Differently from the learning of eye-hand coordination described in the following, within the 

CHRIS project it has been decided to pursue a monocular approach. 
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routine embedded within the Action Primitives library that in turn monitors whether the 

current value of the external force estimated at the end-effector has overcome a safety 

threshold. The relative height of the table is thus elicited relying directly on the actual 

position of the end-effector when in contact. 

Intriguingly, the basic yet practical solution proposed for the table height estimation 

permits to face also the contact detection problem relative to objects of interest the robot 

needs to grab, as demonstrated by the images sequence in Figure 5-9. Right after the 

detection of the contact with the object, the robot can lift its hand of a given suitable 

quantity to then operate opportunely the grasp closure with the fingers in the correct 

position with respect to the object. 

 

 

Figure 5-8. Table contact detection. (Top) The component of the end-effector Cartesian 
position accounting for the height with respect to the ground (z axis) is shown. (Bottom) The 

magnitude of the external force acting on the end-effector is depicted together with the safety 
threshold fixed at 3 N. The exploration starts at t=5 s, whereas the contact event happens at 
t=6.7 s, causing the system to recognize the table location at approximately -0.15 m along the 

z axis. 
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The Coaching Stage 

Despite the initial exploration iCub carries out, knowing just the table height usually do 

not suffice to extract an optimal 3D target location for executing a successful grasp. This 

is due to two basic reasons: (1) one main account regards how the errors in the model of 

the kinematic parts as well as the pinhole camera affect the final result; (2) moreover, the 

fact that the height of the objects placed on the table remains unknown to the vision 

perception system (before completing the first exploration) definitely introduces further 

uncertainty in the homographic projection. 

 

 

Figure 5-9. From top-left to bottom-right: iCub employs the same principle underlying the 
table height estimation in order to sense contacts with the pink sponge ball. Right after the 

detection with the toy, iCub lifts a bit its hand to suitably perform a grasp. 

 

To sidestep this inconvenient and increase the chance of success in accomplishing the 

task, the following online coaching procedure has been beneficially exploited: 

 

1. Through a dedicated command the robot enters the learning stage and the 

position of the identified object to be reached is stored in memory for a 
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successive recall. 

2. The “teacher” starts the demonstration by exerting an external force directly 

on the robot’s end-effector with the intent to drive it towards the position he 

reckons is the best for the grasping task (Figure 5-10). 

 

 

Figure 5-10. An excerpt of the coaching phase where the operator teaches the robot the 
correct Cartesian position for the object to grasp. 

 

3. At the same time the robot perceives the external force  , ,F F x y z and 

moves the limb contextually in the direction ofF by implementing an 

admittance control in the operational space, for which the end-effector velocity 

is guided by the external forcing term (Figure 5-11). More particularly, the 

admittance control whose outcome is the commanded task velocity

 , ,v v x y z  obeys the following law28 m, with and  suitable inertia and 

damping parameters, respectively:  

 

                                                      
28 Integrating twice the equation (5.7) leads to the computation of the trajectory  x t of a virtual 

point in the operational space; this trajectory serves as the reference for the Cartesian control in a 

traditional position tracking task. 



 
 
 
 
 

CHAPTER 5 – TACKLING THE ADAPTION PROBLEM WITH MACHINE LEARNING: 
PRELIMINARY RESULTS 

 

106 
 

.mv F v   (5.7) 
 

4. As result of the combined actions of step 2 and 3, the robot hand is finally 

moved on top of the object, compensating the unmodeled errors with the help 

of human operator. Therefore, it is possible to update an internal 2D Cartesian 

map that associates the compensation offset to the object position as originally 

provided by the vision system in step 1. 

5. The learning phase can be terminated at this point with a specific command. 

 

 

Figure 5-11. The admittance control in the task space reported for the two meaningful 
Cartesian components x (left) and y (right) that span the table surface. (Top) The external 
force imposed by the human teacher during coaching is perceived by the embarked F/T 

sensor and projected with a model-based approach at the end-effector level. (Bottom) Based 
on the external force a velocity reference is generated in the task space (dash red) and then 

tracked by the Cartesian controller (green). 

 

A careful reader would have probably realized how in step 3 the three components of 

the external wrench referring to the momentum at the end-effector so as the three 

rotational components of the commanded velocity in the operational space are discarded 
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not being considered in the computation. This was done on purpose for sake of a first 

easy implementation, pondering also the fact that the orientation errors at the end-effector 

due to uncertainties in the kinematic model are much lower than corresponding errors in 

positions. 

By iterating steps from 1 to 5 many times and with many objects of approximately the 

same size the goal of exploring the two-dimensional space of the table can be achieved 

and the map can be populated with the learnt offsets in a way that reasonable covers a 

wide range of possible objects locations. 

 

Figure 5-12. A figurative representation of the flat table (top view) is given where nodes used 
to build the internal offsets map through demonstrations are reported with the circled 
symbol (red for the left hand, blue for the right hand). Successful grasp events are then 

depicted with the triangle, whereas failure events are shown with the cross. 

