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Abstract

Artificial intelligence has been recently revamped largely because of deep learning methods.
Computational vision, specifically object recognition, is the first and perhaps the most clear
example where deep learning allowed for unprecedented improvement, reporting ground
breaking performances in multiple applications.

Robotics is a main field where the benefits of such progress could be dramatic, since
the lack of reliable visual recognition systems is largely considered a major bottle neck for
the deployment of robots in everyday life. Indeed, the problem of visual recognition poses
remarkable issues, particularly related to real world scenarios [Pinto et al., 2008], which are not
easy to tackle in robotic settings. However, deep learning methods did boost the performance
levels of artificial systems, such that realizing working solutions for real applications has
lately become a feasible goal and there are already promising results. But how close are we
to “solving” the problem? What are the major benefits of employing deep learning for robot
vision and how can we best leverage them? Are there limitations to this approach, originating
new challenges?

To address such questions, in this work we considered a prototypical robotic scenario,
where a humanoid robot is taught to recognize different objects by a human through natural
interaction. This scenario is representative of several robot vision contexts and is significantly
different from classical web-scale image classification problems in that, firstly, there is a
reasonably restricted number of objects/categories to discriminate. On the other hand, these are
unknown beforehand and the robot is required to learn them from limited examples. Secondly,
objects must be recognized reliably in unpredictable configurations and often under wide visual
nuisances, which are underrepresented in most computer vision and robotics datasets. We
investigated therefore how current deep learning systems, namely deep Convolutional Neural
Networks (CNNs), can be best adapted to tackle this scenario.

To this end, we designed a semi-controlled acquisition setting and collected image datasets
by recording the robot’s view while observing objects shown by the human. The latest of
these benchmarks is large in terms of number of objects and categories, and is also segmented
into multiple sets of image sequences, representing specific visual transformations like scale,
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rotations, and so forth. It provides a unique combination that, to our knowledge, was missing
in the literature, allowing for articulated analyses of the invariance and robustness properties
of recognition systems within the real world visual experience of a robot.

Provided with a rich and challenging data collection, we performed an extensive evalua-
tion of latest CNN models, simulating increasingly more difficult object categorization and
identification tasks, by varying the number of example instances and views, and testing under
different conditions. Moreover, we leveraged the structure of our novel dataset to quantify
the effects of the presence of specific viewpoint transformations when training and testing
CNNs. Notably, this study led us to identify a strategy to improve the invariance properties of
the internal representations of CNN models to such transformations. Indeed, by feeding the
obtained robust representations to standard classifiers, we could achieve remarkable results
in challenging object identification tasks using very few example images. Along the way, we
also extended the proposed recognition pipeline to include incrementally a growing number of
examples, possibly learning new classes, by updating the classifier in constant time, instead of
re-training from scratch.

Overall, this study confirms a huge impact of deep learning on robot vision contexts,
while measuring the gap with large-scale web domains. We could devise a fast, reliable and
adaptive recognition system, based on invariant deep representations and efficient classifiers,
that incredibly boosted the recognition capabilities of two real robotic platforms: the iCub and
R1 humanoids. Indeed, by exploiting the proposed pipeline, it is now possible to effectively
and quickly teach a high number of novel objects to the robots “on the fly”, in the considered
human-robot interaction scenario. Finally, our analysis also points at specific open challenges
that need to be addressed for seamless deployment in real world robotic applications.
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Chapter 1

Introduction

In this Chapter, we introduce the problem of visual recognition and its relevance to robotics
(Sec. 1.1 and Sec. 1.2). We then consider the main differences between typical computer
vision settings and robotic domains, by reviewing the main approaches adopted in both fields
to address this problem (Sec. 1.3).

We conclude by motivating this work in light of recent advances in machine learning and
providing a short overview of the contributions of this Thesis (Sec. 1.4). Finally, Sec. 1.5
outlines the content of following Chapters and Sec. 1.6 provides a list of publications where
the works described in this Thesis originally appeared.

1.1 Towards Autonomous Humanoids

Over the last decades there has been a progressive shift in robotic systems. From industrial
robots, supposed to operate in protected and fixed environments like production sites, repeating
a limited set of tasks with very high precision and accuracy, we are moving towards service
robots, that are expected to act in unconstrained environments and interact with people in
everyday life. In this respect, there has been an increasing research interest in cognitive robotics
and in the realization of platforms that are in principle able to learn and perform a wide range
of tasks, rather than being specifically designed for a single specific purpose.

Within this perspective, perception and in particular vision is progressively playing a
fundamental role in robotics. Indeed, the majority of tasks, as navigation, reaching for objects,
grasping, manipulation, interaction with other agents, critically depends on the ability to
visually localize and recognize in the scene the entities involved. Unfortunately, these are
extremely complex tasks to be performed in real world scenarios. As a consequence, the
difficulty of providing machines with reliable visual skills is largely considered a main bottle

1
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Figure 1.1: Future scenario: the R1 robot collaborating with people in a work or home
environment.

neck towards the deployment of autonomous agents for concrete applications [Kemp et al.,
2007, Corke, 2011].

Specifically, replicating humans’ accurate, robust and quickly learnable visual recognition
capabilities has always represented a great challenge. Indeed, as it will be described in detail in
next Chapters, visually recognizing objects and entities poses remarkable issues, particularly
related to the real world context [Pinto et al., 2008], which are not easy to tackle in robotic
settings. In this regard, in Sec. 1.3 we will briefly review how this problem has historically
been investigated in the computer vision and robotics literature, through an undeniable progress
over the last decades that, nevertheless, did not manage to provide sufficiently performing
systems as such to be exploited by robot agents to plan their actions.

The recent breakthrough of deep learning methods, on the other hand, is revolutionizing
the approach to visual recognition problems, reporting stunning results in multiple applications.
These methods incredibly boosted the performance levels and the expectations that we have
from artificial systems, such that realizing working solutions for usage in robotics has lately
become a feasible goal. But to which extent can we consider the visual recognition problem
“solved”? What are the major benefits of employing deep learning in robotics and how to
leverage them in order to realize the foreseen scenario in the near future? Are there critical
limitations to the deep learning approach, originating new challenges?

As we will discuss in Sec. 1.4, this Thesis addresses these questions with an in-depth
analysis of the performance of deep learning architectures in typical robotic settings, with the
long-term motivation of providing humanoid robots with autonomous visual recognition skills
for deployment in real world applications. Towards this end, as a short-term goal, our analysis
led us to devise effective solutions to compose a reliable, fast and adaptive visual recognition
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Figure 1.2: Snapshots from the ON THE FLY RECOGNITION demo developed within the
Thesis. The robot is able to quickly learn the appearance of novel objects through a natural
interaction with humans, recognizing them reliably in unconstrained environments. Details on
the demo are provided in Chapter 9; (Left) GPU Technology Conference, Amsterdam; (Right)
Maiker Faire, Rome.

system that allows robots to learn to recognize objects “on the fly”, by interacting with humans
in a natural unconstrained setting. Indeed, as we will see in Chapter 9, the works part of
this Thesis have been developed on two humanoid robots, namely the iCub research platform
and R1, prototype of general-purpose assistant (represented in Fig. 1.1), whose recognition
capabilities have been remarkably advanced thanks to the proposed contributions (see Fig. 1.2).

1.2 The Problem of Visual Recognition

In this Section we introduce the visual recognition problems addressed in the Thesis, by
framing them into a brief computational neuroscience and computer vision background.

What and Where. The phenomenon of visual perception in humans involves several elabora-
tion phases taking place in different anatomical parts, starting from the eyes up to multiple
cortical areas, with the final goal of extracting meaningful information from the light imping-
ing photoreceptors in the retina. Early studies on primates [Schneider, 1969, Mishkin et al.,
1983, Desimone and Ungerleider, 1989] and humans [Ungerleider and Haxby, 1994] suggested
that the two tasks of recognition and localization are carried on through two separate cortical
pathways, branching off from a common elaboration stage at the level of the primary and sec-
ondary visual cortexes. After a first low-level processing, often called early vision, the visual
signal is projected to (i) the parietal pathway, or “Where”, dorsal stream, that elaborates the
information necessary to the localization of visual stimuli, and to (ii) the temporal pathway, or
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Figure 1.3: What and Where cortical pathways, mainly dedicated to, respectively, recognize
and localize elements in the visual scene. Image from a.

a
http://www.uwosh.edu/departments/psychology/Vreven/Lab/Images/brain.jpg

What? Where?

Object 
Identification

Object 
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Jane Person

RECOGNITION

Figure 1.4: Overview of the main visual tasks comprising visual recognition and localization
of objects in images.

“What”, ventral stream, which instead extracts the information needed to stimuli identification
(see Fig. 1.3). Recently, more attention has been paid to possible interactions between the
dorsal and ventral streams [Cloutman, 2013, van Polanen and Davare, 2015]. Nevertheless, the
dual-stream theory is today well accepted, many computational vision models, addressing the
recognition task independently from localization, have been proposed (see, e.g. [Riesenhuber
and Poggio, 1999, Serre et al., 2007, Mutch and Lowe, 2008]), and there is evidence that two
tasks can be solved separately [Milner and Goodale, 2006].

1.2.1 Short “Taxonomy” of Visual Tasks

Accordingly with biology, the common “taxonomy” of visual tasks in computer and machine
vision distinguishes between solving only recognition or also localization of elements (see
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Fig. 1.4). In this setting, the visual input is actually an image, a matrix of pixels produced by
some digital camera, like the ones mounted on the iCub or R1 humanoids (for details on the
robot platforms see Sec. 9.1).

Object Recognition. Object recognition is usually referred to as the operation of assigning a
(semantic) label to an element depicted in an image. Under the assumption that a predominant
part of the image is occupied by a single entity or object, the full image can be associated with
a single label and no spatial information is needed (Fig. 1.4, Left). Often this task is also called
image – or object – classification.

Object recognition consists in two fundamental tasks. The first one is the recognition ob-
jects that are known, when these are presented in “new” conditions (e.g., under a different light,
viewpoint, or in a different context, etc.). This is usually referred to as object identification,
or instance recognition. Another recognition task is instead object categorization; this is the
ability to learn the general appearance common to all objects belonging to a specific category,
and to associate the correct category label once a new, unseen, object instance belonging to it,
is presented. Identification and categorization capabilities are fundamental for humans and
robots and in this Thesis we will consider both.

Object Localization. In case the object occupies a small portion of an image, or there are
multiple objects in the image, it becomes necessary to specify the spatial region within the
image the recognition label refers to. It is therefore required to solve also a localization task
(Fig. 1.4, Right). There are different flavours of object localization, providing coarser to finer
information about objects’ occupancy in the image. It is possible for example to just specify a
rectangular region (or bounding box) enclosing the recognized object, or to more precisely
trace its shape. The first task is usually referred to as object localization or detection, depending
on whether a single or multiple objects are to be (recognized and) localized in an image. The
second task instead is called object segmentation or also image/scene parsing. See Fig. 1.4 for
a pictorial of the different tasks.

Localizing and Recognizing Objects in Images. In practice, apart from ad hoc computer
vision datasets, images always contain more than a single object and position information is
always required, particularly when dealing with visual data recorded from robotic cameras.
Indeed, incoming frames in this case represent wide scenes, where objects must be localized
before they can be recognized . Taking inspiration from bottom-up and top-down mechanisms
through which humans visually attend specific elements in the visual field [Itti, 2000], we can
identify two approaches to localize and recognize objects in images.
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The most common and largely adopted strategy is to first extract from an image one
or more “salient” regions, i.e., candidate Regions Of Interest (ROIs) selected according to
some measure of “objectness”, which, based on some visual cue (like color), may contain
elements to be recognized. Indeed, these salient regions are then processed for recognition.
Techniques to improve the recognition output can be finally applied, e.g., discarding regions
with low recognition confidence, or aggregating multiple regions based on their predictions (see,
e.g., [Girshick et al., 2014,Sermanet et al., 2014] and references therein). Many algorithms have
been proposed in the computer vision literature to extract salient regions (see, e.g., [Vaillant
et al., 1994, Endres and Hoiem, 2010, Alexe et al., 2012, Uijlings et al., 2013]). These usually
apply a processing to the image in order to produce objectness maps by color or edge patterns.
In robotics, the real world setting offers a great deal of contextual information, that can be
exploited for the detection of salient regions. For instance, the 3D structure of the scene or the
temporal correlation between frames can be used to segment the depth map [Pasquale et al.,
2016b] or the optical flow [Ciliberto et al., 2011, Ciliberto et al., 2012, Kumar et al., 2015] in
order to extract blobs potentially corresponding to objects to be recognized. In these cases, the
pipeline is said to be bottom-up, since the extracted ROIs and predictions are agnostic with
respect to their semantic content.

Another approach consists in exploiting also high-level semantic information (like, e.g.,
the information coming from a previous bottom-up recognition step, or prior information about
the objects to be recognized), to improve, in turn, the localization and recognition performance
with top-down modulations (see, e.g., the recent work [Shrivastava et al., 2016]).

In this work, we adopt the most common bottom-up strategy and specifically focus on the
core task of object recognition. As we will explain in more detail in Chapter 5, we rely on
contextual information available in the robotic scenario (specifically, the depth of the scene) in
order to isolate a ROI in the image, whose content is then recognized.

1.2.2 Appearance Variability and the Need of Learning

In this Section we introduce how the object recognition problem is commonly defined and
treated in machine vision settings. We have presented in Sec. 1.2.1 this task as the problem of
assigning a label to an image depicting an object. We have divided between object identifica-
tion, where the label identifies a specific object instance, and object categorization, where the
label identifies a category of objects. In both cases, we are addressing a classification task, i.e.,
assigning the same label to images belonging to the same class (i.e., depicting the same object
instance –identification– or object instances belonging to the same category –categorization–),
and a different one otherwise.
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table
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elephant

hippo-like
table

furniture

Figure 1.5: Example of images divided into classes (furniture, table, hippo-like table, chair,
elephant). While at the instance level (e.g., in the hippo-like table class) image variability is
in viewpoint and context changes, at the category level the images depict multiple, different,
instances, and their variability depends also on how the category is defined.

Appearance Variability. The main challenge involved in this task is related to the extreme
variability of objects’ appearance in images, which depends on the viewpoint, light conditions,
occlusions, and so forth (see, e.g., the different pictures of the hippo-like table in Fig. 1.5).
Moreover, the appearance of different object instances belonging to a same category is even
more different. In particular, this latter variability depends on the definition of category that it
is assumed. For instance, tables and chairs may be considered as a single furniture category
(in which case the intra-class variability would be higher); on the other hand, each of the two
categories may also be further divided into more specific sub-categories (e.g. wooden, plastic,
etc...), and so forth. In fact, on the one hand, all object instances belonging to a category must
share certain characteristics, which provide them a “similar” visual appearance. On the other
hand, however, the definition of object categories generally depends on the problem/context,
and it is influenced by assumptions on objects’ semantic, psychological, philosophical or
functional meaning (e.g., elephant-like chairs or tables in Fig. 1.5 can be considered both as
instances of the elephant and of the chair/table category).

On the Definition of Visual Categories. In practice, a solution commonly adopted is to rely
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Figure 1.6: Example of a tree extracted from WordNet’s hierarchy. The 20 leaf synsets
are the categories which comprise the ICUBWORLD TRANSFORMATIONS dataset that will be
introduced in Sec. 5.5. Yellow categories are also represented in the ImageNet Large-Scale
Visual Recognition Challenge classification task.

on standard ontologies as, for instance, the WordNet hierarchy [Miller, 1995]1. WordNet is a
large lexical database for English (but there are versions in many other languages), where nouns,
verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (called synonym
sets or synsets). Each synset contains a brief definition (“gloss”) and short example sentences
illustrating the use of the synset members. Word forms with multiple distinct meanings are
represented as many distinct synsets, therefore each form-meaning pair is unique and each
synset expresses a unique concept. Synsets are interlinked by conceptual relations, in a network
of meaningfully related words and concepts. The most frequent relation among synsets is
the super-subordinate relation (also called IS-A relation), which links more general synsets
(like furniture) to increasingly specific ones (like bed and bunkbed). The part-whole is another
common hierarchical relation (which holds e.g. between chair and leg). Noun hierarchies
originate trees. All trees start from the same root node entity and end up in several leaf nodes.
An example of such a tree is depicted in Fig. 1.6.

The WordNet ontology is commonly used to define object categories in image classifi-
cation settings. For example, ImageNet is a large-scale dataset of more than 14M images
organized accordingly with WordNet’s hierarchy. The images have been collected on the web
and annotated with object labels and bounding boxes by means of crowdsourcing services

1
http://wordnet.princeton.edu

http://wordnet.princeton.edu
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like the Amazon Mechanical Turk 2. The labels are the WordNet identifier (synset ID) of the
depicted objects, in such a way that the organization of image categories in ImageNet (more
than ⇠ 20k) closely resembles the one of corresponding synset IDs in WordNet. There are also
other datasets following WordNet’s organization, like Washington RGB-D [Lai et al., 2011]
and the SUN [Xiao et al., 2010] databases.

Image Classification Setting. As it may be evident, the large variability of objects appearance
causes the raw pixel values of images belonging to the same class to be possibly very different,
and makes it difficult to devise algorithms able to “scratch off” all variations from the images
in order to “extract” the identity of the depicted object or category. Moreover, it is desirable
to have an algorithm which is in principle able to tackle any image classification tasks,
independently on the particular objects/categories involved. To this end, as we will extensively
see in Chapter 2, this problem has historically been addressed with machine learning methods
for classification, like Support Vector Machines (SVM) [Vapnik, 1998] or Regularized Least
Squares for Classification (RLSC) [Bishop, 2006] algorithms. In this setting, a set of example
images is provided (called training set), and the algorithm learns from the data to predict
the label of new, unseen images. In the common classification scenario (which is also the
one considered in this Thesis), each image can belong to one class, a number of classes is
considered, for each class a number of examples is provided and the algorithm is trained to
predict the class which new images belong to.

For instance, in the annual international competition known as the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC), the object categorization task includes 1000 classes,
chosen from WordNet’s leaf synsets (considering only nouns). The training set consists
in ⇠ 1.2M images and additional images are collected each year for testing the submitted
algorithms. Throughout the years, more tasks have been included in the challenge as object
localization and detection (also in videos) and scene parsing (see [Russakovsky et al., 2015]
for details). Today, ILSVRC is one of the standard benchmarks for recognition algorithms and,
as we will see in more detail in Sec. 5.2, similarly to ImageNet, many other public datasets for
visual object recognition are available in the literature.

1.3 Approaches to Object Recognition

We already mentioned in Sec. 1.2.1 one important difference between typical computer vision
and robotics settings, namely the availability of contextual information. In this Section we

2
https://www.mturk.com/mturk/welcome

https://www.mturk.com/mturk/welcome


10 CHAPTER 1. INTRODUCTION

briefly review how this and other differences historically influenced approaches to object
recognition problems in both domains.

Understanding and reproducing humans’ ability to recognize objects has always been
one of the most investigated topics in neuroscience and computer vision literature. Indeed,
vision is undoubtedly the sensory channel most involved in this process and in past decades
an extremely rich body of literature addressed the problem of how our brain extracts relevant
information from images and how to devise working algorithms to artificially replicate this
ability. The first comprehensive computational theories on the cortex and the ventral stream
were proposed in the 1980-90s (see [Marr, 1982, Poggio et al., 1985] and [Edelman and
Poggio, 1991, Riesenhuber and Poggio, 1999]), while early works in computer vision date
back to the 1960s [Hu, 1962, Roberts, 1963].

While the processing of visual information is surely fundamental for recognition, it is not
the only mechanism involved. Indeed, it is well understood in cognitive science that object
recognition is the result of a multi-modal perceptual process, involving active acquisition
of not only visual, but also haptic, tactile and even sound information. Clearly, the robotic
setting offers a particularly suitable testbed for these studies. In fact, partially motivated
by the remarkable difficulty of devising accurate and robust visual recognition systems for
robotic settings (as we will see in Sec. 1.3.1 and, with more detail, in the following Chapters),
the exploitation and integration of multiple sensory modalities, in order to improve robots’
recognition capabilities, became in past decades a main research line in robotics.

At the same time, active research in computer vision and machine learning progressively
advanced visual recognition systems. In recent years, a breakthrough in deep learning boosted
their performance to unprecedented levels. Some recognition tasks, before perceived as chal-
lenging, have started to be instead considered “solved” (e.g. digit [LeCun et al., 1998] and
text recognition, car and pedestrian detection, but also several image classification bench-
marks [Griffin et al., 2007, Everingham et al., 2015]), such that deep learning methods have
started to be employed also in robotics – with encouraging results.

In Sec. 1.3.1 we provide a brief overview of typical vision-based approaches to the problem
of object recognition. We will then consider how the same problem has been addressed in
robotics (Sec. 1.3.2). We will see how both field have been recently remarkably influenced by
the introduction of deep learning methods.

1.3.1 Computer Vision

In Sec. 1.2.2 we explained how the task of visual object recognition can be seen as a problem
of image classification, to be addressed with machine learning methods like SVMs [Vapnik,
1998] or RLSC [Bishop, 2006].



CHAPTER 1. INTRODUCTION 11

In practice, applying classifiers directly to image pixels is usually not sufficient to discrimi-
nate between images representing different objects/categories, since the intra-class variability
is way too large. To this end, approaches to extract suited representations from images have
been subject of active research for decades and have been at the core of the problem of image
classification. A “good” image representation (with respect to a certain recognition task) is a
function mapping images into vectors that are sensitive to the image content relevant to the
task, while being invariant to non relevant aspects. For the case of object identification, for
instance, usually image representations need to be invariant to objects’ rotations, translations,
pose, light, background, while being selective for the different objects. While here we briefly
review the main approaches proposed in the literature, the problem of representation learning
will be treated more in depth in Sec. 3.1.

Hand-designed Local Descriptors. Initial approaches were based on the (manual) design of
algorithms to detect local patterns (e.g., small edges, blobs, corners) robustly under different
geometric or light transformations. The core idea was to first encode a small pixel neighborood
into the responses of designed transformed templates (like, e.g., scaled Difference of Gaus-
sians [Marĉelja, 1980] or oriented Gabor filters [Marr and Hildreth, 1980]). Such responses
were then pooled (e.g., averaged) in order to obtain descriptors of the pattern in the neighborood
which were robust to such transformations (like scaling or rotation). Well-known approaches
are the Scale Invariant Feature Transform (SIFT) descriptor [Lowe, 2004], the Histogram of
Oriented Gradients (HOG) descriptor [Dalal and Triggs, 2005], Haar wavelets [Viola and Jones,
2001] – see [Mikolajczyk and Schmid, 2005] for an overview. So-called keypoint-matching
techniques were based on (i) the selection of a number of keypoints in an image and (ii) the
matching of their local descriptors with the ones of the keypoints found in other images. These
methods were mostly employed for object identification tasks, since they relied on the robust
association of specific reference points.

Dictionary Learning. It became soon evident that in order to tackle more complex tasks like,
e.g., object categorization, more powerful descriptors needed to be learned from data rather
than being manually designed. To this end, one of the most famous approaches proposed was
the Bag Of (Visual) Words (BOWs) algorithm [Csurka et al., 2004], which adds a second
coding-pooling stage on top of local descriptors, where the templates used in the coding stage
(that is, the so-called dictionary) are learned from data. The BOWs algorithm (that we will see
in more detail in Sec. 3.1) takes inspiration from a typical method for document classification.
Through these two coding-pooling stages each image is encoded into a vector representative
of its global content (that is, a global image representation). Standard classifiers are finally
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trained to solve the recognition task in the representation space.

(Bioinspired) Hierarchical Representations. The coding-pooling computational paradigm
was actually well known to neuroscientists, since the visual cortex was known to process the
visual signal in a very similar way [Riesenhuber and Poggio, 1999]. Indeed, bioinspired com-
putational models of visual recognition – among which a well-known is HMAX [Serre et al.,
2007]– were based on the extraction of a global image representation through the composition
of multiple coding-pooling stages (where the templates used for coding were learned from
data). Similarly to dictionary learning pipelines, standard classifiers were trained afterwards
on the extracted image representations to perform the desired recognition task. With a similar
inspiration, hierarchical architectures for visual recognition were actually proposed since early
1980s: Fukushima’s neocognitron [Fukushima, 1980], alternating layers of (i) convolutions
with filters and (ii) spatial pooling/subsampling, can be considered the first multi-layer Convo-
lutional Neural Network (CNN).

End-to-end Learning and Deep Learning Breakthrough. In the same years, [LeCun et al.,
1989] proposed for the first time a CNN architecture that, by reducing at each layer the
spatial resolution of the image representation, while increasing the number of the employed
filters/templates, progressively encoded images into vector representations and finally directly
into classification predictions. Exploiting this end-to-end homogeneous structure, LeCun et
al. were able to learn the filters in all layers by (Stochastic) Gradient Descent, minimizing the
prediction error and back-propagating it though the network. Their claim was that learning the
representation with the supervision of the classification task could provide better performance
than using hand-designed, or unsupervisedly learned, features. Unfortunately, this training
approach did not prove to be very effective in practice, at the time, and therefore BOW-like
pipelines continued to be largely employed.

On the contrary, in recent years, the increased data availability – in the form of large web-
collected datasets like the ImageNet [Russakovsky et al., 2015] – and computational power –
particularly with parallel accelerators as Graphic Processing Units – allowed to train end-to-end
CNN architectures with more layers (i.e., deeper) on millions of example images, achieving
unexpected good performance and definitely surpassing classical BOW-like object recognition
pipelines. Starting from 2012, when [Krizhevsky et al., 2012] proposed the AlexNet model
and marked a breakthrough on the reference 1000-class categorization benchmark represented
by the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), these architectures
attracted a lot of attention in the machine learning and computer vision communities, and the
deep learning literature prospered with new CNN models [Sermanet et al., 2014, Simonyan
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et al., 2014, Szegedy et al., 2015, He et al., 2016] and new (often commercial) applications.

The key ingredients of their success, i.e., the deep, hierarchical, structure, and the purely
data-driven approach, as opposed to so-called “shallow” methods employing only two layers
of representation, one of which hand-designed, are subject of active research. Specifically, one
of the main reasons for their large employment is that, while typically requiring large-scale
datasets to be learned, it has been observed that, once trained (e.g., on ImageNet), these
models can be “adapted” to a variety of domains, generalizing particularly well and remarkably
improving the state of the art on many challenging visual recognition tasks [Chatfield et al.,
2014, Sharif Razavian et al., 2014] (see Sec. 4.3 and references therein). While visual object
recognition is the first and perhaps the most clear example where deep learning allowed
for unprecedented advances, leading to ground breaking performances and sometimes even
surpassing human levels [Netzer et al., 2011,Stallkamp et al., 2012,He et al., 2015,Assael et al.,
2016], deep learning already brought improvements in many applications related to machine
learning and computer vision, like reinforcement learning [Mnih et al., 2013, Mnih et al.,
2015, Silver et al., 2016], speech recognition and natural language processing, autonomous
driving, but also finance and trading, recommender systems, medicine, art, etc..

1.3.2 Robotics

While the progress in computer vision and machine learning through last decades has focused
on learning representations that allow to recognize objects in images, in robotics this problem
has rarely been approached by relying only on objects’ images. Even methods using solely
visual cues typically exploited the real world context to create 3D object models. In fact,
recognition in robotics has often been associated with pose estimation, functional to, e.g., object
grasping. Indeed, until recently robots were expected to operate in relatively predictable and
constrained working spaces. The goal was hence rather to improve manipulation capabilities by
exploiting knowledge of the object’s shape, provided, in fact, by a correct object identification.

Today, we foresee robots to operate in unconstrained environments, where the problem of
rapidly recognizing objects from the visual input becomes more critical. Robots should heavily
rely on this capability, prior to others, in order to understand the scene content, navigate and
plan their actions. Moreover, if before visual recognition algorithms were hardly usable in
real world robotic settings and the contribution of different sensory modalities was considered
one of the main avenues of performance improvements, today this may not exactly by valid
anymore. If, on the one hand, it remains true that multi-modal integration is a hallmark of
human learning, robotics is a main field where the benefits of deep learning could be dramatic.
In the following, we provide a quick overview of typical approaches to object recognition in
robotics, including recent works using deep learning.
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Visual Approaches

We start by considering works that addressed the problem by relying on visual cues, applying
and adapting computer vision methods to the robotic setting.

Object Identification by Keypoint-matching. Inspired by keypoint-matching approaches in
computer vision, in robotics many methods were proposed, sharing the common strategy of (i)
extracting keypoints from object images and (ii) matching them through, e.g., robust outliers
rejection schemes like RANSAC or Hough Voting, to ensure geometric consistency [Fischler
and Bolles, 1981]. However, 2D keypoints [Lowe, 2004, Bay et al., 2006] were mostly suited
to recognize textured, planar objects [Moreels and Perona, 2007], while 3D keypoints [Steder
et al., 2011, Quadros et al., 2012] were often not sufficiently discriminative. With similar inspi-
ration, template matching [Huttenlocher et al., 1993] has also been employed [Hinterstoisser
et al., 2010, Hsiao and Hebert, 2014]. However, this latter approach required to exhaustively
acquire many viewpoints during training.

Object Identification by Using 3D Scans. Other methods relied on the acquisition of 3D
scans of objects. These scans could be combined to create a 3D model of the objects [Gordon
and Lowe, 2006, Tang et al., 2012, Xie et al., 2013, Singh et al., 2014], that could be then fitted
to object images for identification [Taylor and Kleeman, 2003, Ekvall et al., 2005], or used to
train classifiers [Lai et al., 2011, Bo et al., 2013]. For instance, [Collet et al., 2009, Collet and
Srinivasa, 2010, Collet et al., 2011] use interest points to register a set of images and hence
reconstruct a 3D model for the object using a Structure from Motion approach; [Aleotti et al.,
2012] perform clustering to derive 3D templates from point clouds; [Choi and Christensen,
2012] use instead edge templates, obtained by projecting polygonal mesh models. Indeed, over
the years many algorithm to reconstruct 3D models from multiple views have been proposed
(see, e.g, Iterative Closest Point [Huber and Hebert, 2003], Kinect Fusion [Newcombe et al.,
2011], ReconstructMe, itSeez3D [Dimashova et al., 2013], CopyMe3D [Sturm et al., 2013]
and, recently, [Prankl et al., 2015]). Other methods of similar inspiration work on 3D surfaces
rather than image keypoints: these can have global/semi-global [Rusu et al., 2010, Aldoma
et al., 2011, Aldoma et al., 2012b, Aldoma et al., 2013] or local approaches [Tombari et al.,
2010, Papazov and Burschka, 2011, Aldoma et al., 2012a]. There are also methods merging
color and surface cues [Muja et al., 2011, Hinterstoisser et al., 2011].

All these approaches share the same drawback of needing a quite long training phase, to
be carried on in a constrained setting in order to ensure a correct model acquisition. Also, they
are not suited for object categorization problems.
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Dictionary Learning. As anticipated, there are very few works in robotics that apply dictionary
learning approaches to perform visual object recognition. Among these, [Filliat, 2007,Botterill
et al., 2008] propose the use of a BOW-like representation to perform room identification.
BOW approaches have also been adopted to perform object identification based on tactile
data [Schneider et al., 2009]. Recently, the performance of different dictionary learning
methods was compared, also against a biologically inspired model like HMAX [Serre et al.,
2007], in a natural human-robot interaction setting [Ciliberto et al., 2013]. The authors
show how learning representation methods can be, in fact, not only faster to train, but also
more robust, with respect to classical keypoint matching techniques, when performing object
identification on mid/low resolution images affected by visual nuisances (like, e.g., light and
viewpoint changes) typically characterizing the view of a robot in an indoor setting.

Beyond Vision

Like in humans, on robots as well visual perception is only one among the possible cues
enabling object recognition. Indeed, robots, like humans, are equipped with multiple, pro-
gressively more accurate, sensory modalities. A large body of robotics literature addressed
therefore the problem of object recognition by integrating modalities other than vision. For
instance, haptic and tactile perception [Dahiya et al., 2010, Bartolozzi et al., 2016], proved to
be effective to perform object identification tasks in absence of visual input [Schneider et al.,
2009, Gorges and Navarro, 2010, Hosoda and Iwase, 2010, Jamali et al., 2016, Vezzani et al.,
2016], or to address recognition tasks which are hard to accomplish visually [Chitta et al.,
2011], or finally, to complement the visual information [Higy et al., 2016, Sung et al., 2016].

Also, we already anticipated how the real world scenario is a natural source of implicit
supervisory signals that robots, like humans, can exploit in the learning process, in the form of,
e.g., spatial [Doersch et al., 2015] or temporal [Wang and Gupta, 2015] contextual information.
Moreover, it is well known that biological agents use physical interactions with the world as a
source of supervision for learning perceptual representations. Active perception is fundamental
for babies to acquire cognitive skills: they generate themselves “key” events on which they
rely to learn to correlate different modalities (e.g. proprioception, motion, tactile, auditory
perception). Such correlation is then used to learn, in turn, to segment and recognize objects
and object properties. Similarly to babies, robots can generate actions with a known pattern so
that proprioception can be correlated with visual input. Indeed, the role of embodiment in the
generation of the sensory information that is then used to learn correlations among perceptual
cues in the highly structured natural environment has been largely investigated [Gibson,
1979, Jeannerod, 1997, Natale et al., 2004, Metta et al., 2006b, Fitzpatrick et al., 2008, Leitner
et al., 2014, Dansereau et al., 2016]. For instance, in [Sinapov et al., 2014], a robot learns to



16 CHAPTER 1. INTRODUCTION

recognize objects by performing different behaviors on them, while using vision, proprioception
and audio to detect and correlate perceptual changes.

Lately, there are works employing deep Convolutional Neural Networks (CNNs) in this
direction. These are also motivated by the fact that these architectures need lots of training
data to learn good visual representations and annotation is a costly operation. Self-supervision
strategies are therefore welcomed in order to reduce the human intervention. For instance, [Ja-
yaraman and Grauman, 2015,Agrawal et al., 2015] use knowledge of the robot’s ego-motion as
supervison to correlate visual stimuli and learning a general deep visual representation; [Pinto
and Gupta, 2016] devise an autonomous trial-and-error behavior to collect the data for training
a deep CNN for the task of grasp detection; in [Pinto et al., 2016] this approach is further
refined showing how a robot, by employing four types of physical interactions to collect
hundreds of thousands of data-points, is able to learn visual representations effective for object
recognition tasks.

Deep Learning for Robotics

Deep learning methods are receiving growing attention in robotics. CNNs trained on ImageNet
have been effectively adapted to robotics benchmarks for object recognition, like the Wash-
ington RGB-D dataset [Schwarz et al., 2015, Eitel et al., 2015, Held et al., 2016], and place
recognition [Sünderhauf et al., 2015, Sünderhauf et al., 2016]. Moreover, the same models
have also been adapted to perform other tasks like grasp detection [Lenz et al., 2015, Redmon
and Angelova, 2015], affordance prediction [Nguyen et al., 2016] and even tactile material
recognition [Baishya and Bäuml, 2016].

While, on the one hand, it is surely true that, as we observed, visual perception is not
the only cue enabling object recognition, on the other hand current deep learning methods
already proved to be able to successfully tackle typical robotic tasks, like reaching [Zhang
et al., 2016, Zhang et al., 2016], grasp detection [Levine et al., 2016b] or manipulation [Levine
et al., 2016a, Finn and Levine, 2016], with a strongly vision-based approach. For instance,
in [Levine et al., 2016a] the authors replace the separate hand-engineered components for
perception, state estimation, and low-level control of a robot arm with a single deep CNNs that
maps directly raw image observations into torques at the robot’s motors, which is learned by
jointly training the perception and control systems end-to-end, with large self-supervisedly
acquired data.
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1.4 Objectives and Contributions of the Thesis

How Far Can We Go with Deep Learning? As it can be realized, the potential impact of
deep learning for robotics is, indeed, remarkable. Specifically, current deep CNNs perform
so well on the core task of visual object recognition, that it is natural to ask how well they
can do, in robotics, before further perceptual cues/modalities are needed. This investigation is
also critical to properly validate further approaches integrating and complementing the visual
information with other mechanisms. With this perspective in mind, we have started an effort to
isolate and quantify the benefits and limitations, if any, of deep learning approaches to visual
object recognition in robot vision contexts.

Benchmarking the Prototypical Visual Experience of a Robot. To this end, we considered
a “reference” scenario, where a robot (in our case, the iCub or, more likely, its commercial
version R1) is deployed to a user (e.g., in a hospital, a hotel, a shopping centre), where it is
required to learn to recognize novel objects, reliably, quickly, and with the natural supervision
of humans. As a first step, we designed an acquisition setting, tailored to reflect the prototypical
visual experience of the robot, during interaction with a human in the considered scenario. We
therefore collected corresponding image datasets by recording the robot’s view (in our case, we
used the iCub), while it is observing objects shown by a human. In particular, we acquired two
datasets of increasing size, namely ICUBWORLD28 and ICUBWORLD TRANSFORMATIONS,
aimed at investigating complementary aspects of robotic visual recognition, as described in
the following. Indeed, these two releases consistently expand the horizon of ICUBWORLD3, a
data acquisition project whose main goal is to benchmark and progressively develop the visual
recognition capabilities of the iCub robot.

Semantic Vs Viewpoint/Context Variability. Provided with faithful benchmarks, we started
to analyze the considered context. We first identified a main “gap” marking the difference
between robot vision and typical deep learning application fields, related to the task “regime”.
Indeed, as we anticipated, first, a humanoid robot would not necessarily need to distinguish
between a thousand object categories like in ImageNet – at present at least. We would be
satisfied keeping categories of the order of, e.g., the object types that can be found in a specific
indoor working setting like an office. On the other hand, a robot typically cannot have access
to millions of object examples per category, as are available in ImageNet: we are in a different
“regime”, with fewer categories but also fewer object examples to learn from. This kind of
variability is related to categorization problems and is referred to as “semantic”, since it comes
from how semantic categories are instantiated into different object instances. Second, while

3
https://robotology.github.io/iCubWorld/

https://robotology.github.io/iCubWorld/
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the number of involved objects is typically limited, at the same time, in real world scenarios,
each object can be experienced under a remarkable amount of viewpoint/context variability.

A first contribution of this Thesis is therefore to investigate how modern CNNs, trained
on web data collections, can be best adapted to this different “regime”. To this end, we
exploited the ICUBWORLD TRANSFORMATIONS (ICWT) dataset, which we specifically
acquired to include several object categories with many instances per category, for testing both
categorization and identification tasks. Notably, the dataset is also segmented into multiple
sets of sequences, representing objects shown by a human while undergoing isolated visual
transformations, like scaling, rotations, light and background changes, hence allowing to test
robustness and invariance of recognition systems within a realistic scenario. Indeed, this latter
property makes the dataset more suited for robotics than standard computer vision benchmarks
such as ImageNet – an argument shared with other recent works as [Borji et al., 2016].

We used ICWT to perform a battery of experiments and explore the robot vision “regime”
by simulating increasingly larger recognition tasks with varying number of example objects
and views available. We considered a representative pool of recently proposed CNN architec-
tures trained on ImageNet and followed the common trend of adapting these models to other
domains either by fine-tuning or by using the activations of their internal layers as features to
be fed to classifiers. Interestingly, from this study we observed some unexpected results that,
as we will discuss, must be attributed to the intrinsic characteristics of the robot vision domain.
To this regard, we further deepened the analysis as explained in the following.

Learning from Few Example Frames. We focused on the critical aspect that the appearance
of objects in the real world (and hence in ICWT) is affected by wide ranges of viewpoint
transformations. This is particularly critical because not only the robot would be required to
recognize objects reliably in almost every configuration, but it should also be able to learn novel
objects “on the fly” from few example frames. Ensuring to rely on discriminative and invariant
image representations is key to achieve satisfying performance in this setting. To this end, we
investigated to which extent the performance reported by the considered CNN models in the
previous study were impacted by the presence of specific visual nuisances. We care to point
out that we could afford such an analysis by leveraging the structure of ICWT, where each
visual transformation is isolated from others. We first evaluated the invariance properties of
the internal representations of “off-the-shelf” CNN models trained on ImageNet and, then, we
quantified how much these properties can be disrupted, but also improved, by fine-tuning the
models on image sequences acquired in a real world scenario (like the ones present in ICWT).
As a result of this analysis, we were able to devise an affective recognition pipeline which,
by employing such improved representations to train Regularized Leas Squared Classifiers
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(RLSC), allowed us to perform on the fly object identification from very few example images
in the considered human-robot interaction scenario. Moreover, with the same pipeline we
also achieved competitive results on the task of one-shot object identification on Washington
RGB-D [Lai et al., 2011].

Learning Incrementally. Keeping the same scenario, we finally imagined that the robot
would likely encounter the same objects several times, in different situations, and it may be
useful to exploit new additional training evidence, when available, in order to reinforce the
model of learned objects. To this regard, a main motivation of the ICUBWORLD28 dataset,
comprising objects acquired in multiple sessions in different days, is to simulate such a lifelong
learning setting. By exploiting this dataset, we started evaluating the benefit of adopting an
incremental learning approach, based on training RLSC on top of deep representations, to
enrich object models beyond a single training session.

Moreover, within the same incremental setting, we finally considered also the situation
where the robot learns to discriminate between a growing number of objects and categories,
while accumulating experience about the environment. Indeed, this is another important aspect,
since it is not feasible to restrict the robot’s knowledge to a set of objects/categories defined
beforehand. To this end, we proposed an extension to the recursive RLSC formulation available
in the literature, which allows to include in the model not only new examples, but also new
classes, in constant update time. By proposing an effective solution to deal with the problem of
class imbalance, which typically arises in incremental settings, we could achieve comparable
and even higher performance than the batch RLSC counterpart, while being significantly faster.

A Fast and Reliable Visual Recognition System for iCub and R1. To make the scientific
contributions of this Thesis readily usable, a set of software tools for visual recognition has
been implemented and deployed on the iCub and R1 platforms, remarkably advancing the
capabilities of the robots. A first important tool is the ICUBWORLD FRAMEWORK. This firstly
comprises the data acquisition application that has been developed to collect the ICUBWORLD

dataset releases by interacting with the robot. This application can be exploited by users to
acquire in the same way large-scale image collections; indeed, a set of routines to automatize
the post-processing of recorded images, with helper functions for training various CNN archi-
tectures on the acquired collections, are included in the framework, easing the manual effort
of producing datasets and training deep CNNs on them. A second tool is the ON THE FLY

RECOGNITION demo, which implements the considered scenario where a human incrementally
teaches new objects to the robot “on the fly”. With this application, the performance of the
proposed recognition pipeline, based on RLSC trained on top of discriminative and invariant
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fine-tuned representations, can be tested in a realistic setting.