 

Finally, during nominal operation, when a novel target position is identified by 

SpikenetTM k, it is designed to employ a -nearest neighbors algorithm that simply averages 

the offsets contained within the internal map on the basis of the distances of the current 

input from thek nearest nodes where the teaching-by-demonstrations was performed, in 

order to retrieve a prediction of the Cartesian offset to apply to the target. Figure 5-12 

conveniently resumes this online procedure. 
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Discussion 

Concluding this section, it is worth pointing out how the envisaged learning-by-

demonstrations mechanism can adequately assist the reaching behavior with a reasonably 

high probability of success just by resorting to a very simple 2D map that even does not 

take into account any kind of specialization with respect to the particular object under 

attention, merely acting as a pure feed-forward term to compensate deviations from the 

model. Possible future improvements would be thus to diversify maps for reaching offsets 

and bias them with top-down stimuli collected by the visual perception and/or the tactile 

feedback of known and novel objects. Leveling up, learning maps for more complex 

affordances should also become attainable in a similar fashion. 

However, this preliminary experiment served mainly to demonstrate the efficiency and 

the robustness of the “blending” principle that sees in this context the model-based 

Cartesian controller and the very basic machine learning technique as both fundamental 

ingredients to deal with such demanding task. On one hand, the Cartesian controller 

delivers the required grade of speed performance, movement accuracy and flexibility of 

the architecture that a pure state-of-the-art learning method would find indisputably 

burdensome to realize, lacking of the same amount of a priori knowledge; on the other 

hand, the adaption to the unmodeled perturbations is ensured by the (elementary) learning 

tool that counterbalances the drawback of a model when it has to deal with unstructured 

environment. 

 

5.5     Learning Eye-Hand Coordination Through Motion29

As previously stated in the introduction to this chapter, the task refers to the aim of 

learning the offsets required to compensate the errors the robot naturally does when 

reaches positions in the Cartesian space due to uncertainties in the model. The goal here 

is therefore to design a procedure that allows enforcing a certain level of eye-hand 

 

                                                      
29 So as for the study on motionCUT the results presented for the eye-hand coordination are the 

outcome of a profitable teamwork conducted with Carlo Ciliberto. 
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coordination such that, whenever the robot reliably localizes the target in both the 

cameras mounted in the eyes, it is able to extract the information needed to guide the 

hand towards it. In this respect, the role of stereo vision has received an increasing 

attention in literature as reported in (Kagami, et al. 2003) and (Gaskett and Cheng 2003). 

Thus, it intuitively suffices to let somehow the robot build an internal mapping capable 

of linking the visual position of the hand within the image planes and the corresponding 

position in the operational space. Remarkably, the method is still not extended to the case 

of the hand orientations to keep the approach initially manageable and mostly because, 

unlike hand positions, the hand postures need pretty complex visual inference algorithms 

to be robustly acquired. 

The first duty is to define suitable input and output spaces within the given framework. 

 

 

 

Figure 5-13. The framework of learning reaching task. The head centered frame < HT > is 
visible. 

 

The Output Space 

Examining the output space, one possibility suggested in literature and widely 

employed by studies in developmental robotics aims at coding the limb configuration 
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achieving the task in terms of its joints encoders. On one side, it undoubtedly evokes the 

least structured set of variables to describe a point in the output space, in the sense that it 

does not resort to any theoretical description axiomatically plugged into the architecture, 

as for instance the DH-based forward kinematic law30

Therefore, to cope with the two aforementioned weaknesses, it has been decided to rely 

on the three positional coordinates of the end-effector expressed in the Cartesian space to 

span the whole output domain. To achieve that, the forward kinematic map provided by 

the iKin library has to be necessarily exploited, contrasting thereby with the lessons 

somehow currently accepted in developmental approaches (Metta, Sandini and Konczak 

1999) that rather tend to reject the a priori knowledge of the forward law in favor of its 

online estimation (Nori, Natale, et al. 2007). However, this model-based “backbone” 

layer addresses again the need to comply with stringent reliability and performance 

criteria, guaranteeing an intrinsically more robust design from an engineering standpoint 

and ensuring at the same time the possibility to perform learning at higher stage. 

. On the other side, though, it 

exhibits two major practical shortcomings: (1) it exposes the system to the ill-posed 

inverse kinematics problem that entails multiple output configurations for a single input 

point so that it may frequently happen that points close in norm in the input space will 

correspond to configurations dramatically distant in the output domain, causing the 

learning to strive and eventually fail; (2) further, depending on the number of degrees of 

freedom used for reaching, the dimensionality of the output space can become inherently 

high (e.g. up to 10 if torso is employed) and, as consequence, the convergence time of the 

learning algorithms can increase exponentially. 

 

The Input Space 

Once the output space is given, defining the input space turns to be straightforward. In 

fact, in order to uniquely relate the position of the end-effector in the stereo camera 

                                                      
30 This necessity is motivated by the inspiration that developmental robotics dominantly inherits 

from the physiological findings in primates and humans. 
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planes (i.e.  ,l lu v for left camera and  ,r ru v for right camera) with its position in the 

Cartesian domain it is necessary and sufficient to augment the visual information with the 

current robot configuration including all the joints variables that serve to describe how the 

camera planes are oriented with respect to the frame adopted as reference. This detail 

clearly highlights the importance of selecting a suitable base frame that brings about the 

lowest number of independent variables; thus, the most obvious preference for the 

conventional fixed frame attached to the robot’s waist – namely < 0T > – is probably not 

the recommended solution, since it comprises the entire set of joints of the torso (3 

joints), the head (3 joints) and the eyes parts (3 joints), that corresponds to an input space 

of dimension 13, where 4 components out of 13, as said, are due to the visual cues. 

Conversely, it turns out beneficial considering in lieu of < 0T > the frame < HT > 

attached to the head at the middle point of the baseline connecting the two eyes (Figure 

5-13). The primary justification is that taking < HT > as reference allows being concerned 

with only the actual values of the eyes encoders (i.e. tilt, pan, vergence) as meaningful 

quantities that determine the orientation of both cameras in < HT >, boiling down the 

overall number of independent input variables from 13 to 7. Besides, it also holds that 

generating in < HT > random 3D points to be probed by the hand grants a boost to the 

exploration because the learning process is speeded up compared to the case where the 

target points are given in < 0T >. This expedient substantially reduces the chance that 

novel data will lie in regions of the input space that were already covered. 

To sum up, having defined the input and the output space, the mapM to be learnt is the 

following: 

 

   , , , , , , , , ,l l r r s gH
x y z M u v u v V V   (5.8) 

 

where   4, , ,l l r ru v u v    represent the visual input gathering the position of the hand 

within the stereo cameras, whereas   3, ,s gV V   accounts for the proprioceptive part 

of the input designating the tilt, the pan and the vergence of the eyes; finally, 

  3, ,x y z   is the Cartesian position of the hand we want to learn as expressed in the 
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head centered frame. 

 

The Method 

With these premises, the approach we applied for learning the eye-hand coordination 

map consists of two distinct phases: (1) one exploration stage that is devoted to the data 

acquisition, (2) a second off-line procedure that employs a standard Levenberg-Marquardt 

algorithm (Hagan and Menhaj 1999) to train a feed-forward neural network. 

 

 

Figure 5-14. The data acquisition stage. L1 and R1 pictures report a typical acquisition of 
the same scene performed by motionCUT on the left and the right camera respectively: the 
actual position errors driving the Gaze controller and computed between the current hand 
centroids (blue circles) and the images centers are shown with red lines. L2 and R2 contain 

the epoch plot elucidating the history of input points used then in the off-line learning. 

 

Bearing in mind that we avoid relying on markers for the hand detection, the data 

acquisition makes centrally use of the motionCUT device by virtue of its ability to be 

robust against the disruption of the optical flow caused by the egomotion which 

pervasively floods the scene since the robot is instructed to move its head continuously 

while tracking the hand. 
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Hence, for each epoch of the logging phase, a 3D point is randomly picked up in the 

head centered frame < HT > and then used as target to command a reaching with the 

Cartesian controller31

Meantime, as sketched in 

. While reaching, the wrist is steered constantly back and forth in 

order to amplify the motion cue induced in the optical flow. Once the robot is in position 

with its arm, it keeps waving the hand until the gaze has approached it.  

Figure 5-14, the induced independent motion of the hand is 

captured by the motionCUT modules that process the incoming image streams acquired 

through the cameras to then transmit the identified blobs centroids to the Gaze controller. 

The robot gaze is thus handled in a stereo closed-loop fashion as described in Chapter 3 

in order to converge to the state where the projections of the end-effector centroid are 

situated in the close proximity of the centers of the two image planes. 

Throughout the complete trajectory traced by the hand in the operational space as well 

as by the blobs centroids in the images, it is typically possible to collect online for each 

epoch about a hundred of data couples ,i iI O , where  , , , , , ,
ii

l l r r s gI u v u v V V  is 

the input and  , ,
iiO x y z is the output of the map at recording instanti . 

The training phase is carried out off-line by mean of MATLABTM

 ,I O

 Neural Network 

Toolbox and runs on a feed-forward neural network with 7 nodes in the linear input layer, 

50 nodes for the hidden layer implemented with the ordinary hyperbolic tangent function 

and 3 nodes in the linear output layer: an overall number of 15000 samples of 

pairs has been employed for training and validation, whereas 5000 samples have been 

used for test. 

As reported in Figure 5-15, the neural network provides a very attractive estimation of 

the real underlying map. Notably, as expected, thez component results to be the most 

affected by noise since it accounts principally for the distance of the hand from the head, 

a value that is not directly elicited from the visual signals but rather implicitly deduced by 

the disparity between the two eyes views. The inspection of the very small mean and the 

                                                      
31 The Cartesian controller works by default with target given in < 0T >: anyways, knowing the 

kinematic relations among limbs the conversion from < HT > to < 0T > is immediate. 
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standard deviation error in Table 5-1 supports once more the quality of the net prediction. 

 

Figure 5-15. The desired target (dashed red) and the corresponding outputs of the neural 
network (green) for the three Cartesian coordinates in the head centered frame < HT >. 

 

   [m]   [m] 

x  -0.00031 0.0055 

y  0.00034 0.0056 

z  0.00084 0.0194 
Table 5-1. The mean and standard deviation error for the three Cartesian components in the 

head centered frame. 