Are we Done with Object Recognition? The Thesis is concluded with a discussion of the
potential developments of the proposed approaches, highlighting remaining challenges and key
avenues of improvements, from a pure machine learning perspective but also taking advantage
of the robot platform. Indeed, bridging the gap towards the deployment of visual recognition
systems for autonomous agents in real applications appears to be an exciting venue for future
multidisciplinary research.

1.5 Outline of the Thesis

In Chapter 2 we introduce the considered supervised machine learning setting, in the frame-
work of the Statistical Learning Theory. This setting is common to all methods employed in
the Thesis, from deep Convolutional Neural Networks (CNNs) to Regularized Least Squares
Classifiers (RLSC). We then provide notions on Stochastic Gradient Descent (SGD) methods,
which can be adopted to address the optimization problems involved by the learning setting.

In Chapter 3 we introduce the fundamental concepts of learning image representations,
through an overview of the approaches historically proposed in the computer vision literature
to address this problem. We then explain the architecture of deep CNNs, finally presenting the
latest CNN models that, starting from 2012, revolutionized the field. These are also the models
used for the evaluations performed in the Thesis.

In Chapter 4 we describe the algorithm with which these architectures can be trained,
namely, by applying SGD and backpropagating derivatives through layers. We then discuss
some methods recently proposed in the deep learning literature to investigate the properties of
the representations learned by such models. These considerations will be useful in Chapter 7,
when we will measure the invariance properties of deep CNNs. We finally introduce the idea
of transferring CNN models trained on ImageNet to other domains, overviewing the literature
of works that explore either fine-tuning networks, or using their intermediate representations
to train classifiers (like RLSC). These are also the two tools that will be adopted in the experi-
ments presented in following Chapters.

While in Chapters 2, 3, and 4 we provided background material and methods, in the
following part we proceed by presenting the contributions of the Thesis.

In Chapter 5 we present the ICUBWORLD project, justifying and describing the acquisition
scenario. We then introduce the two ICUBWORLD28 and ICUBWORLD TRANSFORMATIONS
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datasets, published within this Thesis and employed in next Chapters as benchmarks for,
respectively, incremental and lifelong leaning (Chapter 8) and viewpoint invariance (Chapter 7).

Chapter 6 sets up the study of the application of modern deep CNNs to the considered
robot vision setting, with an extensive evaluation of the best models recently proposed in the
literature, fine-tuned with different approaches or used for feature extraction, on a battery
of object categorization and identification tasks on ICWT, by varying number of categories,
instances, views and tested conditions.

In Chapter 7 the focus is restricted on the critical role of viewpoint variability, with the
investigation and the improvement of the invariance of these models to the different visual
transformations present in ICWT. The chapter is concluded with the validation of the proposed
object identification pipeline on ICWT and also on the Washington RGB-D dataset.

Chapter 8 reports on the proposed extension of the recursive RLSC, which allows to add
new examples and new classes in constant update time, while dealing with class imbalance.
Experimental results on MNIST [LeCun et al., 1998], Washington RGB-D and ICUBWORLD28
validate the algorithm.

In Chapter 9 we first describe the robot platforms on which the works presented within
the Thesis have been developed, namely the iCub and R1 robots. Then, we present the
ICUBWORLD FRAMEWORK and the ON THE FLY RECOGNITION demo.

Chapter 10 draws conclusions to the contributions reported throughout the Thesis, while
proposing future directions for addressing the limitations of current systems.

1.6 Publication Note

Some ideas and figures have appeared previously in the following publications:

Scientific Journals

Pasquale G., Mar T., Ciliberto C., Rosasco L., Natale L., Enabling depth-driven visual at-
tention on the iCub humanoid robot: instructions for use and new perspectives., Frontiers in
Robotics and AI, vol. 3(35), 2016.

Pasquale G., Ciliberto C., Odone F., Rosasco L., Natale L., Are we Done with Object Recogni-
tion? The iCub-robot Perspective. In preparation.

Peer-reviewed Conference Proceedings

Pasquale G., Ciliberto C., Odone F., Rosasco L., Natale L., Teaching iCub to recognize objects
using deep Convolutional Neural Networks, Proceedings of The 4th Workshop on Machine
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Learning for Interactive Systems, 2nd International Conference on Machine Learning (ICML),
vol. 43, pp. 21-25, Lille, FR, July 2015.

Pasquale G., Ciliberto C., Rosasco L., Natale L., Object Identification from Few Examples
by Improving the Invariance of a Deep Convolutional Neural Network, Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, KO,
October 2016.

Camoriano R.*, Pasquale G.*, Ciliberto C., Natale L., Rosasco L., Metta G. Incremental
Robot Learning of New Objects with Fixed Update Time, Proceedings of the IEEE/RSJ In-
ternational Conference on Robotics and Automation (ICRA), Singapore, May 2016 (to appear).



Chapter 2

Machine Learning Setting

In this Chapter we provide an essential background on the machine learning setting in which
the visual recognition problems considered in this Thesis are framed. After a brief introduction
to the general setting of supervised learning (Sec. 2.1), we will overview a class of optimization
approaches commonly adopted to address learning problems, namely Gradient Descent and
Stochastic Gradient Descent methods (Sec. 2.2).

2.1 Supervised Learning Problem

Programming a machine to perform some task requires the knowledge of the “algorithm” that
must be executed in order to complete it. However, several tasks cannot be easily decomposed
into an ordered sequence of predefined operations, therefore this knowledge is not always
available. For instance, referring to Sec. 1.2.2, the large variability of all possible images of two
different object categories (in our example, chairs and tables) makes it difficult to formalize an
algorithm to discriminate between the two categories. On the other hand, in these cases it is
often relatively easy to collect examples of the desired behavior (i.e., images of chairs and of
tables). Indeed, humans are very good at learning by example and by experience. Machine
learning is a field of computer science that was born with the aim to make computers learn “by
example”, as humans can do.

Instead of being programmed with a predefined function, the computer is programmed to
learn such function from data. This is usually achieved by (i) parametrizing the function into
multiple candidate solutions or “hypotheses” and (ii) using empirical evidence (i.e., a dataset
of input-output examples) to assign the best values to the function’s parameters in order to
perform the desired task (an operation known as “training”).

More precisely, we can formalize the problem as that of finding an underlying input-output
relation f(x) ⇠ y between two quantities x and y, which allows to predict, for any new input

23
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xnew, its correct corresponding output f(xnew) ⇠ ytrue. In this work we consider the setting
of supervised learning, where, to learn the function, a set (called training set) of n input-output
pairs is available. Each of these pairs is an example of the relation we want to learn, i.e.,
S = {xi, yi}ni=1, each xi being a point for which we are provided the true output yi. Other
settings as unsupervised or semi-supervised learning consider situations where only some or
none of the correct outputs of the training points are known.

In the following, we briefly introduce the supervised learning problem in the framework
of the Statistical Learning Theory (STL) for classification. We follow an intuitive approach
taking inspiration from [Rosasco, 2016] and refer to [Vapnik, 1998, Steinwart and Christmann,
2008] for a more formal and detailed introduction to STL.

2.1.1 Introduction to Statistical Learning Theory

We assume that the inputs of our problem belong to an input space X and the outputs to
an output space Y . The space X naturally depends on the domain of the problem. Here
we consider the most common situation where X ✓ Rd, i.e., the inputs are mapped into d-
dimensional vectors in the Euclidean space. The space Y can be defined according to the task:
e.g., Y ✓ R in regression, Y = {�1, 1} or Y = {0, 1} binary classification, Y = {1, . . . , T}
in multiclass classification (where T is the number of classes to discriminate), and so forth.

The joint space X ⇥ Y is the data space, where the points are distributed according to a
probability distribution (which is unknown) ⇢(x, y), which models the input-output relation
that we aim to learn (generally affected by different sources of uncertainty). Considering that,
for the Bayes rule, ⇢(x, y) = ⇢X (x)⇢(y|x), the conditional distribution ⇢(y|x) accounts for the
noise in the input-output relation and the marginal distribution ⇢X (x) models the distribution of
the input points. In the classical setting of supervised learning, the examples in S are assumed
to be sampled independently from ⇢.

In order to estimate the “best" input-output relation, we can start fixing a loss function
` : Y ⇥ Y ! [0,1), as a (point-wise) measure of the error `(y, f(x)) we incur in when
predicting f(x) in place of y. The “best" input-output relation hence will be a target function
f⇤

: X ! Y , minimizing the expected error (or expected risk):

f⇤
= inf

f2H
E(f) (2.1)

E(f) = E[`(y, f(x))] =
Z

X⇥Y
`(y, f(x))⇢(x, y)dxdy, (2.2)

which can be seen as a measure of the error on all possible data. Note that H is the hypothesis
space, that is, the space of functions on which we search f . This space should be such that
computations are feasible and, at the same time, it should be rich enough with respect to the
complexity of the problem, which is not known a-priori.
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Unfortunately, the target function cannot be computed using the formulation above, since
⇢ is unknown and only the points in S are available. To this end, a well-established strategy is
to minimize the empirical error (or empirical risk):

ˆE(f) = 1

n

nX

i=1

`(yi, f(xi)), (2.3)

as a proxy for the expected error E(f). The goal of a learning algorithm therefore is to use a
training set S to find an estimator ˆf for f⇤, which behaves similarly. In this case, the algorithm
is said to have good generalization properties, since it learned, from S, to correctly predict
all possible new samples. Note that ˆf is a random variable (it depends on the training set S,
which is randomly sampled from ⇢). Therefore, the goal of a learning algorithm is to minimize
ES [E( ˆf)� E(f⇤

)].
In other words, a good learning algorithm should be able to describe well the data and at

the same time be stable with respect to noise and sampling. Indeed, the examples in S are only
a part of the whole data distribution, which may contain the true trend we aim to learn, but
also noise. Hence, an estimator ˆf varying a lot depending on the sample S, would overfit the
training set and typically would be unstable, exhibiting very low or zero error on the provided
training examples, but yet a large error on future data (i.e., it would fail to generalize).

It is then evident that, in practice, computing

ˆf = inf

f2H
ˆE(f) (2.4)

cannot provide the desired estimator, since it leads to overfit the training set. To this end,
regularization terms are usually introduced, in order to control the trade-off between data-fitting
and stability. In machine learning, regularizing indicates the general practice to avoid being
too “faithful” to the training set, ensuring stability and hence improving the generalization
properties of the estimator.

A large class of methods, sometimes called Regularization Networks, employs the so called
Tikhonov regularization scheme:

ˆf = inf

f2H

⇣
ˆE(f) + �R(f)

⌘
(2.5)

based on the idea of adding a term R(f) (called regularizer), aimed to contrast the minimization
of the empirical risk, ultimately controlling the stability of the solution. The parameter
� > 0 is the regularization parameter and balances the mixing of the two terms. It can be
shown [Steinwart and Christmann, 2008,Shawe-Taylor and Cristianini, 2004a] that, under mild
assumptions on the distribution ⇢, it is possible for ˆf to converge in probability to the ideal f⇤

as the number of training points n grows indefinitely. Many different classes of methods can
be framed into this general formulation, by choosing a loss function, a kind of regularization
term and, of course, fixing the hypothesis space.
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2.1.2 Optimal Bayes Classifier and Surrogate Loss Functions

Many different types of loss functions have been proposed in the literature, depending on the
task to be learned and the output space Y (e.g., classification, regression, etc...). As explained
in Sec. 1.2, in this work we focus on classification problems. In this regard, a very natural
choice for measuring the accuracy of a classifier is simply to count the number of prediction
errors. This corresponds to using the so called misclassification loss or 0-1 loss. Referring for
example to a binary classification problem, we can consider Y = {�1, 1} and define this loss
as `(y, f(x)) = 1(y � f(x)) (where 1(·) is the indicator function). In this case, the problem
in (2.1)-(2.2) becomes:

b⇤ = inf

f2H

Z

X⇥{�1,1}
1(y � f(x))d⇢(x, y). (2.6)

The solution b⇤ can be shown to satisfy the equation

b⇤(x) =

(
1 if ⇢(1|x) > ⇢(�1|x)
�1 otherwise

(2.7)

for all x 2 X and it is known as the optimal Bayes classifier.
Unfortunately, estimating ⇢(y|x) is unfeasible because it requires very large training

datasets. To this end, we have seen that, in practice, an estimate of b⇤ can be computed by
minimizing the regularized empirical risk (Eq. (2.5)).

However, the 0-1 loss is a non-convex function and, as we will see in more detail in Sec. 2.2,
this makes the optimization involved in Eq. (2.5) very hard. For this reason, convex relaxations
of the 0-1 loss (known as surrogate losses) are often used instead. The most common, for
instance, are:

• the hinge loss `(y, f(x)) = k1 � yf(x)k+ = max(1 � yf(x), 0), used in Support
Vector Machines (SVMs);

• the logistic loss `(y, f(x)) = log(1 + e�yf(x)
) used in Logistic Regression (LR);

• the square loss `(y, f(x)) = (y � f(x))2 used in the Regularized Least Squares for
Classification (RLSC) algorithm.

Indeed, it has been shown [Steinwart and Christmann, 2008, Bartlett et al., 2006] that, while
simplifying the optimization problem in Eq. (2.5), adopting surrogate losses in place of the
0-1 loss allows to asymptotically recover the optimal Bayes classifier. This is easy to see for
example for the square loss: for any f : X ! R, we have that

Z
(y � f(x))2d⇢(x, y) =

Z Z
(y � f(x))2d⇢(y|x)d⇢(x)

=

Z ⇥
(1� f(x))2⇢(1|x) + (f(x) + 1)

2⇢(�1|x)
⇤
d⇢(x),
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which implies that the solution of the least square expected risk minimization

f⇤
= inf

f2H

Z

X⇥{�1,1}
(y � f(x))2d⇢(x, y) (2.8)

satisfies
f⇤

(x) = 2⇢(1|x)� 1 = ⇢(1|x)� ⇢(�1|x) (2.9)

for all x 2 X . Therefore f⇤
(x) > 0 if and only if ⇢(1|x) > ⇢(�1|x) and the optimal Bayes

classifier can be recovered by considering sign(f⇤
(x)) as a prediction rule. A very similar rea-

soning can be applied to the logistic loss, by showing that, in this case, f⇤
(x) = log

⇣
⇢(1|x)
⇢(�1|x)

⌘
.

Extension to Multiclass Problems. The extension to multiclass problems is generally tackled
by employing as many binary classifiers as the number of classes to discriminate, in a one-vs-all
schema where each classifier is trained to discriminate its class against all the others [Rifkin
and Klautau, 2004]. In this setting, Y = {1, . . . , T} where T is the number of classes to
discriminate.

The label y 2 {1, . . . , T} can be encoded into a vector ey 2 {0, 1}T ✓ RT of the canonical
basis {e1, . . . , eT } of RT , i.e., a vector whose y-th coordinate is equal to 1 and the remaining
0, also known as the one-hot encoding of the true label y. The above losses can still be used,
by replacing y with ey and considering f : X ! RT a vector-valued function to be learned,
such that the prediction rule provides argmax

t=1,...,T
f(x)t ⇠ y (where zt denotes the t-th entry of

the vector z).
To this regard, note that the multiclass approach can also be applied to binary classification

problems by setting T = 2, where classes have labels y 2 {1, 2} and encoded labels are
e1 = [1, 0]> and e2 = [0, 1]>. This would lead to train two distinct classifiers, choosing the
predicted class as the argmax of their scores. The two approaches are clearly equivalent, since
the optimal Bayes classifier corresponds respectively to the inequalities ⇢(1|x) > ⇢(�1|x) or
⇢(1|x) > ⇢(2|x).

The Cross-Entropy Loss. A special note on the logistic loss is in order, since this, and in
particular its multiclass extension, the cross-entropy loss, are the most commonly adopted in
Neural Networks for classification.

It is possible to show that, if we adopt the alternative output space Y = {0, 1}, the logistic
loss can be expressed as the binary cross-entropy loss:

`(y,�(f(x))) = �y log(�(f(x)))� (1� y) log(1� �(f(x)))

with
�(f(x)) =

1

1 + e�f(x)
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the so called sigmoid function, normalizing the output scores such that �(f(x)) = ⇢(1|x)
and 1 � �(f(x)) = ⇢(0|x). Indeed, it can also be shown that the binary cross-entropy loss
minimizes the Kullback-Leibler divergence [Bishop, 2006] between the true and the predicted
output class probability distributions, respectively y and �(f(x)). The multiclass extension is:

`(ey,�(f(x))) = �
TX

t=1

ety log(�(f(x))
t
) = � log(�(f(x))y),

with

�(f(x)) =
ef(x)

PT
t=1 e

f(x)t

where ey 2 {0, 1}T is the one-hot encoding of the true label y. The prediction rule provides
argmax

t=1,...,T
�(f(x))t ⇠ y. The non linear function �(·) employed here is called softmax and, like

the sigmoid, it normalizes the output scores so that they are positive quantities summing to one
and can be interpreted as class probabilities.

2.1.3 The Hypothesis Space

Before proceeding with the discussion of regularization terms, it is necessary to spend some
words on the hypothesis space H. Indeed, regularization acts on the functions f 2 H by
preventing them from following the points in the training set S “too faithfully”. On the one
hand, these functions must be “rich” enough to model the phenomenon we are interested in;
on the other hand, the larger is the modeling capacity of the hypothesis space, the higher is the
risk of overfitting and the need for regularization. Usually, these functions are parametrized by
a set of parameters ✓, i.e., f(x) = f✓(x) and the regularization acts on the values of ✓.

Linear Models. The simplest space is the space of linear functions, where ✓ = w 2 Rd and
H is defined as:

H = {fw : Rd ! R : 9w 2 Rd such that fw(x) = w>x, 8x 2 Rd}.

In this way, each function fw 2 H is uniquely defined by a vector w, and the optimization in
Eq. (2.5) becomes:

ŵ = argmin

w2Rd

ˆE(w) + �R(w) (2.10)

ˆE(w) = 1

n

nX

i=1

`(yi, fw(xi)) =
1

n

nX

i=1

`(yi, w
>xi) (2.11)

where it can be noticed that the regularization acts on the values w.
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Figure 2.1: Example of Feature Map from R2 to R3. The classification problem becomes
linearly separable in the (higher dimensional) feature space. Picture from [Rosasco, 2016].

Note that this model can be easily extended to multiclass problems by denoting ✓ = W 2
Rd⇥T , such that:

H = {fW : Rd ! RT
: 9W 2 Rd⇥T such that fW (x) = W>x, 8x 2 Rd}.

Feature Maps. In order to model non linear functions, a well-established approach is to
leverage the same formulation as Eq. (2.10)-(2.11), but “replacing” any point x 2 Rd with
�(x) 2 Rp, where � : X ! Z is a suitable function mapping the input space X into a new
space Z , usually called feature space. The idea behind this approach is that classes which
are not easily separable by a linear model, may become easily separable by a linear model in
the feature space, since the model may be non linear anymore in the original input space (see
Fig. 2.1 for a pictorial representation of this concept). Therefore, by properly defining �(x),
the inputs can be mapped into a new space (typically, an Hilbert space, i.e., a space provided
with a scalar product) where solving the learning task may be easier.

Kernel Methods. Unfortunately, defining a suitable mapping is generally difficult for most
problems. To this regard, it has been shown that mapping points in higher dimensions can
generally help making them separable [Bishop, 2006]. One of the most studied implications of
this idea is its extension to infinite-dimensional feature spaces.

To this regard, it is possible to demonstrate (Representer Theorem) that the solution of the
problem (2.10) can always be expressed as wS =

Pn
i=1 xici, where x1, . . . , xn are the points

in the training set and c = {c1, . . . , cn} a set of coefficients to be learned (in place of wS). In
this formulation, it can be observed that f(x) = w>

S x =

Pn
i=1 x

>
i xci depends on the input
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points only through inner products x>i x. Hence, with a similar reasoning followed to introduce
feature maps, we can think of replacing these products with K(xi, x), where K : X⇥X ! R is
a Positive Definite (PD), symmetric, function, called kernel. In fact, it can be shown (Mercer’s
Theorem) that every kernel has one (in fact many) associated feature maps in a corresponding
space Z (called a Reproducing Kernel Hilbert Space), such that K(xi, x) = h�(xi),�(x)iF .
The advantage of this formulation is that, in this way, the mapping �(x) does not have to
be explicitly computed, and we can operate in an infinite-dimensional feature space Z just
through the kernel K.

By choosing a suitable non linear kernel it is then possible to derive “kernelized” versions of
Regularization Networks, induced by the different loss functions (i.e., kernel RLS, kernel SVM,
and so forth). For more details, we refer to [Shawe-Taylor and Cristianini, 2004b, Murphy,
2012].

Often, feature maps and kernels are employed jointly, by first mapping the inputs into
a feature space, where the classification problem is hopefully simplified; then, since such
mapping may be not sufficient to make the classes linearly separable, a kernel method is
employed. As we mentioned in Sec. 1.3.1 and we will see more in detail in Sec. 3.1, in past
decades a large body of computer vision and machine learning literature studied the problem
of learning good image representations, which can be seen as the problem of learning to map
images into suitable feature spaces.

2.1.4 Regularization and Model Selection

Once the hypothesis space is fixed, it is possible to define the type of regularization to be applied
to the parameters ✓ characterizing the functions f✓ 2 H. Referring to Eq. (2.10)-(2.11) for
instance, fw(x) = w>x and the choice R(f) = R(w) = kwk22 (or kWk2F , where we denote
by k · k2F the squared Frobenius norm of a matrix) leads to the well known L2 regularization.
The term R(w) = kwk22 prevents the solutions of the optimization problem (2.10) from having
too large components (that would cause fw(x) to be unstable with respect to little variations in
the input).

Another common regularization strategy is to use R(w) = kwk1 (or kWk1 ), known
as L1 or LASSO regularization. This term enforces sparse solutions and hence provides a
regularization effect through variable selection. A combination of L1 and L2 regularization is
often employed, which in the literature is referred to as Elastic Nets. Each of these regulariza-
tion terms is added to the empirical risk and is weighted by a regularization parameter (� in
Eq.(2.10)).

Commonly, � is not the only regularization parameter involved: other parameters typically
regulate the complexity of the form of the function f✓ to be learned. Classical examples are
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kernel parameters (e.g., the variance of the Gaussian kernel, or the degree of the polynomial
kernel) or finally –as we will see– the number of units and layers in a Neural Network. In fact,
many different forms of regularization exist, some of which will be considered in Sec. 4.1.2
with specific reference to Neural Networks.

Cross-validation. In general, a machine learning algorithm can involve therefore multiple
regularization parameters (also called hyper-parameters), the tuning of which is maybe the
most critical aspect in order to properly apply the algorithm. This is often indicated as the
problem of model selection and one of the most common approaches to address it is by
cross-validation.

Cross-validation is an empirical procedure to search the best value for a regularization
parameter. Usually, the range where to search is fixed according to some previous knowledge
on the data. The training set S is then split into two separate parts and, for each value in the
selected range:

1. the regularization parameter (in our example, �) is fixed to that value and Eq. (2.10) is
optimized with respect to w (that is, the model is trained) on the first dataset part;

2. the learned model is tested on the second dataset part.

The two parts are often called respectively training and validation sets. Finally, the model
corresponding to the regularization parameter value providing the lowest error on the validation
set is selected. Of course, this method (also known as holdout cross-validation) can be extended
to tune multiple regularization parameters jointly.

Several variations of this basic procedure exist. For example, in the so called k-fold
cross-validation, for each value of the regularization parameter, the training set S is split into
multiple (k > 2) parts, where k � 1 parts are used for training and the remaining one for
validating, repeating the procedure k times so that all parts are tested on, and finally averaging
the validation error on them. This procedure is generally chosen to obtain a more robust
estimate for the error associated with each value of the regularization parameter. When the
training set is particularly small, the leave-one-out cross-validation can also be employed,
which is a variation of the k-fold cross-validation where the validation set is composed by only
a single point.

2.1.5 Regularized Least Squares for Classification

We conclude the Section by presenting the Regularized Least Squares for Classification (RLSC)
algorithm, a well established learning method that will also be frequently employed in the
experiments reported in this Thesis (Chapters 6, 7 and 8).
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As anticipated, the RLSC algorithm uses the square loss (Sec. 2.1.2). In the following,
for simplicity we present its linear version (see Sec. 2.1.3), although kernelized versions
(employing, specifically, a Gaussian kernel) will be used in the experiments in Chapters 6
and 7. We adopt L2 regularization (Sec. 2.1.4).

Considering a multiclass setting where T classes are to be discriminated, and assuming
a linear model f(x) = W>x, with W a matrix in Rd⇥T , the problem addressed by RLSC is
finding:

cW = argmin

W2Rd⇥T

kY �XWk2F + �kWk2F (2.12)

given a training set {xi, yi}ni=1, with inputs xi 2 X = Rd and labels yi 2 {1, . . . , T}. The
matrices X 2 Rn⇥d and Y 2 Rn⇥T are such that their i-th rows correspond respectively to
xi 2 Rd and eyi 2 RT .

It can be shown that the solution to Eq. (2.12) can be obtained in closed form:

cW = (X>X + �Id)
�1X>Y, (2.13)

where Id is the d⇥ d identity matrix (see for instance [Boyd and Vandenberghe, 2004]).
According to the prediction rule introduced in Sec. 2.1.2, a given xnew 2 Rd can therefore

be classified according to

ˆf(xnew) = argmax

i=1,...,T

ˆf(xnew)i = argmax

i=1,...,T
(

cW (i)
)

>xnew, (2.14)

with cW (i) 2 Rd denoting the i-th column of cW .

2.2 Stochastic Gradient Descent

In the previous Section we introduced the general supervised learning setting within the
framework of the Statistical Learning Theory, concluding with the definition of an optimization
problem, which must be solved in order to learn the model parameters from the examples in the
training set. We reported the example of the RLSC algorithm, where this optimization problem
can be solved in closed form. Unfortunately, in most cases the solution of an optimization
problem cannot be obtained in closed form and iterative algorithms must be adopted. To
this end, in this Section we introduce a class of methods, which goes under the name of
Gradient Descent (GD) and Stochastic Gradient Descent (SGD), widely employed to solve the
optimization problems involved by learning algorithms.

For simplicity, here we consider a linear model for binary classification. However, most
considerations apply similarly to multiclass problems. Moreover, in Sec. 4.1, we will see how
the same algorithms can be applied also to more complex and non linear functions (namely,
Neural Networks and Convolutional Neural Networks).
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2.2.1 Gradient Descent

We start by rewriting Eq. (2.10) in this form:

ŵ = argmin

w2Rd

F (w) where F (w) =
1

n

nX

i=1

`(yi, w
>xi) + �R(w) (2.15)

and F : Rd ! R is the sum of the empirical error and the regularizer. In most cases, the solution
of this optimization problem cannot be obtained in closed form by solvingrFw(w) = 0 (with
rwF (w) the gradient or the subgradient of F with respect to w). For instance, this is possible
for RLS, but not for logistic regression. Therefore, iterative optimization methods, such as
Gradient Descent (GD), must be adopted. In GD, at the first iteration the solution is initialized
to a point wt = w0 and, then, the following steps are taken:

wt+1 = wt � �trwF (wt) t = 1, . . . , T (2.16)

rwF (wt) =
1

n

nX

i=1

rw`(yi, w
>
t xi) + �rwR(wt) (2.17)

where rwF (wt) is the gradient of F with respect to w computed at wt and �t is a positive
constant (or a sequence) called the step size or learning rate. The idea is that we start from an
initial point and progressively move in the direction opposite to the gradient of the function
(which is the steepest direction pointing towards the minimum). The term descent comes from
the fact that, for a suitable choice of the step size �t, it can be shown that if F is a convex
function, F (wt) � F (wt+1) 8wt. Indeed, if F is a convex function, choosing the step size
appropriately ensures the iterations to converge to a global minimum wS from any initial
point [Boyd and Vandenberghe, 2004]. The relative change in the iterates ||wt � wt�1|| and/or
in the quantity to be minimized ||F (wt)� F (wt�1)|| is often used as a stopping criterion.

The step size �t is a key parameter: if it’s too small, the iterations will take too long to
converge, but if it’s too large, the iterations may diverge. For example, for convex, differen-
tiable and Lipschitz functions, a suitable choice for the step size can be shown to be � = 1/L,
where L is the Lipschitz constant of the gradient (less or equal than the biggest eigenvalue
of the Hessian matrix for all w). In all other cases, strategies in order to choose the step
size appropriately must be devised (see, e.g., [Boyd and Vandenberghe, 2004] and references
therein).

Note on non-convex optimization and deep learning. In case the function F is non-convex,
the iterations may converge to critical points that are not a global minimizer (e.g. local minima,
saddle points) or simply diverge, depending on the initialization point and many other factors
as the shape of the function. While convex analysis has been throughly studied in the literature,
the analysis of non-convex optimization has rather been overlooked in the past decades.
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As we will see in Chapter 3, recently large Convolutional Neural Network (CNN) models
empirically proved to work very well on large-scale image classification problems, but the
theoretical foundations of their effectiveness are unclear. Indeed, the function to be minimized
by GD when employing deep CNNs is non-convex. For this reason, the study of non-convex
optimization has been recently attracting the attention of the deep learning literature and is an
active field of research.

2.2.2 Stochastic Gradient Descent

This class of techniques derives from the basic idea of GD by considering that the objective
function F is the summation of n different components (see Eq. (2.15)), each depending only
on a single training point, and so is the gradient (Eq. (2.17)). The key concept of Stochastic
Gradient Descent (SGD) is hence to use, at each iteration t, only one component, among these
ones, to update wt (instead of averaging the gradient of F on all the training set). If we denote
the index of a point sampled from S at iteration t by it 2 {1, . . . , n}, we have:

wt+1 = wt � �tGit(wt) t = 1, . . . , T (2.18)

Git(wt) = rw`(yit , w
>
t xit) + �rwR(wt) (2.19)

The term stochastic in the name of the methods comes from the fact that Git(wt) can be seen
as a stochastic estimate of the gradient rwF (wt). If the objective function F is convex, it
can be shown [Nemirovskii et al., 1983] that SGD still converges to a global minimum, albeit
with slower rates than batch GD. The recent interest in these methods is motivated by the fact
that, for non-convex functions, SGD empirically proved to work much better in practice than
batch counterparts. In particular, when the training set is large, SGD provides an approach
to update the solution more frequently (instead of having to visit all points at each iteration),
which demonstrated to work well in many applications [Bottou, 2012].

The sequence it of example indices can be chosen deterministically or stochastically. Some
popular choices for instance are:

1. picking points in S without replacement until all points have been visited,
2. repeating the first procedure multiple times, every time maintaining the same order in

visiting the points,
3. repeating the first procedure multiple times, every time changing the visiting order,
4. sampling points in S with replacement according to a uniform distribution.

Note that in the SGD setting, the step size always needs to be chosen as a sequence �t

going to zero. For example, for strictly convex and differentiable functions, the choice �t =
1
t

can be shown to suffice [Nemirovskii et al., 1983].



CHAPTER 2. MACHINE LEARNING SETTING 35

2.2.3 Mini-batch Stochastic Gradient Descent

One largely employed variation of SGD is the mini-batch SGD, a method which can be seen
as “in between” GD and SGD. This method maintains the advantage of SGD, namely, frequent
solution updates. However, at the same time, at each iteration an average of the gradient over
multiple points is used, instead of the gradient computed in a single point. Conversely, this
procedure can be seen also as a batch GD which considers, at each iteration, a small group of
points rather than the whole trainining set S. In this way, the stochastic estimate of the gradient
is made more robust, but the solution is updated rather frequently. Denoting by bt = {(it)j},
for j = 1, . . . ,m the set of indices of a mini-batch of m points sampled from S at iteration t,
we have:

wt+1 = wt � �tGbt(wt) t = 1, . . . , T (2.20)

Gbt(wt) =
1

m

mX

j=1

rw`(y(it)j , w
>
t x(it)j ) + �rwR(wt) (2.21)

where the different choices described for SGD regarding the sampling of the points it can be
adopted. Generally, in mini-batch SGD every iteration t the gradient of m points is hence
averaged, and the number of iterations needed to visit all n points in S is called epoch (one
epoch corresponds to d nme iterations).

Variations on the Solution Update. It has been largely shown in the literature that some
modifications of the basic SGD update rule can in practice speed up convergence. In the
following, we denote for convenience the gradient at iteration t by gt = Git(wt) (or gt =

Gbt(wt) in mini-batch SGD). Different approaches to replace �wt = ��tgt with more
effective update quantities have been proposed and are largely employed when training deep
Neural Network models.

A popular approach is the Momentum update [Rumelhart et al., 1988]. This method
introduces an intermediate variable vt = ↵vt�1 � �tgt where v0 = 0 and ↵ 2 [0, 1]. The
solution is then updated simply as �wt = vt. The name of the method comes from a physics
interpretation where the loss is seen as a hill and its negative gradient, g, is interpreted as
the force felt by a particle at height w on such hill, acting on its velocity, rather than on
its position directly. Indeed, g = mdv

dt (if we suppose m the mass of the particle). The
parameter ↵ is called momentum (in the physical view it actually would correspond to the
coefficient of friction damping velocity and reducing the kinetic energy of the system). In
general, momentum enforces steps towards consistent directions of the gradient.

While momentum modulates the update with a running estimate of the first moment of the
gradient (its mean), a number of methods have also been developed that modulate the update
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using the second moment:
• Adagrad update [Duchi et al., 2011]. This method uses an intermediate variable
rt = rt�1 + gt � gt (where � is element-wise multiplication) of sum of squared
gradients, in order to modulate the update as follows: �wt = � �tp

rt+�gt, where � is a
small number preventing division by zero.

• RMSProp update [Tieleman and Hinton, 2012]. This method uses a running mean of
the second moment rt = ⇢rt�1 + (1� ⇢)gt � gt (where ⇢ is usually set to be slightly
lower than 1, i.e., 0.99).

• Adam update [Kingma and Ba, 2015]. This method estimates both the first and second
running moments and can be seen as a combination of RMSProp with Momentum.

All these methods have an equalizing effect on parameter updates, i.e., parameters that see
large gradients will take smaller steps, while parameters that see very low gradients will take
larger steps.



Chapter 3

Deep Convolutional Neural Networks

In this Chapter we provide an essential background on deep Neural Networks and in particular
on Convolutional Neural Networks (CNNs), hierarchical architectures that are at the core of
modern deep learning methods.

Since the focus of this Thesis is on machine vision applications, we start by introducing
the problem of learning image representations, through a short overview of some fundamental
approaches that have been proposed in the literature in past decades (Sec. 3.1). Building on
the setting introduced in Chapter 2, we then describe the basic CNN architecture (Sec. 3.2),
providing an intuitive explanation for its main building blocks and its effectiveness in image
representation learning. Finally, we present four well-established CNN models that, in latest
years, have proved to be remarkably effective in several vision problems (Sec. 3.3). These are
also the models that will be employed in the experiments reported in the Thesis (Chapters 6, 7).

3.1 From Pixels to Labels: Building Invariance and
Selectivity

Building on previous Chapters, we can define the multiclass image classification problem as
the problem of finding

ˆ✓ = argmin

✓

1

n

nX

i=1

`(yi, f✓(Xi)) + �R(✓) (3.1)

where f✓(X) is a function characterized by parameters generally denoted with ✓, and acting,
in this case, on an image X 2 Rc⇥r⇥3, i.e., belonging to the space of all possible RGB (i.e.,
3-channel) images of c columns and r rows. The training set S is composed in this case by n

images Xi, each one associated to a label yi 2 RT (expressed, e.g., as the one-hot encoding of
the name of the object class represented in the image).

37
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Meaningful representations 13
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Figure 3.1: Pictorial representation of the concept of selectivity and invariance of an
image representation. Picture adapted from A. Vedaldi’s lecture at the “2015 International
Computer Vision Summer School”.

Applying a linear model to this problem would lead to have a function fW (

˜X) = W ˜X ,
where the parameters ✓ would be a weight matrix W 2 RT⇥(c⇤r⇤3), T being the number
of classes and c ⇤ r ⇤ 3 the length of the input vector ˜X , where we denote in this way the
“vectorized” version of the image X (obtained, e.g., by concatenating the image rows, one
channel after the other).

As will be clarified in the following, while this model is relatively simple, it is too limited
for tackling complex problems as the classification of natural images. We already pointed out
that raw pixel values can largely vary depending on objects’ pose, occlusions, background,
illumination, and so forth. In categorization tasks also different object instances should be
mapped into the same class. There is therefore such a high degree of intra-class variability at
the level of raw images, that linear classifiers are definitely not likely to succeed in separating
the different classes – apart from particularly simple cases. To this regard, in Sec. 2.1.3 we
explained that a way to “enrich” linear models is to map the input into a feature space, where
the classification task can be simplified. We also mentioned that, in computer vision, feature
maps are also commonly indicated as image representations.

In particular, in the image classification scenario, a suitable feature space is a space where
each image is mapped into a representation that is sensitive only to the image content which is
relevant for the classification task, while being invariant to irrelevant aspects. More specifically,
an image representation can be considered “good” for a classification task if it is invariant



CHAPTER 3. DEEP CONVOLUTIONAL NEURAL NETWORKS 39

to class-preserving image transformations, while being selective for the different classes. In
Fig. 3.1 a pictorial representation of this idea is provided.

Since, in general, it is not possible to know beforehand which content will be relevant for
a particular classification task, image representations, like classifiers, must be learned from
data and from examples. In fact, the image classification problem typically boils down to the
problem of learning good image representations.

The two fundamental steps in the construction of an image representation which is (i)
selective for a specific pattern (let’s say an edge, or a part of an object, inside a particular image
region) and (ii) invariant to some visual transformation of the pattern (let’s say rotation) are:

1. The detection of the pattern under all possible configurations of the considered transfor-
mation (in this case, the detection of the pattern in all possible orientations). This step is
also referred to as coding, because it usually employs a number of templates or filters,
each tuned to a different pattern configuration and encodes the input (the considered
image region in this example) into their responses (e.g., by multiplying pixel-wise each
template with the image region).

2. The aggregation of such responses, by applying a pooling operator (e.g., the average or
maximum).

While we refer to [Anselmi et al., 2015, Anselmi et al., 2016, Poggio and Anselmi, 2016]
for a formal explanation of this concept, in the following we review how different approaches
proposed in the literature can be reconnected to this paradigm and highlight how, through
the progressive addition of more coding-pooling layers, they progressively led to recent deep
learning methods.

3.1.1 Local Invariance in Hand-crafted Descriptors

As anticipated in Sec. 1.3.1, SIFT or HOG-like descriptors [Lowe, 2004, Ke and Sukthankar,
2004, Mikolajczyk and Schmid, 2004, Bay et al., 2006, Dalal and Triggs, 2005]), can be shown
to be based on these two stages of computation (see, e.g., [Mahendran and Vedaldi, 2015]) in
order to robustly describe small patterns, irrespective of local transformations (as rotations,
scaling or translations). These descriptors are usually referred to be hand-crafted since the
filters in the coding step are manually engineered. While the manual filter design is possible if
the patterns to be detected are simple (edges, corners, blobs), the same approach is not feasible
to detect more specific and extended patterns (like, e.g., object parts).

3.1.2 In Search of Global Invariance: Dictionary Learning and Pooling

A variety of methods was then proposed in the literature, which can be seen as iterating the
two above steps of coding-pooling, in order to detect more complex patterns, invariant to wider
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DICTIONARY LEARNING

Figure 3.2: Main steps involved in dictionary learning pipelines. Picture adapted from A.
Vedaldi’s lecture at the “2015 International Computer Vision Summer School”.

transformations.

In these pipelines, at the first stage, local descriptors like SIFTs are usually extracted either
in a dense grid [Fei-Fei and Perona, 2005] or only from some selected keypoints [Jegou et al.,
2010, Sánchez et al., 2013].

The second encoding is instead learned from data. To this end, the core idea of dictionary
learning methods is to use a subset of local descriptors (extracted from a number of example
images) to learn the most “meaningful” descriptors for the considered problem. These can be
seen as “representation prototypes” of specific patterns (like parts of the most frequent objects
in the images). The term dictionary comes from the inspiration from the Bag Of Words (BOW)
algorithm for text classification, since the learned representation prototypes can be interpreted
as the words of a dictionary of terms frequently appearing in the texts (that is, in the images)
to be classified.

Once the dictionary is learned, it is then used as a basis to encode the local descriptors
extracted from any new image. These are mapped on the dictionary codebook and become
therefore just linear combinations of prototypes (words). The encoded descriptors are finally
spatially pooled (e.g., averaged) over the full image. The result is that, in this way, each image
is associated to a vector representation, indicator of its semantic content (like the word count
of the text). Once images are encoded into their vector representations, standard classifiers are
trained (and tested) in the representation space.

Several strategies have been proposed in the literature to learn the dictionary. Some of
them are unsupervised and are based on the computation of higher order statistics on the pool
of local descriptors (see, e.g., Super Vectors [Zhou et al., 2010], VLAD encoding [Jegou et al.,
2010], Fisher Vectors [Sánchez et al., 2013]). Others are based instead on the minimization of
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the reconstruction error of the original descriptors, constrained to (most often) some sparsity
criterium (see, e.g., hard/soft Vector Quantization [Philbin et al., 2008], Sparse Coding [Lee
et al., 2006, Yang et al., 2009] and Locally-constrained Linear Coding [Wang et al., 2010]).
We refer to [Jarrett et al., 2009, Boureau et al., 2010a, Chatfield et al., 2011] for comprehensive
overviews. Interestingly, [Boureau et al., 2010a] show that exploiting the prediction error of
the classification task as a supervisory signal to learn the dictionary (in a similar way deep
networks learn filters’ weights with backpropagation) does improve performance.

Several works in the literature also proposed different pooling approaches (see, e.g.,
[Boureau et al., 2010a,Boureau et al., 2010b,Boureau et al., 2011,Russakovsky et al., 2012,Jia
et al., 2012, Fanello et al., 2014]). In particular, it was observed that, instead of pooling the
encoded descriptors over the full image, pooling among smaller regions and then concatenat-
ing the pooled descriptors (a strategy known as Spatial Pyramid Matching [Lazebnik et al.,
2006, Yang et al., 2009]) allows to maintain a “minimal” spatial structure in the final image
representation, that is indeed critical to recognition tasks.

In Fig. 3.2 a pictorial representation of the main steps involved in a typical dictionary
learning pipeline is reported.

3.1.3 End-to-end Learning

One major limitation of dictionary learning approaches resides in the fact that only one
representation layer is actually learned from data. Another relevant point is that, in all these
approaches, the representation learning stage is completely separated from the learning of the
classification task: a feature map is first learned, and then the mapped images are used to train
a classifier. A different approach is to jointly solve the problem of learning the feature map
and the classification problem. This can be achieved by, e.g., changing the hypothesis space
by acting on the form of the function f✓(X). An intuition for this approach is that the joint
optimization of the feature map and the classification task may lead to learn a more effective
image representation.

The first example of such a system was proposed by LeCun et al. [LeCun et al., 1989,LeCun
et al., 1998]. The authors managed to express a multi-layer, hierarchical, image processing
pipeline in a recursive form, which could be optimized by applying SGD (see Sec. 2.2). This
approach is often referred to as end-to-end learning, since it learns a continuous mapping from
the image X to the final prediction f✓(X), as opposed to the dictionary learning approaches
previously mentioned.

In the following, we will express such mapping as f✓(X) = CNN✓(X), where ✓ will be a
set of weight matrices and CNN(·) is what is called a deep (Convolutional) Neural Network.
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X1 є RTX" є Rc*r*3

Figure 3.3: Multiclass linear classifier acting on an unrolled RGB image ˜X and producing a
vector X1 of T output scores. Each score is the result of a weighted sum of all pixels, passed
through the softmax non linearity if the cross-entropy loss is employed.

3.2 Basic Architecture

In Sec. 2.1 we introduced the general supervised learning setting as the problem of learning,
from data, the parameters of a specified model; in Sec. 2.2 we sketched how SGD approaches
can be applied to address this problem. We did not specified a particular choice of a model,
considering for simplicity linear ones. However, we have seen at the beginning of Sec. 3.1
that this simple choice is not sufficient for image classification settings, and we reviewed the
principal methods proposed in the literature to map images into good feature spaces. We
finally introduced Convolutional Neural Networks (CNNs) as models that approach the image
classification problem by learning a continuous mapping from images to labels, through the
definition of a suitable hierarchical architecture. In this Section we describe such architecture,
while in Sec. 4.1 we will describe how its parameters can be learned through a particular
application of SGD also known as the backpropagation algorithm.

We refer to [Goodfellow et al., 2016] for a more detailed and comprehensive introduction
on deep learning and deep CNNs. We also refer to [Srinivas et al., 2016] for a useful brief
overview on the topic.

3.2.1 Neural Networks

We start by considering the multiclass classifier with cross-entropy loss introduced in Sec. 2.1.2.
In this case, the input-output relation between the image and the predicted class scores provides
�(fW (

˜X)) = �(W ˜X), with �(·) the softmax function and W 2 RT⇥(c⇤r⇤3). In Fig. 3.3
we report a pictorial representation of such model, which is often called single-layer percep-
tron [Rosenblatt, 1958,Bishop, 2006] or Neural Nework (NN). Indeed, we called the output X1,
as opposed to multi-layer architectures for which we will see that the output will be denoted by
XL, L being the number of layers. We adopt the usual convention of NNs where the rows of
the matrix W are represented, with different color, as connections between the corresponding
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X" є Rc*r*3

…
Xl є Rnl Xl+1 є Rnl+1

…

X1 є Rn1 XL-1 є RnL XL є RT

Figure 3.4: Deep Neural Network acting on an unrolled RGB image ˜X and producing a
vector XL of T output scores. At each layer, each unit outputs the weighted sum of all units
in the previous layer (of all pixels at first layer), passed through a non linear function. The
softmax non linearity is used in the last layer if the cross-entropy loss is employed.

inputs and output unit (in this case, each output unit receives connections from all pixels in
the image). Note that we represented ˜X with the shape of a 3-dimensional array even if in the
formulation it is unrolled and treated like a 1-dimensional array.

Biological Inspiration. It is useful to note that this model has a biological interpretation
where the unit of computation (e.g., one output unit in Fig. 3.3) can be seen as modeling the
basic operations carried on by a neuron in the cortex [McCulloch and Pitts, 1943]. This unit
computes the weighted sum of its inputs and passes it through a non linear function. Similarly,
a neuron receives inputs from a pool of other neurons through synaptic connections located in
a specific part of the cell called dentrites; it sums them up, weighting each input depending on
the strength and kind of the synaptic connections (inhibitory –negative weight– or excitatory
–positive weight–), a computation which has been proved to happen in another part of the cell
called soma; finally, it sends out the output to other neurons, through a third part of the cell
called axon. Since then neurons communicate through spikes and the transmitted signal is
encoded in their firing frequency, which is a positive quantity, the non linearity �(·) can be
interpreted as suppressing the negative part –eventually saturating to some value, as it happens
in biological neurons.

Since, as we pointed out, natural image classification tasks are unlikely to be linearly
separable problems, a direct extension of this single-layer model (often indicated as “shallow”)
can be built by keeping a biological inspiration and concatenating multiple layers of neurons,
where the output of one layer becomes the input of the following one. In this way, the global
input-output relation takes the form of a composed function, where each block is built on top
of the previous one, in a hierarchy of neuronal layers that retrace the connections between
lower and higher cortical areas in the brain.
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The resulting model is called multi-layer perceptron or Neural Network (NN) and was first
proposed in the 1960s [Rosenblatt, 1958]. An example of such architecture, comprising L

layers, is sketched in Fig. 3.4. Each layer is described by the following formulas (where we
suppress the dependency of the current layer on previous one for simplicity, i.e. Xl+1(Xl) :=

Xl+1):

8
>>><

>>>:

X1 = fNL(U1)

U1 = W1
˜X

W1 2 Rn1⇥(c⇤r⇤3)

8
>>>>>><

>>>>>>:

Xl+1 = fNL(Ul+1)

Ul+1 = Wl+1Xl

Wl+1 2 Rnl+1⇥nl

l = 1, . . . , L� 2

8
>>><

>>>:

XL = �(UL)

UL = WLXL�1

WL 2 RnL⇥nL�1

(3.2)

where we note that �(·), the non linear function used in the output layer (XL), is the softmax,
while the non linearity used in the so called hidden layers (X1 to XL�1), indicated as fNL(·),
is a different non linear function, some common examples being the hyperbolic tangent
fNL(z) =

1�ez

1+ez or the sigmoid fNL(z) =

1
1+e�z or the Rectifying Linear Unit (ReLU)

fNL(z) = max(z, 0). Recently, the ReLU is the preferred option for training deep networks,
because it avoids saturation issues and it allows for faster differentiation, thus simplifying
backpropagation of derivatives (for details refer to [Krizhevsky et al., 2012, He et al., 2015]).

Note that we did not introduce biases into the linear models in order to keep the equations
simple, also for the derivation of the backpropagation algorithm that will be reported in Sec. 4.1.
The introduction of biases is usually done in order to account for uncentered data, but has little
impact in the model formulation and optimization (since the bias does not have to be affected
by regularization).

This model provides XL(
˜X) := NN✓(

˜X), where NN✓(·) is a composed function and the
parameters ✓ are the union of all weight matrices plus the biases, i.e. ✓ = {W1, . . . ,WL}, and
L2 regularization usually acts on the weight matrices. Other important parameters which must
be assigned in order to completely specify a NN model are (i) the number of layers, L, and (ii)
the number of units in each layer, n1, . . . , nL. These have a critical impact on the capacity of
the model and, therefore, on the risk of overfitting the training set, and in general are chosen
with cross-validation.

3.2.2 Convolutional Neural Networks

The model described so far does not assume any spatial structure in the input vector. However,
since we are actually considering 3-dimensional signals with a quite meaningful spatial
distribution, it is reasonable to account for this in the definition of a proper image classifier.
Moreover, when applied to images, hierarchical architectures as the one described in Fig. 3.4,
also called vanilla NNs, are characterized by such an extremely large number of parameters



CHAPTER 3. DEEP CONVOLUTIONAL NEURAL NETWORKS 45

a) b) c) d) e)

Figure 3.5: From NNs to CNNs: a) a classical fully connected layer of a vanilla NN where
each unit is connected to all pixels in the image; b) the weights of each unit are constrained to
be local; c) units share the same weights and in fact the layer now convolves the image with
this small weight matrix; d) more, different filters are employed, to detect multiple patterns; e)
a subsequent spatial pooling layer aggregates units’ responses in image regions, in order to
achieve invariance to translations within the region. Picture adapted from Yann LeCun.

that their training is often computationally unfeasible. The main problem of this kind of model
is that each neuron is connected to all pixels in the image. Since the first studies in computer
vision and neuroscience [Hubel and Wiesel, 1962, Fukushima, 1980], it became evident that
neither effective algorithms can be developed with this approach, nor computations in the
visual cortex are organized in this way. Convolutional Neural Networks (CNNs) account for
both limitations and provide effective architectures for image classification, while adopting
bio-inspired computational principles.

Convolution Layers

Convolution layers are a particular kind of NN layers where the connectivity of each unit is
constrained to be local and shared. To better explain this idea, refer to Fig. 3.5: in a classical
“fully connected” layer of a vanilla NN, each unit is connected to all pixels in the image (Fig. 3.5
(a)). However, this approach is not suitable to deal with images for at least two reasons: first,
usually interesting patterns are local rather than global; second, an interesting pattern must
be correctly detected at every possible image location. Hence, employing NNs requires to
learn an explosion of parameters, which may be unnecessary. Indeed, a much more reasonable
approach is to focus each unit to “look” only at a restricted image region, detecting possible
interesting patterns within that region. This can be achieved by constraining the weights of
units to be non-zero only in a pixel neighbourhood (Fig. 3.5 (b)). Then, the weights of all
units can be further constrained to be equal (Fig. 3.5 (c)), such that a same pattern can be
detected at every possible position. It is easy to see that the operation performed by the layer is
now equivalent to convolving the image with the small matrix of non-zero weights (which has
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become the equivalent of a filter). Moreover, since a remarkable number of parameters has
been saved, it is finally possible to employ multiple filters to detect different patterns – each at
every spatial location (Fig. 3.5 (d)).

In image processing and computer vision, convolving an image with a set of filters (often
called a “bank” of filters) is a very common operation. Filtering is one way to build feature
maps, i.e., topographic maps of features extracted from the image, which encode relevant
information and discard non relevant aspects – information relevance of course being dependent
on the task. Note that the use of the same term adopted in machine learning when mapping
inputs into feature spaces is not by chance, indeed, they are exactly the same thing.

Biological Inspiration. Neurophysiological studies has shown that connections between
neurons in the visual cortex are topologically organized (see [Fishman, 1997] for an historical
overview). In particular, each neuron in the primary visual cortex (V1) receives inputs from
a pool of photoreceptors that are located in a small area on the retina, and they are spatially
ordered so that neurons that are close one to the other receive input from adjacent portions of
the retina. This ordered mapping from photoreceptors in the retina to neurons in V1 forms
a so called retinotopic map of neurons, each one “seeing” a specific location of the visual
field (called receptive field (RF)). Retinotopic maps in V1 are only an example of topographic
organization of neuron populations in the nervous system. Indeed, visual information is not the
only sensory input that is processed in a predefined spatial arrangement: tonotopic maps have
been found in the auditory cortex and somatotopic maps in the the primary somatosensory
cortex [Killackey et al., 1995, Kaltenbach et al., 1992]. The computation in V1 is further
organized such that, for each location in the retina, there exist neurons tuned to different and
specific visual stimuli –like small edges differently oriented [Hubel and Wiesel, 1959, Hubel
and Wiesel, 1962]. In other words, there exist multiple retinotopic maps in V1, each one
composed of neurons, called simple cells, tuned to the same specific visual stimulus. This is
the basic mechanism that enables us to perceive every different stimulus in every location in
the visual field. The corresponding implementation of a retinotopic map of neurons, each one
with the same RF and receiving local connections from a small neighborood of photoreceptors,
is provided by the operation of convolution of a filter (modeling the RF) with an image.

Pooling Layers

Feature maps are topographical representations of the relevant content in an image. As we men-
tioned, what matters in recognition is the information about “what” is in the image, irrespective
of its spatial location. Hence in order to build suitable mappings for image classification, this
distributed information has to be spatially aggregated into global representations. To this end,
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spatial pooling layers are introduced into CNNs and interleaved with convolution ones.
Each unit in a pooling layer aggregates the output of units that are located in its neigh-

borood in the previous convolution layer, by computing, e.g., their average or their maximum
(see Fig. 3.5 (e) for a pictorial representation). In this way, the output of the pooling unit will be
the same, for any position of the stimulus that has been detected by units in the previous layer.
In other words, the unit response will be selective for the stimuluts, while being invariant to its
position within the pooled spatial region. We refer to [Boureau et al., 2010a, Boureau et al.,
2010b, Boureau et al., 2011] for an in-depth analysis of pooling, providing also arguments in
favour of the use of max rather than average pooling in hierarchical architectures like CNNs.

Biological Inspiration. Like simple cells, pooling cells have also been found in V1 and are
called complex cells. The response of a complex cell has been measured to be the same when
varying the location of a visual stimulus within its RF, i.e., it exhibits invariance to the exact
position of the stimulus within its RF.

Hierarchical Architecture

Deep CNNs are finally built by ay alternating (i) convolutional and (ii) pooling layers (with
subsampling), in order to progressively increase (i) the complexity of the encoded stimuli
and (ii) the spatial invariance of feature maps. More precisely, usually, in CNNs the spatial
resolution and the size of feature maps decreases, from lower to higher layers, until eventually
the size of the feature map is reduced to just a single pixel. Reducing the spatial resolution of
the signal allows to save memory and computations, such that it is then possible to progressively
increase the number of filters employed at each layer, detecting in this way more different
patterns. As a result, the full image is encoded into a single global vector representation (of
dimension given by the number of filters/channels in the last layer). Note that the role of non
linearities is fundamental and, usually, element-wise non linearities (as the ones mentioned
for vanilla NNs) are interleaved between convolution and pooling. Without them, indeed, the
whole architecture could be reduced to a single linear layer.

At this point, such image representation can be fed to a fully connected layer, which will
output classification scores. Of course, multiple fully-connected layers can be concatenated.
However, their efficacy is debated, compared with the increase in the number of parameters
they involve. To this regard, modern deep architectures are progressively reducing the number
of fully-connected layers employed at the end of convolution layers.

An example of CNN is represented in Fig. 3.6 and in the following we provide some simple
equations for its convolutional and pooling layers. The underscript l indicates the layer, as
before. The element in row x and column y of slice (or, channel) z is denoted by Xl(x, y, z).
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X є Rcxrx3

X1 є RWxHxC1 Xl є RWl-1xHl-1xCl

X2 є RW2xH2xC1 Xl+1 є RWl+1xHl+1xCl
XL-1 є RCL-1

XL є RT

XL-2 є RWL-2xHL-2xCL-1
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Figure 3.6: Convolutional Neural Network acting on an RGB image X and producing a vector
XL of T output scores. Convolution and pooling layers (with subsampling) alternate, in order
to progressively (i) increase the specificity and (ii) decrease the size and spatial resolution of the
feature maps, until a global vector representation is extracted and passed to a fully-connected
layer.

Each convolutional layer is characterized by a number Cl of filters, indicated as Wl,z , for
z = 1, . . . , Cl, such filters are 3-dimensional arrays, usually all with same spatial support
Sl⇥Sl and same number of channels as the input feature map Xl�1 (i.e., Wl,z 2 RSl⇥Sl⇥Cl�1).
The convolution between a filter and a feature map is therefore a 3-dimensional convolution,
where the third dimension of the two is the same, and can be alternatively expressed as the sum
of 2-dimensional convolutions, between each slice in the feature map and the corresponding
slice in the filter, as in the following formulation:

Xl(x, y, z) =

8
>>>>>>><

>>>>>>>:

conv : fNL(Ul(x, y, z))

Ul(x, y, z) =

Cl�1X

c=1

(

X

u,v2[�Sl,Sl]

Wl,z(u, v, c)Xl�1(x� u, y � v, c)))

pool : fPOOL
u,v2[�Pl,Pl]

Xl�1(x+ u, y + v, z)

(3.3)
where fPOOL = avg or fPOOL = max and Pl ⇥Pl is the spatial support of pooling at layer l.
Border effects in the convolution implementation should be accounted (usually this is done
by zero-padding the signal). We omitted the biases for the sake of simplicity, but note that in
general they are included into the formulation of convolution layers. Also, we did not include
in the equations the –yet fundamental– subsampling operation: usually, this is also included in
the convolution operation, in the form of a stride greater than one.

According to this formulation, the output is XL(X) = CNN✓(X), where CNN✓(·) is
again a composed function, provided by an alternation of convolution and pooling layers,
followed by one (possibly more) fully-connected layer (which have been defined for NNs).
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The parameters ✓ in this case are the union of all convolution filters

✓ = {W1,1, . . . ,W1,C1 , . . . ,WLCONV ,1, . . . ,WLCONV ,CLCONV
}

supposing to have LCONV convolution layers, plus the weights WFC (and possibly biases) of
the fully-connected layer.

Computational Efficiency. To provide an idea of the practical implications of the compu-
tational advantages provided by the convolution-pooling approach with respect to the fully
connected approach of vanilla NNs, we can consider as an example a relatively small 256⇥256

RGB image and a 100-class classification task. We can quickly compute that a simple CNN
with a quite standard architecture, stacking, e.g., 4 convolutional layers with increasing number
of filters (let’s suppose from 32 in the first layer to 64, 128, 256 in the following ones), all with
a 3⇥ 3 spatial support, and alternating with pooling layers on a 4⇥ 4 neighbourhood (these are
all common settings for CNNs), would need⇠ 400k parameters for⇠ 2.5m units. On the other
hand, just the first fully connected layer of a vanilla NN would need 256⇥256⇥3⇥32 ⇠ 6.3m

parameters for only 32 units.

Biological Inspiration. We pointed out the close similarity between convolution and pooling
layers in CNNs with retinotopic neuronal layers of simple and complex cells in primates’
visual cortex. In fact, topographical maps of simple-complex cells have been found from lower
to higher cortical areas in the ventral stream designated to visual recognition (see [Yamins and
DiCarlo, 2016] and references therein [Hubel and Wiesel, 1962,Logothetis et al., 1995,Malach
et al., 2002, Hung et al., 2005, Rust and DiCarlo, 2010]). In these maps, the receptive fields of
simple cells are tuned to progressively more complex and extended visual stimuli, from edges,
to simple patterns, to specific object parts, and so forth, playing the role of templates that
encode more and more selective and abstract representations. At the same time, interleaved
layers of complex cells introduce an increasing degree of spatial invariance to wider visual
transformations [Hung et al., 2005, Rust and DiCarlo, 2010]. It has been also found that
invariant responses are produced by complex cells by pooling responses of groups of simple
cells tuned to transformed versions of the same stimulus.

Based on these observations, computational models of the ventral stream were proposed
in the literature [Serre et al., 2007, Mutch and Lowe, 2008], that iterated convolution-pooling
layers multiple times in order to progressively build more invariant and selective representations
– in fact resembling the structure of deep CNNs. Taking inspiration from biology, these models,
among which a well known example is HMAX [Serre et al., 2007], explicitly introduced
representation invariance by employing transformed templates (e.g., rotated versions of the
same filter). To this regard, a recent theory by Poggio et al. [Poggio and Anselmi, 2016]
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hypothesizes that the main computational goal of the ventral stream is to compute neural
representations of images that are invariant to the visual transformations commonly experienced.
The authors also point out interesting analogies with the computations that are carried out in
modern CNNs.

In further support of this analogy, there has been recent experimental evidence that latest
CNN architectures ( [Krizhevsky et al., 2012, Zeiler and Fergus, 2014]), which we will see
in the next Section, not only can match and surpass human performance on challenging
recognition tasks [He et al., 2015], but can also predict well neural population responses in
the top two layers of the ventral visual hierarchy (V4 and Inferior Temporal cortex) – even
without being constrained to match any neural data [Yamins et al., 2014, Cadieu et al., 2014].
In addition to yielding greatly improved models of visual cortex, the authors suggest that
these results may also indicate that a process of biological performance optimization may
have shaped neural mechanisms [Yamins and DiCarlo, 2016]. Indeed, we will also see in
Sec. 4.2.2 that recent works exploring visualization techniques to analyze the properties of
the representations learned at the different layers of deep CNNs, found also in these artificial
models units tuned to increasingly more complex shapes, terminating with receptive fields
covering almost the full image and selective for specific objects and object categories [Zeiler
and Fergus, 2014, Yosinski et al., 2014b, Simonyan et al., 2014].

On the other hand, it must be noted that, differently from biological models like HMAX, the
filters in modern deep CNNs are not constrained to be transformed versions of each other, but,
as we will see in Sec. 4.1, are learned with the only goal of minimizing the recognition error.
Therefore, these architectures are not invariant “by construction” to any visual transformation
but translation (because of convolutions), and their invariance properties instead strongly
depend on the data on which the filters are learned. As we will see in the following Section,
it is for this reason that one key ingredient of the success of modern deep CNNs lies in the
variability and size of the data corpora on which they are trained. To this regard, in Sec. 4.2,
we will see some recent work investigating the invariance properties of deep CNNs and, in
Chapter 7, we will address a similar study.

3.3 The Deep Learning (Re)Evolution

The first CNN architectures learned end-to-end were proposed by LeCun et al. [LeCun et al.,
1989, LeCun et al., 1998] and are known as LeNets. At the time, they already renewed the
interest in Deep Learning (DL) models for visual recognition, which had been mostly neglected
in the literature due to the scarce empirical results provided by vanilla NNs. The interest in
these models remained however pretty limited, until the groundbreaking work of [Krizhevsky
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et al., 2012], who were able to train a very large CNN (known as the “AlexNet”) and achieve
astonishing performance on the challenging ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) 2012 [Russakovsky et al., 2015]. Since then, lots of architectural variations
have been proposed, providing better and better performance on the ILSVRC. In the following,
we briefly describe AlexNet and some well-established CNN models, also adopted in the
experiments part of this Thesis.

3.3.1 AlexNet

To introduce this architecture, we make use of the following notation for the “prototypical”
operations/layers of a CNN (recalling what we saw in Sec. 3.2):

• Convolution layer (C): local convolution with respect to a bank of (learned) linear
filters.

• Spatial Downsampling: usually included in the above operation by using strided con-
volutions.

• Element-wise Non Linearity (nl): such as sigmoid functions [Bishop, 2006] or, more
recently, Rectifying Linear Units [He et al., 2015].

• Spatial Pooling layer (P): aggregates filter responses in a single component, for instance
by taking the maximum value observed (max-pooling).

• Fully-connected layer (FC): classical Neural Network layer where each unit outputs a
weighted sum of all units in previous layer.

Often, also a normalization (n) of unit outputs is included. For instance, the Local Contrast
Normalization adopted in [Jarrett et al., 2009], inspired by neuroscience evidence [Pinto et al.,
2008], suppresses the output of each unit by a quantity proportional to the sum of the outputs
of the other units at the same spatial position. The idea is to enforce competition between
features at the same location in different feature maps.

With this “convention”, we can represent AlexNet [Krizhevsky et al., 2012] as:

X ![C, nl, n, P ]! [C, nl, n, P ]! [C, nl]! [C, nl]! [C, nl, P ]! . . .

· · ·![FC, nl, drop]! [FC, nl, drop]! [FC, softmax]! ey

where we kept the notation of Chapter 3 and X is the image and ey is the one-hot encoding of
its label (Fig. 3.7, Left). Each layer is characterized by the design parameters that we saw in
Sec. 3.2.2, in such a way that the output of the last pooling layer is a vector (that is, a number
of feature maps with a single pixel of spatial resolution). A certain number of fully-connected
layers follows, in order to produce the final label. Here drop is the Dropout regularization
technique (that will be introduced in Sec. 4.1.2), adopted in the two fully-connected layers



52 CHAPTER 3. DEEP CONVOLUTIONAL NEURAL NETWORKS

which involve most of the parameters (in this case, ⇠ 53M over a total of ⇠ 60M). The model
was trained with the standard backpropagation algorithm for ⇠ 90 epochs of mini-batch SGD
on the ILSVRC 2012 training set. It finally reported a ⇠ 17% top-5 error rate on the object
categorization task, by far surpassing the best “shallow” pipeline (based on Fisher Vectors)
that achieved ⇠ 26%. We refer to the original publication [Krizhevsky et al., 2012] for more
details on the architecture, training and performance.

Note that the AlexNet architecture was not very different from the CNNs proposed in [Le-
Cun et al., 1998]. It is now well-accepted that the larger (i) training set and (ii) model size
(with training made feasible by empowered GPUs) plays a key role for the effectiveness of this
approach. To this regard, we note that model selection is a critical, open, problem when dealing
with deep CNNs: while the “AlexNet formula” proved to learn well on ImageNet, opening the
way to many other variations, as we will see in the following, replicating the same approach
with smaller models and datasets may not lead to as good results. Indeed, as we will show
in Sec. 4.3, this limitation recently motivated the adoption of transfer learning approaches to
“re-use” the representations learned by large CNNs on ImageNet, for other tasks and datasets,
rather than learning new models from scratch.

3.3.2 Beyond AlexNet: ILSVRC 2012-15

Since the breakthrough of AlexNet in 2012, large attention was paid to deep CNNs in the
machine learning and computer vision communities. In the following years, other CNN models,
evolved from AlexNet, further improved the state of the art on the ILSVRC. For the studies
carried on in this Thesis, we selected architectures that achieved best performance on the
challenge between 2012 and 2015 (or smaller versions of such architectures).

In fact, the great enthusiasm raised by the stunning performances of deep CNNs pro-
gressively motivated the authors of the various architectures to publicly release not only the
implementation of their winning models, but also the model weights themselves, as they have
been learned on the ILSVRC 2012 training set. Today, there is an increasing trend among
research groups to release the CNN models that they devised and trained, and a lot of models
learned on the different visual tasks are publicly available. Accordingly, Deep Learning frame-
works are progressively wide spreading, which, reducing the coding effort required to produce
implementations of the above models on dedicated hardware like GPUs, consequently facilitate
their sharing. In particular, in this Thesis we used the CAFFE [Jia et al., 2014] framework, one
of the first and most efficient libraries to implement and train deep CNNs.

Below, we summarize the key features of the CNN architectures considered in the Thesis,
providing also details on the models implemented in CAFFE and trained on the ILSVRC.
In Fig. 3.7 we report their pictorial representations and in Fig. 3.8 their performance on the
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Figure 3.7: The four CNN models employed in this Thesis (best viewed in electronic
form). Network pictures from K. He’s ICML “Tutorial on Deep Residual Networks”a and
from [Szegedy et al., 2015].

a
http://kaiminghe.com/icml16tutorial/index.html

ILSVRC challenges throughout the years. Note that the CAFFE implementations that we used
slightly differ from the original models proposed by the authors and usually report slightly
different error rates on the ILSVRC benchmark: we refer to models’ pages on CAFFE website
for the specific (minor) differences of each architecture.

CaffeNet1 A small variation of the AlexNet model, winner of ILSVRC 2012 [Krizhevsky
et al., 2012]. As we saw, it concatenates 5C + 3FC layers comprising⇠ 60M parameters.

VGG-162 Second classified at ILSVRC 2014 [Simonyan et al., 2014]. It maintains the general

http://kaiminghe.com/icml16tutorial/index.html
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Figure 3.8: ILSVRC Top-5 Error Rate Decrease of CNN models in latest years (and depth
increase). Picture from K. He’s ICML “Tutorial on Deep Residual Networks”a.

a
http://kaiminghe.com/icml16tutorial/index.html

structure of AlexNet, but with 13C + 3FC layers comprising ⇠ 140M parameters. It
first proposes an efficient computational pattern employing only 3⇥ 3 convolutions and
2⇥ 2 pooling. On the other hand, it is relatively expensive to train in terms of memory
and time because of the large FC layers (especially the first one, fc6).

GoogLeNet3 Winner of ILSVRC 2014 [Szegedy et al., 2015]. It diverges from previous
architectures in that it concatenates so called inception modules, which are an evolution
of the Network In Network computational structure [Lin et al., 2013], based on the
concept of empowering convolution layers by sliding, over the input, a non linear “micro”
Neural Network, instead of the simpler linear filter. Moreover, it replaces the FC layers
on top of the last convolution layer with an average pooling layer, leaving only a single
FC layer with Dropout before the final softmax. Overall, the adoption of these tricks
allows to reduce the number of parameters to only ⇠ 4M, into a relatively high number
of 22 layer. In order to facilitate the gradient flow through the layers during training, two
auxiliary classifiers extract network predictions at intermediate steps, whose errors are
summed up and backpropagated with the main network output.

ResNet-504 Stacking 50 layers with⇠ 20M parameters, it is a smaller version of the ILSVRC
2015 winner architecture proposed by [He et al., 2016], that was composed of 152 layers.
The name of this kind of architectures is short for residual networks, due to the presence

http://kaiminghe.com/icml16tutorial/index.html
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of skipping connections between non consecutive layers. The idea is that, instead of
learning an usual input-output relationship y = f(x), the residual between the input
and the output y = r(x) + x is learned instead. This trick is motivated by the fact that,
when f has a compositional form, the second formulation can facilitate the gradient
backpropagation through layers. They also adopt Batch Normalization (see Sec. 4.1.2)
and, as in GoogLeNet, employ a single FC layer at the end, without Dropout.





Chapter 4

Learning and Transferring Deep
Visual Representations

In the previous Chapter we introduced deep Convolutional Neural Networks (CNNs), architec-
tures that can directly map images into labels and that can be trained end-to-end. We described
the basic architecture of a CNN and presented some recent models well-known in the literature
for their impressive performance.

In this Chapter, we complete the introduction to deep CNNs by describing the optimization
algorithm that can be used to train them (Sec. 4.1). We then provide a short overview of
why and how these models have been recently widely employed in a variety of applications:
first, we review some works that, motivated by the stunning performances reported by these
architectures, tried to understand the properties of the representations that they can learn from
data (Sec. 4.2); finally, we present the main approaches recently proposed in the literature
to exploit the powerful representations learned by these models on web data collections in
other different visual tasks and domains (Sec.4.3). This is relevant for the Thesis since in
Chapters 6 and 7 we will investigate the possibility of adopting these approaches as well in
robotic settings.

4.1 Backpropagation

In this Section we describe how the SGD algorithm presented in Sec. 2.2 can be applied when
the function to be optimized is a function of the form f✓(X) = CNN✓(X), and the parameters
✓ to be learned are convolution filters and weight matrices. We will consider the mini-batch
SGD setting, since this is the most commonly adopted when training modern CNNs. However,
the computations we will develop can be adopted also in SGD or batch GD.

57
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4.1.1 Sketch of the Algorithm

We start considering the setting of Eq. (2.20) and (2.21), where we replace the linear model
with the CNN model:

Gbt(✓t) =
1

m

mX

j=1

r✓E(it)j + �r✓R(✓t) (4.1)

r✓E(it)j = r✓`(y(it)j , CNN✓(X(it)j )) (4.2)

For the sake of brevity, we will not compute r✓R(✓t), but we will focus onr✓E(it)j . We just
clarify that usually L2 regularization is adopted, also called weight decay. Indeed,rwkwk22 =
2w and hence, when updating a parameter w in SGD, if this is affected by L2 regularization,
we also decay it linearly. As we will see later on in this Section, other forms of regularization
are also employed when training deep CNNs.

In order to proceed with SGD, we then need to compute the derivative of the prediction
error with respect to model’s parameters for a given training example (Eq. (4.1)). In the
following, we will show how this computation can be developed for hierarchical structures
like CNNs. For simplicity, we will suppress the underscript indicating the sample index in the
training set:

r✓E = r✓`(y, CNN✓(X)).

Since CNN✓(X) is the result of composing L layers of functions, each characterized by
parameters that need to be optimized by SGD, the core idea of the backpropagation algorithm
is to apply the chain rule when differentiating the error E with respect to some parameter
affecting the function at some layer l. The name of the procedure comes from the fact that, as
we will observe, the derivative of E with respect to parameters at layer l (that we can denote
as ✓l) depends on the derivatives of E with respect to parameters in all layers higher than l

(which are “external” in the function composition). Therefore, while, in order to compute the
output prediction CNN✓(X) given an image X , we need to propagate the signal feedforward
in the architecture (by computing the output of layer 1, then feeding this quantity to the next
layer in order to compute the output of layer 2, then 3, and so forth), in order to compute @E

@✓l

we need first to compute @E
@✓L

, then by feeding this quantity to the previous layer L� 1 we can
obtain @E

@✓L�1
, and so forth, propagating the signal backward through the network.

The idea of backpropagating derivatives was first proposed in [Werbos, 1974] for vanilla
NNs and then, later on, it was applied also to CNNs [Rumelhart et al., 1988, LeCun et al.,
1989, LeCun et al., 1998]. Indeed, the core idea of backpropagating derivatives in hierarchical
architectures in order to optimize their parameters through GD or SGD can be applied to every
compositional function that can be expressed as a Directed Acyclic Graph (DAG) [Goodfellow
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et al., 2016], where feedforward computation provides predictions and backward computation
provides gradients of prediction errors with respect to parameters.

In order to describe the algorithm for CNNs, we proceed by specifying the parameters
✓l with respect to which we want to differentiate, which depend on the layer kind. We start
by considering fully-connected layers. These are the final layers in a CNN architecture and
therefore the most “external” and the first that we need to differentiate when backpropagating
derivatives. We hence derive the backpropagation formulas for a vanilla NN first. Then, we
will show how these formulas can be adapted to convolutional and pooling layers.

Neural Networks

We consider a Neural Network as defined in Eq. (3.2) and compute the derivative of the
prediction error with respect to the generic component in the ith row and jth column of the
weight matrix Wl, denoted by ✓l = W i,j

l . We start applying the chain rule as follows:

r
W i,j

l
E =

@E

@U i
l

@U i
l

@W i,j
l

= silX
j
l�1 (4.3)

@E

@U i
l

:= sil =
@E

@Xi
l

@Xi
l

@U i
l

=

@E

@Xi
l

f 0
NL(U

i
l ) (4.4)

where we denote by vi the ith component of vector v. If we start with l = L we obtain:

siL =

@E

@U i
L

=

@E

@Xi
L

@Xi
L

@U i
L

== �(yi �Xi
L)

Indeed, by replacing in Eq. (3.2) the cross-entropy loss and explicitating the softmax

normalization we obtain:
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(4.5)

For previous layers, we can proceed by backpropagating sil as follows:

sil�1 :=
@E

@U i
l�1

=

nlX

c=1

@E

@U c
l

@U c
l

@U i
l�1

=

nlX

c=1

scl
@U c

l

@Xi
l�1

@Xi
l�1

@U i
l�1

= f 0
NL(U

i
l�1)

nlX

c=1

sclW
c,i
l (4.6)

The complete algorithm can be implemented as in Alg. 1, where the setting is the one of
mini-batch SGD described in Eq. (2.20), (2.21), and (4.1), (4.2). The procedure to operatively
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obtain the gradient of the error with respect to any network’s weight is sketched in 1 and
can be summarized as in the following. Once we sampled a mini-batch of m examples from
the training set S and computed their predictions, we start differentiating the prediction error
on this mini-batch with respect to each network weight. According to Eq. (4.1), we can
differentiate the prediction error of each sample and then sum up the gradients over all samples
in the mini-batch. In order to differentiate the prediction error of a sample with respect to each
network weight, we apply backpropagation. Once we are done, we can update each weight by
subtracting the sum of the computed gradients.

Algorithm 1 Mini-batch SGD applied to a Neural Network through backpropagation.
weight initialization
repeat

1. sample a mini-batch of m images bt = {(X(it)k , y(it)k)} := {(Xk, yk)}, k = 1, . . . ,m

2. compute k = 1, . . . ,m predictions XLk
(FEEDFORWARD PASS)

3. init gradients to zero and accumulate over the batch (BACKWARD PASS)
for k = 1, . . . ,m do
y := yk
XL := XLk

sL = �(y �XL)

r
wi,j

L
E = r

wi,j
L
E +

1
msiLX

j
L�1 i = 1, . . . , nl, j = 1, . . . , nl�1

for l = L� 1, . . . , 1 do
r

wi,j
l
E = r

wi,j
l
E +

1
msilX

j
l�1 i = 1, . . . , nl, j = 1, . . . , nl�1

sil�1 = f 0
NL(U

i
l�1)

nlX

c=1

sclW
c,i
l i = 1, . . . , nl�1

end for
end for

4. compute the update wi,j
l = wi,j

l � �r
wi,j

l
E

until convergence

Convolutional Neural Networks

When applying backpropagation to CNNs, it is necessary to adapt the computation of the
gradients, but the general structure of Alg. 1 remains. Therefore, we will provide the modified
backward formulas for convolution and pooling layers.

The only parameters that we need to update are in convolution layers (since the pooling
layers have no learnable parameters). Specifically, we are interested in computing the update
of each weight of the generic zth slice of the jth filter. In the following, we will consider
Eq. (3.3), slightly changing notation to a one more practical to deal with partial derivatives: we
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will denote Wl,j(u, v, z) := W j,z
l (u, v) and, accordingly, Xl(x, y, z) = Xz

l (x, y). Therefore
the backpropagation of the derivatives through the generic layer l will be:

sjl�1(x, y) =

8
>><

>>:

conv : f 0
NL(U

j
l�1(x, y))

ClX

c=1

X

u,v2[�Sl,Sl]

scl (x+ u, y + v)W c,j
l (�u,�v)

pool : f 0
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j
l�1(x, y))s

j
l (b

x
Pl
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c)

(4.7)
The parameter update for the convolutional layer will be:

r
W j,z

l
E(u, v) =

X

x,y

sjl (x, y)X
z
l�1(x+ u, y + v) u, v 2 [�Sl, Sl] (4.8)

Note that, once we derive backward formulas for a layer kind, backpropagating derivatives
through it is straightforward and can be done similarly to a standard feedforward pass, just
changing the input and using the layer’s backward formula instead of forward. In fact, this
is how backpropagation is implemented in modern deep learning frameworks like Caffe [Jia
et al., 2014], where for each layer both the forward and the backward interface is defined.

Note also that, in order to backpropagate the gradient, all unit activations from the forward
pass must be kept in memory. This is an important aspect, which in practice prevents from
using batch GD (or too large mini-batch sizes in SGD) for training large networks.

4.1.2 Best Practices

We conclude our review on deep CNNs and their training with some practical remarks.

Image Pre-processing. Subtracting the mean image of the training set from each image that
is fed to the network –both at training and testing time– is a common practice, which has
been proved to be beneficial for training [LeCun et al., 1998]. Another critical step is feeding
the network with images of a specific size, usually determined by the architecture (images
are usually cropped or resized in order to meet this requirement). Indeed, the architecture of
CNNs is such that, as we have seen, recursive pooling and subsampling operations produce,
at a certain layer, a 1⇥ 1 feature map, which can be given as input to fully-connected layers.
However, this happens only for a specific input size.

Dataset Pre-processing. Shuffling the training set, in order to provide enough variability
in each batch, is important for most settings and is standard practice. This is particularly
critical in robotic settings, where the images are frames acquired online and their order in the
training set may follow their temporal acquisition. In Sec. 2.2 we listed some possibilities
that can be adopted when implementing SGD algorithms in order to sample the training
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examples. In practice, data is used always more than once and multiple epochs of SGD are run.
There is empirical evidence that randomly shuffling the training set at each epoch provides
better convergence (i.e., the third choice in Sec. 2.2). However, also the second choice (i.e.,
maintaining the same sampling order at each epoch, cycling on the training set) is commonly
adopted. Indeed, when dealing with large training sets, images are usually saved on disk into
high throughput formats like in a single Lightning Memory-Mapped Database (LMDB), and
re-shuffling them at each epoch may cause a remarkable computational slowdown.

Dataset Augmentation. Modern deep CNNs are characterized by millions of parameters
and need lots (thousands to millions) of training examples in order to learn to generalize
without overfitting. Since acquiring, and especially annotating, so many images requires a
remarkable effort, it is common to artificially enrich the training set variability by applying
simple transformations to the images. Usually this procedure is performed at runtime, when
pre-processing the image before feeding it to the network, to avoid storage overheads. Common
data augmentation approaches include geometric transformations, as random extraction of
crops and horizontal reflections, or relighting transformations, altering the intensities of RGB
channels in order to reproduce natural illumination changes. See [Krizhevsky et al., 2012, He
et al., 2016] for some examples.

Regularization Techniques. We mentioned that L2 regularization is added to the empirical
risk when training deep CNNs with backpropagation. Usually, a single value � is chosen
by cross-validation for all network weights (but it is possible in principle to choose different
values for, e.g., specific layers).

Other forms of regularization often employed in the fully-connected layers (which are the
most rich in parameters and hence the most exposed to the risk to overfitting) are Dropout [Hin-
ton et al., 2012, Wager et al., 2013, Srivastava et al., 2014] or DropConnect [Wan et al., 2013].
These techniques introduce stochasticity in the forward pass of the network, in order to prevent
co-adaptation between units. Specifically, in the forward passes during training a random
fraction p of units is suppressed, simulating the training of multiple independent models. At
test time, all units are multiplied by p, simulating the averaging over the ensemble of trained
models.

Recently, Batch Normalization [Ioffe and Szegedy, 2015] proved to be effective and be-
came standard practice in training deep networks. The motivation behind this technique is to
address the problem known as (internal) covariate shift, namely the change in the distribution
of network activations at each layer, due to the change of network parameters, during training.
The authors introduce “normalization stages” between layers, where each unit activation is
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normalized (independently) by subtracting the mean, and dividing by the variance, of all the
activations of that unit over a mini-batch. To account for this normalization during the training,
they also introduce a rescaling layer after each BN layer, whose parameters are optimized by
backpropagation, such that the model can possibly choose to ignore BN for some layers.

Model Selection. There are many architectural choices that need to be specified when
defining a CNN model, which go beyond the parameters that can be optimized by SGD. As we
mentioned, the number of layers, the number and size of filters in each convolutional layer, the
spatial support of each pooling layer, are only some of them. The training protocol must also
be completely defined, in terms of number of epochs, learning rate (possibly layer-specific and
usually decaying, with some policy that needs to be decided), the amount of regularization,
and so forth. All these hyper-parameters must be assigned by cross-validation, as described in
Sec. 2.1, by searching in a space where plausible ranges have been established (usually, based
on some knowledge of the problem). Manual, grid or random search can be implemented,
depending also on the dimension of the search space (see [Bergstra and Bengio, 2012] for
possible advantages of random versus grid search).

Regarding, in particular, the number of epochs, during SGD the model is usually tested on
the validation set (and saved) at every epoch, such that the model at the epoch with the lowest
validation loss can be finally chosen. To this regard, Polyak averaging can be adopted [Polyak
and Juditsky, 1992], considering averaged weight values over a number of epochs rather than
the values at the very last iteration. Multiple SGD trials are performed when possible, in order
to account for the stochasticity of weight initialization (and other sources of randomness as
Dropout).

4.2 Understanding Deep Image Representations

In latest years, there has been an increasing interest towards the reasons behind the incredible
performances provided by the CNN models presented in Sec. 3.3. The fact that the filters
of these models are not constrained but rather fully learned from data, motivated a number
of works in the literature to “look” inside the layers of these hierarchical architectures, in
order to understand the invariance and selectivity properties of the intermediate representations
conveyed by the networks. This interest is largely motivated also by the fact that, as we will
see in the next Section, the representations learned by the presented CNN models proved to be
effective not only, as expected, on the dataset on which they were trained (namely, ILSVRC or
similar large-scale databases) but, surprisingly, also on a large variety of other visual tasks and
datasets.