 

To obtain a rough measure of the goodness of the neural map from a more theoretical 

point of view, it might be convenient to compare the results of the learnt map with the 

response of a parametric model fitted with the same recorded data used for the training of 

the network.  

To this end, let us consider the simplest conditions where the robot is fixating straight 
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at the hand at the conclusion of each epoch, over increasing distances from the head; thus, 

the visual stimuli  , ,,l r l ru v  the tilt   together with pan sV of the eyes remain always 

constant, and specifically , ,160, 120l r l ru v   for a 320 240  image size and 

0sV   degrees. Only the vergence gV varies according to the distance eyez from 

the target.  

Mathematically, the following model relating the two latter quantities holds at first 

order of approximation: 

 

eye cot ,
2 2

gVb
z

      
 (5.9) 

 

whereb represents the length of the baseline between the two eyes. In addition to the 

baseline length, the model can be augmented with a second parameter accounting for an 

unknown offset and then tuned on the basis of the logged data. 

 

 

Figure 5-16. Comparison between the responses of the physical model (dashed red) and the 
prediction of the neural map (blue) when the target is in fovea and the robot straightly gazes 

at it. 
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Figure 5-16 shows the good resulting correspondence between the physical model and 

the prediction of the network within the range where the net was trained. 

 

Experiments that take advantage of such map recruiting a visuo-motor reaching 

functionality are still ongoing but already provide promising yet preliminary results. The 

iCub indeed is able to determine the 3D position of any object presented to it and waved 

in order to generate motion that in turn is captured by motionCUT: the robust motion cues 

permit to discard the visual features that refer to the appearance of the object (e.g. colors, 

corners, size, etc) and that are generally difficult to be detected in different environmental 

conditions; as result, it happens that the robot can touch the target in the majority of the 

cases. 

As concluding remark, it is relevant to outline here that an upcoming activity has been 

planned with the purpose to replace the off-line training phase with a fully online version 

that resorts to random features as in (Gijsberts and Metta 2011) and will eventually make 

the robot learn the eye-hand coordination completely autonomously. 
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6.1     Introduction 

The performances of the Cartesian controller designed in Chapter 2 are somehow 

limited in terms of reactivity by the fact that the regulator responsible for the generation 

of velocity commands has to be placed at high-level in the system architecture (i.e. in the 

cluster or aboard the robot hub) and needs to run in a closed loop fashion reading the 

actual joints values in order to compensate for external disturbances and discrepancies in 

the kinematic model. Therefore the control loop is handled in near real-time (~ 10 ms) 

and to avoid unwanted overshoots while converging to the target, the controller’s 

parameter T specifying the point-to-point movement time cannot be set under a minimum 

threshold of approximately 0.5 s (this values is affected by some variability depending on 

the task); this fact that induces an obvious restriction in how fast movements can be 

reproduced. 

Nonetheless the limiting factor of near real-time conditions is not easily solvable by 

resorting merely to the Cartesian controller as it is designed due to two basic reasons: (1) 

it is impracticable to make the controller run aboard the low-level boards where the hard 

real-time is available because the DSPs are not powerful enough to accomplish the 

required kinematic computations and moreover the embedded boards are local to the 

motors they control, whereas a central unit managing the motion of the whole structure as 

well as the motion of the end-effector is a mandatory prerequisite; (2) the velocity control 

paradigm adopted by the central regulator imposes itself the constraint on the overall 

performance and cannot be superseded in favor of a pure position control method, since 

CHAPTER 6  
TRAJECTORY ENCODING: TOWARDS HIGH-

LEVEL FEED-FORWARD CONTROL 
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the position-based commands are executed at low-level as minimum-jerk trajectories that 

do not suffice to describe all the possible joint profiles required for human-like 

movements in the operational space. 

A remedy to address the need for increasing controller’s performance is to envisage 

and develop a method which allows reproducing a much richer set of joint reference 

trajectories (not only minimum-jerk), by representing them within appropriate functional 

bases in order to eventually make the low-level position control usable; the final goal is 

thus to set the high-level controllers free from the constraint of closed loop by exploiting 

the fast reactivity of a feed-forward model whose inaccuracies can be in turn corrected by 

local DPSs controllers. 

An inquiry has been conducted on techniques available from literature that enable to 

suitably code an arbitrary profile as a collection of coefficients. The investigation and 

assessment of these techniques in terms of number of required encoding coefficients 

computed for specific bio-mimetic trajectories as well as the quality of approximation is 

the objective of this chapter as detailed in the following. 

 

6.2     Identification of Functions Basis for Trajectory Encoding 

In a framework where the function to be coded  F t is sampled at discrete time 

instants it it is worth introducing the measure relE in order to estimate how good the final 

encoded representation  F t  describes the original profile: 

 

    

 

2

1
rel

2

1

.

M

i i
i

M

i
i

F t F t

E

F t













 (6.1) 

 

This measure will be usefully employed in section 6.3 to carry out comparison tests 

over the candidate methods that have been identified and reported hereafter. 
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1. Cubic Splines 

This is a well-established approach easy to be implemented which describes a generic 

curve in terms of piecewise third-order polynomials. 

If the entire time period T of the trajectory is partioned inN intervals, then for each 

interval 1, ,k NI  

the approximation is locally given by: 

 

 
 

3 2 ,
.