64 CHAPTER 4. LEARNING DEEP VISUAL REPRESENTATIONS

In the following, we introduce some useful notions related to the concepts of hierarchical
representation and invariance (Sec. 4.2.1). We then provide an overview of some approaches
that have been proposed in the literature to measure this property for deep CNNs (Sec. 4.2.2).
The concepts introduced in this Section will be used in Chapter 7.

4.2.1 Visual Transformations, Manifolds and Sample Complexity

In [DiCarlo and Cox, 2007,DiCarlo et al., 2012], the authors build on the similarity between the
structure of deep CNNs and computational models of visual recognition in the cortex and offer
a useful geometrical perspective that may help visualizing and understanding the concept of
representation selectivity and invariance. The global response of a population/layer of neurons
to an image representing a certain object from a particular view is seen as a vector/point (we
called it a representation), in a space with dimensionality defined by the number of neurons in
the layer. Images of the object undergoing different identity-preserving visual transformations
(as scaling, rotations, translations, and so forth), will produce different patterns of population
activities, that will correspond to different response vectors (or image representations). We
can think of these response vectors as points, defining a low-dimensional manifold in this
high dimensional space. At the input level, the manifolds originated by different transforming
objects will be “tangled” together. The computational goal of the ventral stream, and of modern
CNNs as well, can hence be seen as transforming such input visual representations in order
to map them into an output space where the manifolds of the different objects are clearly
untangled.

We recall that in Sec. 3.2.2 we have seen the same idea from a machine learning point of
view. Indeed, there we presented the problem of separating all possible images that contain one
particular object from images of other objects as the problem of finding a suitable mapping,
encoding images into a feature space where it was possible to “easily” separate the object class
(in fact, the object manifold) from other classes, by positioning decision boundaries as, e.g.,
hyperplanes. In a bio-inspired model like a deep CNN, one can think of a decision boundary as
a higher-level neuron (e.g., in the very last layer of a network) that predicts the object identity
by thresholding a weighted sum of the neuron responses at the lower level [DiCarlo and Cox,
2007, DiCarlo et al., 2012].

Invariance and Sample Complexity. Within this perspective, if the goal is object recognition,
at some layer the manifolds of the different objects must become not only separated, but also
collapsed. In other words, the images will be encoded into representations that will be invariant
to the visual transformations non relevant to recognize the object, while being selective for it.
Such representations will have discarded information like the object pose, light, or position in
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the image, while retaining the information necessary to predict its identity.
To this end, it has been recently shown [Anselmi et al., 2015, Anselmi et al., 2016] that

relying on invariant representations reduces the sample complexity of the associated learning
problem: by mapping all images of an object into, ideally, a single point in a feature space, the
number of example images necessary to learn to predict the object’s identity can be reduced
to, ideally, just one. It was not by chance, therefore, that it was observed that neurons at
higher stages of processing in the cortex tend to maintain their selectivity for objects across
changes in view [Rust and DiCarlo, 2010]. Learning to recognize objects from few (often,
just one) example images is a hallmark of human learning, and the fact that object manifolds
are gradually untangled through nonlinear selectivity and invariance computations applied at
each stage of the ventral pathway well explains this ability [DiCarlo et al., 2012, Poggio and
Anselmi, 2016].

Relevance for Real World Visual Recognition. The above ideas found confirmation in the
work of [Pinto et al., 2008, Pinto et al., 2011], where the authors addressed the problem
of understanding the challenges involved in “real world” object recognition. To this end,
they simulated an – apparently simple – real world visual recognition task, involving a few
objects synthetically rendered under different visual transformations (like scaling, rotations,
background change). Interestingly, they found that HMAX-like bioinspired models [Mutch
and Lowe, 2008], explicitly conveying invariant representations, outperformed, on this kind
of tasks, other BOW-like computer vision pipelines that had instead proved better on natural
image classification datasets like Caltech 101 [Fei-Fei et al., 2007]. Building on this result,
they pointed out the critical role of visual nuisances typically affecting real world recognition
problems and advocated the adoption of suited benchmarks to investigate their individual effect
(in contrast to largely employed “photographic-based” sets of images in the wild).

The effectiveness of HMAX-like models was also confirmed in a real world robotic setting
involving the iCub robot [Ciliberto et al., 2013]. In particular, these findings motivated our
contributions in Chapters 5 and 7, were, by means of deep CNNs trained to be robust to real
world visual nuisances, we will build a pipeline that is proved to be able to recognize objects
from few example images in challenging robotic scenarios.

4.2.2 Empirical Investigation of Representation Properties

Given, on the one hand, the critical importance of invariance in real world object recognition
and, on the other hand, the stunning performance reported by modern CNNs in challenging
large-scale natural image classification tasks, it is natural to ask whether the internal represen-
tations of such models are invariant. In the following, we report some relevant recent work
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addressing this investigation with different approaches.

Visualization Techniques

A first approach to qualitatively investigate the properties of the internal representations of
CNNs is to visualize them. To this end, the simplest solution is to just plot the unit responses
at the different layers when an image is fed to the network. Although trivial, this strategy
allows to have an idea of the sensitivity of the different units in the layers. For instance, it
may be particularly interesting to visualize how the unit responses change in real time, while
the network receives a stream of frames from a video sequence containing, e.g., an object
undergoing some visual transformation. Indeed, all approaches that we will see in the following
consider population responses at different layers and, in order to quantify the invariance of the
network’s intermediate representations, measure how these change when image sequences of
this kind are fed to the network.

Another visualization approach consists in finding ways to “project” the population or unit
responses back to the image domain. Backprojecting a population response can provide an
idea of the relevant image content that has been retained by the image representation at that
layer (see, e.g., [Mahendran and Vedaldi, 2015, Dosovitskiy and Brox, 2016]). Backprojecting
a unit response instead can provide an idea of the receptive field of the unit at the image level,
to find, e.g., the patterns to which the unit is tuned, as which objects or object parts (see [Zeiler
and Fergus, 2014] or [Szegedy et al., 2014, Simonyan et al., 2014, Nguyen et al., 2015]). All
these visualization methods are based on the idea of maximizing the unit response with respect
to the input images. To this end, a common technique is to backpropagate the derivative of
the unit response with respect to the image, in a very similar way the classical backpropgation
algorithm backpropagates the derivative of the prediction error with respect to model weights.
A useful overview of different techniques is provided in [Yosinski et al., 2014b].

These works confirm, at a qualitative level, the fact that units in deep CNNs trained on large
datasets as ILSVRC are tuned to progressively more complex and “abstract” patterns when
increasing the layer throughout the architecture, starting from Gabor-like receptive fields at
lower layers and ending up in higher layers with units covering the whole image and selectively
responding to particular object classes. While qualitative considerations on representation
invariance could be drawn also with these techniques (see, e.g., [Mahendran and Vedaldi,
2015]), in the following we provide an overview of works that instead tried to quantify the
degree of invariance of the network’s internal representations at the different layers.
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Measuring Invariance

Approaches. The invariance of an image representation to a certain visual transformation can
be either evaluated “directly”, i.e., by taking measurements over the representation itself, or
“indirectly”, by evaluating the performance of a classifier that uses that representation. In both
cases, the setting is usually one where images representing different objects that undergo the
considered transformation are mapped into the representation space, and the structure of the
resulting manifolds is investigated. In the first case, measurements can be applied to quantify
the shape of the manifolds, to evaluate for instance if images of a same object are clustered,
how much the different objects/clusters are separated, and so forth. In the second case, the
relationship between invariance and sample complexity is exploited (see Sec. 4.2.1), and the
classification accuracy of classifiers trained in the representation space, on few example images
per object (ideally, one) is used as an indirect measure of the invariance of the representation.
To this regard, we recall that, if the representation is invariant to the considered transformation,
all images of the same object will be mapped into vectors similar to the one(s) used for training
(but different objects in general will be mapped into different vectors) and therefore objects
will be recognized with high accuracy.

As we will discuss more in detail in Sec. 5.5.1, in the literature datasets that provide image
sequences representing objects undergoing isolated visual transformations are limited. For this
reason, most works investigating invariance adopt computer imagery and synthetically render
the objects undergoing the transformations to be studied. Other works limit the analysis to
geometric transformations digitally applied to images. Works investigating invariance on “real
world” sequences are rare and in Chapter 7 we will provide a contribution in this direction.

In the following, we provide some examples of the different approaches.

Literature Overview. In [Lenc and Vedaldi, 2015], the authors consider geometric image
transformations, like scaling and in-plane rotations, to quantify the equivariance properties
of AlexNet’s layers by learning the (linear) relationship that predicts the change in a layer’s
output given a certain image transformation. Within this perspective, they define invariance as
a special case where such change is small or null. They also consider the interesting problem
of evaluating to which extent representations learned by training multiple instances of CNN
architectures on the same or different data are in fact equivalent although being characterized by
different parametrizations. To this end, they adopt an approach based on the idea of assessing
the drop in performance of “Frankenstein” architectures where some layers of a model have
been “replaced” with others from different models.

In [Zeiler and Fergus, 2014], the invariance of the different layers of a CNN model similar
to AlexNet (also trained on ILSVRC) is measured by simply taking the Euclidean distance
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between representations extracted from transformed images, and a reference image. They
consider again geometric transformations applied to natural images, like translations, in-plane
rotations and scaling, by varying degrees, and find that, while small transformations can have a
dramatic effect in the first layer, much less impact is measured at the second to last layer, being
this latter nicely equivariant and quasilinear for translation and scaling. Indeed, the find the
network output being almost invariant to translation and scaling, but, in general, not to rotation.

Differently from these works, the following studies generate visual transformations either
synthetically, by rendering of 3D CAD models [Peng et al., 2015,Aubry and Russell, 2015], or
by acquiring datasets for the purpose, as it is done in [Borji et al., 2016] (and as we will do
with ICUBWORLD TRANSFORMATIONS in Sec. 5.5).

In [Goodfellow et al., 2009] a battery of empirical tests is proposed to measure the change
of visual representations (they consider stacked autoencoders or deep belief networks) to
different image transformations. Interestingly, to our knowledge, this work is among the few
which use natural videos of transforming objects for their evaluation (but unfortunately they
do not release the collected dataset).

The work of [Aubry and Russell, 2015] may be interpreted also as a visualization tech-
nique, in that the authors apply a PCA-based approach to project the output of layers into
a low-dimensional space and visualize it. They render 3D CAD models to generate image
sequences with varying object type, style, color (which they consider “intrinsic” factors), and
viewpoint, scale, light changes (that is, “extrinsic” factors), and exploit the control over such
transformations to measure their effect on the projected layer responses.

In [Peng et al., 2015] the authors exploit computer generated imagery to measure the
invariance of CNN layers to object textures, colors, background, pose and shape. With
respect to previous works like [Goodfellow et al., 2009, Lenc and Vedaldi, 2015, Aubry and
Russell, 2015, Bakry et al., 2015], they follow the same approach of [Pinto et al., 2011] and
measure invariance “indirectly”, by observing the performance of classifiers trained on image
representations extracted as the output of CNN layers. In this Thesis, we follow the same
approach to measure the invariance of the considered deep CNNs.

Recently, [Bakry et al., 2015], building on the work of [DiCarlo and Cox, 2007], tried
to get insights about how tangled/untangled the manifolds of different object instances are,
in the internal layers of CNNs trained on ILSVRC. Their analysis focuses on 3D viewpoint
changes. In fact, they use as data sources the Washington RGB-D [Lai et al., 2011] and the
Pascal 3D+ [Xiang et al., 2014] datasets, which contain mainly this kind of variation. They
employ different methods based on linear classifiers, k-Nearest Neighbors (k-NN) and direct
measurements on the manifold structures, to investigate whether the viewpoint manifolds of
object instances are collapsed or preserved throughout network layers. Similarly to [Zeiler and
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Fergus, 2014], they find that the representation conveyed by CNNs trained on ILSVRC tries to
separate the viewpoint manifolds of different instances, while preserving – and not collapsing –
them, up to the very last layer, which finally enforces view invariance.

4.3 Transferring Deep Representations

In Sec. 3.3, we have presented some well-known models of deep CNN that in latest years
remarkably advanced the state of the art of large-scale image classification, starting with the
ImageNet benchmark. We have also pointed out how these architectures are characterized
by millions of parameters and therefore require tons of examples to be successfully trained.
In Sec. 4.1, we have formalized their training algorithm and in Sec. 4.1.2 we reported on
some useful procedures widely adopted in practice to make the learning converge on these
large-scale datasets. While these achievements are surely remarkable, it is natural to ask what
is the applicability of these methods to smaller settings, where the training data may be less
abundant and often also the recognition task is characterized by fewer classes.

In the following, we will see that recent empirical evidence has shown that, while scaling
down these architectures and training them on smaller tasks is unlikely to provide particularly
good results (also because of model selection issues), on the other hand, impressive perfor-
mance is achieved by “transferring” the representations learned by these models on large web
data corpora, to new, potentially smaller, domains. Different approaches to implement this
strategy have been investigated in the literature. In this Section we review two of the most
well-established methods, based on the idea of re-using the learned representation (Sec. 4.3.1)
or fine-tuning it on the new domain (Sec. 4.3.2). These are also the two methods that will be
empirically assessed in our experiments in Chapters 6 and 7.

4.3.1 Feature Extraction and Kernel Methods

In Sec. 4.2.2 we have reviewed several works that visualize and analyze the intermediate repre-
sentations extracted from the internal layers of CNN models, specifically the ones introduced in
Sec. 3.3. These works show that there are units tuned to more specific and more abstract image
patterns from one layer to the following, starting with topographic maps encoding low-level
local features, and ending up with vector representations encoding task- or domain-specific
features, indicative of the global image content like objects and scene elements.

Within this perspective, there has been a number of works that explored the possibility
of applying such intermediate image representations also to other datasets and tasks, beyond
the one where they have been learned. The idea is to use a previously trained CNN model as
a “black-box” feature extractor, which is fed with an image and provides its representation
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Figure 4.1: Example of a Convolutional Neural Network (Sec. 3.2.2) and of the two knowledge
transfer approaches considered in this Thesis. (Blue pipeline) feature extraction: in this case
the response of one of the layers is used as image representation to be fed to a classifier like
the RLSC (see Sec. 4.3.1), which is trained on the new task. (Red pipeline) fine-tuning: in
this case the network is trained end-to-end on the new task, by replacing the final layer and
using the original model as a “warm-restart” (see Sec. 4.3.2).

as the output of one of the intermediate layers. Once the images from the new domain are
encoded into such representations, standard classifiers, like RLSC or SVMs, are trained in the
feature space for the new task (similarly to what is done in dictionary learning). This strategy,
depicted in Fig. 4.1 (Blue pipeline), can be interpreted as using the original CNN model as is,
until the layer at which the representation is extracted, and replacing the remaining part of the
architecture with a new classification layer, trained on the new dataset.

The effectiveness of this approach has been empirically demonstrated in many works.
[Donahue et al., 2014] are among the first to investigate whether features extracted from
modern deep CNNs (they consider AlexNet) trained on a large object database (specifically,
ImageNet) have sufficient representational power to perform other visual recognition tasks
by using simple linear classifiers. They report results showing that this strategy reliably
outperforms other approaches based on traditional features, analyzing also how the choice
of the extraction layer impacts generalization performance. Their remarkable results also
motivated the release of the CAFFE framework, namely “Convolutional Architecture for Fast
Feature Embedding”, published with the aim to provide researches with an easy tool to “re-use”
pre-trained CNNs [Jia et al., 2014].

To further investigate these ideas, [Sharif Razavian et al., 2014] conducted a series of
experiments using another CNN model, namely, the OverFeat network [Sermanet et al., 2014],
trained on the ILSVRC 2013. They employed the output of internal layers as image represen-
tation to tackle diverse recognition tasks, gradually moving further away from the original
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task/data the model was trained on, including scene recognition, fine-grained recognition,
attribute detection and image retrieval, and confirmed superior results compared to state-of-the-
art systems on each of them. A similar empirical assessment was conducted in [Azizpour et al.,
2015], where the authors investigate the transferability of such representations w.r.t. different
parameters (related to the network training and the feature extraction), reporting interesting
results which indicate a correlation between the performance on the tasks at hand and their
“distance” from the original ILSVRC.

The potential of this approach is even more relevant in that CNN models trained for object
recognition can also be exploited as feature extractors to tackle object localization and detection
tasks [Sermanet et al., 2014,Girshick et al., 2014]. In this setting, “salient” regions are detected
in the image and encoded into CNN representations, which are finally fed to classifiers in order
to obtain a prediction for each region. As anticipated in Sec. 1.2.1 and described in more detail
in Chapter 6 (Appendix 6.A.1), we will adopt this approach to localize objects in the robot’s
visual field and recognize them by exploiting CNNs pre-trained on ImageNet.

Over the years, the generalization capabilities of CNN features have been investigated for
the different architectures that have been subsequently proposed in the literature, like VGG and
ResNets (see, e.g., supplementary material in [Simonyan and Zisserman, 2015] and [Mahmood
et al., 2016]). To this regard, in Chapter 6 we will consistently compare the performance of
features from the different models presented in Sec. 3.3 on several visual recognition tasks on
the iCub and R1 humanoids.

4.3.2 Fine-tuning

Another approach that proved to be effective is to use a CNN trained on the large-scale dataset
to “warm-start” the learning process on other (potentially smaller) tasks and datasets. This
strategy, known as fine-tuning, consists in performing back-propagation on the new training
set, initializing the parameters of the network to those previously learned (see Fig. 4.1 (Red
pipeline)).

The only required modification to the network structure is in the output layer, in order to
address the new task (e.g., by changing the number of units to account for the new number of
classes to be discriminated, or changing the loss if the new task is not multiclass classification,
and so forth). A crucial difference between training a network “from scratch” and fine-tuning
it is that, in the latter case, the parameters of most layers are initialized with the result of the
first optimization, and may not need to be changed dramatically during the second training
phase. Their learning rates (that is, the step size used by the stochastic gradient descent during
backpropagation –see Sec. 4.1) can therefore be set to smaller values, or even to zero (no
update is done). The learning rate of the output layer, instead (or, of all layers which are
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learned from scratch) is usually maintained to higher values. In practice, the warm-restart
allows to train the CNN on much smaller datasets, in significantly shorter training times.

[Agrawal et al., 2014] investigated the applicability of fine-tuning to different datasets and
tasks, finding that, while large CNNs can also be trained from scratch using a relatively modest
amount of data, pre-training on ImageNet significantly improves performance. [Chatfield
et al., 2014] provide an extensive in-depth evaluation of both fine-tuning and feature extraction
adaptation techniques, comparing them to classical pipelines (based on, e.g., dictionary learning
with Improved Fisher Vectors [Perronnin et al., 2010]), on the Pascal VOC [Everingham et al.,
2010] and Caltech [Griffin et al., 2007] reference benchmarks. The authors rigorously test many
different method variations, considering also subtle technical details, empirically demonstrating
that deep learning approaches definitely outperform shallow methods by a large margin.

Interestingly, [Huh et al., 2016] invert the question, and investigate which aspects of Ima-
geNet are more critical for learning CNN models that convey general image representations.
They train AlexNet varying the amount of examples, number of classes, ratio between examples
per class and classes, etc., and evaluate performance when the resulting model is fine-tuned
on other tasks, finding that some changes in the pre-training data, thought to be critical (one
above all, the need for extremely large training sets), in fact do not significantly affect transfer
performance.

Fine-tuning Issues. A potential advantage of fine-tuning is that it can adapt the parameters of
all layers to the new problem, rather than only those in the final layers. However, this flexibility
comes at the price of a more involved training process. Indeed, the performance of a fine-tuned
network depends on the setting of the (many) hyper-parameters typically involved in training
deep CNNs. In particular, fine-tuning can be prone to overfitting, eventually disrupting the
visual representation provided by the “off-the-shelf” CNN (where we indicate with this term
the model trained on the web database and publicly available). Indeed, we have seen that a key
factor in the representational power of features from deep CNNs lies in the variability of the
web-collected data corpora on which they are learned. In this sense, a relevant issue is whether
it can be in general more or less favorable to adapt the intermediate layers of the network with
respect to the new training data (i.e., with higher learning rates) or keep a more conservative
approach (i.e., with zero or very low learning rates). A certain caution is required therefore
when setting “the degree of adaptation” with respect to the size and richness of the new dataset.

[Soekhoe et al., 2016] specifically address these issues, by comparing the training from
scratch with fine-tuning, progressively “freezing” more layers, on larger or smaller target tasks,
and showing that, in the latter case, freezing lower layers is critical to avoid overfitting. [Oquab
et al., 2014] investigate different solutions that, starting from AlexNet, learn from scratch
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fully-connected layers, while fixing convolution ones, and report state of the art results on
Pascal VOC. This fine-tuning protocol in fact can be seen as a feature extraction stage, followed
by a classification stage when the predictor is a multi-layer Neural Network.

[Yosinski et al., 2014a] take a different perspective and adopt fine-tuning as a tool for
evaluating the “degree of generality” of intermediate representations, which they define as the
extent to which such representations can be used for other tasks. They progressively learn from
scratch more layers, starting from the output one and freezing, or adapting, lower ones. Their
study confirms that the specialization of higher layers to the original task comes at the expense
of a drop in generalization performance, negatively affecting transferability. Nevertheless, they
find that employing features transferred at any layer is better than using random weights, even
on rather distant tasks. Also, they interestingly find that representations which are pre-trained
and then fine-tuned provide even higher generalization performance on further tasks.

In Chapters 6 and 7, we will consider fine-tuning of off-the-shelf CNN models in robotic
settings, addressing these issue and proposing a solution based on a combination of fine-tuning
and feature extraction.





Chapter 5

The iCubWorld Project

In this Chapter we present ICUBWORLD, a data acquisition project started in 2013 and
consistently developed during this Thesis. Within this project and as an integral part of the
Thesis, two new image datasets for visual object recognition have been acquired and publicly
released. In the following, we will introduce the project and describe these datasets.

This Chapter is important for understanding the motivation of the studies reported in
Chapters 6, 7 and 8, that will be conducted on the datasets here introduced.

5.1 Introduction

The main goal of this project is to benchmark and progressively develop the visual recognition
capabilities of a humanoid robot like the iCub [Metta et al., 2008, Metta et al., 2010]. To
this end, ICUBWORLD datasets are collections of images recording the iCub’s view while
it observes objects in its typical environment (a laboratory or an office). Specifically, we
designed an acquisition setting that reflects the prototypical visual experience of a humanoid
robot during a natural interaction with a human, and collected corresponding image datasets.
This project is the result of a collaboration between the iCub Facility and the Laboratory
for Computational and Statistical Learning at IIT, and the SlipGURU research group at the
University of Genoa, started in 2013 with the aim to investigate computer vision and machine
learning approaches to the problem of visual recognition in robotics.

The first two releases, with the first benchmarks, were published in 2013 [Fanello et al.,
2013b, Ciliberto et al., 2013]. These datasets were relatively small, and served more as proof
of concept for the feasibility of the acquisition approach. On the other hand, they highlighted
how typical computer vision methods (based, e.g., on dictionary learning), which, as we saw
in Sec. 1.3.2, were not commonly employed in robotics, could instead be effective for solving
visual recognition problems in these settings, opening the way for further investigation.

75
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As part of this Thesis, the original acquisition setup has been substantially improved, in
order to acquire two new releases of increasing size, namely ICUBWORLD28 and ICUB-
WORLD TRANSFORMATIONS, aimed at investigating complementary aspects of robotic visual
recognition. These two releases are large and allow to extensively test the behaviour of latest
deep CNNs when trained in robotic settings, offering a faithful and reproducible benchmark for
the performance that we can expect from the real system. While ICUBWORLD TRANSFORMA-
TIONS will be the reference benchmark for the studies in Chapters 6 and 7, ICUBWORLD28
will be employed in Chapter 8.

The new acquisition setup is part of a complete “collect-train-deploy” framework (namely,
the ICUBWORLD FRAMEWORK) that will be described in Chapter 9. The framework will
be soon made available to allow users to (i) acquire visual data by interacting with the
robot and afterwards (ii) train/benchmark deep networks on the collected images, in order to
finally (iii) deploy them on the robot. We plan to further expand ICUBWORLD by relying
on this infrastructure, progressively including more object categories in order to reproduce a
typical domestic or office environment, that is, the iCub’s world as seen by its own eyes. All
ICUBWORLD releases are publicly available on the ICUBWORLD website 1.

In the following, we first provide a general overview of existing datasets for visual object
recognition, as well as the motivation and spirit of the project (Sec. 5.2). We then present
the acquisition setting (Sec. 5.3) and finally focus on the description of the ICUBWORLD28
(Sec. 5.4) and ICUBWORLD TRANSFORMATIONS (Sec. 5.5) datasets.

5.2 Related Work and Project Goal

In the last two decades, several datasets for visual object recognition have been proposed
in computer vision and robotics. In the following, we roughly divide them into three main
groups. We will then proceed by pointing out how some critical limitations of existing datasets
motivated us to start the ICUBWORLD project.

5.2.1 Datasets for Visual Object Recognition

Computer Vision Datasets. Typical computer vision benchmarks focus on the task of object
categorization, known to be a more challenging problem than object identification. The size
and difficulty of the released benchmarks progressively increased over the years, starting with
Caltech-101 [Fei-Fei et al., 2007] to Caltech-256 [Griffin et al., 2007], LabelMe [Russell
et al., 2008], the Pascal VOC [Everingham et al., 2010, Everingham et al., 2015], up to more
recent ImageNet Large Scale Visual Recognition Challenges (ILSVRC) [Russakovsky et al.,

1
https://robotology.github.io/iCubWorld/

https://robotology.github.io/iCubWorld/
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2015] and Microsoft COCO [Lin et al., 2014]. The progress in public datasets availability has
played a fundamental role in the advancement of the state-of-the-art of recognition methods,
culminating in the great success of deep learning recently marked by the ILSVRC 2012-15.
A major limitation of these datasets is that each object instance appears only in a single im-
age, in a random context, i.e., they contain only category-level and not instance-level variability.

Turntable Datasets. On the other hand, robotic datasets for visual object recognition his-
torically focused more on the problem of object identification, and most of them are in-
stead specifically meant to provide multiple images of objects while undergoing viewpoint
transformations. The COIL-100 [Nene et al., 1996], SOIL-47 [Koubaroulis et al., 2002],
ALOI [Geusebroek et al., 2005], Washington RGB-D [Lai et al., 2011], KIT [Kasper et al.,
2012], 3DNet [Wohlkinger et al., 2012], BigBIRD [Singh et al., 2014] and SHORT- 100 [Rivera-
Rubio et al., 2014] dataset are only some of the most famous available benchmarks. This trend
is clearly due to the different application domain, robotics being characterized by the need of
identifying specific instances, e.g., for manipulation.

However, these datasets typically approach the recognition problem in relatively simple
scenarios, affected by low levels of noise/clutter. The images are usually acquired in “turntable”
settings, with uniform background, scanning the scene at fixed camera positions. They mainly
contain strictly controlled changes in the 3D point of view, and light in some cases. Other
natural visual transformations like scaling, background and setting changes, occlusions, and so
forth, that occur in practice, are underrepresented. In fact, as we already anticipated, most of
them are not directly targeted to visual recognition, but rather on building on it to investigate
grasping/manipulation. Hence, in order to provide accurate annotations of, e.g., the object pose
in each image, necessary for reconstruction of point clouds or other 3D models, they constrain
the acquisition setting. See [Firman, 2016] for a comprehensive review of RGBD-D datasets.

Hence, although they are acquired in real world scenarios, there is still a gap to be bridged
when training recognition systems on them and then deploying to robot agents. Note that
this aspect is extremely relevant, since visual biases make it typically difficult to generalize
prediction performances across different datasets and applications [Pinto et al., 2008, Torralba
and Efros, 2011, Model and Shamir, 2015].

Robot-acquired Datasets. In order to start bridging such a gap, one straightforward approach
is to acquire benchmarks on the robot platform itself. The resulting dataset would offer a natural
testbed for the visual recognition system, as close as possible to the real application, ensuring
that, in particular, the performance measured off-line on the benchmark can be expected to hold
on the actual robot. Using a robot to acquire a dataset provides other useful advantages, first
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among others, on the annotation procedure, that can be automatized by relying on contextual
information and interaction with the robot.

Unfortunately, datasets acquired by recording directly from robot cameras are extremely
few in the literature. In recent years, we are aware only of [Ramisa et al., 2011, Meger and
Little, 2013]. The Rutgers APC RGB-D Dataset [Rennie et al., 2016] is acquired by mounting
a depth camera on the end joint of a robot arm. However, it is specifically meant for the
Amazon warehouse Picking Challenge (APC), involving the grasping of objects placed inside
the bins of shelving unit. Hence, it presents the same limitations of typical RGB-D turntable
datasets.

One major limitation of this acquisition approach may be scalability, which is particularly
critical in order to collect the necessary data to train modern deep networks. Indeed, making
robots physically interact with an object requires much more time than browsing images
from the Internet. However, as we mentioned, it is also true that in the robotic setting self-
supervision techniques can be exploited in order to automatize, not only the annotation, but also
the acquisition itself. Indeed, this is the approach pursued by more recent works as [Oberlin
et al., 2015, Pinto and Gupta, 2016, Levine et al., 2016b]. In particular, Oberlin et al. [Oberlin
et al., 2015] and Levine et al. [Levine et al., 2016b] “parallelize” the acquisition by employing
multiple robots: while in [Levine et al., 2016b] the parallelization is implemented directly in
the laboratory, the Million Object Challenge [Oberlin et al., 2015] proposes an infrastructure
to involve multiple research groups using Baxter robots 2 to contribute to the acquisition of a
large, shared, database of robots’ experiences.

One drawback of a totally self-supervised acquisition is that it can prevent from controlling
(or also introducing) visual nuisances. Indeed, these works mainly focus on collecting large,
“wide” data in order to train deep learning systems for, e.g., detection of grasp points: they do
not address the study of the visual recognition problem and are not interested in the analysis of
the effects of different noise factors on object identification/categorization performance.

5.2.2 iCubWorld

As it can be observed, none of the above datasets is really suited to extensively study the
behaviour of recognition systems in what can be considered the “prototypical” visual experience
of a humanoid robotic agent. To this regard, in Sec. 1.4 we considered a hypothetic scenario
where a robot is deployed to a user and is required to learn to recognize new objects “on the
fly”, interacting with humans. We listed some important aspects, characterizing such a setting,
which we try to address within this Thesis, starting from the collection of suitable benchmarks.
ICUBWORLD datasets therefore separate from most previous work, in that they are meant to

2
http://www.rethinkrobotics.com/

http://www.rethinkrobotics.com/
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model the growing visual experience of a robot, providing a benchmark reproducing typical
uncertainties faced by the robot’s recognition system during a real world task. Images are
directly recorded from the iCub’s cameras during a natural interaction with a human teacher
(detailed in Sec. 5.3.1) in a semi-controlled setting where objects are captured while undergoing
“natural” transformations.

Interestingly, a novel large-scale RGB-D dataset has been recently released by Choi et
al. [Choi et al., 2016], which, even if not directly meant as a benchmark for visual recognition
(but rather for 3D object reconstruction), is very close to the spirit of ICUBWORLD. The
benchmark aims to simulate the broad deployment of 3D scanning systems to consumers and it
is composed of over⇠ 10k RGB-D sequences representing objects acquired by “unexperienced”
operators in their apartment. The operators are just instructed to acquire clean and complete
sequences. It is reasonable, in fact, to expect that potential users will be willing to collaborate,
showing clearly the object to the system (no matter if this is for 3D reconstruction or visual
recognition). The operator holds the object in the hand and rotates it in front of the acquisition
setup. The result is somehow similar to ICUBWORLD, considering that the setup consists of a
fixed camera and not an interacting robot and, as anticipated, the collection is not structured
for visual recognition.

As it will be described in the following, we took advantage of the robotic platform to
reduce the human effort in the acquisition-annotation process, by semi-automatizing the
procedure and allowing therefore to scale the collection to many objects/sequences. Moreover,
other laboratories using the iCub could rely on the same infrastructure and contribute to
future releases, similarly to the Million Object Challenge [Oberlin et al., 2015]. Ultimate
goal is therefore the construction of a shared database for the study of visual recognition in
robotics under different perspectives. Such database would contain multiple releases, “tagged”
according to multiple, specific aspects to be investigated. Within this Thesis, for instance,
we addressed the ones pointed out in Sec. 1.4, namely the study of representation invariance
(ICUBWORLD TRANSFORMATIONS) and incremental and lifelong learning (ICUBWORLD28).
Further ICUBWORLD releases will be (hopefully) collected, to address other critical aspects
emerged from these studies (pointed out in Chapter 10).

We finally care to note that, since, as also motivated in Sec. 1.3.2, a primary goal of this
project was to evaluate the performance that can be achieved by using deep learning methods
purely on the visual input, at present we did not make extensive use of the robot’s physical
capabilities (e.g., object manipulation, exploration) to acquire ICUBWORLD releases. However,
the acquisition setting is easy to expand to include more different perceptual scenarios. For
instance, a new version of the acquisition application, where images are recorded while the
robot manipulates the objects, is already available.
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5.3 Acquisition Setup

In this Section, we introduce the acquisition scenario of ICUBWORLD (Sec. 5.3.1) and describe
the acquisition setup (Sec. 5.3.2) implemented to collect the ICUBWORLD28 and ICUBWORLD

TRANSFORMATIONS datasets (presented, respectively, in Sec. 5.4 and 5.5).

5.3.1 Acquisition Scenario and First Releases

Images in ICUBWORLD datasets are frames recorded from the cameras of the robot while it
observes an object. Image annotation is provided in terms of the label of the object, and a
bounding box around it. In the following, we describe the Human-Robot-Interaction (HRI)
protocol, first proposed in [Fanello et al., 2013a], that we use to automatically acquire annotated
images, by exploiting the interaction with the robot and the spatio-temporal context.

The only external supervision is in the form of a human teacher verbally providing the
label of the object that is going to be acquired. The teacher approaches the robot and shows
the object in the hand; the acquisition starts with a verbal command containing the object’s
label, e.g. “This is a sprayer” (see Fig. 5.1). During the acquisition, the robot focuses on the
object of interest, that is localized in the visual field by using bottom-up visual cues and prior
assumptions about the scene configuration. We exploit bottom-up cues because relying on
model-based tracking methods is neither feasible nor needed in this application. Indeed, we
want to focus and maintain the robot’s attention on an unknown object, without the need of
performing pre-scanning operations that would add overheads to the acquisition procedure.
On the other hand, we have prior information, about the expected object’s position/motion in
the scene, which, as we will see in the following, can be usefully exploited as self-supervisory
signal to automatically localize the object and produce the bounding box annotations.

Two acquisition modalities are possible:

Human Mode: the teacher holds the object in the hand, freely moving it, and the robot focuses
and tracks the object by exploiting bottom-up cues like motion or disparity (detailed in
the following).

Robot Mode: the robot takes the object in the hand and explores it by moving the hand in a
random o predefined way, focusing on it by using knowledge of its own kinematics.

We record incoming frames from the robot cameras, together with the information on the
bounding box in each frame, for a fixed time period (Human Mode) or for the duration of the
exploration period (Robot Mode). The procedure is repeated for all the objects to be acquired.

Object Tracking by Independent Motion Segmentation. Since color-based methods work
under strict assumptions on the light condition, the background structure (preferably uniform,
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Figure 5.1: Acquisition Scenario. A teacher standing in front of the robot pronounces the
label of the object of interest and shows it to the robot, by holding it in the hand. The iCub
can either track the object while the teacher moves it (Human Mode, depicted), or take it in its
hand (Robot Mode).

like a table or a wall) and generally fail in cluttered settings, in the first implementation of
the acquisition protocol, a motion-based segmentation was adopted instead. Specifically,
the independent motion detection method proposed in [Ciliberto et al., 2011, Ciliberto et al.,
2012] was used, which compensates the ego-motion of the camera and segments blobs of
pixels consistently moving in the scene. This strategy works well based on the fact that, of
course, during the acquisition, the human teacher moves the object. Indeed, a certain degree
of motion is naturally applied to the object in order to show it from different faces and poses:
an independent motion detection routine as the one in [Ciliberto et al., 2012] can segment
the object if this motion is continuous and with a sufficient speed. With this technique, the
coordinates of the centroid of the segmented blob on the image plane are computed, and a
square bounding box (of arbitrary radius), around the object, is provided. Usually, the radius is
chosen (empirically, depending on the acquisition condition) and kept fixed for all images in
the dataset.

First releases

In the following, we briefly outline for completeness the first two ICUBWORLD releases
acquired in the original scenario described above.

Hello iCubWorld. This is the first release, where the acquisition setup is validated and an
initial benchmarking of recognition methods is published [Fanello et al., 2013a]. In Table 5.1
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and Fig. 5.2 we report an overview of the dataset and some example images. It is composed
of 7 objects: each object was acquired in Human and Robot Modes, repeating the procedure
twice to get separate train and test sequences. During the acquisition, a square bounding box
around the object was automatically cropped from 320⇥ 240 images streaming from the left
camera, and saved.

Hello iCubWorld
#categories 7

#objects/category 1

acquisitions/object Human & Robot Mode
Train & Test

#frames/acquisition 500

tracking cue Independent Motion

acquired cameras Left

full images available No

Table 5.1: Dataset overview.
Figure 5.2: Example images showing objects
acquired in Human and Robot modes.

Groceries. This is the first release to study object categorization. It is composed of 40 objects
divided into 10 categories. For training, 3 objects per category were acquired in Human
Mode, by automatically cropping and saving a square bounding box from 640⇥ 480 images
streaming from the left camera. For testing, 1 new object per category was acquired in the
same condition, and also in other 2 different conditions, in order to study generalization across
settings (specifically, by changing the human operator and by using the Robot Mode). A
small test set where the object is manually segmented and the background is removed is also
provided. This dataset was benchmarked in [Fanello et al., 2013b, Ciliberto et al., 2013]. An
overview and some example images are provided in Table 5.2 and Fig. 5.3.

5.3.2 New Acquisition Setup

In this Section we briefly mention the two main improvements that were introduced into a
new implementation of the described acquisition setup. These changes were necessary for the
collection of the latest ICUBWORLD TRANSFORMATIONS release, presented in Sec 5.5, and
the development of the project as described in Sec. 5.2. While here we just highlight the inno-
vative aspects of the novel acquisition setup, a more detailed description is left for Chapter 9,
where the applications developed along with the Thesis investigation will be described.
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Groceries
#categories 10

#objects/category 3

acquisitions/object Train: Human Mode
4 Test Sets

#frames/acquisition 200

tracking cue Independent Motion

acquired cameras Left

full images available No

Table 5.2: Dataset overview.

Figure 5.3: Example images from the dataset
showing object instances belonging to the 10
categories.

Object Tracking by Depth Segmentation. Relying on motion detection to localize the object
forces the human to continuously move the object during the acquisition. As a result, the
quality of the images may be degraded by blur, and the acquisition of sequences containing
arbitrary visual transformations, possibly requiring the object to be still, is prevented. On the
other hand, appearance-based approaches are typically not robust enough, and we observed that
model-based approaches require a-priori knowledge about the object to be acquired. Indeed,
the most distinguishing feature in the considered acquisition setting is simply the fact that the
object of interest is usually always closer to the robot than any other element in the scene.

Starting from this observation, a new object tracking procedure, based on the disparity cue,
has been developed and employed for the acquisition of the latest ICUBWORLD TRANSFOR-
MATION release. Specifically, the closest blob in the scene is segmented in the disparity map
(as the lightest region) and its centroid is used to make the robot focus on it. The centroid,
together with the blob’s tightest enclosing rectangular region, are recorded also as localization
annotations. We refer to [Pasquale et al., 2016b] for a complete description of the resulting
attention system.

Scalability. Another important aspect that was addressed in the implementation of the new
acquisition setup was increasing the number of acquirable sequences. Indeed, the size of
previous ICUBWORLD releases was inadequate to deal with modern deep learning methods.
To this end, we developed an application to scale the described acquisition procedure to
hundreds of objects, to be collected also during multiple sessions. This required the automation
of many operations that before were performed manually during the acquisition phase and,
more importantly, of all the post-acquisition steps required to format the raw streams of frames
into an ordered dataset of images with standard organization. More details on this software
component will be provided in Sec. 9.3.
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5.4 iCubWorld28

In this Section we present the ICUBWORLD28 release (ICW28 for short), the first of the two
datasets published within the Thesis.

The initial motivation of the dataset was to acquire a first benchmark for assessing the
impact of employing pre-trained deep Convolutional Neural Networks (CNNs) for visual
object recognition in robotics and specifically in the context of ICUBWORLD. In particular, we
aimed to evaluate the robustness of deep CNNs to typical robotic issues, as for instance the
difference between training and testing condition, when increasing the task size and difficulty.
In fact, our preliminary experiments suggested us that, although remarkably outperforming
“shallow” representations, deep CNNs were not providing the close to perfect performance that
one would wish for, even on relatively small tasks. We ascribed the reason for this gap to the
presence of challenging nuisances, typically affecting objects’ appearance in our scenario, like
viewpoint, light, setting changes and so forth. As also explained in Sec. 1.4, these findings
motivated us to plan our research accordingly.

Specifically, results initially pointed out a critical role of light and setting conditions,
preventing classifiers trained on top of representations extracted from deep CNNs in certain
scenarios, to generalize to others, even similar. Therefore, in order to evaluate and improve the
generalization performance of deep CNNs also across days, we acquired and released ICW28,
comprising 28 objects acquired in multiple (4) slightly different setting conditions. The dataset
was published in [Pasquale et al., 2015b] (see [Pasquale et al., 2015a] for an extended version),
where we provide also a complete empirical assessment of these observations.

In particular, in [Pasquale et al., 2015b] we observe that by incrementally including
images of objects acquired in different days, we could remarkably improve the generalization
capabilities of predictors. This dataset release has become therefore a reference benchmark
to evaluate incremental learning approaches and different recent works employ the ICW28
dataset for this purpose [Keller and Lohan, 2016, Part and Lemon, 2016]. We also used it in
our subsequent work (that will be presented in Chapter 8) to evaluate a modified version of the
recursive Regularized Least Squares for Classification (RLSC) algorithm.

In the following, after a brief overview of related datasets in the literature, we present
ICW28.

5.4.1 Datasets for Incremental Learning

As anticipated, a special focus of this dataset is to study incremental learning approaches to
visual object recognition in robotics. While we refer to Chapter 8 for an overview of related
work, here we briefly introduce the basic concepts needed to motivate and understand the
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acquisition of ICW28.