0,

k k k k k k

k k

f t a t b t c t d t I

f t t I

       

 (6.2) 

 

The unified encoded trajectory is thus represented by: 

 

   
1

.
N

N k
k

F t f t






 (6.3) 

 

The coefficients  , , ,k k k ka b c d are determined so that the values of piecewise 

polynomials kf match exactly the samples of trajectories (knots) at the boundaries between 

intervals and also to establish a condition of smoothness on the final approximation by 

preserving the continuity of its first derivative along the whole period 0,T   . Moreover, 

it is possible to specify that the first derivative is zero in 0t   and t T which are 

reasonable starting and ending conditions since the movements we aim to code are 

supposed to start from and come to the rest state. 

Clearly the number of resulting coefficients required to code any generic profile given 

the number N of intervals is equal to4N . Conversely, given a particular merit *
relE that 

the representation  F t is requested to achieve, an iterative process can take place 

starting from low values of N that entail course representations and then increasing step 

by step the number of intervals up to the point where the resulting relE attains the target. 

The same iterative procedure applies also to the other methods described in the 

following. 
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Figure 6-1. Example of encoding an arbitrary trajectory (red) with cubic-spline 
approximation (black). The two intervals used to create the piecewise third order 

polynomials, corresponding to 8 coefficients in total, are visible in the picture. Erel is 6.1·10-5

 

. 

2. Bio-Mimetic Nonlinear Differential Systems 

The properties of two second-order nonlinear coupled systems (Ijspeert, Nakanishi and 

Schaal, Movement Imitation with Nonlinear Dynamical Systems in Humanoid Robots 

2002) of reproducing a human-like trajectory are here exploited. The proposed control 

policies (CPs) are capable of learning any arbitrary demonstration through a set of N  

parametric Gaussians trained with a locally weighted regression technique. 

In particular, a control policy is defined by the following  ,z y dynamics which 

specifies the attractor landscape of the policy for a trajectory y − that is the encoded 

representationF − towards a goal  g F T : 

 

  
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 (6.4) 
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This is basically a simple second-order system with the exception that its velocity is 

modified by a nonlinear term which depends on internal states. These two internal states 

 ,v x have in turn the following second-order linear dynamics32

 

: 

  
.

v vv g x v

x v

     





 (6.5) 

 

Figure 6-2. An arbitrary trajectory (red) is encoded resorting to Gaussian kernels. The 
encoded representation is depicted in black in the upper diagram; further, the evolution of 

the coupled dynamical systems is shown in both graphs. A number of 8 kernels i iw    
shown in dashed lines in the top graph are employed for a resulting Erel of 3·10-5

 

. 

The system is further determined by the positive constants , , ,v z v    and z and by a 

set of N Gaussian kernel functions i  

 

                                                      
32 It is straightforward to recognize that the quantitiesz andv are regulated by a VITE-like 

dynamic. 
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 2
2

1
exp ,

2
i i

i

x c


        
 (6.6) 

 

where    0 0x x x g x   and 0x is the value ofx at the beginning of the 

trajectory, i.e.  0F . As anticipated, the attractor landscape of the policy can be 

adjusted in order to represent the path  F t to be coded by learning the parameters iw

using locally weighted regression (Schaal and Atkenson 1998). Note that this dynamical 

system has a unique equilibrium point at   , , , 0, , 0,z y v x g g , and has been proven 

to be stable and robust against perturbations. 

Figure 6-2 shows how the Gaussian kernels perform function encoding; interestingly 

for a preliminary comparison, the function to be coded is the same as Figure 6-1. 

 

3. Jacobi polynomials 

The trajectories are represented by a uniquely-defined sequence of expansion 

coefficients within a proper basis of square-integrable function space made of the so-

called Jacobi polynomials (Biess, Nagurka and Flash 2006). Thanks to the orthogonality 

property of this special basis the coefficients computation turn out to be straightforward 

and do not need any training stage, unlike the Gaussian kernels approach. 

In formulas, the expression for the representation  F t  is: 

 

 

     
2 1

0 0

,
m N

mk
k k k

k k

F p c   


 

    (6.7) 

 

where, being t T   the normalized time, the first term of the sum is a polynomial 

used to verify the  2 1m  inhomogeneous conditions at the boundaries of the interval 

0,T    on  F t  and its  1m  derivatives – and we employ herein the minimum-jerk 

polynomial – whereas the N  Jacobi polynomials  m
k satisfy the homogeneous 

boundary conditions. 
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It holds: 
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  (6.8) 

 

with Gamma function  . 

 

 

Figure 6-3. Encoding of arbitrary function (red) achieved through Jacobi polynomials based 
on a minimum-jerk realization (green) for satisfying inhomogeneous boundary conditions; 
the final encoded representation is displayed in black. Two expansion coefficients are used 

for a merit Erel of 7.4·10-5
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inherits from the fact that it is the standard coding method used at low-level by DSPs. 

As it is evident, the computation of  m
k entails a large number of operations; on the 

other hand, theN expansion coefficients of the representation are simply provided by 

integration: 

 

     
1 2 1

00

2 .
m

mi
k i k

i

c F p d    




       
  (6.9) 

 

To obtain the(6.9), it has been exploited the orthogonality property of the function 

basis, that is: 

 

       
1

,

0

1
,

2
m m

i ji j d        (6.10) 

 

being ,i j the Kronecker-delta. 

 

4. Multiresolution approximation with Wavelets 

Multiresolution (Mallat 1989) is a method to decompose any trajectory as a sum of an 

approximation and a detail signal at a given resolution by convolving the original curve 

with a basis built of special functions known as scaling functions or father wavelets 

which satisfy some useful properties such as orthogonality and similarity. Multiresolution 

can be seen as an extension of Fourier Transform since the normal sine and cosine kernel 

functions are replaced with a highly spatial-localized set of wavelets, resulting in a more 

effective representation in terms of number of parameters. 

Essentially the Multiresolution approach makes use of linear operators 2jA that when 

applied to the function we want to encode  F t – belonging to the vector space of 

square-integrable one-dimensional functions  2L   – returns its approximation at 

resolution2j : 



 
 
 
 
 

CHAPTER 6 – TRAJECTORY ENCODING: TOWARDS HIGH-LEVEL FEED-FORWARD 
CONTROL 

 

125 
 

 

       2 2 2
2 2 2 ,j j j

j j j
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          (6.11) 

being  

 

       2 2
2 2  j j

j jF u u n F u u n du 


 



     (6.12) 

 

the inner product within the space  2L  evaluated in the point2 j n , that can be 

interpreted as an operation of  low-pass filtering followed by a uniform sampling at rate 

2 j . Therefore, as the expansion based on the Jacobi polynomials, the computation of 

wavelet coefficients is accomplished easily by integrating the original profile with copies 

of a single father wavelet  t properly scaled and translated in time. The father wavelet 

is chosen according to the specific application: in our case the Daubechies type 4 has 

been selected whose profile is shown in Figure 6-4. 

 

 

Figure 6-4. Representation of a function (red) in the wavelet vector space. In dashed lines the 
father wavelets properly scaled and translated to compose the final approximation (black) 

are visible. Five coefficients have been employed with a measure Erel of 8.8·10-5
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Provided the number of expansion coefficientsN to be used by the representation

   2jF t A F t   
 , the resolution is given by2j N . 

 
 

6.3     Function Basis Assessment 

In order to assess which among the aforementioned strategies turns to be the most 

suitable one in a real environment conditions, an experimental setup has been put in place 

based on the Vicon MX Motion Capture System (Figure 6-5) in order to acquire human 

trajectories during reaching tasks to be encoded using the methods under analysis. 

The recorded markers’ position profiles comprise both outward movements, that steer 

the arm far from the body, and inward movements, that drive the arm back to the rest 

position. 

 

 

 

Figure 6-5. A picture of the Vicon setup available at RBCS Department used for the 
experiments. 
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Ten markers to record human reaching movements have been attached to the arm of the 

subject as in Figure 6-6, whilst a snapshot of the acquired displacements is show in 

Figure 6-7and Figure 6-8. 

 

 

 

Figure 6-6. Location of the markers on the subject to record the arm reaching movements. 

 

Therefore three trials of the same reaching movement have been logged. 

The acquired human wrist position in the task space wristx  is then suitably scaled and 

projected within the iCub workspace in order to be used as the reference target position of 

the robot’s wrist in the following minimization problem:  

 

    
   

2 2
wrist wrist

1 2 3 4

argmin ;

with , , , , 0, 0, 0,1 ,

d
q

T T

q x K q w q q

q q q q q w

    

 
 (6.13) 

 

where 1 2,q q  and 3q are the three joint angles of the iCub shoulder, 4q is the iCub elbow 

joint angle, dq is the acquired elbow angle of the human trajectory and finally wristK is the 

forward kinematic map of the iCub wrist. 
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Figure 6-7. A sketch representing markers’ location at the onset of the trajectory as acquired 
through the Vicon system. 

 

Figure 6-8. The markers’ location as recorded in the ending configuration of the reaching 
phase. 

 

By solving (6.13) point by point with a nonlinear constrained optimizer the iCub joint 

angles trajectories are obtained, which can be finally encoded through the four algorithms 

whose results have been evaluated taking into account the following parameters: 
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1. Minimization of required encoding coefficients (the basis rank) in order to save 

low-level bus bandwidth. 

2. Grade of computational load aboard DSP in terms of number of additions and 

products and more complex operations such as exponential (where present). 

3. Ability to classify multiple trials  iF t and  jF t of the same reaching 

movement defined as the variance of the following quantity ,ijn i j  : 
 

    2
i j

ij

i j
T

c c
n

F t F t dt





 (6.14) 

where ic and jc are expansion coefficients – in the corresponding base – of  iF t and 

 jF t , respectively, whereas the denominator of (6.14) accounts for the distance of the 

realizations in  2L  space and serves to be able to compare results stemming from 

different strategies. 

The assessment index  var ijn is meant to convey somehow the capability of a 

specific function basis to reproduce profiles which are close in a given integrable measure 

– i.e. they do not change too much, such as the trials recorded in the reaching experiment 

– with the less variable set of coefficients. This interesting property could turn out to be 

beneficial in subsequent studies where such novel implementation of low-level motion 

generation could pave the way for applying machine learning algorithms that can be 

trained on a number of demonstrations and would be eventually capable of achieving a 

task just by combining basis functions properly. 