Usually, incremental learning in the literature is referred to as the problem of updating a
previously learned model of some entity (in this case, we can think of an object), when new
training examples are provided, in contrast to batch procedures that, instead, re-train every
time the model from scratch in order to include the newly added examples. In the context of
classification, the new examples may belong to one of the learned classes, or to an unknown
class. In the first case, the system is expected to “improve” the model of the class for which
new examples are available, while in the latter case, the system must create a new class and
learn it from the new examples. Referring to Sec. 2.1, if we are in the supervised learning
setting, the model can be though as the parameters of a RLSC (as we will see in Chapter 8).

If we consider a humanoid robot that is taught several objects one after the other, like in
the presented scenario, the examples are in fact the acquired frames from the robot’s cameras.
In this setting, learning incrementally means that the robot updates the model of the object
while observing it, as new frames arrive, instead of waiting to see the full sequence before start
training the model. Accordingly, if a new object is encountered, a new class should be added
to the knowledge of the robot without retraining all known classes from scratch. Note that, the
identical reasoning can be made when considering the task of object categorization, except
that, in this case, the class is a category of objects. Within this perspective, it is evident that any
dataset can be used to study incremental learning methods, simply by considering progressively
increasing subsets of the overall number of examples and classes available. Indeed, there are
works in the literature that use the Washington RGB-D benchmark [Lai et al., 2011] to evaluate
incremental learning methods (see, e.g., Chapter 8 and references therein).

However, when considering lifelong learning applications, it is useful to have at disposal
multiple different acquisitions of the same object, to simulate the visual experience of a
humanoid agent that is repeatedly taught the same object in possibly different conditions, in
order to improve its recognition capabilities. The available benchmarks become very few if we
restrict to this scenario.

The BigBrother dataset [Franco et al., 2009] is a benchmark for face recognition, created
from DVDs of an edition of the “Big Brother” reality show for TV documenting 99 days
of permanence of 20 participants in a domesitc environment. The faces of participants are
characterized by large variability over the full period, and can be exploited for incremental
learning of their identity.

The ADL dataset [Pirsiavash and Ramanan, 2012] is a benchmark for the detection of
Activities of Daily Living in first-person camera views and comprises ⇠ 1m frames of 20 of
people performing everyday activities while recording their view with a wearable device. The
dataset is annotated with activities, object tracks, hand positions, and interaction events.
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iCubWorld28
#categories 7

#objects/category 4

acquisitions/object 4 Days
Train & Test

#frames/acquisition 150

tracking cue Independent Motion

acquired cameras Left

full images available Yes

Table 5.3: Dataset overview.

The IDOL2 (Image Database for rObot Localization 2) dataset [Luo et al., 2007] is
particularly relevant since it is a benchmark for place recognition, specifically acquired to
investigate incremental learning. Moreover, like ICUBWORLD dataset, it is robot-centric since
it was acquired by a camera mounted on two mobile robot platforms while they were driven
through an indoor laboratory environment. It contains 24 image sequences of ⇠ 1k frames
each, automatically labeled with one of five different classes (printer area, corridor, kitchen,
and so forth). The acquisition procedure was designed to capture the changes in illumination,
varying weather conditions, people’s activities, change of location for objects and for furniture,
also over a quite long time span (6 months).

Finally, partially inspired by ICW28, two new datasets for incremental object recognition
on a humanoid platform have been recently released: the TUM-CS [Barkmeyer, 2016] and the
IGLU [Azagra et al., 2016] datasets. The first one is an extension of our dataset, comprising
images of 11 objects, acquired by recording from the iCub’s cameras in three different settings
(objects on a table, on a white background and a combination of the two). The second one is
a multimodal dataset comprising synchronized speech, depth and RGB data recorded from
multiple sources positioned on a robot while interacting with people showing objects to it,
repeatedly and in different ways.

As can be noticed, to our knowledge, ICW28 is the first robot-centric dataset addressing
the problem of visual object recognition in a lifelong learning setting, inspiring also recent
works in a similar direction.
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Figure 5.4: iCubWorld28. Example images from the dataset showing the 4 object instances
belonging to each of the 7 categories.

5.4.2 Dataset Overview

The ICUBWORLD28 dataset comprises images of 28 objects evenly organized into 7 categories.
As can be seen in Fig. 5.4, the object categories have been chosen among household products.
For each object instance, we acquired a sequence of 220 images, during ⇠ 20s, in Human
Mode. Specifically, the human operator was rotating the object randomly in front of the robot,
affecting the object’s appearance mainly with 3D rotations. We acquired full 320⇥640 images
streaming from the left camera, plus the localization annotations provided by the independent
motion detector described in Sec. 5.3.1.

We repeated the acquisition protocol of the 28 objects twice, in order to obtain two
sequences per object that we used as train and test. Moreover, as anticipated, since we aimed to
assess incremental learning capabilities over multiple days, we repeated the same acquisition
procedure in 4 different days, ending up with 4 datasets (Day 1, to 4) of more than 12k images
each. From one day to another there is a slight natural change in the setting condition (which
we did not constrain on purpose), that is, light, background, object’s scale, can be slightly
different in sequences of each day.

On the ICUBWORLD website we made available the full images with the annotation of the
object’s centroid, and also a dataset version where square bounding boxes of size 128⇥ 128

have been cropped around the centroid. We also provide a manually segmented version of the
dataset acquired on Day 4. The segmentation in this case was performed by clicking on the
image and dragging a rectangular shape to enclose the object represented. We aimed to use
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this version to measure the recognition performance gap due to the automatic segmentation
procedure based on motion with respect to an “ideal” segmentation.

In Table 5.3 an overview of the dataset is reported.

5.5 iCubWorld Transformations

The ICUBWORLD TRANSFORMATIONS dataset (in the following ICWT) is the latest release,
acquired with the aim of providing a large-scale benchmark for extensive evaluation of the
application of deep CNNs to visual recognition problems in robotics, with a specific focus
on invariance to viewpoint transformations. In the following, we briefly review existing
benchmarks for the study of invariance and provide an overview of this dataset.

5.5.1 Datasets for Invariance

We have seen in Sec. 4.2.2 that to study the invariance properties of recognition systems to
visual nuisances, particular datasets are needed. Considering for instance viewpoint transforma-
tions, for a rigorous analysis it is useful to consider each transformation in isolation from others,
and hence multiple image sequences, each representing an object whose appearance undergoes
only one transformation, are needed in this case. Datasets with similar characteristics are not
common in the literature and we have seen that, often, the problem is addressed by rendering
3D object models [Pinto et al., 2011, Peng et al., 2015]. This approach provides flexibility
and control over arbitrary transformations, as 3D viewpoint, scale, background, light and so
forth. The NORB dataset [LeCun et al., 2004] is one of the most famous benchmarks for
invariance. It was acquired in a turntable setting, then the images were artificially perturbed to
introduce the desired variability factors. It is not obvious, however, how systems trained on
synthetic images would generalize to real world scenarios. Therefore, while, on the one hand,
this strategy provides a practical way of generating the necessary data to perform extensive
and rigorous analyses, on the other hand there is still a (potentially large) gap to be bridged
before achieving results that can be expected to hold also in real world settings.

Indeed, these considerations are shared with recent work: [Borji et al., 2016] released the
iLab-20M dataset, with which they aim to create the first large-scale benchmark that allows
to study the behavior of visual recognition methods under multiple perspectives, including
invariance to real world visual transformations. Beyond providing a high number of object
examples per category (25 to 160), similarly to classical computer vision datasets, iLab-
20M provides also a high number of images per object (⇠ 20k), which are also tagged by
transformation. While images are recorded in a turntable setting (plus an additional part
acquired by a robotic arm), this benchmark overcomes many of the limitations of previous
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datasets recorded in similar conditions (that we mentioned in Sec. 5.2), in terms of size and
nuisance factors, providing an extremely useful benchmark for the study of invariance.

On the other hand, this dataset is still far from modeling the prototypical visual experience
of a humanoid robot, characterized by wider, noisier, transformations, and the continuous
addition of new training evidence, which typically, as we have seen, cannot be acquired in such
a constrained setting. To this end, the goal of ICWT is to provide a middle-way benchmark
between the rigour of datasets for invariance and the realism of robot-centric images. Indeed,
as anticipated, the peculiarity of ICWT, motivating its name, is that each object is represented
in multiple image sequences while it undergoes isolated visual transformations (such as
rotations, scaling, background changes). Being acquired from a moving robotic head, the
considered transformation may not be perfectly isolated, but rather dominant, with respect to
other variations, which are kept minimal.

To our knowledge, ICWT is the first dataset to address invariance-related questions in
robotics and accounts a much wider range of visual transformations with respect to previous
datasets. We believe that ICWT could be a significant contribution also in the direction of
invariance analysis on real, rather than synthetic, visual transformations.

5.5.2 Dataset Overview

The ICWT dataset includes objects from 20 categories that can be typically found in a
domestic environment. As can be seen in Fig. 5.6, reporting a sample image for each category,
11 categories (in Red) are also in the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) 2012 [Russakovsky et al., 2015], that is, we found semantically and visually similar
classes among the 1000 of the classification challenge. The remaining 9 categories do not
appear ILSVRC but belong (or are similar) to a synset in the larger ImageNet dataset [Deng
et al., 2009]. The WordNet sub-tree related to the 20 categories comprising the dataset was
reported in Fig. 1.6.

For each category, we collected 10 object examples. To provide a qualitative intuition of
the semantic variability within a given category, namely the different visual appearance of
objects in the same category, Fig. 5.7 shows a sample image from the 10 instances in the mug
category. Finally, for completeness, Fig. 5.8 reports one example image for each of the 200

object instances in the dataset, indicating also the reference number of the associated synset in
ImageNet. Like in Fig. 5.6, Red categories are part of the ILSVRC, Black categories belong,
or at least are similar, to synsets in ImageNet. As it can be noticed, the semantic variability of
ICWT allows to test both object categorization and identification capabilities.

Notably, the dataset is also segmented in different sets of sequences. Specifically, for each
object instance, 5 different image sequences were acquired, while the human supervisor was
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Figure 5.5: iCWT visual transformations. Excerpts from the sequences acquired for one
mug, representing the object while it undergoes specific visual transformations.

applying a different visual transformation to the object. Fig. 5.5 reports excerpts of these
sequences, which contain, respectively:

2D Rotation The human rotated the object parallel to the camera image plane. The same
scale and position of the object were mantained (see Fig. 5.5, first row).

3D Rotation Similarly to 2D rotations, the object was kept at same position and scale.
However, this time the human applied a generic rotation to the object (not parallel to
the image plane). As a consequence different “faces” of the object where shown to the
camera (Fig. 5.5, second row).

Scale The human moved the object towards the cameras and back, thus changing the object’s
scale in the image. No change in the object orientation (no 2D or 3D rotation) was
applied (Fig. 5.5, third row).

Background The human moved the object around the robot, keeping approximately the same
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iCubWorld Transformations
#categories 20

#objects/category 10

acquisitions/object 4 Transf. + Mix
2 Days

#frames/acquisition ⇠ 150 (4 Transf.)
⇠ 300 (Mix)

tracking cue Depth

acquired cameras Left & Right

full images available Yes

Table 5.4: Dataset overview.

Figure 5.6: iCWT categories. For each category in ICWT, we report one example image
for one object instance. (Red) categories appear also in the ILSVRC 2012 dataset. (Black)
categories appear in ImageNet but not in ILSVRC.

distance (scale) and pose of the object with respect to the camera plane. During this
acquisition process only the background changes while the object appearance remains
approximately the same (Fig. 5.5, fourth row).

Mix The human moved the object freely in front of the robot, as a person would naturally do
when showing a new item to a child. In this sequence all nuisances in all combinations
can appear (Fig. 5.5, fifth row).

Each sequence is composed by approximately 150 images acquired at 8 frames per second
in the time interval of 20s, except for the Mix one that lasted 40s and comprises ⇠ 300 images.

The acquisition of the 200 objects was split in multiple sessions performed in different
days. The acquisition location was always the same (with little changes in the background
across days). The light condition was not artificially controlled, since we wanted to investigate
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Figure 5.7: iCWT semantic variability. Sample images for the different object instances in
the mug category to provide a qualitative intuition of the semantic variability in the dataset.
See Fig. 5.8 for more example objects.

its role as a further nuisance: to this end, we acquired objects at different times of the day
and in different days, so that light conditions are slightly changing across the 200 objects (but
not within the five sequences of an object, which were all acquired in the time span of few
minutes). Moreover, we repeated the acquisition of each object in two different days, so that
we ended up with 10 sequences per object, containing 5 visual transformations in 2 different
light conditions.

The camera resolution is 640⇥480: we recorded the centroid and bounding box provided by
the tracker at each frame, as explained in Sec. 5.3.2. Both left and right images were acquired,
to allow for offline computation of the disparity map and potentially further improvement of
the object’s localization and segmentation mask. Table 5.4 summarizes the main characteristics
of ICWT.
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book
n02870526

cellphone
n02992529

flower
n11669921

glass
n03438257

hairbrush
n03475581

hair clip
n03476684

mouse
n03793489

coffee mug
n03063599

perfume
n03916031

remote
n04074963

ring binder
n02840245

soap dispenser
n04254120

sunglasses
n04356056

wallet
n04548362

pencil case
n03908618

oven glove
n02885462

squeezer
n04293119

sprayer
n02754103

body lotion
n02862916

soda bottle
n03983396

Figure 5.8: iCWT object instances. Example images for the 200 objects comprising the
dataset.





Chapter 6

Are we Done with Object
Recognition? The iCub’s Perspective.

In this and in the next Chapter we present our investigation on the benefits and limits of using
deep Convolutional Neural Networks (CNNs) for object recognition in real world robotic
settings. In this Chapter, we conduct a general analysis of the problem, focalizing some critical
aspects. To this regard, in Chapter 7 we will specifically consider the invariance properties of
deep CNNs to strong visual nuisances typically affecting the real world scenario.

The study reported in this Chapter has been motivated by the observations we made
in [Pasquale et al., 2015a, Pasquale et al., 2015b], not included here. Instead, we report here
the more recent work [Pasquale et al., 2017], which provides a complete account of the results
observed so far.

6.1 Introduction

As we have seen in Chapter 4, deep learning methods are leading a revolution in Artificial
Intelligence, a key role being played by the outstanding performances provided by latest
deep Convolutional Neural Networks (CNNs) on a variety of vision-related tasks. Starting
from the ground breaking results of AlexNet in 2012 [Krizhevsky et al., 2012], deep CNNs
progressively improved the state-of-the-art on the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [Russakovsky et al., 2015], and their remarkable effectiveness proved
to be not limited to this benchmark. Indeed, as anticipated in Chapter 1, the progress in
robotics could be incredibly boosted by such a breakthrough in visual recognition, ultimately
removing one of the main bottlenecks that today prevent the deployment of autonomous agents
in unconstrained environments.

95
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To this end, motivated by the observations exposed in Sec. 1.4, we started an effort to
isolate and quantify the benefits and limitations, if any, of using deep learning approaches for
visual object recognition problems in robotic settings. We designed the acquisition setting of
ICUBWORLD, reflecting a prototypical visual experience of a humanoid robot interacting with
people to learn new objects. We first released the ICUBWORLD28 (ICW28) dataset (Sec. 5.4),
on which we performed a “preliminary” study [Pasquale et al., 2015b] (see [Pasquale et al.,
2015a] for an extended version). With this analysis, we assessed the clear superiority of deep
CNNs over recognition pipelines based, e.g., on dictionary learning, adopted at that time on
the iCub. On the other hand, we also assessed that the problem was far from being solved and
that, even on a relatively simple task (compared to the ILSVRC), like the one of identifying
between the 28 objects in the dataset, there was still a large margin of improvement. Indeed,
with ICW28 we started identifying some key factors impacting performance in robotic settings,
which we decided to further investigate.

In order to expand the horizon or our observations, we proceeded with the collection of
the ICUBWORLD-TRANSFORMATIONS (ICWT) dataset (Sec. 5.5), comprising much more
objects and challenging visual transformations. Provided with the large and varied ICWT
benchmark, we performed extensive tests, that we will present in the following, including
categorization and identification tasks, using various state of the art CNN architectures and
learning methods.

We began checking to which extent architectures already trained (on web data corpora)
could be directly tested on ICWT. While obtaining results much better than chance, these
systems did not perform accurately enough in this case –as perhaps one could expect. We
hence followed the recent trend based on the general idea of transfer learning (see Sec. 4.3),
and confirmed the effectiveness of such strategy, obtaining substantial improvements. While
impressive, however, these methods did not quite provide the close to perfect accuracy one
would wish for. We hence proceeded taking a closer look at our results, starting from the
question of whether the missing gap could be imputed to lack of data. Indeed, CNNs are
known to need massive amount of data to work, such that data-augmentation is often used to
improve results. As we discuss in next Sections, investigating this latter question identified a
clear gap between the object recognition task in robotics and in typical applications considered
in learning and vision, where deep learning approaches excel, such as image retrieval and large-
scale image classification. Along the way, our analysis allowed to test invariance properties
of the considered networks, quantifying their merits not only for identification, but also for
categorization. We will report this part of the work separately in the next Chapter.

In a nutshell, our results confirm that deep learning can indeed provide stunning perfor-
mances, but a gap still needs to be bridged for seamless deployment in robotics. Indeed, the
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discussion of our empirical findings will be complemented with a critical review, reported at
conclusion of this Thesis (Chapter. 10), of some of the main avenues of improvements, from a
pure machine learning perspective but also taking extensive advantage of the robotic platform.

In the next Section, we discuss some related work, while the rest of the Chapter is
organized as follows: in Sec. 6.2 we specify the details of the learning methods considered
for our empirical analysis, which is reported in Sec. 6.3 for the categorization task and in
Sec. 6.4 for object identification. For both settings, we complement our results by considering
in Sec. 6.5 also the common situation where the system is trained and tested on different days.
Sec. 6.6 finally concludes the study. We supply many additional tests and technical details
on the adopted methods in the Appendices. In particular, in Appendix 6.D we validate our
learning methods on the Washington RGB-D dataset [Lai et al., 2011], by obtaining results
comparable or better than the state of the art on this benchmark.

6.1.1 Related Work

In Sec. 4.3 we reported recent studies assessing that transferring visual representations previ-
ously learned by deep CNNs on large, web-collected data corpora, can provide much better
performance, on a variety of benchmarks and tasks, than other methods entirely learning
(shallow or deep) representations on the specific considered domains. We reviewed some
works in the computer vision literature that, starting from deep CNNs trained on large-scale
visual recognition problems, investigated both the direct use of representations extracted from
their layers, and their fine-tuning, to address smaller recognition tasks. Today, deep CNNs
are receiving growing attention also in robotics and, as we outlined in Sec. 1.3.2, are being
progressively adopted for a variety of problems. In this Section, we limit the discussion to the
work on object recognition, which is more relevant to the study described in this Chapter.

Representations extracted from CNN models pre-trained on ImageNet have been proved
to advance the state-of-the-art on the Washington RGB-D dataset [Schwarz et al., 2015], and
also on different place recognition datasets [Sünderhauf et al., 2015, Sünderhauf et al., 2016].
While [Sünderhauf et al., 2015] directly match representations with Nearest Neighbor (NN) to
identify places, [Schwarz et al., 2015, Sünderhauf et al., 2016] feed them to SVMs, similarly
to our work on ICW28 [Pasquale et al., 2015b]. Other works considering the Washington
RGB-D dataset [Eitel et al., 2015] investigated fine-tuning of CNN models pre-trained on
ImageNet, slightly outperforming previous approaches. Both [Schwarz et al., 2015] and [Eitel
et al., 2015] devise solutions to exploit also the depth information, by encoding the depth
map through a colorization scheme and feeding it to the same pre-trained models employed
for RGB images, both obtaining an improvement of ⇠ 6% with respect to using only RGB
information, in line with previous works. In Appendix 6.D we will also report results on
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RGB-D Washington, directly comparing with [Schwarz et al., 2015] and [Eitel et al., 2015].
The benefit of adapting representations learned on ImageNet, rather than entirely learning them
in the target (robotic) domain has been assessed also for conventional “non-deep” models in
the recent work of [Goehring et al., 2014], where the authors consider the Office [Saenko et al.,
2010] dataset.

In our work, we adopt a more challenging setting than [Schwarz et al., 2015, Eitel et al.,
2015, Goehring et al., 2014], in that CNNs are trained with visual data directly acquired by the
robot during a natural interaction. The fact that recognizing objects in a real world scenario
poses challenges which are not suitably modeled by classical computer vision benchmarks has
been highlighted in the past [Pinto et al., 2008, Rodner et al., 2013]. Recently, the limitations
of currently available turntable datasets like the Washington RGB-D, Office, BigBird datasets,
have also been pointed out in the literature [Model and Shamir, 2015, Borji et al., 2016]. By
directly benchmarking on the robot, we definitely reduce the gap between the reported and the
expected performances of the system in its real usage, without losing reproducibility.

The striking performances reported by deep representations learned on web data corpora in
a wide range of other tasks and datasets, recently raised the question of whether the problem of
dataset bias [Torralba and Efros, 2011] could be finally overcome by taking such an approach.
Extensive analyses reported in [Hoffman et al., 2013, Tommasi et al., 2015] show that this
problem is indeed alleviated, but not solved, by deep learning systems trained on large-scale
datasets. In this respect, it becomes crucial to evaluate the applicability of strategies to adapt
deep CNNs to real world, robotic settings. For this reason, we investigate feature extraction
from pre-trained CNNs or fine-tuning, spanning over a range of architectures, experimental
settings and training approaches. We are aware that the two considered approaches may not be
the only ones, and that the literature of transfer learning offers a large variety of solutions to
improve performance over the considered methods (see, e.g., [Hoffman et al., 2013, Tommasi
et al., 2016]). However, a major focus of this study is to assess the effectiveness of these
commonly adopted techniques in a typical robot vision scenario, as a first step towards future
improvements.

To our knowledge, there is no work in the robotics literature that addresses an extensive
evaluation of these aspects. Works considering the use of deep CNNs in robotics either refer to
datasets acquired in turntable setups, like the Washington RGB-D, yet improving performance
on these benchmarks, but optimizing a single recognition task rather than considering a
real application to open settings. Works relying on robot-acquired datasets, on the other
hand, so far focused more on the aspect of scaling up the collection of many points in order
to demonstrate that general representations could be learned even with non-conventional
forms of supervision. However, it is not clear yet how to best adapt deep CNNs for visual
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Table 6.1: Feature extraction layers for the four architectures considered in this work. We used
the notation adopted in the literature, in which the number identifies the layer number and the
label specifies its type (i.e. fully connected or pooling layer).

Model Output Layer
CaffeNet fc6 or fc7

GoogLeNet pool5/7x7_s1
VGG-16 fc6 or fc7

ResNet-50 pool5

recognition to situations where the robot has, for instance, to continuously learn new objects,
in challenging unpredictable scenarios. Indeed, deep CNNs are known for requiring large
amounts of examples, and solutions to collect and annotate this data on robotic platforms must
be devised. To this end, it is important to understand which kind of examples are most critical
to effectively train deep networks for the different visual recognition tasks, and with which
adaptation strategy. In this Chapter we take an operative approach and perform a battery of
experiments addressing such problems.

6.2 Methods

In this Section we provide details on the network architectures and the transfer learning
techniques that we investigate. We will build on the concepts introduced in Chapters 3 and 4,
about the structure of deep CNNs (Sec. 3.2) and their training through Stochastic Gradient
Descent (SGD) with backpropagation (Sec. 4.1). We refer in particular to Sec. 3.3 and 4.3,
respectively for the presentation of the adopted models and transfer learning methods.

As anticipated, we will consistently make use of the ICWT dataset introduced in Sec. 5.5.

6.2.1 CNN Architectures

For our analysis we selected the four architectures that achieved best performance on the
ILSVRC between 2012 and 2015: CaffeNet, VGG-16, GoogLeNet and ResNet-50. These
models, trained on the ILSVRC 2012 dataset for the object categorization task (that is, we
recall, predicting the category of an object depicted in an image) are publicly available. We
used their implementation in the CAFFE [Jia et al., 2014] framework, which is the software we
used for all our experiments. For a description of the architectures and links to their public
implementations, see Sec. 3.3.
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6.2.2 Feature Extraction

The first strategy that we investigated to transfer knowledge from CNNs trained on ILSVRC
to ICWT is to use models as they are (i.e., “off-the-shelf”), feeding them with images and
extracting corresponding vector representations as the output of one of their latest layers.
Such representations can be then fed to classifiers in order to perform the desired recognition
task. In Sec. 4.3.1 we provided a short overview and related work on this approach, often
referred to as feature extraction. The specific layers whose activations have been extracted
as image representations for our experiments are reported in Tab. 6.1 for the four considered
architectures. We refer to Appendix 6.A.1 for details about the image preprocessing applied to
the images before feeding them to the networks. Indeed, we recall that in this setting images in
ICWT are frames recorded by the robot cameras, from which we extracted a bounding box
around the object of interest using the depth-driven attention system presented in Sec. 5.3.2.

We then used a Regularized Least Squares Classifier (RLSC) with a Gaussian Kernel on
top of the CNN-extracted features. In particular we implemented the Nystrom subsampling
approach considered in [Rudi et al., 2015,Rudi et al., 2016], which is computationally appealing
for mid and large-scale settings.

In Appendix 6.B.1, we provide details about the choice of the network layers used for
extracting representations and model selection for RLSC.

6.2.3 Fine-tuning

The second transfer learning approach is referred to as fine-tuning and we presented it in
Sec. 4.3.2. It consists in taking a CNN model trained on ILSVRC, replace the final output
layer in order to consider the new, desired task and “continue” its training with SGD on the
new (usually called target) domain (in our case ICWT), by using the off-the-shelf model as a
“warm-start” for all the other layers.

In our experiments we performed fine-tuning only for CaffeNet and GoogleNet, which
are representative of most recent architectures and were significantly faster to fine-tune than
VGG-16 and ResNet-50. We considered two main regimes for fine-tuning a network: one
updating only one or more fully-connected (FC) layers, while keeping the others fixed, and
another one more aggressively adapting to the target training dataset all layers, comprising
the convolution (C) layers. This was done by selecting different learning rates for the neurons
in each layer, i.e., the size of gradient steps at each iteration of backpropagation. We refer
to these two protocols as conservative and adaptive and report the corresponding parameters
in Table 6.2 as a reference. In the experiments discussed in this Chapter we consider only
these strategies since we did not observe significant performance differences following other
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Table 6.2: Fine-tuning protocols for CaffeNet and GoogLeNet. Base LR is the starting learning
rate of all layers that are initialized with the original model. The FC layers that are learned from
scratch are indicated using their names in CAFFE models (2nd row), specifying the starting
learning rate used for each of them. For the other parameters, we refer the reader to CAFFE
documentation.

CaffeNet GoogLeNet
adaptive conservative adaptive conservative

Base LR 1e-3 0 1e-4 0

fc8: 1e-4 loss3/classifier: 1e-2Learned fc7: 1e-4 loss1(2)/classifier: 1e-3FC Layers fc8: 1e-2
fc6: 1e-4 loss1(2)/fc: 1e-3

fc7: 50 pool5/drop_7x7_s1: 60Dropout (%) fc6: 50 loss1(2)/drop_fc: 80

Solver SGD Adam
LR Decay Policy Polynomial (exp 0.5) No decay

# Epochs 6 36 6

Batch Size 256 32

choices of parameters. We refer to Appendix 6.B.2 for an analysis of using other fine-tuning
parameters and a discussion on the model selection protocols used in our experiments.

6.3 Results (Object Categorization)

In this Section we present our empirical investigation of the described deep learning methods in
the robotic setting of ICUBWORLD. While here we consider the task of object categorization,
in Sec. 6.4 we will consider the problem of object identification.

6.3.1 Deep Learning and (the Need for) Knowledge Transfer

Modern datasets for visual recognition comprise an extremely large number of images (e.g.
1 Million for the ILSVRC challenge) depicting objects in a wide range of natural scenes.
This extreme variability opens the question of whether datasets such as ICUBWORLD, which
represent a much smaller “reality”, could be interpreted simply as sub-domains of larger ones.
If this were the case, powerful models as deep CNNs trained on ImageNet would achieve good
recognition performance on ICUBWORLD as well, without any re-training or adaptation. While
this result would lead to the appealing scenario where a robot can simply download and use a
visual classifier “off-the-shelf” (i.e. trained a web collected data corpora), previous analysis
has shown that most computer vision datasets are essentially biased, ultimately preventing
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Figure 6.1: Average classification accuracy of off-the-shelf networks (trained on ILSVRC)
tested on ICWT (Dark Blue) or on ImageNet itself (Gray). The test sets for the two datasets
are restricted to the 11 shared categories (see Sec. 5.5). (Light Blue) reports the classification
accuracy when the same networks are “transferred” to ICWT (see Sec. 6.3.1 for details). The
(Orange line) shows the recognition chance of a random classifier.

a learning algorithm from generalizing from one domain to the other [Torralba and Efros,
2011, Khosla et al., 2012, Stamos et al., 2015, Model and Shamir, 2015].

To address this question, we evaluated four off-the-shelf CNNs trained on ILSVRC (speci-
fied in Sec. 6.2.1) for the task of object categorization on ICWT. For these experiments we
restricted the test set to the 11 categories of ICWT that appear also in the ILSVRC challenge
(see Sec. 5.5 and Fig. 5.6). As a reference, we compared these results with the average accuracy
reported by the same networks on the corresponding 11 categories of the ImageNet dataset.
The test set in ICWT was composed, for each category, by the images of all 10 object instances,
comprising all 5 transformations for one day and the left camera (unless differently specified
we always used this camera for the experiments), for a total of ⇠ 9000 images per category.
For ImageNet, we downloaded the images for the corresponding 11 categories (refer to Fig. 5.8
for the synset numbers), comprising on average ⇠ 1300 images per category.

Fig. 6.1 reports the average classification accuracy on ICWT (Dark Blue) and ImageNet
(Gray). It can be immediately observed that there is a substantial drop in performance of
⇠ 50�60% when testing on ICWT rather than ImageNet, suggesting that differences between
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the two datasets exist, and in particular that ICUBWORLD is not a sub-domain of ImageNet.

Specifically, a possible reason explaining this performance degradation may lie in the
presence in ICWT of critical visual nuisances (e.g., firstly, viewpoint transformations) typically
affecting real world settings, which are not represented in large collections of images “in the
wild” like ImageNet (see, e.g., Sec. 4.2.1 and the work of [Pinto et al., 2008]). While we
refer to [Hoffman et al., 2013, Tommasi et al., 2015] and also [Rodner et al., 2013, Herranz
et al., 2016] for an in-depth analysis of ImageNet biases, outside the scope of this work, in
Appendix 6.A.3 we provide some further empirical evidence of the gap between ICWT and
ImageNet. We care to point out that for a fair comparison we have restricted the output of
the off-the-shelf networks to the 11 classes considered in the experiment with ICWT (from
the original 1000-dimensional output vector provided by the off-the-shelf networks); however,
for completeness, in Appendix 6.A.2 we report also the same performance when considering
the entire 1000-dimensional prediction. We refer to Appendix 6.A for technical details on the
experiment, including image preprocessing steps (6.A.1).

Knowledge Transfer

The drop in performance observed in Fig. 6.1 implies that it is necessary to train the recognition
system on the target domain. However, the experiment also shows that all the networks
performed substantially better than chance (Orange line). This suggests that the models did
retain some knowledge about categories’ appearance. Therefore, rather than training a novel
architecture “from scratch” (which typically requires large amounts of training data, time and
computational resources), we see that the alternative approach of re-using and transferring such
knowledge, by “adapting” the models trained on ImageNet to our new setting, could, indeed,
provide some advantage. We have seen in Sec. 4.3 how, recently, topics related to the idea of
transferring visual representations have received considerable attention from the deep learning
community, because this provides an effective approach to apply deep learning methods to
smaller datasets.

To this end, in Fig. 6.1 we also report the classification accuracy achieved by models
where knowledge transfer has been applied (Light Blue). In particular, for this experiment we
followed the protocol described in Sec. 6.2.2, where RLSC predictors are trained on feature
vectors extracted from the layers of the CNNs. We created a training set by choosing 9

instances from each category, while keeping the 10

th instance for testing. We repeated the
experiment for 10 trials in order to allow each instance of a category to be used in the test set.
Fig. 6.1 reports the average accuracy over these trials. We observe a sharp improvement for
all models, which achieve a remarkable classification accuracy in the range of ⇠ 70� 90%.
However, we also notice that the corresponding performance on ImageNet is still significantly
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higher (although, interestingly, such gap seems to be reduced for more recent architectures).

What are the reasons for this gap? In the following, we empirically address this question,
showing that the observed behavior is due to fundamental differences between robot vision
and image retrieval settings.

6.3.2 Do we need more data?

Deep Learning methods require large amounts of data in order to be trained effectively. This is
particularly true when training a network from “scratch”, but valid also (albeit on a smaller
scale) to knowledge transfer techniques. Indeed, as mentioned in Sec. 4.1.2, a common
practice when training a CNN is to perform data augmentation, namely, to artificially increase
the dataset size by applying synthetic transformations to the original images (e.g. rotations,
reflections, crops, illumination changes, etc.). From this perspective, the robotic setting seems
particularly favorable. Indeed, data augmentation can be performed by simply acquiring more
frames depicting an object while viewpoint or illumination change naturally.

However, if, on the one hand, acquiring more frames of an object can be particularly
convenient, on the other hand, in robotics it is typically expensive to gather images depicting
different object instances (since the robot needs to actually observe them), as instead are in
typical benchmarks like ImageNet. In this Section, we investigate the impact of these aspects
in robot vision, taking ICUBWORLD as a testbed. Note that, in the following we use the term
instance (or simply object) to refer to a specific object belonging to a given category, while
frame denotes a single image depicting a scene or, in this case, an object.

What do we gain by adding more frames?

We considered a 15-class categorization task on ICWT and compared the performance of CNNs
trained on an increasing number of example frames. We created training sets of increasing size
by sampling N = 10, 50, 150 and 300 frames from each transformation sequence of an object
(we recall that each object in ICWT is represented by 10 sequences containing 5 isolated
visual transformations acquired in 2 days). For each category (see Appendix 6.C for the list
of categories) we used 7 objects for training, 2 for validation and 1 for test. Validation and
test sets contained all images available for the corresponding instances. In order to account
for statistical variability, we repeated the experiment for 10 trials, each time leaving out a
different object instance for testing. For this experiment, we considered only one of the two
available days in ICWT. Also, we considered only the left camera, apart from when sampling
300 frames, where we drew also from the right sequence. The number of frames per category
was therefore ranged from 350 to 10500.
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Figure 6.2: Recognition accuracy vs # frames. (Left) Accuracy of CaffeNet and GoogleNet
models fine-tuned according to the conservative and adaptive strategies (see Sec. 6.2.3). (Right)
Accuracy of RLSC classifiers trained over representations extracted from the 4 architectures
considered in this work (see Sec. 6.2.2).

Fig. 6.2 reports the average classification accuracy of different learning models as more
training examples are provided. Surprisingly, most methods achieve their highest accuracy
already when trained on the smallest training set and do not show any improvement when
new data is available. This finding is in contrast with our expectations, since it implies that
increasing the dataset size is not needed in this setting.

Some “secondary” observations can also be made from these results:
• Fine-tuning does not lead to particularly improved performance with respect to using

RLSC (both for CaffeNet and GoogLeNet and for both fine-tuning strategies).
• We confirm the ILSVRC “trend”, with more recent networks outperforming “older”

ones, with VGG-16 features being better than those of GoogLeNet when using feature
extraction with RLSC.

• Note that CaffeNet performs worse when training data is scarce because of the high
number of parameters to be learned in the 3 FC layers (see Sec. 6.2.3 and Appendix 6.B).

• To further support these findings, in Appendix 6.C we report results for the same
experiment performed using less example instances per category.

What do we gain by adding more instances?

We evaluated the impact of adding instead new object instances when training a recognition
system. We consider this process as increasing the semantic variability of the training set, in
contrast to increasing the geometric variability by showing more frames of the same object
instance. We considered the same 15-class categorization task as previous experiment and
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Figure 6.3: Recognition accuracy vs # instances (number of object instances available during
training). (Left) Accuracy of CaffeNet and GoogleNet models fine-tuned according to the
conservative and adaptive strategies (see Sec. 6.2.3). (Right) Accuracy of RLSC classifiers
trained over representations extracted from the 4 architectures considered in this work (see
Sec. 6.2.2).

created four training sets containing an equal number of 900 frames per category, but sampled
from an increasing number of instances per category, namely 1, 3, 5 and 7. Frames were
randomly sub-sampled from the 5 available transformation sequences per object, i.e., we took
all 900 frames from one instance per category, then we took 300 frames from each of the
3 instances per category, and so forth. Validation and test sets are maintained the same as
previous experiment and contained all frames for the remaining 2 and 1 instance (per category)
respectively. We repeated again the experiment for 10 trials.

Fig. 6.3 reports the accuracy of the different models trained on this task. Results show
that, increasing the semantic variability, dramatically improves the accuracy of all models by a
similar margin (around ⇠ 5� 10% for each added instance). Moreover, even if the number of
categories is relatively small, from the observed trends we see that all models do not saturate
accuracies with 7 instances per category.

Also here some secondary observations are in order:

• Fine-tuning both CaffeNet and GoogLeNet seems to be more critically affected than
RLSC by the lack of training instances. Indeed, the two methods achieve similar
performance when 7 objects per category are available (also in line with previous
experiment reported in Fig. 6.2), however fine-tuning drops more when fewer instances
are available.

• We confirm ILSVRC results also in this setting, with more recent networks outperform-
ing previous ones and with VGG-16 features outperforming GoogleNet.
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Figure 6.4: Different training regimes from robot vision and image retrieval settings.

• To further support our findings, in Appendix 6.C we report results for an equal experiment
but discriminating only between 10 or 5 categories.

Robot Vision and Image Retrieval

In this Section we considered some of the main challenges associated to visual recognition in
robot vision. While both robot vision and image retrieval address the same visual recognition
problem, they are cast within two different training regimes. We have pointed out here the
two main causes of such difference (depicted in Fig. 6.4): 1) semantic variability, namely the
amount of different object instances available for each category and 2) the amount of frames
per instance.

Typically, in image retrieval settings a large number of images depicting different object
instances for each category is available, but for each such instance very few images (actually
one, if the dataset is web collected) are provided. As an example, ILSVRC training set
comprises ⇠ 1000 instances for each of the 1000 object categories and 1 image per instance
is provided. On the opposite end of the spectrum, in robot vision settings it is easy to gather
more example images for a single instance (the robot can move around and observe an object
from multiple points of view). However, there is a limitation in the total number of categories
and instances that can be experienced.

Our analysis has shown that the limited amount of semantic variability typically occurring
in robotics can dramatically reduce recognition accuracy of deep learning systems. Moreover,
contrarily to our expectations, we observed that this limitation cannot be alleviated by simply
feeding more object views to the network. Indeed, classifiers trained on datasets containing
variable number of images per object (but same semantic variability) achieved identical
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Figure 6.5: Recognition accuracy vs # frames (Identification). (Left) Accuracy of CaffeNet
and GoogleNet models fine-tuned according to the conservative and adaptive strategies (see
Sec. 6.2.3). (Right) Accuracy of RLSC classifiers trained over representations extracted from
the 4 architectures considered in this work (see Sec. 6.2.2).

performance. This can be problematic since in robotics there is a non negligible overhead
in collecting and acquiring examples of a novel instance, and often it is simply not possible,
while collecting more views of an object comes at a low cost. Unfortunately, adopting “data
augmentation” strategies to artificially increase the semantic variability is not as easy as
creating geometric or light variabilities. To this end, in Chapter 10 we will propose some
possible solutions to this problem.

6.4 Results (Object Identification)

We focused so far on visual categorization problems, namely to assign an unknown object
instance to its corresponding category, previously learned by observing other instances be-
longing to it. To complement our observations, in this Section we move to the task of object
identification (or instance recognition), which consists in labeling a given image according
to the object instance appearing in it (previously learned by observing other images of the
instance). As we mentioned in Sec. 1.3.2, this problem is indeed very relevant to robotic
settings, since reliable instance recognition skills would provide the system with finer control
over tasks such as manipulation, grasping, etc. Also, considering a domestic scenario, the robot
could be asked to use a specific object rather than some object in a category (e.g. “iCub, bring
me my mug” instead of “a mug”). Therefore, in parallel to the experiments on categorization,
we assessed the performance of pre-trained deep CNNs on the task of object identification in
robotics.
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6.4.1 Knowledge Transfer: from Categorization to Identification

The identification problem has been approached historically with methods based on keypoints
extraction and template matching [Philbin et al., 2008, Collet et al., 2011, Muja et al., 2011].
However, it has been observed that approaches relying on more holistic visual representations
perform typically better in low/mid-resolution settings such as ICUBWORLD [Ciliberto et al.,
2013]. Moreover, recently, representations provided by deep CNNs proved to be effective for
the task of instance retrieval [Sharif Razavian et al., 2014, Babenko et al., 2014]. Following
these recent results, in this Section we will focus on the same transfer learning methods
considered in Sec. 6.2.

We have shown how knowledge acquired on ImageNet transfers to the ICUBWORLD

domain to tackle categorization tasks (Sec. 6.3.1). A natural question is whether the same
strategy would be similarly favorable for object identification. In particular, in Sec. 6.3 we
have observed that semantic variability is critical to learning the classes, whereas adding more
images of a given instance is almost redundant. In object identification, intraclass semantic
variability does not enter the game since each class is a single instance, represented in many
different images. Does, in this case, geometric variability play a crucial role in learning?

We addressed this question by considering an object identification task on ICWT, where
we compared CNN models trained with an increasing number of example images. The setting
is similar to the one used for categorization but for a 50-class object identification problem: we
chose 50 object instances by taking all instances from the book, flower, glass, hairbrush and
hairclip categories, which do not appear in the ILSVRC dataset. We created four training sets
containing respectively 10, 50, 150 and 300 images per object, sampled randomly from the 4

transformation sequences 2D Rot, 3D Rot, Scale and Bkg (see Sec. 5.5). From each training
set, 20% random images were retained for model selection. The images from the Mix sequence
were instead used to test the classification accuracy of the methods considered. As for the
categorization experiment, only the images from a single day were used for this experiment,
and only the left camera was used – apart from when sampling 300 frames per sequence.

Fig. 6.5 reports the average accuracy of models trained on a growing number of example
images. These results are in stark contrast with their counterpart on categorization (Sec. 6.3):
we can clearly notice that adding more training data definitely improves the recognition
capabilities of all networks. This suggests that having access to more views of an instance
allows the learning systems to create a more nuanced model of the object. Apparently, this
richer model does not provide any advantage in categorization settings, but is extremely useful
to recognize the same object in new images.