Hereafter are reported all the graphs that resume the values of the introduced 

parameters assumed for each of the four joints involved in the inward and outward 

reaching movements. Figure 6-9, Figure 6-10, Figure 6-11, and Figure 6-12 give a view 

on how the different techniques behave in terms of their minimum basis ranks required to 

attain a value of relE lower than 410 together with the computational burden that the 

DSPs have to sustain per real-time instance to decode the trajectory; Figure 6-13 depicts 

the quantity  var ijn  as it varies for each encoding algorithm on all the joints. 
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Figure 6-9. Behavior of basis ranks and computational costs for the outward and inward 
trials of joint 1q . 

 

 

Figure 6-10. Behavior of basis ranks and computational costs for the outward and inward 
trials of joint 2q . 

Trial 1 Trial 2 Trial 3
0

5

10

15

20

25

30
Basis rank for Erel = 0.0001

Sum Product Exp
0

10

20

30

40

50
Computational cost per RT instance

Trial 1 Trial 2 Trial 3
0

10

20

30

40

 

 

Sum Product Exp
0

20

40

60

80

Jacobi
Wavelet
Gaussian
Spline

Outward
movement

Inward
movement

q1

Trial 1 Trial 2 Trial 3
0

5

10

15

20

25

30
Basis rank for Erel = 0.0001

Sum Product Exp
0

20

40

60

80
Computational cost per RT instance

Trial 1 Trial 2 Trial 3
0

10

20

30

40

 

 

Sum Product Exp
0

20

40

60

80

Jacobi
Wavelet
Gaussian
Spline

Outward
movement

Inward
movement

q2



 
 
 
 
 

CHAPTER 6 – TRAJECTORY ENCODING: TOWARDS HIGH-LEVEL FEED-FORWARD 
CONTROL 

 

131 
 

 

Figure 6-11. Behavior of basis ranks and computational costs for the outward and inward 
trials of joint 3q . 

 

 

Figure 6-12. Behavior of basis ranks and computational costs for the outward and inward 
trials of joint 4q . 
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Figure 6-13. Behavior of the  ijvar n measure expressed in logarithmic scale. 

 

From the results shown in the previous pictures it can be derived that the 

Multiresolution representation based on the wavelets expansion turn to be the most 

effective way of encoding joint trajectories generated by human-like reaching movements 

since the number of needed vector components is comparable to one of Jacobi expansion 

but with the substantial benefit that a much smaller computational effort is required per 

real-time instance aboard DSPs. 

Concerning the trials classification ability, Jacobi polynomials clearly outperforms 

remaining approaches, but the wavelet-based strategy still remains appealing as its 

variance approaches the Jacobi baseline, being superior with respect the splines and 

Gaussian kernels. 

Table 6-1 details a summary of the pros and cons for each evaluated strategy. 

 

6.4     Model Development 

As outcome of the evaluation stage it has been decided to develop the DSP firmware 

implementing the new wavelets-based trajectory generator exploiting the powerful feature 
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of Real Time Workshop Embedded Coder MATLAB toolbox to automatically produce C 

code from a Simulink model of the generator itself, which is surely easier to design and 

already to test under several working conditions. 

A sketch of the model as it appears from within the designing environment is shown in 

Figure 6-14: the model is capable of generating four independent trajectories as foreseen 

by the control board, each consisting of the modules detailed hereafter. 

 

 

Method Benefits Drawbacks 

Splines 
Fast coefficients identification; 

Light computational load. 

4 parameters/interval needed; 

5÷6 intervals for 4
rel 10E  ; 

Non-autonomous movement 

representation. 

Gaussian kernels 
No time indexing; 

Protection against over-fitting; 

Exponentials aboard DSPs; 

Targetg reached at infinite 

time; 

Critical tuning of parameters; 

Required derivative of  F t ; 

Regression is required. 

Jacobi polynomials 

Easy coefficients computation; 

Small number of coefficients; 

Increasing orderN does not 

affect coefficients for 1N  . 

Heavy computational load 

aboard DSPs. 

Wavelet 

Easy coefficients computation; 

Small number of coefficients; 

Light computational load; 

Final position is attained with 

non-null error (very small). 

Table 6-1. Summary of pros and cons for the assessed encoding strategies. 
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Figure 6-14. Sketch of the model for trajectory decoding aboard DSPs as designed within 
Simulink environment. 

 

The input latching module 

This module latches all the model inputs (coefficients, required resolution, joint angle 

final position, movement’s duration, trigger and abort commands, and mode selectors). 

The purpose is to prevent the user from changing inputs while trajectory is being 

produced without having properly notified it through the trigger command. 

 

The trajectory computing module 

This module computes the actual trajectory based on the coefficients vector provided 

by the user just combining them in a proper entry point to a look-up table which 

interpolates the basic father wavelet function (Daubechies type 4 is used). 

 

The smooth-joining module 

This module is in charge of computing a smooth joining between the current trajectory 
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and a new one in case the latter is commanded before the former has ended. This smooth 

transition is needed to avoid discontinuities in velocity and it is implemented through a 

third order interpolating polynomial which is applied for a time duration depending on the 

difference between the slopes of the two curves at the intersection point in order to 

preserve the value of the first derivatives. On top of this joining strategy a further level to 

improve the smoothness is provided by applying the following formula: 
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 

 

 (6.15) 

 

where  x t is the resulting joined trajectory,  1x t is the still on-going commanded 

trajectory,  2x t is the new commanded trajectory,  p t is the third order polynomial as 

specified by the first smoothing strategy and  t is a time varying parameter which 

further shapes the output, depending on the overall time duration of the smooth transition

1 , being the normalized timet T , with 1T equal to switching instant andT equal to 

the total movement time duration. Note that the expression for  x t is obviously valid 

only for 1  . 
In Figure 6-15 the behavior of the model is shown for a condition in which a new 

trajectory is commanded (time instant 2 2 st  ) while the generation of an already 

commanded trajectory is still on-going. The effect of the trajectory harmonizer is evident 

(the red curve in the plot), being capable of preserving the first derivative at the new 

trigger instant and moreover to steer the final trajectory towards the newest one in a really 

short time. 
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The output module 

This module is ultimately responsible for the generated output, providing to limit its 

rate within a given set of constraints as well as to produce the integral waveform of the 

trajectory according to the state of a mode selector, whenever this quantity is required, 

e.g. in velocity control mode. 

 

Finally the C code has been straightforward produced by the toolbox properly 

configured in order to target the DSP mounted on the control board (Freescale 56F807). It 

shall be pointed out that in this fast-prototyping stage the powerful feature of automatic 

fixed-point code production, which is a huge time demanding issue for a hand-written 

code, has been extensively exploited. 

The resulting code has been integrated successfully with a small effort within the pre-

existing firmware and it is currently under test. 

 

 

Figure 6-15. How the system harmonizes the first trajectory started at t=1 s in blue with the 
second trajectory in green started at t=2 s when the former has not finished yet: the result of 

the joining strategy is visible in red. 
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The three years study resumed in this thesis work concerned the realization of two 

central components acting in the operational space of the robot in a bio-mimetic fashion: 

one devoted to the control of the arms for reaching tasks, a second to let the robot gazes at 

a point as provided for example by the attention system. We have seen how the main 

specifications that oriented the design were the robustness and the performance 

requirements of the response and the portability of the architecture to robotic platforms 

different from the iCub, along with its scalability with respect to the number of degrees of 

freedom. The choice of a combined structure composed of a nonlinear real-time optimizer 

coupled with a minimum-jerk controller has been demonstrated to outperform classical 

approaches resorting to gradient projected method and damped least-squares solutions of 

the inverse kinematic problem. 

It has been then confirmed how having a solid layer for coping with the motor control 

turns to be significantly beneficial for the adaption to uncertainties that are not foreseen 

by the model: a paradigm that definitely suggests to exploit as much as possible the 

acquired knowledge of the system by virtue of the wide set of well-established “old 

fashion” policies available from literature guaranteeing the performance achievements, 

whereas the resort to machine learning techniques has to be pursued in order to 

compensate for the unknown quantities that naturally emerge from the interaction of the 

robot with the environment. Preliminary yet very appealing results of this approach that 

blends modeling with learning are reported for the cases of reaching offsets compensation 

and robot eye-hand markerless coordination. Thus, in the same direction some additional 

efforts would be required in the near future to improve the grade of errors compensation 

in visuo-haptic tasks. One meaningful example of such kind of research would be the 

autonomous learning of a stereo gaze map that allows building online a look-up table 

containing the 3D positions of the target once its projections on both the camera image 
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planes are given: providing an accurate feed-forward prediction of the learnt saccades on 

the basis of a feedback oriented exploration, the map will certainly permit to replace the 

stereo method described in Chapter 3 which exhibits slow converging time due to the 

need of acquiring the feedback signal. Furthermore, the learning of robot eye-hand 

coordination definitely requires to be carried out online in an autonomous fashion, by 

employing incremental algorithms such as random features or support vector machines 

for regression. 

Regarding the wavelet-based trajectory encoding treated in the last chapter, the activity 

will continue with extensive tests of the production code aboard the real platform along 

with the development of a new communication protocol that would enable to deliver the 

encoding parameters from the high-level controllers to the firmware level coping with 

real-time aspects, regarding especially the synchronization issue that stems from the 

intrinsic nature of a distributed system. The most important benefit of this major overhaul 

of the motor control layer is the possibility to execute an arbitrarily complex movement in 

the Cartesian space relying on a completely feed-forward approach that turns to be much 

faster if compared to the closed-loop case since it is not constrained by the rate of the 

feedback readings. In fact, as explained in Chapter 6, the wavelet encoding allows 

delegating the trajectory execution to the low-level position control instead of resorting to 

the high-level velocity control as it is presently done. Besides, such novel implementation 

that describes a movement in terms of coefficients in a given base will also pave the way 

for applying machine learning algorithms that can be trained on a number of 

demonstrations and would be eventually capable of achieving a task just by combining 

wavelets functions properly.  
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