In line with this observation, we notice also that in this setting the adaptive fine-tuning
strategy significantly outperforms the competitors, suggesting that the representation learned
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Figure 6.6: Regognition accuracy vs # frames - Generalization across days. Drop in
performance observed when testing the models trained for the categorization task of Fig. 6.2 on
a day different from the one where they were trained on. It can be noted that when fine-tuning
on more frames from one day, then the performance drop on another day remarkably increases,
particularly with the adaptive strategy.

for categorization on ImageNet, albeit beneficial to the task, can be improved to adapt to the
object identification setting. These findings confirm and extend recent similar results from the
instance retrieval literature [Babenko et al., 2014, Gordo et al., 2016].

6.5 Generalization Across Days

It is reasonable to imagine that, once trained, a robotic recognition system would be required
to work for a certain period, during which the objects can appear not only under different
viewpoints, but also in different conditions. In this Section we test therefore the robustness
of the considered deep CNNs with respect to variations such as changes of illumination,
background, etc., which are neither semantic nor geometric.

In order to account for this variability, we recall that, in the current release of ICWT, for
each object instance we acquired image sequences in two different days, so that we naturally
have images with light and small background setting changes. For the sake of clarity, in
previous Sections we did not report on tests related to this aspect, which is however relevant.
Indeed, we always considered only one among the two available days in the dataset. However,
when training for visual recognition on a given day and testing on a second one, the possibly
small contextual variation in the scene can cause the system to experience a degradation of
its recognition accuracy. In the experiments reported below, we report this loss for the two
categorization tasks in Sec. 6.3 and the identification task in Sec. 6.4, as the difference between
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Figure 6.7: Recognition accuracy vs # instances - Generalization across days. Drop in
performance observed when testing the models trained for the categorization task of Fig. 6.3
on a day different from the one where they were trained on.

the average classification accuracy observed when testing a model on the same day it was
trained on and on the other available day in ICWT.

Object Categorization

We start considering the models trained for the categorization experiment in Fig. 6.2 and
Fig. 6.3. We simply test these models on a day different from the one used for training (that is,
we took the images of the object instances selected for testing in the original experiment, but
from the second available day). Fig. 6.6 and Fig. 6.7 report the loss in performance observed
respectively for the case where we tested on the relevance of the training set size (see Fig. 6.2)
and of semantic variability (see Fig. 6.3).

In both settings all models exhibit a substantial drop in performance, starting from a
minimum loss of 5% accuracy that achieves even around 20 � 30% for the more adaptive
fine-tuning strategy. This is remarkable since this latter strategy is also the most commonly
adopted when fine-tuning CNNs. Indeed, while it appeared to be the most effective when
tested on the same day, actually it was also the one most overfitting the variability in that day,
being therefore less capable of generalizing to other days. Interestingly, however, when using
less aggressive strategies such as the conservative fine-tuning or RLSC on top of off-the-shelf
features, modern networks such as GoogleNet and ResNet-50 seem more robust.
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Figure 6.8: Identification accuracy vs # frames - Generalization across days. Drop in
performance (difference between test accuracy) observed when testing the models trained for
the identification task reported in Sec. 6.4.1 on the same day of training and on a different one.

Object Identification

Given the dramatic performance loss observed for the adaptive fine-tuning in categorization,
we would expect an even worse accuracy drop affecting the identification task considered in
Sec. 6.4, where, we recall, such strategy was definitely outperforming the other two approaches
on the same day of training (see Fig. 6.5). Surprisingly, however, in Fig. 6.8 we notice that,
albeit experiencing a drop in performance when generalizing to another day, for the adaptive
fine-tuning such loss is small and on par with the other strategies considered in this work.
Indeed, it can be noticed that all methods exhibit a performance drop around ⇠ 5% in accuracy
and generally smaller than for categorization.

The Need to Learn Incrementally

From these findings, it is evident that, when only sequences acquired in a single day/condition
are available for training a recognition system, a non negligible drop must be expected when
testing it in a different situation, even when the underlying visual representations are provided
by powerful deep CNNs trained on million examples and the differences amount to small
light and setting changes. Indeed, these results confirm similar observations that we made
in [Pasquale et al., 2015b, Pasquale et al., 2015a] on ICW28.

It becomes crucial therefore being able to exploit the possibility, intrinsic in the robotic
setting, of using training evidence collected by the robot in more different situations. In this
regard, it would be ideally desirable to update incrementally the learned object models as
new examples arrive, rather than re-training “from scratch” at every time. These observations
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motivated our work on incremental learning presented in Chapter 8.

6.6 Conclusion

In this Chapter we have described the first part of our study on the application of latest deep
learning methods, namely, Convolutional Neural Networks (CNNs), to visual recognition
in robot vision. We challenged these models on tasks specifically designed to represent the
visual experience of a humanoid robot. Our experiments confirm deep learning is a remarkable
step forward, leading to high performances for object categorization and identification, with a
positive trend that corresponds to the new architectures proposed in the literature.

However, we identified a substantial gap still exists between the results that can be ob-
tained in this and the web-scale image classification domain. Our analysis shows that, for
categorization problems, this is firstly due to the scarce semantic variability, characterizing the
robot vision context, because of the intrinsic cost of acquiring visual experience on different
object instances. Yet, adoption of robotic systems in real applications requires to push even
further the performance requirement to approach ⇠ 100%. Therefore, there is still a lot that
needs to be done to reach the required levels of robustness and usability.

To this end, we identified also other potential issues that need to be addressed to bridge this
gap, namely, the presence of challenging viewpoint transformations and “long-term” context
variations like, e.g, those occurring between one day and another. In the following two chapters,
we will consider them, with the ultimate goal of building a visual recognition system that is
robust to viewpoint transformations (Chapter 7) and can be updated incrementally (Chapter 8)
to gain also robustness to other light and context changes.

In Chapter 10 we will complement some of the critical observations pointed out by this
study with a review of possible avenues of improvement and related directions of research.
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Appendices

6.A Off-the-shelf models and Dataset Bias

In Sec. 6.3.1 we observed that a direct application of off-the-shelf CNNs to ICWT leads to
poor performance. In this Section we provide some additional information on the experiment
reported in Fig. 6.1. Notice that the image processing protocol described in the following is
the one that we adopted in all our experiments, unless differently specified.

6.A.1 Image Preprocessing

When applying deep CNNs to our setting, we first evaluated the impact of considering coarser
or finer regions around the object of interest in the images. Indeed, we recall that each image
in ICWT is annotated with the coordinates of the object’s centroid and with a bounding box
provided by segmentation of the depth map (that is the smallest rectangle enclosing the object’s
blob, see Sec. 5.3.2 for details). We took advantage of this localization in order to avoid
considering the full images for classification and we compared different strategies to extract a
crop around the object from the images. Specifically, we tried either to extract a square crop of
fixed size centered on the object’s centroid, or to use the bounding box provided by the depth
map segmentation. In both cases we tried two sizes: using a radius of 256 or 384 for the square
crop, and leaving a margin of 30 or 60 pixels around the depth’s bounding box.

Then, since deep CNNs require a fixed sized input (227⇥ 227 for CaffeNet and 224⇥ 224

for the other models), different preprocessing strategies can be applied in order to feed an
image of arbitrary size to a network. We reproduced the operations that are specified on the
reference page of each particular CAFFE model. For convenience we report them in Tab. 6.A.1.
These, in general, consist in the subtraction of the mean image (or the mean pixel value) of
the dataset on which the model has been trained on, and in the extraction of a grid of crops
(eventually at multiple scales as for VGG-16) of the required size. Usually, the final prediction
is computed by aggregating the predictions of more crops to gain robustness. Since in our case
the image is in fact already a crop around the object, we compared the advantage of this grid
approach versus just considering the central crop (and a single scale in the case of VGG-16).
Fig. 6.A.1 reports therefore the same experiment of Fig. 6.1, but testing off-the-shelf CNNs on
ICWT with the different described cropping strategies. It can be noticed that performing a
finer localization of the object in the image (Blue and Green) provides better performance for
all architectures. Also, considering more than the central crop provides a little advantage (for
VGG-16 this is even detrimental). This is reasonable, because we already localized the object
which is assumed to be centered in the considered image region.
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Table 6.A.1: Preprocessing operations executed on images before feeding the networks.

Model Mean Scaling Crop
Subtraction Extraction

CaffeNet image mean image size 2⇥ 2 grid + center
ResNet-50 (256⇥ 256) mirrored

GoogLeNet pixel 256⇥ 256

2⇥ 2 grid + center
mirrored

VGG-16 pixel
shorter side to 5⇥ 5 grid
256, 384, 512 at each scale

mirrored

We therefore decided to apply CNNs by extracting a square region of 256 ⇥ 256 from
ICWT images, and considering only the central crop (Light Green in Fig. 6.A.1). In this way
we avoided scaling the image (for VGG-16 we considered the smallest scale). The performance
reported in Fig. 6.1 (Dark Blue) corresponds to this preprocessing, which is also used in all
experiments. We care to note that we decided to extract fixed-size regions instead of relying
on the bounding box of the depth map, since we aimed at evaluating, in the following of our
analysis, also invariance properties to geometric transformations (as, e.g, scaling). We finally
note that, when applying the networks to ImageNet, we used instead the multi-crop strategy
suggested for each of the architectures (see Tab. 6.A.1).

6.A.2 1000-class Categorization Results

In Fig. 6.1 we reported the accuracy of off-the-shelf CNNs on ICWT and ImageNet. Since
the task was reduced to a 11-class categorization setting, we considered the prediction of the
networks limited to the 11 corresponding labels rather than the full vector of 1000 scores
normally produced by a CNN trained on the ILSVRC. For completeness, in Fig. 6.A.2 we
report the resulting accuracy of the same CNNs but taking as prediction the class achieving
maximum score over all available 1000 – even if 889 classes were actually not represented
neither in the ICWT nor in the reduced ImageNet. As can be noticed, performance drops even
below chance on ICWT (the “real” chance is now 1/1000 rather than 1/11).

6.A.3 Viewpoint Biases

In this Section we follow-up the analysis reported in Sec. 6.3.1, discussing potential biases in
ImageNet, which could prevent off-the-shelf models from generalizing well, when tested on
ICUBWORLD without applying knowledge transfer techniques. To this end, we report a series
of excerpts showing the frame-by-frame predictions of some of the considered CNNs when
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Figure 6.A.1: Average classification accuracy of off-the-shelf networks tested on ICWT
segmenting the object according to different strategies.

tested on ICWT sequences. This analysis is qualitative, but allows to better understand what
frames of ICWT are actually “harder” to recognize for the models and compare them with
prototypical examples in ImageNet.

In particular, we consider GoogLeNet (similar observations were made for the other
architectures) and in Fig. 6.A.3- 6.A.4 we report its frame-by-frame predictions on a subset
of the test set considered in Fig. 6.1 (specifically, the 5 best recognized categories and two
specific visual transformations: Scale and 2D Rotation). We show predictions separately
for each category and, in each plot, we represent the sequences of the 10 object instances
of that category as rows of a matrix (the temporal dimension, or frame index, is reported
in the horizontal axis). In each row, the frame-by-frame predictions over the sequence are
represented as vertical bars: White if the prediction is correct, Red if it is wrong (and Black

if the sequence is terminated). As in Fig. 6.1, predictions are computed as the maximum score
among those of the 11 classes present in test set.

Fig. 6.A.3 represents sequences containing the Scale transformation. It can be noticed that,
since during the acquisition of this sequence the operator was moving the object back and forth
in front of the robot, starting close and slowly moving backward (eventually re-approaching the
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Figure 6.A.2: Average classification accuracy of off-the-shelf networks (trained on ILSVRC)
tested on ICWT (Dark Blue) or on ImageNet itself (Gray). The test sets for the two datasets
are restricted to the 11 shared categories (see Sec. 5.5, Fig. 5.8).

robot in some sequences), the CNN manages to recognize the object only when this appears at a
relatively large scale (white bars mostly concentrated in the first half of rows). This qualitative
observation confirms recent studies [Rodner et al., 2013, Herranz et al., 2016], highlighting the
problem of the scale bias in ImageNet, and generally in all “object-centric” image datasets.
Indeed, often, as in this case, the scale bias is a main barrier towards the direct application of
off-the-shelf systems in real-world problems, where objects can appear at a smaller scale (like
in the second part of our sequences). Note that, in any case, the image is always pre-cropped
and we do not feed the full image to the classification network. In Fig. 5.5 it is possible to
observe an example of images in ICWT taken at different scales.

In Fig. 6.A.4 we report the same for sequences containing 2D Rotation. In this case,
the operator was rotating the object (always maintaining the same face visible to the robot)
at a constant speed. Indeed, it can be noticed that on many sequences there are periodic
time intervals when the CNN does (or does not) recognize the object, corresponding to
configurations in which that category appears more or less frequently in the ImageNet dataset.
For example, we observed that soap dispensers and mugs in ImageNet are mostly placed on
tables, and consequently are never recognized when they are, e.g. upside-down.
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Figure 6.A.3: Frame-by-frame predictions of GoogLeNet on image sequences containing the
Scale transformation, reported for 5 categories in different plots. The sequences of the 10

object instances belonging to each category are represented as matrix rows (the temporal
dimension, or frame index, is reported in the horizontal axis)). In each row, the frame-by-frame
predictions over the sequence are represented as vertical bars: White if the prediction is
correct, Red if it is wrong (and Black if the sequence is terminated).
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Figure 6.A.4: Same as Fig. 6.A.3, but on image sequences containing 2D Rotation.

6.B Model (Pre) Selection

In this Section we provide details regarding the parameter selection of the learning methods
adopted in this work, which were described in Sec. 6.2.

6.B.1 Feature Extraction and RLSC

Here we specify the design choices that we made to implement each of the steps described in
Sec. 6.2.2.
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Image Preprocessing. When feeding images to the networks in order to extract their repre-
sentation, we applied the preprocessing pipeline that was explained and justified in Sec. 6.A.1.

Feature Extraction. For each architecture, the layers considered as output to extract image
representations were specified in Tab. 6.1. For CaffeNet and VGG-16 we indicated either
fc6 or fc7 layers, since these networks have more than one FC layer that can provide vector
representations of the full image, and we used one or the other depending on the setting. Indeed,
it has been observed (see Sec. 4.3.1) that the best output layer choice depends on the distance
between the original and the target domain, with, generally, higher layers being preferable
for more similar domains. Indeed, we will see in the following that our results confirm this
empirical observation also on ICWT.

Classifier. We resorted to [Rudi et al., 2015] for the Nystrom subsampling approach that we
used to implement the Gaussian Kernel RLSC. This algorithm involves determining some
hyper-parameters, the most critical being the number m of training examples to subsample to
approximate the kernel matrix.

In order to evaluate the best output layer for CaffeNet and VGG-16, and also to assign a
reasonable value to m, we considered one small and one large categorization tasks on iCWT,
representative of the smallest and largest task that we expected to run in our analyses, and
compared the RLCS accuracy on them when varying these parameters. We fixed a 15-class
categorization problem, training on 7 object instances per category and validating on 2. For
each instance, we considered the sequences of all 5 visual transformations and one camera.
We considered only one day, among the two available in iCWT, for training, and tested on
the instance left out from the training set, in both days. For the large task, we considered all
frames per sequence, leading to ⇠ 6300 training examples per class, whereas for the small task
we subsampled ⇠ 4 frames per sequence, leading to ⇠ 170 examples per class (similarly to
what we did in the first experiment of Sec. 6.3.

Fig. 6.B.2 and 6.B.1 reports the average accuracy respectively for the small and large
experiment. We performed the two experiments using the representations from the four
considered architectures (reported separately), using either fc6 layer (Gray) or fc7 (Pink) for
CaffeNet and VGG-16. In each case, we increased logarithmically the value of m (horizontal
axis) starting from

p
N , N being the size of the training set. For the small experiment we

stopped at N , whereas for the large experiment we stopped at values where we observed very
little performance improvements with respect to much longer training times. The performance
on the same day on which we trained is reported in Light (Gray/Pink), whereas the performance
on the other day is reported in Dark colors.

We observed that fc6 features consistently performed better than fc7, confirming the
observations above regarding the fact that lower layers can be better when there is a certain
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Figure 6.B.1: Classification accuracy reported by training RLSC over representations
extracted by the four considered architectures. A “large” categorization experiment is
performed (with ⇠ N = 95000 training examples) and m is varied between

p
N and 15000

(horizontal axis). Performance on the same training day (Light colors) and on another one
(Dark colors) is reported.

distance between the original training set (ILSVRC) and the target one (ICWT). Indeed, in
Chapter 7 we will extract features from models tuned on ICWT finding that in that case
instead fc7 performs better than fc6. We therefore decided to use the fc6 layer when extracting
representations from off-the-shelf CaffeNet/VGG-16 on images of iCWT. We also observed
that relatively small values of m could provide good accuracies and therefore we fixed m =

min(15000, N) in all experiments.

6.B.2 Fine-tuning

In this Section we provide details on how we performed the fine-tuning procedure and on the
choice of the two strategies, adaptive and conservative, reported in Tab. 6.2.

General Protocol

The image preprocessing pipeline executed in this case was similar to the one reported in
Sec. 6.A.1: once a square 256 ⇥ 256 region around the object’s centroid was extracted, we
either subtracted the mean image (CaffeNet) or pixel (GoogLeNet) of the training set. When
training, the rest of processing was performed within CAFFE, specifically extracting a random
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Figure 6.B.2: Classification accuracy reported by training RLSC over representations
extracted by the four considered architectures. Similar to Fig. 6.B.1 but on a “small”
categorization experiment (⇠ N = 2500 training examples), varying m between

p
N and N .

227 ⇥ 227 crop (randomly mirrored horizontally) before passing it to the network. At test
phase, the prediction over one image was taken by extracting the central crop instead of a
random one (see Sec. 6.A.1).

The training set was shuffled before starting the fine-tuning process since we observed that
similarity of images within a batch negatively affected convergence of the backpropagation
algorithm (see also Sec. 4.1.2). When fine-tuning a network, we evaluated the model’s
performance on a validation set every epoch and we finally chose the epoch achieving highest
validation accuracy.

We left the batch size to the values specified in CAFFE (and reported in Tab. 6.2).

Since we needed to perform a high number of fine-tuning experiments, in general we tried
to keep the number of iterations – or, equivalently, of epochs – low, compromising between
the increase in the training time and the performance improvement provided. The number of
epochs was hence fixed observing that, in general, the performance was increasing slowly after
⇠ 6� 8 epochs for all models but for the conservative fine-tuning of CaffeNet, that involves
the learning of all parameters of the 3 FC layers and takes more time to converge. In this case,
we fixed the number of epochs to ⇠ 36.

It is possible that tuning more accurately the number of epochs for the different experiments,
and in particular letting the learning to proceed for longer times, slight improvements may be
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obtained. However, a similar reasoning also applies to the Nystrom RLSC, where we set m to
a relatively small value, compromising with the training times. In general, one criterium we
followed was to achieve comparable training times between fine-tuning and feature extraction
with RLSC. Indeed, we were interested in comparing the application of the two methods
to a robotic domain, producing an overall performance assessment of the trends rather than
focusing on optimizing specific tasks.

Hyper parameters Choice

In this Section we report on the empirical analysis that we performed in order to understand
the effect and the relative importance of the hyper parameters involved in fine-tuning deep
architectures as CaffeNet or GoogLeNet in our scenario.

While model selection is per se an open problem when dealing with deep networks, in our
setting this issue is even more complicated by the fact that we do not have a fixed reference task
on which to optimize the training (as e.g., can be the ILSVRC), but we instead plan to span
over wide range of tasks, comprising small or large training sets. Indeed, the study presented
in this work aims at comparing models trained on different categories, objects, transformations,
and so forth.

We considered therefore the same two experiments that we used to perform parameter
selection for the RLSC approach (the “small” and “large” categorization tasks described in
Sec. 6.B.1) and we fine-tuned CaffeNet and GoogLeNet on them by varying the values of
multiple hyper parameters. In the following, we report this analysis separately for the two
architectures.

CaffeNet. We considered the parameters appearing in Tab. 6.2 and tried different combination
of values for them, according to the considerations exposed in the following.

When fine-tuning CNNs on ICWT from off-the-shelf models, we followed the criterium
that either layers are initialized with off-the-shelf weights, and their learning rates are all equal
to the so called “base” learning rate of the network, or we learn them from scratch, setting
therefore their learning rates to higher values. For CaffeNet, we experimented learning from
scratch either only the last fully-connected (FC) layer fc8, or also fc7 and fc6 (we tried to
learn from scratch also convolution (C) layers but with no success). We started setting the
learning rate of fc8 to 10

�2; then, each time we learned from scratch one FC layer more, as
an empirical rule we decreased the learning rates of the FC layers by a factor of 10: therefore
we tried learning from scratch fc8 and fc7 with learning rate 10

�3, or fc8,fc7 and fc6 with
learning rate 10

�4. Independently, for each of the three choices we swept the base learning
rate from 0 to a maximum of 10�3 – we observed that higher base learning rates generally
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prevented the training from converging. Note that all these values are in fact the initial learning
rates, since then their value is usually decreased during SGD, according to some decay policy
(see Sec. 2.2)

In the following we list, for each fine-tuning parameter, the values that we tried. We
considered all possible combinations of values across parameters. For the parameters that are
missing here, we kept their value as specified in Caffe reference models.

Base LR: starting learning rate of the layers that are initialized with the parameters of the
off-the-shelf model. We tried 10

�3, 5 ⇤ 10�4, 10�4, 5 ⇤ 10�5, 10�5, 10�6, 0.
Learned FC Layers: which fully-connected (FC) layers are learned from scratch and
their specific starting LR. As anticipated, we tried to learn (i) only fc8 with starting LR set
to 10

�2, or (ii) including also fc7 and (iii) finally also fc6. As an empirical rule, every
time we included one more layer to learn from scratch, we decreased the starting LR of
these layers of a factor of 10 (hence 10

�3 in (ii) and 10

�4 in (iii)).
Dropout %: in FC layers. We tried 50% (default CAFFE value) or 65%.
Solver: algorithm used for the SGD. We used the standard SGD solver [Bottou, 2012] in
CAFFE.
LR Decay Policy: decay of the learning rates. We tried either polynomial decay, where
the learning rate at iteration t is given by ⌘t = base_lr(1� t

T )
p with p = 0.5 or p = �3,

T being the total number of iterations, or step decay, decreasing the LR of a factor of 10
every T

3 iterations.

We observed that the dropout percentage had a small influence and left it to the default
value. We also observed that the polynomial decay with smaller slope was consistently better
(of ⇠ 5 � 10% accuracy). The most critical parameters were instead the base LR and the
numbers of FC layers learned from scratch. In Fig. 6.B.3 we report as an example the accuracy
obtained respectively when learning only fc8 (Left) or fc6, fc7 and fc8 (Right). In each case,
we decreased the base LR of all other layers from 10

�3 to 0 (horizontal axis). Performance
is reported, as in Fig. 6.B.2 and 6.B.1, for both the same day of training (Light Gray) and
a different one (Dark Gray). While we tried all values of base learning rate on the “small”
experiment (Continuous Line), for the “large” experiment we chose one small, medium and
large value (Dots).

For interpreting the results, it can be useful to recall that the strategy that learns from
scratch the three FC layers (Right) has many more free parameters than the one learning
only the last FC layer (Left). Indeed, we notice that this latter strategy is more robust to the
small-scale scenario, for any base LR (Continuos Line in the range 40-60% to the Left and
20-40% to the Right).

We also observe that, when we add frames to the training set, both strategies benefit from
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Figure 6.B.3: Classification accuracy provided by fine-tuning CaffeNet according to dif-
ferent strategies: either learning from scratch only fc8 (Left) or fc6, fc7 and fc8 (Right).
Performance is reported for both the same day of training (Light Gray) and a different one
(Dark Gray). We tried multiple values of base LR on a “small” training set (Continuous Line),
and only one small, medium and large value (Dots) on a “large” one.

learning slowly (i.e., when we pass from the Continuos Line to the corresponding Dot we gain
more with smaller base LRs). Indeed, in the large-scale experiment learning fc6-7-8 with
small base LR achieves the best performance. On the contrary, learning only fc8 with large
base LR almost does not benefit from seeing more frames and even overfits the day of training.

Therefore, since in our analysis we aimed at varying the size of the training set across a
wide range, we chose two representative strategies providing best performance respectively in
the small and large-scale experiment: learning fc6-7-8 with small (actually 0) base LR, that
we call the conservative strategy, to account for our larger-scale settings, and learning only fc8

with large base LR, that we call the adaptive strategy, to account for smaller-scale settings.

GoogLeNet. We performed for GoogLeNet a similar analysis to the one reported for CaffeNet.

We recall that the considered GoogLeNet architecture is composed of “main” branch,
ending with one FC layer (called loss3/classifier), and two identical “auxiliary” branches,
ending with two FC layers (called loss1(2)/fc and loss1(2)/classifier). We refer to [Szegedy
et al., 2015] for a detailed description of the model. Considering this structure, we then
explored the following parameters:

Base LR: varied as for CaffeNet.
Learned FC Layers: we always learned loss3/classifier from scratch with starting LR
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Figure 6.B.4: Classification accuracy provided by fine-tuning GoogLeNet according to
different strategies: either using the Adam solver (Left) or SGD (Right). The rest of the figure
is similar to Fig. 6.B.3

equal to 10

�2; regarding the auxiliary branches, we tried (i) to cut them out, (ii) to learn also
loss1(2)/classifier from scratch with starting LR equal to 10

�2, or, finally, (iii) to learn from
scratch also loss1(2)/fc, setting the starting LR of these layers and of loss1(2)/classifier to
10

�3 (following the same heuristic as for CaffeNet of decreasing the LR of a factor of 10
when adding one more FC layer to be learned from scratch).
Dropout %: we tried either default CAFFE values (40% for loss3/classifier and 70% for
loss1(2)/fc) or a higher percentage: 60% for loss3/classifier and 80% for loss1(2)/fc.
Solver: we tried either SGD or Adam [Kingma and Ba, 2015] solvers in CAFFE.
LR Decay Policy: when using SGD, we used polynomial decay with p = 0.5 or p = �3;
when using Adam, we maintained the learning rate constant.

As for CaffeNet, we tried all combinations and left the parameters not mentioned to default
values in CAFFE.

We first observed that, differently from CaffeNet, overall for this architecture the impact of
learning the FC layers from scratch or not learning them was very small, with the three tested
strategies behaving very similarly. We chose the last one (iii), that was slightly better than the
others. We also observed a small benefit from using higher dropout percentages.

A slightly more critical aspect was instead the choice of the solver. To this end, in Fig. 6.B.4
we report the accuracy obtained respectively when using the Adam solver (Left) or SGD (Right).
In the latter case the polynomial decay with smaller slope is reported, since we observed again
that it was consistently better. Performance is reported, as in Fig. 6.B.3, for both the same day
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of training (Light Gray) and a different one (Dark Gray). We varied again the base LR from
10

�3 to 0 (horizontal axis), trying all values on the “small” experiment (Continuous Line) and
one small, medium and large value for the “large” experiment (Dots).

It can be observed that, while the SGD solver is more robust to different choices of base
LR, Adam provides slightly better accuracies for mid-range values of base LR, both for the
small and the large experiment. We therefore opted for this latter solver. Note that we tried the
Adam solver also for CaffeNet, but we observed that it was not converging for that architecture
and the tuning protocols considered in the analysis.

Similar observations as for the CaffeNet architecture led us to conclude that learning slowly
(with a smaller base LR) can be preferable when we add more frames to the training set, since
the model is less prone to overfit the training condition (i.e. with base LR equal to 0 we gain
performance on both days when passing from the Continuos Line to the corresponding Dot).
Larger base LR can be preferable instead when the training set is smaller. As reported in
Tab. 6.2 therefore, also for GoogLeNet we identified an adaptive strategy with base LR equal
to 0 and a conservative strategy with base LR equal to 10

�4.

6.C More Experiments on Categorization

In this Section we complement the experiments discussed in Sec. 6.3. These results are reported
to show that the behavior observed for the specific choices considered in the paper (e.g. number
of object classes considered for the tasks) holds also in other settings.

For the sake of completeness, we specify that in Sec. 6.3 we considered the 15-class
categorization task comprising the following categories: cellphone, mouse, coffee mug,
pencil case, perfume, remote, ring binder, soap dispenser, sunglasses, flower, wallet,
glass, hairbrush, hair clip, book.

What do we gain by adding more frames?

Fig. 6.C.1 reports the results of the same experiment shown in Fig. 6.2, but performed including
only 3 object instances per category in the training sets.

These results further confirm that, in this setting, adding frames without increasing semantic
variability cannot be used as a viable strategy to improve categorization accuracy, which
remains definitely lower than the performance achieved using 7 example instances (Fig. 6.2).
Moreover, we observe that, when having too few instances with respect to the number of images
per instance (as it happens in this experiment when using, e.g., 300 frames per sequence),
fine-tuning deep CNNs even worsens their performance on categorization with respect to
keeping the original representation learned on ImageNet. This confirms our insights exposed
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Figure 6.C.1: Recognition accuracy vs # frames (number of object views available during
training). Same experiment as Fig. 6.2 but executed by training only on 3 example instances
per category.
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Figure 6.C.2: Recognition accuracy vs # instances (number of object instances available
during training). Same experiment as Fig. 6.3 executed for a 10-class categorization problem.

in Sec. 6.3 regarding the fact that the most suitable dataset format for categorization is indeed
one maximizing semantic variability, as in image retrieval, and that the visual data typically
collectable in robot vision settings limits performance of deep CNNs.

What do we gain by adding more instances?

Fig. 6.C.2 and 6.C.3 report the results of an experiment analogous to the one shown in
Fig. 6.3, but for respectively 10 and 5 object categories rather than 15. As can be noticed, the
observations reported in Sec. 6.3 apply also here: the accuracy increases remarkably as more
example instances per category are made available (without saturating), supporting the claim
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Figure 6.C.3: Recognition accuracy vs # instances (number of object instances available
during training). Same experiment as Fig. 6.3 executed for a 5-class categorization problem.

that semantic variability is indeed critical for categorization even in settings that involve very
few categories.

6.D Comparison with Washington RGB-D

In this Section we apply the methods that we investigated in this work on ICWT to the Wash-
ington RGB-D benchmark [Lai et al., 2011]. Since ICWT is a new data collection, the goal of
this Section is to provide a performance reference for our approaches, with respect to other
works in the literature that recently improved the state-of-the-art on this benchmark.

Washington RGB-D. Washington RGB-D (in the following WRGB-D for brevity) is a
turntable dataset comprising 300 objects divided into 51 categories. It contains a variable
number of object instances per category (from 3 to 14), ⇠ 6 on average.

For each object instance, three sequences were acquired by an RGB-D camera mounted
at ⇠ 1 meter from the object and different elevation angles relative to the horizontal table
(30, 45, 60�). In each sequence, the camera did one revolution around the table at a constant
speed, recording⇠ 250 frames at 20Hz, for a total of⇠ 250k RGB and depth frames (640⇥480
resolution) in the dataset.

The dataset provides an object segmentation mask based on depth and color, that the
authors used to release a version with cropped RGB-D frames that tightly include the object.
In our experiments we used this version, as is done in the papers we will compare our results
to. Also, usually for both categorization and identification tasks only every fifth frame of the
sequences is considered, and we followed this practice, using the same 41877-sized dataset
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Table 6.D.1: Categorization results on Washington RGB-D, comparison with state-of-
the-art: RLSC on top of extracted features from the 4 considered architectures is compared
with results in [Schwarz et al., 2015]. The horizontal line separates the use of CaffeNet from
other architectures.

Method Accuracy (%)
Schwarz et al. 2015 83.1± 2.0

CaffeNet RLSC 83.1± 2.8

GoogLeNet RLSC 84.6± 2.8
VGG-16 RLSC 87.5± 2.3

ResNet-50 RLSC 89.4 ± 3.1

version employed in the literature.

6.D.1 Object Categorization Benchmark

The categorization task usually considered on this dataset was proposed in [Lai et al., 2011]
and consists in discriminating between the 51 classes in the dataset, by leaving out one instance
per category for testing and using the remaining ones for training. The authors performed 10

trials, each time randomly sampling the test instances and, since they released the lists of the
10 splits, usually in the literature the same splits are used and performance is averaged over
them. We followed this practice. Each split consists of ⇠ 35k training and 7k test images.

We evaluated on this task the 4 CNN architectures considered in this work, with the
related transfer learning methods. We used the settings described respectively in Sec. 6.2.2
and 6.2.3 for feature extraction followed by RLSC and fine-tuning. We used a random 20%

of the training set for validation. Table 6.D.1 compares our results obtained with RLSC with
the performance reported in [Schwarz et al., 2015], while Table 6.D.2 compares our results
obtained with fine-tuning with the performance reported in [Eitel et al., 2015]. All results refer
to the use of only RGB frames, without the depth information.

Table 6.D.2: Categorization results on Washington RGB-D, comparison with state-of-
the-art: adaptive and conservative fine-tuning of CaffeNet and GoogLeNet is compared with
results in [Eitel et al., 2015]. The horizontal line separates the use of CaffeNet from other
architectures.

Method Accuracy (%)
Eitel et al. 2015 84.1 ± 2.7

CaffeNet FT adapt 81.9± 2.7
CaffeNet FT cons 83.6± 2.4

GoogLeNet FT adapt 82.4± 2.8
GoogLeNet FT cons 83.9± 2.3
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In both papers the authors use only CaffeNet. Specifically, in [Schwarz et al., 2015] they
preprocess the images by using the depth segmentation mask to remove the background around
the object; then they extract features from fc7 and fc8 and give their concatenation to linear
SVMs. With respect to this work, we avoid complex preprocessing steps (see Appendix 6.A.1),
we extract earlier features, and employ the Nystrom subsampling approach at the classifier
level, which allows to save computation and use a Gaussian Kernel instead of a linear one.
Overall, as can be seen in Table 6.D.1, with CaffeNet we achieve similar classification accuracy,
83.1% and, in line with the literature and our results on ICWT, more recent networks gradually
improve performance on this benchmark.

In [Eitel et al., 2015] the authors fine-tune CaffeNet: they apply a standard image pre-
processing, similar to ours, but isotropically rescaling the images and tiling the borders with
artificial context. Their fine-tuning protocol is rather “aggressive”, with a remarkably high
initial learning rate of 0.01 for all layers, reduced by a factor of 10 every T

3 epochs and running
the training for T ⇠ 100 epochs (with a batch size of 128). Such a long training would take
⇠ 8 hours on an NVIDIA Tesla k40 GPU. To this regard, we note that, since we observed
that fine-tuning for longer times in our experiments generally provided smaller improvements,
in our analyses we considered relatively fewer epochs, in order to be able to perform more
experiments in reasonable time. Indeed, even if we do not achieve 84.1%, considering also
the variance associated to such measurements, reporting 83.6% in just ⇠ 30 minutes (the
time required to complete our training on a Tesla k40 GPU) can be considered a good result.
It can be noticed that GoogLeNet fine-tuned with our strategies on this benchmark does not
report particularly good results. This may be due to the fact that the specified strategies are the
result of a model selection (see Sec. 6.B.2) that led us to choose them as the ones reporting
best results on representative recognition tasks on ICWT. Therefore, such strategies may not
be optimal for WRGB-D. To this end, we tried varying some hyper parameter (e.g., scaling
learning rates to higher/lower values, or changing the CAFFE solver, and managed to improve
performance on WRGB-D by some percentage point (we do not report these numbers since
are out of the scope of the work).

6.D.2 Object Identification Benchmark

Like categorization, also the identification task usually considered on this dataset is the one
proposed in [Lai et al., 2011] and consists in discriminating between the 300 objects in the
dataset. For each object, the two sequences recorded at 30� and 60

� elevation degrees are
used for training, and the one recorded at 45� for testing. Globally, therefore, the training set
comprises 28009 frames and the test set 13868 frames.

We evaluated again the 4 CNN architectures, with the transfer learning methods described
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Table 6.D.3: Identification results on Washington RGB-D, comparison with state-of-the-
art: RLSC on top of extracted features from the 4 considered architectures is compared with
results in [Schwarz et al., 2015]. The horizontal line separates the use of CaffeNet from other
architectures.

Method Accuracy (%)
Schwarz et al. 2015 92.0

CaffeNet RLSC 94.0

GoogLeNet RLSC 94.3
VGG-16 RLSC 94.5

ResNet-50 RLSC 96.0

Table 6.D.4: Identification results on Washington RGB-D, comparison with state-of-the-
art: adaptive and conservative fine-tuning of CaffeNet and GoogLeNet is compared with
results in [Held et al., 2016]. The horizontal line separates the use of CaffeNet from other
architectures.

Method Accuracy (%)
Held et al. 2016 93.3

CaffeNet FT adapt 94.0
CaffeNet FT cons 92.7

GoogLeNet FT adapt 93.9
GoogLeNet FT cons 92.5

in Sec. 6.2.2 and 6.2.3. We used again a random 20% of the training set for validation.
Table 6.D.3 compares our RLSC results with the performance reported in [Schwarz et al.,
2015], while Table 6.D.4 compares our fine-tuning results with the performance reported
in [Held et al., 2016]. Again, all methods use only RGB frames, without the depth information,
and the two referred papers use CaffeNet.

From Table 6.D.3 it can be noticed that our feature extraction pipeline provides better
results than [Schwarz et al., 2015] for this task (94% with respect to 92%). Apart from the
differences in the image preprocessing and in the layers at which they extract the network
output, we note that, in [Schwarz et al., 2015], the authors adopt, for the identification task, a
hierarchical approach, where, first, the classifiers discriminate between categories, and then
between object instances within categories.

In [Held et al., 2016] the authors address the problem of one-shot object identification on
WRGB-D by fine-tuning deep CNNs in order to improve their viewpoint invariance. We will
enter in the merit of their work in Chapter 7, when we will compare their approach with our
work on invariance. However, here we compare our methods with the results that they report
on the standard identification task.
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They fine-tune CaffeNet by fixing convolution layers to the original values of the off-the-
shelf model; then, they set the initial learning rate to 10

�4 for fc6 and fc7, which they initialize
also to off-the-shelf values; finally, the learn from scratch, with an initial learning rate of 10�3,
the last fc8 layer. Compared to our strategies, their protocol is similar to our conservative
approach, in that they fix convolution layers; however, when fine-tuning, we followed the
criterium that either layers are initialized with off-the-shelf weights, and their learning rates
are all equal to the base learning rate of the network, or we learn them from scratch, setting
their learning rates to higher values. Therefore, in our conservative approach we learned
from scratch all three convolution layers with initial learning rate 10

�4 (see Appendix 6.B.2
for more detailed explanation of our strategies). Another important difference is that they
fine-tune for 100k iterations (with a batch size set to 256 and 28k training points, these are 900
epochs), that is considerably higher than our fine-tuning times (of the order of ⇠ 36 epochs at
maximum). Overall, we achieve higher performance with the adaptive fine-tuning, confirming
our results observed in Sec. 6.4 that, when changing task, it is beneficial to change more deeply
the network layers.



Chapter 7

Object Identification from Few
Examples by Improving the
Invariance of Deep CNNs

In this Chapter we will deepen the analysis presented in Chapter 6, to better quantify to which
extent the recognition performance of the considered deep Convolutional Neural Networks
(CNNs) is impacted by the different visual nuisances contained in the setting of ICUBWORLD

TRANSFORMATIONS (ICWT). We will exploit the peculiar structure of ICWT that, as we
described in Chapter 5, contains image sequences representing objects while undergoing
isolated visual transformations, to evaluate – and improve – the invariance properties of
deep CNNs with respect to specific viewpoint and light changes typically affecting objects’
appearance in real world situations.

The content of this Chapter builds on the observations previously published in [Pasquale
et al., 2016a] and further extends the results reported therein.

7.1 Introduction

Assessing the invariance of recognition systems to visual nuisances is particularly relevant in
robotics, because the real world is an infinite source of variabilities and a robot is required to
learn the appearance of objects just from a limited set of example images, while being able
to reliably recognize them in many other different configurations. In such setting, it becomes
critical to rely on good visual representations that map images of objects into discriminative
and robust representations.

While in Sec. 4.2.2 we overviewed recent work aiming to get insights on the invariance

133
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properties of deep CNNs pre-trained on ImageNet, in our analysis in previous Chapter we
verified that off-the-shelf CNNs usually must be “adapted” to the target domain in order to
provide satisfactory performance. Representations extracted from off-the-shelf models can be
fed to classifiers, or such models can be fine-tuned on the new domain. In this latter case, we
saw that, on the one hand, it is possible to perform a light tuning, by updating only the last
few layers of the network; on the other hand, a more aggressive tuning can be performed to
change the layers more “deeply” based on the new data. We considered all these strategies
and observed that it was not evident when one should be preferable over others. To this end,
a first contribution of this work is to investigate how the different approaches to fine-tuning
can affect the invariance properties of off-the-shelf models, specifically related to the kind of
transformations observed during the tuning.

By building on these observations, we will identify which strategies disrupt and which
others instead can improve the invariance of off-the-shelf deep networks, and devise an effective
pipeline achieving remarkable performance on object identification tasks with just few example
images. We assess our results on our ICWT benchmark and also on the standard Washington
RGB-D dataset [Lai et al., 2011]. As a by product of this work, such pipeline has also been
deployed on the iCub and R1 robots, resulting, as we will see in Chapter 9, in an application to
teach robots to recognize new objects on the fly, from just few example images, in challenging
real world scenarios.

We started investigating ideas related to invariance of deep CNNs in [Pasquale et al.,
2016a], where we considered a subset of the categories and transformations present in ICWT.
We then expanded the study in [Pasquale et al., 2017] and, in this Chapter, we provide a unified
version of the work.

The rest of the Chapter is organized as follows: Sec. 7.1.1 reviews the approach adopted in
our study in comparison to recent related work; Sec. 7.2 reports on a series of observations
that led us to identify the most effective strategies to improve the invariance of off-the-shelf
networks; finally, in Sec. 7.3 we build on these observations to devise an object identification
pipeline that we evaluate on the ICWT dataset, and that we also validate on the Washington
RGB-D benchmark (Sec. 7.4). Sec. 7.5 concludes the work, discussing potentials and limits of
the proposed approach.

7.1.1 Methods and Related Work

In this Section we describe the approach that we take for the presented study, by comparing
with recent related work.

The first problem that is encountered when aiming to investigate invariance properties of
recognition methods to specific visual nuisances is getting suitable data. Indeed, we discussed
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in Sec. 4.2.2 that, due to the lack of benchmarks representing objects while undergoing multiple,
isolated, variability factors, most works (see, e.g., recently, [Aubry and Russell, 2015, Peng
et al., 2015]) approach the problem by relying on synthetic imagery. This provides perfect
control and flexibility over the kind of transformations applied to the images. However, as we
explained previously, we are also interested in obtaining reproducible results that we can expect
to hold in real world conditions. Indeed, these and other motivations (see Sec. 5.5) led us to the
acquisition of ICWT. In this Chapter, we specifically exploit the tagged sequences provided by
ICWT for our investigation of invariance. To our knowledge, among the (few) studies using
real sequences (see, e.g., [LeCun et al., 2004, Goodfellow et al., 2009, Bakry et al., 2015, Borji
et al., 2016]), our analysis is carried on over a notable wide range of transformations (scaling,
in- and out-of-plane rotations, background and light changes).

We consider, like in Chapter 6, object categorization and identification tasks on ICWT.
Specifically, we refer to the same experimental settings (see Sec. 6.3 and 6.4) and investigate
the effect of specific visual transformations on the observed performance of the considered
models. Following previous work (see Sec. 4.2.2), we measure the representation invariance of
the considered CNNs by systematically training and testing models on different transformations
contained in ICWT. Indeed, since our ultimate goal is devising effective recognition systems
for real robotic platforms, our primary concern is evaluating and improving the performance
of such systems in different training/testing conditions. Specifically, we will measure the
performance of Regularized Least Square Classifiers (RLSC) trained on the representations
extracted from the intermediate layers of CNNs. We refer to Sec. 6.2.2 for details, since in this
Chapter we apply the same procedure.

After an initial assessment of the invariance properties of models trained on ImageNet
(Sec. 7.2), we investigate how fine-tuning can affect such properties (Sec. 7.3). To this end,
we apply the conservative and adaptive fine-tuning protocols described in Sec. 6.2.3, and
specifically focus on the effect of this latter one (that modifies all layers, comprising convolution
ones) to the internal network representation. These experiments will allow us to understand the
most effective strategies to fine-tune off-the-shelf networks in order to improve the invariance
of their internal representations to the viewpoint transformations present in ICWT. Indeed, by
exploiting improved representations, we will finally be able to devise an effective recognition
pipeline achieving remarkable performance on object identification tasks with just few example
images.

Our results are in agreement with recent work in the instance retrieval literature [Babenko
et al., 2014, Gordo et al., 2016] that observed particular benefits in fine-tuning off-the-shelf
CNNs on datasets containing more images of the same object in different configurations. In
particular, while it is true that off-the-shelf representations provide an “astounding” baseline
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for a wide range of visual recognition tasks, including instance retrieval [Sharif Razavian
et al., 2014], on the other hand it is also true that, when switching from categorization to
identification, as we observed in Sec. 6.4, intra-class semantic variability leaves room to
viewpoint (and light, context and so forth) variabilities potentially playing a decisive role for
the performance of recognition methods.

In Sec. 7.4, we will validate the proposed approach on the problem setting that is considered
in [Held et al., 2016], where the authors address one-shot object identification tasks on Wash-
ington RGB-D (WRGB-D in the following) by means of an analogous strategy. With respect
to [Held et al., 2016], we extend the analysis of the problem to different CNN architectures
and apply a more effective pipeline. Moreover, we consider different visual transformations,
beyond the 3D viewpoint included in WRGB-D, and the more challenging robot-centric setting
of ICWT. Indeed, with our pipeline, we achieve superior performance on one-shot object
identification on WRGB-D. Finally, by including in the analysis also the object categorization
task, we highlight some potential limitations of the proposed solution.

7.2 Evaluating Viewpoint Invariance of Off-the-shelf CNNs

In this Section, we start evaluating the invariance properties of the representations extracted by
CNN models off-the-shelf (that is, trained on the ImageNet Large Scale Visual Recognition
Challenge or ILSVRC), with respect to the different visual transformations present in ICWT.
We will also observe how fine-tuning the networks on different transformations can “reshape”
their performance on the experienced and not experienced transformations. As anticipated, we
will conduct the analysis with respect to object categorization (Sec. 7.2.1) and identification
(Sec.7.2.2) tasks.

7.2.1 Object Categorization

In Sec. 6.3 we saw that models trained on few frames achieve identical accuracy to those trained
on many more. These results suggest that the corresponding networks are embedded with a
robust data representation. In the following, we quantify to what extent this representation is
invariant to the specific visual transformations represented in ICWT.

To this end, we repeat the experiment described in Sec. 6.3, by individually considering
the different transformations instead of mixing them all. We consider the same 15-class
categorization problem, where we use 7 object instances per category for training, 2 for
validation and 1 for testing (repeating for 10 trials). However, here we do not mix examples
from all the five available sequences (2D Rotation, 3D Rotation, Scale, Background and Mix).
Instead we perform training (and validation) using only an individual transformation, and then
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Figure 7.1: Generalization performance across visual transformations: RLSC models are
trained on one of the 5 transformations present in ICWT (specified in the horizontal axis), and
then tested on all transformations. Accuracy is reported separately in each plot for each tested
transformation. Shaded areas represent the improvement achieved by including all frames of a
sequence instead of subsampling ⇠ 20 of them.

test the model on the others. As in Sec. 6.3, we limit our analysis to only one of the two
available days in ICWT. Indeed, in this setting we aim to study the effect of isolated viewpoint
transformations, without considering other nuisances due, for example, to changes in the light
and setting conditions.

We consider a “large-scale” and a “small-scale” training regimes, including, respectively,
all images from a sequence, or subsampling images of a factor of 7 (as we did in Fig. 6.3).
The size of the training set is therefore equal to ⇠ 150 ⇤ 7 = 1050 images per category in the
first regime and 150 images per category in the subsampled regime. The aim is to verify what
we observed in Sec. 6.3, that, while including more instances in the training set was critical,
including more frames seemed to be not.

Fig. 7.1 and Fig. 7.2 report the generalization capabilities of models trained on a single
transformation and tested on a different one. As a reference, we considered also a 6

th training
set (All ), analogous to those used in the experiments in Sec. 6.3 and obtained by randomly
sampling points from all other 5 training sets, keeping similar size. We report the accuracy of
the subsampled training sets with a bold line, and the improvement achieved by considering all
frames from the sequences with a shaded area of the same color.

Specifically, in Fig. 7.1 we report the accuracy achieved by applying of RLSC on top of the
representations extracted from off-the-shelf CNNs. This is done to evaluate the invariance of
the representations learned on ImageNet. Instead, in Fig. 7.2 we report the accuracy achieved
by fine-tuning CaffeNet and GoogLeNet according to the two adaptive and conservative
strategies (compared with the performance achieved by training RLSC on top of the off-the-
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Figure 7.2: Generalization performance across visual transformations: CaffeNet and
GoogLeNet are fine-tuned according to the adaptive and conservative strategies on one of the
5 transformations present in ICWT (specified in the horizontal axis), and then tested on all
transformations. Accuracy is reported separately in each plot for each tested transformation.
Shaded areas represent the improvement achieved by including all frames of a sequence in-
stead of subsampling ⇠ 20 of them. The accuracy of applying RLSC on top of off-the-shelf
representations, shown in Fig. 7.1, is also reported here (Black) for comparison with fine-tuned
models.

shelf representation). This is done to evaluate how the across-transformation generalization
performance of CNNs can be affected by fine-tuning on individual transformations in ICWT.

We first confirm that, for all networks and methods, increasing example frames for specific
transformations does not improve generalization performance, neither on the experienced trans-
formation itself, nor on others. Exceptions are the cases when training on the Mix or All sets,
where, in fact, frames contain random and varied transformations and adding examples helps
generalizing to the individual transformations. We hence confirm our previous observations
from Sec. 6.3 and deduce that subsampling frames, to include more transformations, does not
degrade, but rather helps, performance.

Overall, the models exhibit invariance only to transformations that have been included
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– even with a small number of examples – in the training set. Indeed, in all cases the best
performance is obtained when training and testing are performed on the same transformation
and when all transformations are included in the training set (All). Remarkable performance
drops are observed when trying to generalize to transformations not observed during training.
This effect is expected and more remarkable for those cases where the model is trained, e.g.,
only on a single face of the object (that is, Bkg, 2D Rot or Scale sequences) and, of course,
cannot generalize to other viewpoints (3D Rot or Mix sequences). However, it is worth noting
that quite big gaps are observed also between in-plane transformations.

Regarding Fig. 7.2 and fine-tuning, we notice that the adaptive strategy provides better
performance than the conservative one. This is interesting and confirms, in this setting, what
we observed in Sec. 6.3, suggesting that adapting the convolution layers to the target domain
can generally be better (with the only exception of cases when very few example objects per
category are available – see Fig. 6.3 – where it may be preferable to rely more on off-the-shelf
models). In particular, fine-tuning adaptively on a sufficient number of frames of varied
transformations (i.e., on Mix and All sequences, shaded areas) is the strategy that provides
best generalization performance across transformations. Indeed, this experiment confirms an
analogous test that we performed in [Pasquale et al., 2016a] (reported there in Fig. 3) and
expands the observations that we made there (using CaffeNet and in-plane transformations), to
3D viewpoint changes and also the architecture of GoogLeNet. In Sec. 7.2.2 we will have a
further confirmation of the benefit of adaptive fine-tuning when looking at the results for the
object identification task.

We conclude with some “secondary observations” on the presented results:

• It is useful to notice that training on Mix achieves substantially good performance (not as
good as All, but remarkable) when tested on every specific transformation. This suggests
that showing an object to the robot in a natural way, with all transformations appearing
in random combinations, instead of systematically collecting sequences comprising
individual transformations, is a feasible approach to obtain predictors invariant to these
transformations.

• Rather different models learned on ImageNet exhibit the same invariance pattern. This
further confirms what we observed from this experiment, i.e., that, while these archi-
tectures do not have specific hard-coded invariances (apart from translation invariance
because of convolutions), they learn to be invariant to the experienced visual nuisances.

• Regarding Fig. 7.1, we can see that the ILSVRC trend (CaffeNet < GoogLeNet <
ResNet-50) is confirmed in all specific combinations of train/test transformations, and
moreover, over the years the models exhibit increased invariance across transformations
(i.e., the improvement from one architecture to another is more enhanced where testing
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Figure 7.3: Generalization performance across visual transformations (Identification):
RLSC models are trained on one of the 5 transformations present in ICWT (specified in the
horizontal axis), and then tested on the other transformations. Accuracy is reported separately
in each plot for each tested transformation. Shaded areas represent the improvement achieved
by including all frames of a sequence instead of subsampling ⇠ 10 of them.

on an unseen transformation). This suggests that more recent architectures learned from
ImageNet to be gradually more invariant; on the other hand, there is still a gap to be
filled in some way.

• In Fig. 7.2 we observe that it is preferable to reuse the fully-connected layers of the
models learned on ImageNet (as it is done by RLSC), rather then learning them from
scratch (as it is done by the conservative fine-tuning). This result will be further
confirmed on object identification tasks, suggesting that, indeed, these layers retain a
certain degree of invariance that is useful to reuse.

7.2.2 Object Identification

In Sec. 6.4 we observed that, differently from object categorization, the accuracy of the models
for object identification was greatly improved by providing more example images of the objects.
To better understand this fact, analogously to the previous Section, here we repeat the same
experiment of Sec. 6.4, but splitting the training and test sets “per transformation”. Hence, we
repeat the 50-class object identification task of Sec. 6.4, restricting the training set to contain
images of objects undergoing a single transformation. The models are then tested on the
remaining transformations, to assess the ability of the learned system to generalize to unseen
viewpoints. Accordingly, we consider only one day among the two available in the dataset, to
isolate viewpoint changes from other nuisances.

In Fig. 7.3 and Fig. 7.4, we report the accuracy of models trained on a single transformation
and tested on all others. As for categorization, we simulate a “small-scale” and a “large-scale”
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Figure 7.4: Generalization performance across different visual transformations (Identifi-
cation): CaffeNet and GoogLeNet are fine-tuned according to the adaptive and conservative
strategies on one of the 5 transformations present in ICWT (specified in the horizontal axis),
and then tested on the other transformations. Accuracy is reported separately in each plot for
each tested transformation. Shaded areas represent the improvement achieved by including all
frames of a sequence instead of subsampling ⇠ 10 of them. The accuracy of applying RLSC
on top of off-the-shelf representations, shown in Fig. 7.1, is also reported here (Black) for
comparison with fine-tuned models.

regime, by training respectively on 10 (continuous line) or 150 (shaded area) frames per object.
Note that, differently from categorization, here we do not test on the transformation used for
training, since in this case it coincides with the training set. Accordingly, the All training set is
not present in this case.

As in the previous Section, we first report, in Fig. 7.3, the results achieved by training
RLSC on features extracted from the four models trained on ImageNet, in order to evaluate the
viewpoint invariance of off-the-shelf representations. Then, in Fig. 7.4, we restrict to CaffeNet
and GoogLeNet and compare the RLSC accuracy with the performance achieved by fine-
tuning the architectures according to the adaptive and conservative strategies, to evaluate how
fine-tuning on a transformation affects the across-transformation generalization performance.
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It can be first noticed that the remarkable improvement observed in Sec. 6.4 when adding
more frames is confirmed and clarified in this setting: not only, as expected, adding more
frames containing mixed and varied transformations (that is, from the Mix sequence) helps
to generalize to the individual transformations, but also adding frames from a single visual
transformation always improves performance on the others. Indeed, if we restrict to using few
frames and consider RLSC on top of off-the-shelf representations (Fig. 7.3, bold line), quite a
low performance is reported across visual transformations, with large gaps from one tested
transformation to another. This suggests that the off-the-shelf representations are definitely not
invariant to the transformations observed in ICWT.

However, if we proceed to observe Fig. 7.4, we can see that, by adaptively fine-tuning
the networks on enough frames, we can remarkably improve the across-transformation gen-
eralization performance of both CaffeNet and GoogLeNet (the shaded areas achieve highest
accuracy in all cases). This suggests that adapting the internal representation of the CNNs
is very helpful, not only because we are in fact changing the task, but possibly also because,
provided with enough example frames, these networks learn viewpoint invariances from the
sequences in ICWT. We recall that we already observed this effect (that nevertheless was
much less evident) in the categorization experiment of previous Section.

Unfortunately, in real world situations, where a robot typically has to constantly learn to
identify new objects on the fly, from a few images, fine-tuning networks on high numbers of
example images, as are available in the large-scale regime, is not very suitable. To this end,
in the following we will investigate whether it is possible to exploit this capability of deep
networks of learning viewpoint invariances, to boost the object identification performance,
while keeping the number of example frames needed low.

Before proceeding, we list again some additional observations:

• From Fig. 7.4 it can be noticed that overall the conservative fine-tuning provides re-
markably worse performance, especially for CaffeNet. In the small-scale regime, this
is simply due to the fact that that learning from scratch the fully-connected layers on
the subsampled sequences (that, in this case, comprise only ⇠ 10 ⇤ 50 = 500 training
examples), provides poor results. However, it is interesting to note how, also when the
full sequences are provided, it is still preferable to start from, or even just rely on, the
weights learned on ImageNet (as it is done, respectively by the adaptive fine-tuning
and RLSC). This confirms what we observed in the previous Section, that these layers
probably retain useful invariance properties also for identification tasks. Indeed, this is
confirmed also by the literature, as we saw in Sec. 4.2.2.

• In line with previous ideas, from Fig. 7.3 we notice how some observations made for
categorization in fact hold also for object identification: we can still observe that, even if
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it is less evident, the different CNN models learned on ImageNet exhibit a very similar
invariance pattern, with modern networks outperforming previous ones and ResNet-50
achieving the highest accuracy by a large margin.

7.3 Improving Viewpoint Invariance of Off-the-shelf CNNs

The results reported in Fig. 7.1 and 7.3 seem to indicate that the internal representations
extracted by off-the-shelf CNNs are not invariant to the transformations affecting objects’
apperarance in ICWT. At the same time, in Fig. 7.2 and in particular in Fig. 7.4 we observed
how, by fine-tuning the models on sequences containing many examples of multiple, varied
transformations, it seems possible to remarkably improve their robustness to such transforma-
tions. In this Section, we investigate whether the observed increase in the across-transformation
generalization performance of tuned models is actually caused by the fact that their internal
representation has become more invariant to such transformations.

To this end, we refer again to the same object categorization and identification experiments
of Sec. 7.2.1 and 7.2.2, and compare the performance achieved by RLSC trained on represen-
tations extracted from (i) off-the-shelf networks and (ii) networks that have been previously
fine-tuned on image sequences of ICWT. Of course, the training set used for fine-tuning in this
latter case is a separate subset of ICWT, not overlapping with the categories involved in the
categorization/identification tasks. Since we want to evaluate the invariance of the underlying
representations, we train the RLSC in the “small-scale” regime, that is, on just 10 frames per
object in the identification task (and 20 in categorization). Indeed, investigating this setting is
particularly appealing for robotics because, if we could rely on invariant representations, we
could perform object recognition from very few example images.

For this study, we restricted the analysis to CaffeNet and GoogLeNet, the two architec-
tures for which we considered fine-tuning throughout this work. Specifically, we fine-tuned
them with the “adaptive” strategy on a subset of ICWT: namely, the remaining part of the
dataset comprising the 5 categories used neither in the object identification nor categorization
experiment (oven glove. squeezer, sprayer, body lotion and soda bottle). In order to better
assess the usefulness of this fine-tuning stage, we tried to fine-tune the networks according
to four different possible tasks (described in the following). Afterwards, we proceeded in
considering the object categorization and identification experiments of Sec. 7.2.1 and 7.2.2
(small-scale regimes), and compared the performance achieved by training RLSC on top of the
representations extracted from (i) off-the-shelf models with (ii) each of the fine-tuned models.
For RLSC, we adopted the same protocol used in previous Sections.

The four tasks that we considered to fine-tune the networks are:
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• iCWT – Identification Task (iCWT id). We considered a 50-class identification task
involving all objects in the considered subset of ICWT. We used all 5 sequences per
object, one day and one camera, keeping a random 20% for validation.

• iCWT – Categorization Task (iCWT cat). The same dataset as (iCWT id) but fine-
tuning was performed on a 5-class object categorization task where training and valida-
tion sets were obtained following the same protocol as in Sec. 6.3.

• iCWT + ImageNet (iCWT + ImNet). This dataset is the union of the ICWT subset
used above with the corresponding 5 synsets in ImageNet. This dataset is conceived to
test the possibility to have the CNN jointly learning the semantic variability contained
in ImageNet examples and the viewpoint variability contained in ICWT examples of
categories. Note that part of the 5 categories in the subset do not appear in ILSVRC but
are in the larger ImageNet dataset (see Fig. 5.8 for the synset codes). All images in the
synsets were used. Fine-tuning was performed on a 5-class categorization task (keeping
the same protocol of Sec. 6.3).

• ImageNet (refresh ImNet). This dataset contains the ImageNet synsets corresponding
to the object categories on which the CNN will be, later, trained and tested on: namely,
the 5 categories for the identification task of Sec. 7.2.2 (book, flower, glass, hairbrush
and hairclip) and the 15 categories (listed in Appendix 6.C) for the categorization task
of Sec. 7.2.1. Fine-tuning was performed on categorization tasks of course (keeping a
random 20% for validation). This dataset is conceived to test whether it is beneficial
to “refresh” the network on the categories about the task at hand (that may be possibly
available on-line), even if they are different from the images/tasks that the robot will
observe.

Fig. 7.5 compares the accuracies achieved by the four fine-tuned representations on the
categorization task, and we report as a reference also the off-the-shelf representation (that is
the same as in Fig. 7.1). Fig. 7.6 does the same but for the identification task, comparing the
four fine-tuned representations with the off-the-shelf one (reported from in Fig. 7.3).

Before proceeding, we note that for this experiment we performed a similar analysis to the
one reported in Appendix 6.B.1, in order to assess the best output layer to be used to extract
visual representations from the architectures, observing that, for CaffeNet models fine-tuned
on ICWT, fc7 features were providing better performance than fc6 in this case. This can be
explained considering that “more specialized” features can be extracted from models that have
been adapted to our setting, while “more general” features of off-the-shelf models provide
better generalization performance on ICWT. Therefore, in order to compare the different
approaches in their “best” conditions, we report fc7 features for models tuned on ICWT, and
fc6 for the others.
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Figure 7.5: Generalization performance across different visual transformations: Same
experiment as in Fig. 7.1, but using different visual representations, provided by fine-tuning
CaffeNet (top, Orange) or GoogLeNet (bottom, Blue) on different datasets including ICWT
and/or ImageNet images (see Sec. 7.3).

We first observe in Fig. 7.5 that fine-tuning on any of the datasets described above worsen
the performance on the categorization task. We hypothesize this can be due to two possible
reasons: 1) networks trained on the ILSVRC are already highly optimized for categorization,
and there is no gain in adapting their representation, neither on the target ICWT domain, nor
by “refreshing” on a subset of categories – as, e.g., in the (ImNet) case; 2) when fine-tuning on
ICWT, the negative effect of the limited semantic variability in the dataset, with respect to
ImageNet, may “overcome” the potential benefits of increasing the representation invariance
to viewpoint transformations. Indeed, this result motivates some of the proposed directions of
future investigation that we discuss in Chapter 10.

On the contrary, Figure 7.6 reports a remarkable improvement of the object identification
performance, provided by representations extracted from models fine-tuned on ICWT. Fine-
tuning on the identification task (iCWT id) is particularly advantageous, by far surpassing
other models. Comparing these results with those in Fig. 7.3, we see that (iCWT id) trained on
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Figure 7.6: Generalization performance across different visual transformations (Identifi-
cation): Same experiment as in Fig. 7.3, but using different visual representations, provided
by fine-tuning CaffeNet (top, Orange) or GoogLeNet (bottom, Blue) on different datasets
including ICWT and/or ImageNet images (see Sec. 7.3).

10 example images per object performs even better than off-the-shelf representations trained
on 150 images per object. Moreover, the performance of (iCWT id) are in general more stable
across different transformations, suggesting that the preliminary fine-tuning could have indeed
allowed the CNNs to become more invariant to transformations in ICWT.

Interestingly, the models tuned on ICWT for categorization (iCWT cat) also perform better
than the off-the-shelf baseline, further suggesting that the observed improvement of (iCWT id)
may not be due only to the adaptation of the task, but indeed to better viewpoint invariance.
Finally, note that we compared the off-the-shelf fc6 features of CaffeNet also with the same fc6
features of models fine-tuned on ICWT, confirming also in this case the higher performance of
the latter ones.

From these results, we can conclude that fine-tuning network models on sequences of
ICWT can indeed provide robust features to viewpoint changes, that can be used to solve object
identification tasks from very few example images. Note that this experiment expands the
results reported in [Pasquale et al., 2016a] to a different architecture besides CaffeNet, namely
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GoogLeNet, considering also 3D viewpoint transformations in addition to in-plane rotations
and scaling. Moreover, by considering also the problem of categorization, we highlighted the
limitations of the presented approach to improve performance on this latter task. Indeed, as we
observed in Chapter 6, the intra-class semantic variability involved in this case heavily affects
the recognition capabilities of models. Building on these observations, in Chapter 10 we will
propose possible directions of research to address these critical challenges in the robotic setting.
In the following Section, we compare the proposed approach with a recent work [Held et al.,
2016], addressing a similar problem on the Washington RGB-D benchmark.

7.4 One-shot Object Identification on Washington RGB-D

In previous Sections, to investigate the invariance of CNNs, we devised object recognition
tasks where the models were trained on few example images of objects (typically undergoing
only a single visual transformation), and were then required to generalize to unseen viewpoints.
We highlighted how this setting is interesting for robotics, since it well represents the typical
recognition tasks that a robot is asked to perform in real world applications. Throughout
our analysis, we found that fine-tuning models on sequences of ICWT, representing objects
undergoing different viewpoint transformations, remarkably improves the robustness of their
internal representations to such viewpoint changes, with respect to off-the-shelf models.
Building on these observations, we were able to encode images into robust features, and
perform challenging object identification tasks by training statistical tools like RLSC on very
few examples.

While in the previous Section we tested the proposed pipeline on the ICWT dataset, in
this Section we validate it on the setting considered in a recent work [Held et al., 2016], where
the authors address the problem of one-shot object identification, defining a reference task on
the Washington RGB-D (WRGB-D) benchmark [Lai et al., 2011] and addressing it with a
similar approach. In the following, we briefly review for convenience their setup, which we
reproduced, in order to compare with our method.

Robust Single-View Instance Recognition [Held et al., 2016]

The one-shot object identification task on WRGB-D that is considered by Held et al. is similar
to the standard 300-class identification task usually adopted in the literature (that we described
in Sec. 6.D.2), except that, in this case, the training set is reduced to be only a single image per
object, randomly sampled from the sequence recorded at 30�.

The authors address this task by fine-tuning deep CNNs. Specifically, they start from the
same CaffeNet off-the-shelf model trained on ILSVRC. Then, similarly to our analysis, they
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compare two solutions: the first solution (the baseline) fine-tunes CaffeNet on the one-shot
identification task; the second solution, first, fine-tunes CaffeNet on a so-called “multi-view”
dataset, comprising a certain number of object instances represented under different viewpoints;
then, they start from the tuned model, and further fine-tune it on the one-shot identification task.
Their idea is similar to our approach, in that they observe that the network model that has been
previously fine-tuned on a set of sequences representing objects under multiple viewpoints
achieves improved performance on a one-shot identification task requiring recognition systems
to be viewpoint invariant.

In order to demonstrate that the observed improvement is caused by better invariance and
not, e.g., by other adaptation processes, similarly to what we did, as multi-view dataset they
use a different set of objects from the ones contained in WRGB-D. Specifically, they use
the BigBird dataset [Singh et al., 2014], a benchmark acquired in a similar turntable setting,
whose images are not too different from the ones in WRGB-D. They care to remove one object
instance that is represented also in WRGB-D, and subsample 100 frames per object, evenly
including all viewpoints available in the dataset, ending up with a dataset of 124 objects in
12400 frames.

The fine-tuning protocol that they adopt in their “multi-view pre-training” on BigBird is
the same that they use afterwards on the one-shot identification task, except that in this latter
training all learning rates are reduced by a factor of 10. Specifically, they (i) fix convolution
layers, (ii) fine-tune fc6 and fc7 with initial learning rate of 10�3 (10�4 in the second fine-
tuning), by initializing the weights with the off-the-shelf model, and (iii) learn fc8 from scratch
with initial learning rate of 10�2 (10�3). This protocol is similar to our conservative strategy,
but they use the off-the-shelf initialization for fc6 and fc7, in line with our observations
made in the previous Section, that it is beneficial to exploit an ImageNet warm restart also for
fully-connected layers. In addition, they also try fine-tuning convolution layers, similarly to
our adaptive strategy.

Before addressing the one-shot task, in [Held et al., 2016] they first report the performance
that they achieve by fine-tuning CaffeNet with the proposed protocol on the standard WRGB-D
identification task (without any multi-view preliminary fine-tuning). Indeed, in Sec. 6.D.2,
we already evaluated our methods on this task, surpassing their results (Tab. 6.D.4). In the
following, we will compare the approach presented in previous Section with their pipeline for
one-shot identification on WRGB-D described above.

7.4.1 Comparison

To compare with [Held et al., 2016], we first evaluate differences between the proposed
methods, by simply replacing our pipeline in their setting, using the same BigBird subset to
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Table 7.1: One-shot object identification results on Washington RGB-D, comparison with
state-of-the-art: our approach, based on training RLSC on features extracted by a CaffeNet
model, is compared with results in [Held et al., 2016], where the network is fine-tuned on the
task. See in the text for a detailed description of the different methods.

Method Pre One-shot Accuracy (%) Gain (%)
Fine-tuning (FT) Identification of Pre FT

[Bo et al., 2013] - HMP 42.3

[Held et al., 2016]
- FT 59.2

BB aug FT 63.9 +4.7
BB aug FT (all layers) 65.1 +5.9

Ours
- RLSC 59.5

BB RLSC 66.2 +6.7
iCWT RLSC 66.8 +7.3

preliminary fine-tune the networks. Then, we evaluate also replacing BigBird with the ICWT
subset that we used in the previous Section.

In both cases, we apply the pipeline that reported best results in the object identification
tasks on ICWT: we first fine-tune CaffeNet according to the “adaptive” strategy on the dataset
representing the objects under multiple viewpoints; then, we address the one-shot identification
task by training RLSC on the representations extracted from the fine-tuned models. As a
baseline, we train RLSC on off-the-shelf representations.

When training RLSC on 1 image per object, we set the model hyper-parameters according
to preliminary tests. To account for statistical oscillations, we repeated the experiment for 20
trials, every time randomly sampling training images, observing for all approaches standard
deviations under 1% of recognition accuracy.

Table 7.1 reports results. The first row reports, as a general reference of “shallow” methods
(i.e., not using pre-trained deep CNNs), the performance achieved by [Held et al., 2016]
applying the method proposed in [Bo et al., 2013]. Then, the following three rows report
results achieved by the authors, respectively with their baseline – second row – and with the
preliminary fine-tuning on BigBird (BB aug) – third and fourth rows. As we anticipated, they
try either keeping the convolution layers fixed (FT ) or fine-tuning them (FT all layers, fourth
row), finding that this latter strategy provides better improvement over the baseline (+5.9%

instead of +4.7%). It is worth noting that they augment the BigBird subset by synthetically
placing the objects over random backgrounds – for this reason we indicated it as (BB aug),
whereas we do not.

The following rows report our results: RLSC trained on off-the-shelf features (the baseline),
or on features extracted from models fine-tuned on BigBird (BB) or the ICWT subset used
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in Sec. 7.3 (precisely, the (ICWT id)). It can be first noticed that we achieve comparable
or superior performance both with the baseline and with the preliminary fine-tuning. It is
particularly interesting that our model fine-tuned on the ICWT subset is indeed able to provide
the same performance gain than the model fine-tuned on BigBird. Indeed, while in all the other
cases the dataset used for the preliminary fine-tuning either was the same (as in the previous
Section), or was very similar (as in this experiment when fine-tuning on BigBird) to the final
dataset used for the object identification task, in this case the two are completely different.
Differences between the two domains can be clearly appreciated just looking at the example
images of ICWT provided in Sec. 5.5 and comparing with images in WRGB-D. Therefore,
while in the other cases one could have still argued that the improvement in performance on
the considered identification tasks could have been due to, at leat partially, the fact that the
model had been already adapted to the task domain, in this case this is not possible. Hence, the
improvement must be due to better robustness of the features to viewpoint changes.

7.4.2 Discussion

To conclude, we confirm a remarkable performance improvement brought by our approach
also on the one-shot identification task on WRGB-D. With this test, we have extended the
results of [Held et al., 2016] to more challenging settings, where the dataset for preliminary
fine-tuning is remarkably different from the final domain of the object identification task.

Moreover, we studied the efficacy of this solution with respect to different specific trans-
formations represented both in the dataset used for fine-tuning and in the final recognition
task, extending the evaluation to more, wider transformations beyond 3D viewpoint changes.
Indeed, in [Pasquale et al., 2016a] (precisely, in Tab. II) we observe how by including more
transformations (namely, light changes between one day and the other) in the dataset used
for fine-tuning, provides improved invariance to the experienced transformations. Building
on those results, here we evaluated how features fine-tuned on multiple transformations (all
available ones in ICWT) can generalize to the individual ones.

On the choice of combining deep CNNs and Kernel methods. In [Pasquale et al., 2016a]
we evaluate also the alternative technique, here not reported, of using the fine-tuned model
as warm restart to further fine-tune the network on the final object identification task (like
in [Held et al., 2016]), rather then extracting its representation to train RLSC on the final task.
We show there (Fig. 5) that starting from a previously fine-tuned model provides as well better
performance than directly fine-tuning the off-the-shelf model, confirming therefore [Held et al.,
2016]. Nevertheless, we opted for combining fine-tuning with standard classifiers like RLSC
for at least three reasons, explained in the following.
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First, it is not trivial to properly fine-tune deep CNNs when learning from few examples.
To this regard, in [Pasquale et al., 2016a] we show how fine-tuning achieves the RLSC
performance only when more examples are provided. In fact, [Held et al., 2016] achieve
remarkable performance just by using a training set of 300 examples, by setting the fine-
tuning hyper-parameters (which layers, learning rates, decay policies, number of iterations)
to specific values (and we managed to reproduce their results). However, we also showed
(see, e.g. Sec. 6.B.2) that these hyper-parameters generally depend on the size and kind of
recognition task, and performing model selection when training deep CNNs is still an open
issue, usually addressed by very computational intensive approaches like grid or random search
(see Sec. 4.1.2). On the other hand, classical statistical tools like RLSC or SVMs depend on
few hyper-parameters that can be set more easily.

Second, fine-tuning is not yet a practical method to be used in situations where the robot
has to learn on the fly, and these one-shot tasks, in our intention, are precisely conceived to
simulate such setting. In these scenarios the training has to be very fast, possibly allowing the
incremental inclusion of new objects. As we will see in Chapter 8, while this problem has been
investigated for classical statistical tools, this is still a largely unexplored field regarding deep
networks.

Third, and actually our first motivation in Sec. 7.3, we opted for using statistical tools on top
of features extracted from deep networks because we were interested in evaluating invariance
properties of such features, and RLSC is a stable predictor to measure such properties through
recognition accuracy. Indeed, considering the approach of [Held et al., 2016], since their
second fine-tuning actually changes the features learned in the preliminary multi-view fine-
tuning, it is not evident that the improvement can actually be attributed to the previous stage,
rather than to the final fine-tuning step.

7.5 Conclusion

In this Chapter, we deepened the analysis of Chapter 6 and studied the viewpoint invariance
properties of the internal representations of modern deep Convolutional Neural Networks
(CNNs). We exploited the structure of the novel ICUBWORLD TRANSFORMATIONS dataset
and evaluated the performance achieved by networks trained and tested on specific visual
transformations contained in the image sequences comprising the dataset. This allowed us to
assess the robustness of models in real world conditions, differentiating from previous work
that mainly adopted synthetic imagery to perform similar analyses.

We first assessed the invariance of off-the-shelf models and then how this is affected by
fine-tuning the models on sequences representing specific or multiple transformations. For
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our evaluation, we extracted deep representations from the internal layers of CNN models and
trained Regularized Leas Squares Classifiers (RLSC) on top. Specifically, we considered the
scenario where the human supervisor provides only few glimpses of the objects of interest
to the robot, and tested the generalization performance of classifiers on multiple sequences
containing different visual transformations.

Our analysis shows that fine-tuning the internal layers of a network adapts the invariance of
the representation to the nuisances contained in the new dataset. By leveraging this effect, we
fine-tuned two CNN models (CaffeNet and GoogLeNet) over multiple visual transformations to
obtain a robust representation for object identification. We observed that using the fine-tuned
models as feature extractors and feeding such adapted representations to RLSC provides an
effective pipeline to learn to identify a wide range of objects from minimal amounts of data.

We conclude that adopting conventional classifiers based on Kernel methods to leverage a
deep visual representation, previously trained on large data collections to be robust to specific
nuisances, is an effective approach to achieve reliable object identification from few example
frames in online robotic scenarios. In line with theses findings, we believe that the off-the-shelf
representations trained on ImageNet are already highly optimized for object categorization and
indeed we did not manage to improve their properties by fine-tuning in our setting.



Chapter 8

Incremental Learning of New Objects
with Fixed Update Time

While relying on good representations is fundamental in order to allow robots to reliably learn
objects on the fly, it is not the only critical component of a robotic recognition system. Indeed,
in the considered scenario where a robot encounters new objects as it explores the environment,
possibly guided by a teacher, another important part is allowing the knowledge about objects
to be built and refined incrementally. The recognition system should update the internal model
of known objects, as new example images are gathered. Moreover, since it is not possible
to hard-code into the system beforehand all possible classes that the robot will be required
to recognize, the system should also allow the inclusion of new classes without the need of
re-training the known ones from scratch.

In this Chapter, we move therefore to consider object recognition in the context of lifelong
learning. We propose an incremental variant of the Regularized Least Square for Classification
(RLSC) algorithm used in previous Chapters, and exploit its structure to seamlessly add new
classes to the learned model. The content of this Chapter has been previously published
in [Camoriano et al., 2017].

8.1 Introduction

Most of the deep learning methods that recently achieved stunning performances have been
developed for off-line (or “batch”) settings, where the entire training set is available beforehand.
The problem of updating a learned model on-line has been addressed in the literature [French,
1999, Sayed, 2008, Duchi et al., 2011, Goodfellow et al., 2013b], but most algorithms proposed
in this context do not take into account challenges that are characteristic of realistic lifelong
learning applications. Specifically, in on-line classification settings, a major challenge is to

153
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cope with the situation in which a novel class is added to the model. Indeed, 1) most learning
algorithms require the number of classes to be known beforehand and not grow indefinitely, and
2) the imbalance between the few examples of the new class (potentially just one) and the many
examples of previously learned classes can lead to unexpected and undesired behaviors [Elkan,
2001]. More precisely, in this work we observe both theoretically and empirically that the new
and under-represented class is likely to be ignored by the learning model, in favor of classes
for which more training examples have already been observed, until a sufficient number of
examples are provided also for such class.

Several methods have been proposed in the literature to deal with class imbalance in
the batch setting by “rebalancing” the misclassification errors accordingly [Elkan, 2001,
Steinwart and Christmann, 2008, He and Garcia, 2009]. However, as we point out in this work,
rebalancing cannot be applied to the on-line setting without re-training the entire model from
scratch every time a novel example is acquired. This would incur in computational learning
times that increase at least linearly in the number of examples, which is clearly not feasible in
scenarios where training data grows indefinitely.

In this work, we propose a novel method that learns incrementally both with respect to
the number of examples and classes, and accounts for potential class unbalance. Our algo-
rithm builds on a recursive version of Regularized Least Squares algorithm for Classification
(RLSC) [Rifkin, 2002, Rifkin et al., 2003] to achieve fixed incremental learning times when
adding new examples to the model, while efficiently dealing with imbalance between classes

We evaluate the approach on the MNIST [LeCun et al., 1998] machine learning benchmark
and on two visual object recognition datasets for robotics, namely, the Washington RGB-D
dataset [Lai et al., 2011] and the ICUBWORLD28 dataset. Empirical evidence shows that our
approach achieves comparable or higher classification performance than its batch counterpart
when classes are unbalanced, while being significantly faster.

The Chapter is organized as follows: Sec. 8.1.1 overviews related work on incremental
learning and class imbalance. Sec. 8.2 discusses the impact of class imbalance in the considered
learning setting of RLSC, presenting two approaches that have been adopted in the literature
to deal with this problem. Sec. 8.3 reviews the recursive version of the RLSC algorithm.
In Sec. 8.4 we build on previous Sec. 8.2 and 8.3 to derive the proposed method, which
extends recursive RLSC to allow for the addition of new classes with fixed update time, while
dealing with class imbalance. In Sec. 8.5 we report on the empirical evaluation of our method,
concluding the paper in Sec. 8.6.
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8.1.1 Related Work

Incremental Learning. The problem of learning from a continuous stream of data has been
addressed in the literature from multiple perspectives. The simplest strategy is to re-train the
system on the updated training set, whenever a new example is received [Xiao et al., 2014, Jain
et al., 2014]. The model from the previous iteration can be used as an initialization to learn
the new predictor, reducing training times. However, these approaches require to store all the
training data and to retrain over all the points at each iteration. Hence, their computational
complexity increases, at least linearly, with the number of examples.

Incremental approaches that do not require to keep previous data in memory can be divided
in stochastic and recursive methods. Stochastic techniques assume training data to be randomly
sampled from an unknown distribution and offer asymptotic convergence guarantees to the
ideal predictor [Duchi et al., 2011]. However, it has been empirically observed that these
methods do not perform well when seeing each training point only once, hence requiring to
perform “multiple passes” over the data [Hardt et al., 2016, Lin et al., 2016]. This problem
has been referred to as the “catastrophic effect of forgetting” [French, 1999], which occurs
when training a stochastic model only on new examples while ignoring previous ones, and has
recently attracted the attention of the deep learning literature [Srivastava et al., 2013,Goodfellow
et al., 2013a].

Recursive techniques are based, as the name suggests, on a recursive formulation of batch
learning algorithms. Such formulation typically allows to compute the current model in closed
form (or with few operations independent from the number of examples) as a combination of
the previous model and the new observed example [Sayed, 2008, Laskov et al., 2006]. As we
discuss in more detail in Sec. 8.3, the algorithm proposed in this work is based on a recursive
method.

Learning with an Increasing Number of Classes. Most classification algorithms have been
developed for batch settings and therefore require the number of classes to be known a priori.
This assumption is often broken in incremental settings, since new examples could belong to
previously unknown classes. The problem of dealing with an increasing number of classes
has been addressed in the contexts of transfer learning or learning to learn [Thrun, 1996].
These settings consider a scenario where T linear predictors have been learned to model T
classes. Then, when a new class is observed, the associated predictor is learned with the
requirement of being “close” to a linear combination of the previous ones [Tommasi et al.,
2010, Tommasi et al., 2012, Kuzborskij et al., 2013]. Other approaches have been recently
proposed where a class hierarchy is built incrementally as new classes are observed, allowing
to create a taxonomy and exploit possible similarities among different classes [Xiao et al.,
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2014, Sun and Fox, 2016]. However, all these methods are not incremental in the number of
examples, and require to retrain the system every time a new point is received.

Class Imbalance. Problems related to class imbalance were previously studied in the litera-
ture [Elkan, 2001, He and Garcia, 2009, Steinwart and Christmann, 2008] and are addressed in
Sec. 8.2. Methods to tackle this issue have been proposed, typically re-weighting the misclassi-
fication loss [Tommasi et al., 2010] to account for class imbalance. However, as we discuss
in Sec. 8.4.2 for the case of the least squares loss, these methods cannot be implemented
incrementally. This is problematic, since imbalance among multiple classes often arises in
on-line settings, even if temporarily, for instance when examples of a new class are observed
for the first time.

8.2 Dealing with Class Imbalance

We refer to Sec. 2.1 for the introduction and definition of the supervised learning problem
considered in this Chapter. Here we maintain the same notation, therefore all quantities
involved are also defined therein.

The Effect of Class Imbalance on the Optimal Bayes Classifier

For the sake of simplicity, we start by considering a binary classification problem, postponing
the extension to multiclass classification to the end of the Section. In particular, we address the
problem of finding the optimal Bayes classifier b⇤, such that (see Eq. (2.6)-(2.7)):

b⇤ = argmin

f :X!{�1,1}

Z

X⇥{�1,1}
1(y � f(x))d⇢(x, y), (8.1)

with

b⇤(x) =

(
1 if ⇢(1|x) > ⇢(�1|x)
�1 otherwise

(8.2)

for all x 2 X . This classification rule associates every x 2 X to the class y with highest
likelihood ⇢(y|x). This approach can lead to unexpected and undesired behaviors in situations
where the two classes are not balanced. To see this, let us denote � = ⇢(y = 1) =

R
X d⇢(y =

1, x) and notice that, by applying the Bayes’ theorem to Eq. (8.2), an example x is labeled
y = 1 whenever

⇢(x|1) > ⇢(x|� 1)

(1� �)

�
. (8.3)

Hence, when � is close to one of its extremal values 0 or 1 (i.e. ⇢(y = 1) >> ⇢(y = �1) or
vice-versa), one class becomes clearly preferred with respect to the other and is almost always
selected.
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In Fig. 8.1 we report an example of the effect of unbalanced data by showing how the
decision boundary (white dashed curve) of the optimal Bayes classifier from Eq. (8.2) varies
as � takes values from 0.5 (balanced case) to 0.9 (very unbalanced case). As it can be noticed,
while the classes maintain the same shape, the decision boundary is remarkably affected by the
value of �.

In a robotic setting, this effect could be critically suboptimal for two reasons: 1) we would
like the robot to recognize with high accuracy even objects that are less common to be seen; 2)
in on-line incremental settings, whenever a novel object is observed for the first time, only few
training examples are available (in the extreme case, just one) and we need a loss weighting
fairly also underrepresented classes.

Rebalancing the Loss

Here we consider a general approach to “rebalance” the classification loss of the learning
problem of Eq. (8.1), similar to the ones adopted in [Elkan, 2001, Steinwart and Christmann,
2008]. We begin by noticing that in the balanced setting, namely for � = 0.5, the classification
rule at Eq. (8.3) is equivalent to assign class 1 whenever ⇢(x|1) > ⇢(x|� 1) and vice-versa.
Here, we want to slightly modify the misclassification loss in Eq. (8.1) to recover this same
rule also in unbalanced settings. To do so, we propose to apply a weight w(y) 2 R to the loss
1(y � f(x)), obtaining the problem

b⇤w = argmin

f :X!{�1,1}

Z

X⇥{�1,1}
w(y)1(y � f(x)) d⇢(x, y).

Analogously to the non-weighted case, the solution to this problem is

b⇤w(x) =

(
1 if ⇢(1|x)w(1) > ⇢(�1|x)w(�1)
�1 otherwise.

(8.4)

In this work, we take the weights w to be w(1) = 1
� and w(�1) = 1

1�� . Indeed, by applying
again the Bayes’ theorem to Eq. (8.4) and replacing the chosen values for the weights, we
recover the original rule:

b⇤w(x) =

(
1 if ⇢(x|1) > ⇢(x|� 1)

�1 otherwise
(8.5)

which corresponds to the (unbalanced) optimal Bayes classifier in the case � = 0.5, as desired.
Fig. 8.1 compares the unbalanced and rebalanced optimal Bayes classifiers for different

values of �. Notice that rebalancing leads to solutions that are invariant to the value of �
(compare the black decision boundary with the white one).
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Figure 8.1: Bayes decision boundaries for standard (dashed white line) and rebalanced
(dashed black line) binary classification losses for multiple values of � = ⇢(y = 1) from 0.5
to 0.9. Data is sampled according to a Gaussian ⇢(x|y) ⇠ N (µy,�y) with µ1 = (�1, 0)>,
µ�1 = (1, 0)>, �1 = 1 and ��1 = 0.3. The boundaries coincide when � = 0.5 (balanced
data), while they separate as � increases.

Rebalancing the Least Squares Loss

So far we analysed the effect of class imbalance on the optimal Bayes classifier. However, in
Sec. 2.1.2 we explained how, since in practice only a finite set {xi, yi}ni=1 of training examples
is provided, the following surrogate problem is usually considered instead:

f⇤
= argmin

f :X!R

Z

X⇥{�1,1}
(y � f(x))2d⇢(x, y), (8.6)

where the 0-1 loss is replaced by the square loss. Indeed, we showed how the solution of this
problem takes the form

f⇤
(x) = 2⇢(1|x)� 1 = ⇢(1|x)� ⇢(�1|x), (8.7)

such that sign(f⇤
(x)) recovers the optimal classifier b⇤(x) and, at the same time, the mini-

mization of the associated regularized empirical risk:

ˆf = argmin

f :X!R

1

n

nX

i=1

(yi � f(xi))
2
+R(f) (8.8)

provides a convex optimization problem very well studied in the literature.

In the following, we show how the strategy of changing the weight of the classification loss
presented in the previous Section in order to prevent the disrupting effects of class imbalance
on the optimal Bayes classifier, can be naturally extended to its least squares surrogate.

It is in fact possible to consider the weighted least squares problem:

f⇤
w = argmin

f :X!R

Z

X⇥{�1,1}
w(y)(y � f(x))2d⇢(x, y), (8.9)
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and recover again the (weighted) rule b⇤w(x) = sign(f⇤
w(x)) like in the non-weighted setting.

Indeed, by direct calculation it follows that Eq. (8.9) has solution

f⇤
w(x) =

⇢(1|x)w(1)� ⇢(�1|x)w(�1)
⇢(1|x)w(1) + ⇢(�1|x)w(�1) . (8.10)

Now, if we assume w(1) > 0 and w(�1) > 0 (as we set them in this work), the denominator
of Eq. (8.10) is always positive and therefore sign(f⇤

w(x)) > 0 if and only if ⇢(1|x)w(1) >
⇢(�1|x)w(�1), as desired.

Recoding the Least Squares Loss

Another approach to recover the rebalanced optimal Bayes classifier via least squares surrogate
is to apply a suitable coding function to the class labels y = {�1, 1}, namely:

f⇤
c = argmin

f :X!R

Z

X⇥{�1,1}
(c(y)� f(x))2d⇢(x, y), (8.11)

where c : {�1, 1} ! R maps the labels y into scalar codes c(y) 2 R. Analogously to the
unbalanced (and uncoded) case, the solution to Eq. (8.11) is

f⇤
c (x) = c(1)⇢(1|x)� c(�1)⇢(�1|x) (8.12)

which, for c(y) = w(y), corresponds to the numerator of Eq. (8.10). Therefore, the optimal
(rebalanced) Bayes classifier is recovered again by b⇤w(x) = sign(f⇤

c (x)).

Multiclass Rebalancing and Recoding

In the multiclass setting, the optimal Bayes decision rule corresponds to the function b⇤ : X !
{1, . . . , T}, that assigns a label t 2 {1, . . . , T} to x 2 X when ⇢(t|x) > ⇢(s|x) 8s 6= t, with
t, s 2 {1, . . . , T}. Consequently, the rebalanced decision rule would assign class t, whenever
⇢(y = t|x)w(t) > ⇢(y = s|x)w(s) 8s 6= t, where the function w : {1, . . . , T}! R assigns a
weight to each class. Generalizing the binary case, in this work we set w(t) = 1

⇢(y=t) , where
we denote ⇢(y = t) =

R
X d⇢(t, x), for each t 2 {1, . . . , T}.

As we saw in Sec. 2.1, the surrogate least squares multiclass approach is recovered by
adopting a one-vs-all strategy, formulated as the vector-valued problem:

f⇤
= argmin

f :X!RT

Z

X⇥{1,...,T}
key � f(x)k2d⇢(x, y), (8.13)

where et 2 {0, 1}T ✓ RT is a vector of the canonical basis {e1, . . . , eT } of RT , i.e., the
one-hot encoding of the label t. Analogously to the derivation of Eq. (8.7), it can be shown
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that the solution to this problem corresponds to f⇤
(x) = (⇢(1|x), . . . , ⇢(T |x))> 2 RT for all

x 2 X . Consequently, we recover the optimal Bayes classifier by

b⇤(x) = argmax

t=1,...,T
f⇤

(x)t, (8.14)

where f⇤
(x)t denotes the t-th entry of the vector f⇤

(x) 2 RT .
The extensions of recoding and rebalancing sapproaches to this setting follow analogously

to the binary setting discussed in previous Section. In particular, the coding function c :

{e1, . . . , eT }! R consists in mapping the one-hot encoding et into c(et) =
et

⇢(y=t) .

8.3 Incremental RLSC

In this Section, we briefly review the recursive formulation of the solution to the Regularized
Least Squares for Classification (RLSC) algorithm presented in Sec. 2.1.5, which can be used
to apply incremental updates to the model.

We recall from Sec. 2.1.5 that the problem consists in finding

cW = argmin

W2Rd⇥T

kY �XWk2F + �kWk2F . (8.15)

Here we show that it is possible to derive a recursive formulation of the closed form solution
of this problem:

cW = (X>X + �Id)
�1X>Y 2 Rd⇥T (8.16)

which allows to incrementally update cW in fixed time as new training examples are ob-
served [Sayed, 2008].

Consider a learning process where training data are provided one at a time to the system.
At iteration k we would need to compute Wk = (X>

k Xk + �Id)
�1X>

k Yk, where Xk 2 Rk⇥d

and Yk 2 Rk⇥T are the matrices whose rows correspond to the first k training examples. The
computational cost for evaluating Wk is O(kd2) for the matrix products and O(d3) for the
inversion. This is undesirable in the on-line setting, since k can grow indefinitely.

Here we show that we can compute Wk incrementally from Wk�1 in O(Td2). To see this,
first notice that by construction

Xk = [X>
k�1, xk]

> Yk = [Y >
k�1, eyk ]

>,

and therefore, if we denote Ak = X>
k Xk + �Id 2 Rd⇥d and bk = X>

k Yk 2 Rd⇥T , we obtain
the recursive formulations:

Ak = X>
k Xk + �Id = X>

k�1Xk�1 + x>k xk + �Id = Ak�1 + x>k xk + �Id (8.17)

bk = X>
k Yk = X>

k�1Yk�1 + xke
>
yk

= bk�1 + xke
>
yk

(8.18)
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Computing bk from bk�1 requires O(d) operations (since eyk has all zero entries but one).
Computing Ak from Ak�1 requires O(d2), while the inversion A�1

k requires O(d3).
To reduce the cost of the (incremental) inversion, we recall that, for a positive definite

matrix Ak, for which its Cholesky decomposition Ak = R>
k Rk is known (with Rk 2 Rd⇥d

upper triangular), the inversion A�1
k can be computed in O(d2) [Golub and Loan, 1996].

In principle, computing the Cholesky decomposition of Ak still requires O(d3), but we
can apply a rank-one update to the Cholesky decomposition at the previous step, namely
Ak = R>

k Rk = R>
k�1Rk�1+xkx

>
k = Ak�1+xkx

>
k , which is known to require O(d2) [Björck,

1996]. Several implementations are available for the Cholesky rank-one updates; in our
experiments we used the MATLAB routine CHOLUPDATE.

Therefore, the update Wk from Wk�1 can be computed in O(Td2), since the most expen-
sive operation is the multiplication A�1

k bk. In particular, this computation is independent of
the current number k of training examples seen so far, making this algorithm suited for the
on-line setting.

8.4 Incremental RLSC with Class Extension and Recoding

In this Section, we present our approach to incremental multiclass classification, where we
account for the possibility to extend the number of classes incrementally and apply the recoding
strategy introduced in Sec. 8.2. The full algorithm is reported in Alg. 2.

8.4.1 Class Extension

We introduce a modification of recursive RLSC which allows to extend the number of classes
in constant time with respect to the number of examples seen so far. Let Tk denote the number
of classes seen up to iteration k. We have two possibilities:

1. The new sample (xk, yk) belongs to a known class, this meaning that eyk 2 RTk�1 and
Tk = Tk�1.

2. (xk, yk) belongs to a new class, implying that yk = Tk = Tk�1 + 1.
In the first case, the update rules for Ak, bk and Wk explained in Sec. 8.3 can be directly
applied. In the second case, the update rule for Ak remains unchanged, while the update of bk
needs to account for the increase in size (since bk 2 Rd⇥(Tk�1+1)). However, we can modify
the update rule for bk without increasing its computational cost by first adding a new column
of zeros 0 2 Rd to bk�1, namely

bk = [bk�1,0] + x>k eyk (8.19)

which requires O(d) operations. Therefore, with the strategy described above it is indeed
possible to extend the classification capabilities of the incremental learner during on-line
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Algorithm 2 Incremental RLSC with Class Recoding
Inputs: Hyperparameters � > 0, ↵ 2 [0, 1]
Output: Learned weights Wk at each iteration
Initialize: R0  

p
�Id, b0  0, �0  0, T  0

Increment: Observed example (xk, yk):
if (yk = T + 1) then
T  T + 1

�k�1  [�>k�1, 0]
>

bk�1  [bk�1,0]
end if
�k  �k�1 + eyk
�k  k · diag(�k)�1

bk  bk�1 + x>k eyk
Rk  CHOLESKYUPDATE(Rk�1, xk)
Wk  R�1

k (R>
k )

�1bk(�k)
↵

return Wk

operation, without re-training it from scratch. In the following, we address the problem of
dealing with class imbalance during incremental updates by performing incremental recoding.

8.4.2 Incremental Recoding

The main algorithmic difference between standard RLSC and the variant with recoding is in
the matrix Y containing output training examples. Indeed, according to the recoding strategy,
the vector et associated to an output label t is coded into c(et) =

et
⇢(y=t) . In the batch setting,

this can be formulated in matrix notation as

W = (X>X + �Id)
�1X>Y �

where the original output matrix is substituted by its encoded version Y � 2 Rn⇥T , with � the
T ⇥ T diagonal matrix whose t-th diagonal element is �(t,t)

=

1
⇢(y=t) . Clearly, in practice

⇢(y = t) is estimated empirically (e.g. by ⇢̂(y = t) = nt/n, the ratio between the number nt

of training examples belonging to class t and the total number n of examples).
The above formulation is favorable for the on-line setting. Indeed, we have

X>
k Yk�k = bk�k = (bk�1 + x>k yk)�k (8.20)

where �k is the diagonal matrix of the (inverse) class distribution estimators ⇢̂ up to
iteration k. �k can be computed incrementally in O(T ) by keeping track of the number kt
of examples belonging to t and then computing ⇢̂k(y = t) = kt/k (see Alg. (2) for how this
update was implemented in our experiments).
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Note that the above step requires O(dT ), since updating the (uncoded) bk from bk�1

requires O(d) and multiplying bk by a diagonal matrix requires O(dT ). All the above compu-
tations are dominated by the product A�1

k bk, which requires O(Td2). Therefore, our algorithm
is computationally equivalent to the standard incremental RLSC approach.

Coding as a Regularization Parameter. Depending on the amount of training examples seen
so far, the estimator kt/k could happen to not approximate ⇢(y = t) well. In order to mitigate
this issue, we propose to introduce a parameter ↵ 2 [0, 1] and raise �k element-wise to the
power of ↵ (indicated by (�k)

↵). Indeed, it can be noticed that for ↵ = 0 we recover the
(uncoded) standard RLSC, since (�k)

0
= IT , while ↵ = 1 applies full recoding. In Sec. 8.5.2

we discuss an efficient heuristic to find ↵ in practice.

On Incremental Rebalancing. Note that, differently from recoding, the loss-rebalancing
strategy (Eq. (8.9)) cannot be implemented incrementally. Indeed, the solution of the rebalanced
empirical RLS is

Wk = (X>
k ⌃kXk + �Id)

�1X>
k ⌃KYk (8.21)

with ⌃k a k ⇥ k diagonal matrix whose i-th entry is equal to ⌃

(i,i)
k =

1
⇢̂(y=yi)

. Since ⌃k

changes at every iteration with the class distributors estimators, it is not possible to derive a
rank-one update rule for (X>

k ⌃kXk + �Id)
�1 as for standard RLSC.

8.5 Experiments

We empirically assessed the performance of Alg.2 on the MNIST machine learning bench-
mark and on the robotics visual recognition datasets Washington RGB-D (WRGB-D) and
ICUBWORLD28 (ICW28).

To evaluate the improvement provided by the incremental recoding when classes are
imbalanced, we compared the accuracy of the proposed method with the standard recursive
RLSC presented in Sec. 8.3. As a competitor in terms of accuracy, we also considered
the rebalanced approach presented in Eq. (8.21) (which, we recall, cannot be implemented
incrementally).

8.5.1 Experimental Protocol

We adopted the following experimental protocol1:
1. Given a dataset with T classes, we simulated a scenario where a new class is observed by

selecting T � 1 of them to be “balanced” and the remaining one to be under-represented.
1Code available at https://github.com/LCSL/incremental_multiclass_RLSC

https://github.com/LCSL/incremental_multiclass_RLSC
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2. We trained a classifier on the balanced classes, using a randomly sampled dataset
containing nbal examples per class (specified below for each dataset). We sampled a
validation set with nbal/5 examples per class.

3. We incrementally trained the classifier from the previous step by sampling online nimb

examples for the T -th class. Model selection was performed using exclusively the
validation set of the balanced classes, following the strategy described in Sec. 8.5.2.

4. To measure performance, we sampled a separate test set containing ntest examples
per class (both balanced and under-represented) and we measured the accuracy of the
algorithms on the test set while they were trained incrementally.

For each dataset, we averaged results over multiple independent trials randomly sampling
the validation set. In Table 8.1 we report the test accuracy on the imbalanced class and on the
entire test set.

Datasets

MNIST [LeCun et al., 1998] is composed of 60K 28⇥ 28 centered greyscale pictures of digits
from 0 to 9. We addressed the 10-class digit recognition problem and in our experiment we
considered a smaller subset as training set, with nbal = 1K examples per class. The test set
was obtained by sampling ntest = 200 examples per class. We used the raw pixels of the
images as inputs for the linear classifiers.
iCubWorld28 [Pasquale et al., 2015b] was introduced in Sec. 5.4 and specifically collected
with the purpose of providing a benchmark for incremental object recognition in robotics. We
addressed the 28-class object identification task, using all available acquisition sessions per
object and randomly sampling nbal = 700 and ntest = 700 examples per class

In [Pasquale et al., 2015b], we started investigating incremental learning on ICW28, by
evaluating the benefit of incrementally refining the model of known objects as new example
frames were observed. Such benefit was particularly evident when example images from a
new day of acquisition were added to the training set. In that work, we adopted the standard
recursive extension of RLSC (Sec. 8.3), experimenting only the addition of examples belonging
to known classes. In this work, we evaluate the proposed incremental RLSC with addition
of new classes (and recoding). We follow the same protocol adopted there, by feeding the
linear classifiers with image representations extracted as the output of the fc7 activation layer
of the CaffeNet Convolutional Neural Network trained on ImageNet (see Sec. 3.3). We refer
to [Pasquale et al., 2015b] for more details about the procedure for feature extraction.
Washington RGB-D [Lai et al., 2011] was introduced in Sec. 6.D. We addressed the 51-
class object categorization task, averaging results over the ten splits specified in [Lai et al.,
2011] (where, we recall, for each category a random instance is left out for testing). As in
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Figure 8.2: Classification accuracy on ICW28 imbalanced (Top) and balanced (Bottom)
classes for models trained according to Alg. (2) with varying ↵ and best � within a pre-
defined range (chosen at each iteration and for each ↵). Growing ↵ from 0 to 1 allows to
find a model that maintains same performance on known classes while improving on the
under-represented one.

Sec. 6.D.1, we subsampled one cropped RGB frame every five from the full dataset, following
the standard procedure. We sampled nbal = 500 and ntest = 400 images per class (an average
of ⇠ 900 images are available for each category) and performed feature extraction analogously
to iCubWorld28, using the output of CAFFENET’s fc6 layer.

8.5.2 Model Selection

In traditional batch learning settings for RLSC, model selection for the hyper-parameter �
is typically performed via hold-out, k-fold or similar cross-validation techniques. In the
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incremental setting these strategies cannot be directly applied since examples are observed
on-line, but a simple approach to create a validation set is to hold out every i-th example
without using it for training (in our experiments we set i = 6). At each iteration, multiple
candidate models are trained incrementally, each for a different value of �, and the one with
highest validation accuracy is selected for prediction.

However, following the same argument of Sec. 8.2, in presence of class imbalance this
strategy would often select classifiers that ignore the under-represented class. Rebalancing
the validation loss (see Sec. 8.2) does not necessarily solve the issue, but could rather lead to
overfit the under-represented class, degrading the accuracy on other classes since errors count
less on them. Motivated by empirical evidence discussed below, in this work we have adopted
a model selections heuristic for � and ↵ in Alg. 2, which guarantees to not degrade accuracy
on well-represented classes, while at the same time achieving higher or equal accuracy on the
under-represented one.

Our strategy evaluates the accuracy of the candidate models on the incremental validation
set, but only for classes that have a sufficient number of examples (e.g. classes with less
examples than a pre-defined threshold are not used for validation). Then, we choose the model
with largest ↵ 2 [0, 1] for which such accuracy is higher or equal to the one measured for
↵ = 0, namely without coding. Indeed, as can be seen in Fig. 8.2 for validation experiments
on ICW28, as ↵ grows from 0 to 1, the classification accuracy on the under-represented class
increases (Top), while it decreases on the remaining ones, Fig. 8.2 (Bottom). Our heuristic
chooses the best trade-off for ↵ so that performance does not degrade on well-known classes
but at the same time it will often improve on the under-represented one.

8.5.3 Results

In Table 8.1 we report the results of the three methods on MNIST, iCubWorld28 and RGB-
D for a single under-represented class (digit “8”, class 28 and tomato, respectively). We
observed a similar behaviour for other classes. We show both the accuracy on all classes (Total
Acc., Left) and on the under-represented one (Imbalanced Acc., Right). We note that, on the
under-represented class, Alg. 2 (RC) consistently outperforms the RLSC baseline (N), which
does not account for class imbalance and learns models that ignore the class. Also the total
accuracy of RC results higher. Interestingly, on the two robotics tasks, RC outperforms the
loss rebalancing approach (RB), particularly when very few examples of the under-represented
class are available. This is favorable since, as we said, the rebalancing approach cannot be
implemented incrementally (Sec. 8.4.2).

To offer a clear intuition of the improvement provided by our method, in Fig. 8.3 we show
the accuracy of Naïve RLSC (Red) and Alg. 2 (Blue), separately on the under-represented
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Table 8.1: Incremental classification accuracy for Naïve (N) RLSC, Rebalanced (RB) and
Recoding (RC) (see Alg. 2). Following the procedure described in Sec. 8.5.2, we set ↵ = 0.7
for MNIST, ↵ = 0.6 for iCubWorld28 and ↵ = 0.7 for RGB-D.

Dataset nimb
Total Acc. (%) Imbalanced Acc. (%)

N RB RC N RB RC

MNIST
nbal
=

1000

1 79.2 ± 0.3 79.7 ± 0.4 79.7 ± 0.6 0.0 ± 0.0 7.4 ± 7.7 9.5 ± 4.9
5 79.1 ± 0.3 82.5 ± 0.7 80.3 ± 0.6 0.0 ± 0.0 39.6 ± 6.2 17.5 ± 6.6
10 79.2 ± 0.3 83.6 ± 0.7 81.0 ± 0.6 0.0 ± 0.0 49.5 ± 5.7 25.1 ± 5.3
50 79.2 ± 0.3 85.5 ± 0.3 83.9 ± 0.5 0.0 ± 0.0 73.5 ± 3.3 49.1 ± 3.5
100 79.2 ± 0.4 85.9 ± 0.4 85.1 ± 0.5 2.0 ± 0.9 75.5 ± 2.7 62.7 ± 2.9
500 85.5 ± 0.3 86.2 ± 0.3 86.1 ± 0.3 66.9 ± 1.1 78.5 ± 0.9 77.8 ± 1.1

iCub
nbal
=

700

1 77.6 ± 0.3 76.8 ± 0.1 77.7 ± 0.3 0.0 ± 0.0 0.4 ± 0.6 8.0 ± 11.4
5 77.6 ± 0.3 77.9 ± 0.1 78.6 ± 0.3 0.0 ± 0.0 8.1 ± 3.9 38.5 ± 9.7
10 77.6 ± 0.3 78.3 ± 0.4 78.9 ± 0.2 0.0 ± 0.0 23.7 ± 10.8 49.6 ± 5.6
50 77.7 ± 0.2 80.0 ± 0.2 80.0 ± 0.1 5.4 ± 4.1 73.9 ± 7.3 75.0 ± 5.5
100 78.6 ± 0.1 80.2 ± 0.1 80.1 ± 0.2 39.1 ± 3.6 85.9 ± 4.0 86.5 ± 3.0
500 80.2 ± 0.2 80.1 ± 0.1 80.1 ± 0.2 89.3 ± 2.5 93.8 ± 2.0 94.8 ± 1.9

RGB-D
nbal
=

500

1 80.4 ± 2.2 78.6 ± 3.2 83.3 ± 3.2 0.0 ± 0.0 62.0 ± 42.1 72.2 ± 26.3
5 80.4 ± 2.2 83.0 ± 2.1 83.9 ± 2.6 0.0 ± 0.0 91.7 ± 12.8 99.9 ± 0.3
10 80.4 ± 2.2 83.8 ± 1.8 83.6 ± 2.6 2.8 ± 2.4 94.7 ± 8.4 100.0 ± 0.0
50 82.3 ± 2.2 84.3 ± 1.9 83.5 ± 2.9 96.6 ± 3.7 100.0± 0.0 100.0 ± 0.0
100 82.4 ± 2.1 84.4 ± 2.0 83.5 ± 2.8 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
500 82.3 ± 2.1 84.1 ± 2.0 84.1 ± 2.8 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

class (Top), the balanced classes (Middle), and all classes (Bottom), as they are trained on new
examples. For this experiment we let each class be under-represented and averaged the results.
It can be noticed that Alg. 2 is much better on the imbalanced class, while being comparable
on the balanced ones, resulting in overall improved performance.

We point out that the total accuracy on all datasets for nimb = 500 is comparable with the
state of the art. Indeed, on MNIST we achieve⇠ 86% accuracy, which is slightly lower than the
one reported in [LeCun et al., 1998] for a linear classifier on top of raw pixels (this is reasonable,
since we are using much fewer training examples). The total accuracy of Alg. 2 on RGB-D
is approximately 84%, which is comparable with the state of the art on this dataset [Schwarz
et al., 2015]. On the iCubWorld28 dataset we achieve ⇠ 80% accuracy, which is in line with
the results reported in Fig. 8 of [Pasquale et al., 2015a] (extended version of [Pasquale et al.,
2015b]).

8.6 Conclusion

In this Chapter we addressed the problem of learning on-line with an increasing number of
classes. With the ultimate goal of building a visual object recognition application for a lifelong
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Figure 8.3: Average classification accuracy of the standard incremental RLSC (Red) and
the variant proposed in this work (Blue) over the imbalanced (Top), balanced (Middle) and
all (Bottom) classes. The models are incrementally trained as nimb grows, as described in
Sec. 8.5.1.

learning robotic setting, we focused on problems related to class imbalance, which naturally
arises when a new category/object is observed for the first time. To address these issues,
we proposed a variant of the recursive RLSC (Regularized Least Squares for Classification)
algorithm, which (i) incorporates new classes incrementally and (ii) dynamically applies class
recoding when new examples are observed. Updates are performed in constant time with
respect to the growing number of training examples. We evaluated the proposed algorithm on a
standard machine learning benchmark and on two robotics datasets, showing that our approach
is indeed favourable in online settings when classes are imbalanced.

We note that, in principle, for the experiments where we used features extracted from a
Convolutional Neural Network, we could have also directly trained the network online, by
Stochastic Gradient Descent (backpropagation). While works empirically investigating this
end-to-end approach in settings where new classes are to be progressively included into the
model exist [Käding et al., 2016], this is still a largely unexplored field, the study of which is
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not in the scope of this work. The method we propose allows to update a predictor without
using training data from previous classes in a fast and stable way, and, by relying on rich deep
representations learned offline, is proven to be competitive with the state of the art, while being
more suitable for online applications.

Future research will focus on strategies to exploit knowledge of known classes to improve
classification accuracy on new ones, following recent work [Tommasi et al., 2010, Tommasi
et al., 2012, Kuzborskij et al., 2013, Sun and Fox, 2016].





Chapter 9

Robotic Applications:
Putting it All Together

Providing autonomous agents with robust and adaptive recognition capabilities for real world
scenarios poses scientific but also technological challenges. In this Thesis we addressed both:
in previous Chapters, we reported on our investigation of the use of modern deep networks for
visual recognition in robotics, focusing on key aspects like learning on the fly and learning
incrementally; in this Chapter, we show how the deployment of the proposed solutions on real
platforms resulted into a fast, adaptive, visual recognition system remarkably improving the
capabilities of the robots.

After introducing the two platforms used as testbed for our experiments, the iCub and R1
humanoid robots (Sec. 9.1), we provide an overview of the developed applications (Sec. 9.2).
The first one is the ICUBWORLD FRAMEWORK (Sec. 9.3), a set of software tools that have
been implemented to collect the ICUBWORLD datasets presented in Chapter 5. The second
one is the ON THE FLY RECOGNITION application (Sec. 9.4), an interactive demo where the
robot learns to recognize new objects taught by a human, relying on the pipeline based on
Convolutional Neural Networks and the Regularized Least Squares for Classification algorithm
described in previous Chapters.

9.1 Robot Platforms

We provide a very brief introdution to the two platforms consistently used during this Thesis,
the iCub (Sec. 9.1.1) and R1 (Sec. 9.1.2) humanoids. Both have been designed with the goal of
realizing general-purpose assistants for people in possibly multiple scenarios.
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Figure 9.1: iCub: Full body (Left); Head Kinematics (Middle); Dragonfly Camera (Right).

9.1.1 iCub

An Open Source Platform for Research. The iCub [Metta et al., 2010]1 (Fig. 9.1) is a
fully humanoid robot specifically conceived as a testbed for research in human cognition
and Artificial Intelligence (AI). The motivation behind the accurate humanoid design is the
embodied cognition hypothesis [Metta et al., 2008], arguing that we learn cognitive skills
by interacting with the environment and other humans, using the limbs and senses, and,
consequently, our internal model of the world is determined by the form of the human body.
Therefore, the iCub’s design is aimed to allow the robot to interact with the world in the same
way a child would do, through an accurate reproduction of the human perceptual system and
articulation [Metta et al., 2008].

The robot was initially developed within the FP-6 European Project RobotCub and built
by the Istituto Italiano di Tecnologia (IIT) in 2004. At present, more than 30 laboratories in
Europe, US, Korea and Japan are using this platform for their research and more than 70 people
work on this project at the iCub Facility department, IIT, in Genoa. The name is a partial
acronym, cub standing for Cognitive Universal Body. The hardware design, software and
documentation are all open source, released under the GPL/LGPL license. Since the first iCub
robots were built in 2004, the design has undergone several revisions and improvements. With
respect to the very first versions, the latest iCub has for example smaller and more dexterous
hands, lighter and more robust legs with greater joint angles, to permit walking [Tsagarakis
et al., 2009], a progressively more extended skin covering, and so forth.

1
http://www.iCub.org

http://www.iCub.org
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Short Description. While we report in Appendix 9.A.1 a detailed description of the robot,
here we just highlight the features of its “visual system”, which is the part most involved in the
developed applications. This consists in a stereo pair in a swivel mounting inside the head, with
2 dragonfly cameras positioned where the eyes would be located on a human (see Fig. 9.1).
Each camera streams RGB images of 640 ⇥ 480 pixels at frame rate of 33Hz. Since the robot
was not initially designed for autonomous operation, it was consequently not equipped with
on board processors suitable for this. Instead, an umbilical cable provides power and network
connection. Therefore, all computational-intensive applications, including visual processing,
are executed on external machines. However, the most recent iCub version is equipped with a
WiFi connection and a battery mounted as a backpack such that the robot can move freely in
the environment.

Software Infrastructure. The iCub software relies on the YARP (Yet Another Robot Plat-
form) [Metta et al., 2006a] middleware. YARP is a set of C++ libraries, protocols, and tools to
keep software modules cleanly independent of specific devices and operative systems. In this
way, the applications for the robot can be “composed” by connecting multiple software compo-
nents or YARP modules, each providing a specific functionality and running independently on
a machine, communicating peer-to-peer data and instructions with other modules. Like iCub,
also the YARP middleware is open source, released under the LGPL. Currently, iCub and
YARP software are hosted on Github within the robotology organization 2. Accordingly, all
modules and applications result of this work are publicly available under the same organization
(the specific repositories will be described in Chapter 9).

9.1.2 R1

“Your Personal Humanoid”. R1 (Fig. 9.2) is a recent platform designed at the iCub Fa-
cility, with the aim of commercializing the robot as a general-purpose assistant for public
or professional environments (as hotels, hospitals, shopping centres and, eventually, private
houses).

The design and materials of R1 are such to definitely reduce its cost (from ⇠ 250.000euro,
current price of one iCub robot, to an estimate of ⇠ 20.000euro for R1’s prototypes and
⇠ 3.000euro in production), while maintaining most of the capabilities of the iCub. It is made
of plastic and fiber of carbon and metal (50%), ⇠ 1.25m high and ⇠ 50Kg weigh.

2
https://www.github.com/robotology

https://www.github.com/robotology
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Figure 9.2: R1

Short Description. With respect to the iCub, it is equipped with a fixed stereo pair, com-
plemented with an additional RGB-D sensor (see Fig. 9.2). The RGB output image of the
depth sensor is 320 ⇥ 240 pixels, while the left/right cameras are synchronized and stream full
HD images (1920 ⇥ 1080), both at at frame rate of 33Hz. Overall, with respect to the iCub,
R1 is provided with a more robust and detailed perception of the scene structure, which is
particularly critical for navigation. Like the iCub, it is also equipped with microphones and
speakers enabling verbal communication.

Differently from iCub, R1 is a fully autonomous platform provided with WiFi connec-
tivity, a battery with ⇠ 3h of autonomy, and three computational units: an FPGA (Field
Programmable Gate Array), an Intel i7 CPU, and an NVIDIA Tegra (Jetson TX1). This
latter device is a quite powerful embedded system that supports a Linux distribution and
that is endowed with a quad-core ARM processor, 4GB RAM and an integrated 256-core
CUDA GPU. The system provides 1TFLOPS of FP16 compute performance in 10 watts of
power and has been specifically released for deploying computer vision and deep learning
algorithms to mobile platforms like robots, cars, personal devices etc. Indeed, we will see
in Sec. 9.4.1 that the full visual recognition system developed in this work runs on it in real time.

Software Infrastructure. This robot shares the same YARP middleware with iCub and
therefore most of the software written for this latter one runs, with minor adaptation, also on
R1. In particular, the recognition application produced for this work runs on both platforms,
replacing only the parts that rely on the physical structure of the robots. For instance, on
the iCub, the depth map must be computed from the stereo pair, while, on R1, it is provided
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by the RGB-D sensor. Similarly, the implementation of the visual tracking of a target will
be platform-specific. However, modules providing high-level cognitive functionalities and
behaviors can be interchanged seamlessly between the two platforms. This includes the visual
recognition pipeline developed in this work. Such flexibility is one of the advantages provided
by the modularity of YARP middleware.

As for the iCub, in Appendix 9.A.2 we expand this brief description providing some more
details on the robot.

9.2 Overview

In this Section we provide an overview of the developed applications. The overall aim of
the provided software tools is to make the set of operations that we performed in previous
Chapters, throughout our investigation, reproducible for other users of the robots. In particular,
in Chapter 7 we observed that fine-tuning off-the-shelf CNN models, like AlexNet, on image
sequences representative of the variability factors to which the system should be robust, does
improve the invariance properties of the internal representation of these models with respect to
such factors. In particular, we considered viewpoint variations and collected the ICUBWORLD

TRANSFORMATIONS dataset. We then fine-tuned models on such dataset and, by encoding
images into fine-tuned representations, we were able to learn objects’ appearance from few
examples, by training Regularized Least Square Classifiers (RLSC) on top.

The set of applications developed makes this “cycle” reproducible for other users with
minimum coding effort. The ICUBWORLD FRAMEWORK provides software tools to collect
annotated visual data from the iCub or R1 platforms and fine-tune (or train) deep CNNs on
the acquired data, in order to obtain robust representations. The ON THE FLY RECOGNITION

application finally allows to use the trained representations within a recognition pipeline, to
teach new objects to the robot “on the fly”.

In the following, we briefly describe how the different software components allow to
perform the main three phases involved in such process:

Data Collection: A first component is a data acquisition application to collect annotated
visual sequences. This application is the one that has been developed to acquire the
latest ICUBWORLD TRANSFORMATION release (see Sec. 5.3.2) and will be described
in Sec. 9.3.1.

Training: The second component allows to evaluate the fine-tuning (or training) of different
CNN architectures, with possibly different protocols, on the collected dataset (or subsets
of it), in order to produce a model conveying a deep representation with good properties
with respect to the desired recognition task. This consists in a set of MATLAB routines
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(interfacing with CAFFE) that has been developed to perform the experiments reported
in Chapters 6 and 7, and it will be described in Sec. 9.3.2. Together with the acquisition
application, it constitutes the ICUBWORLD FRAMEWORK.

Deployment: Once the acquisition and offline training phases are done, the fine-tuned CAFFE

model can be deployed into the visual recognition pipeline of the robot, where it can
be used to encode in real time images of objects into corresponding representations.
To this end, a representation extraction module has been implemented, which uses
NVIDIA software tools to optimize CAFFE models and provide real time predictions
(also on memory-constrained embedded devices like the GPU onboard the R1 robot).
The representation extraction step is followed by a classification stage, where RLSC are
trained on the fly to learn new objects. The performance of the resulting recognition
pipeline composed of representation extraction and RLSC can be evaluated within the
ON THE FLY RECOGNITION demo, described in Sec. 9.4.

All components are independent and can be employed either separately or in sequence to (i)
adapt a visual representation to potentially new settings and (ii) insert it into a fast learning
pipeline to teach the robot new objects on the fly. In the following, we describe more in detail
each part.

9.3 iCubWorld Framework

In this Section we briefly present the main functionalities of the ICUBWORLD acquisition
application (Sec. 9.3.1) and of the MATLAB routines to train CAFFE models on the acquired
sequences (Sec. 9.3.2), comprising together the ICUBWORLD FRAMEWORK.

9.3.1 Acquisition

The ICUBWORLD acquisition setup has been introduced in Sec. 5.3.1. Here we specifically
consider the “Human Mode”, the modality employed for the acquisition of the latest release: a
human teacher standing in front of the robot holds an object in the hand and pronounces its
label; the robot focuses on the object and tracks it, by exploiting bottom up visual cues, for
a time period during which frames (annotated with the object’s label and bounding box) are
recorded. A schema of the application is reported in Fig. 9.3. Each box is a YARP module,
which runs independently on a node of the iCub’s cluster and communicates with other nodes
through a YARP network (see Sec. 9.1).

As it can be noticed, the application is composed of two main parts: a first one (Disparity
Segmentation and Motor Control modules) is dedicated to continuously focus the
robot’s gaze on the object of interest (in this case, the depth cue is used, as it will be explained
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Figure 9.3: iCubWorld: schema of the acquisition application (Human Mode).

in the following); a second one (Speech, Interaction Manager and Data Store

modules) instead manages the verbal interaction with the human supervisor and starts/stops
accordingly the recordings.

In the following, we shortly illustrate the object localization method, based on depth
segmentation, and the software infrastructure to automatically check, clean and organize the
acquired raw data.

Object Tracking by Depth Segmentation

As explained in Sec. 5.3.2, the depth cue is a robust distinguishing feature to localize the object
of interest in the considered setting, because this is assumed to be the closest entity to the robot.
To this end, we devised a depth-based attention system, whose operation is showed in Fig. 9.4,
reporting three excerpts from the acquisitions of three objects (one per column). In the top row,
an RGB frame and its annotation, superimposed in terms of object’s label and bounding box,
are represented. In the middle row, the corresponding disparity map of the scene is reported.
Finally, in the bottom row, the segmentation of the lightest (that is, the closest) region in the
disparity map is shown to produce a rough mask on the object of interest, which can be used to
compute (i) the object’s 3D centroid and (ii) its enclosing bounding box. The centroid is sent
to a motor control module, which focuses the robot’s gaze on the object. The bounding box is
instead used to annotate the frame (and is reported also in the top row). The result is that the
robot continuously focuses on the closest object in its visual field.

A complete description of the system is published in [Pasquale et al., 2016b]. To realize it,
we first improved the stereo perception of the iCub robot in order to provide dense, robust and



178 CHAPTER 9. ROBOTIC APPLICATIONS

Figure 9.4: Depth-based Localization Pipeline. Three frames (extracted from the video
attached to [Pasquale et al., 2016b] as supplemental material) showing the effectiveness of the
proposed segmentation system. Top: resulting crop in the left frame, labeled by the operator
using speech. Middle: disparity map. Bottom: segmented disparity map, with the closest blob,
its centroid and enclosing bounding box. Red and green centroids correspond to two different
temporal smoothing windows. See [Pasquale et al., 2016b] for details.

real time 3D information usable for tracking. Then, we devised a simple, lightweight disparity
segmentation algorithm. Finally, we closed the loop by streaming the centroid coordinates to
the robot’s gaze controller.

An adapted version of this system has also been implemented on the R1 robot, with the
following differences:

Depth Map: as anticipated in Sec. 9.1, R1 is endowed with an RGB-D camera directly
outputting the depth map.

Depth Segmentation: this part is common to both iCub and R1 and the module’s code is
hosted under the robotology GitHub organization3.

Gaze Control: of course the gaze control is platform-specific and we relied on available
modules.
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Figure 9.5: iCubWorld: directory tree.

Scalable Application

Another fundamental innovation introduced in the acquisition setup allows to scale the number
of collected sequences, with the automation of several operations during the acquisition and
in the post-processing of the recorded data. This was necessary, since the ICUBWORLD

TRANSFORMATION overall comprises 4k image sequences. Specifically, all post-acquisition
steps to format the raw streams of frames/annotations into an ordered set of folders were
automated. As it can be observed in Fig. 9.3, images are first recorded into a unique folder,
where they can be associated only to their timestamp. Image-related information is also
written in a unique file, where each row contains the timestamp (to be associated with that
of the corresponding image), the label and the name of the specific sequence that is being
acquired (e.g., 2D Rot, Scale, etc...), and finally the localization annotation (see Fig. 9.3 for an
example). All this information must be checked, cleaned and finally formatted into a folder
tree like the one depicted in Fig. 9.5, representing an example of the structure of ICUBWORLD

3
https://www.github.com/robotology/segmentation/dispBlobber

https://www.github.com/robotology/segmentation/dispBlobber
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TRANSFORMATION.
A MATLAB set of functions was developed to perform these steps semi-automatically.

With this setup, users can acquire a new dataset by (i) running the acquisition application,
interacting with the robot and showing the desired objects, and, afterwards, (ii) running the
post-processing application, which takes the raw sequences and produces the dataset in a
standard format. We plan to make this code soon available on the ICUBWORLD website4 in
order to involve multiple laboratories to use this application to collect a shared database for
visual recognition on the iCub.

9.3.2 Training

Once the dataset has been collected and prepared, it can be used to train or fine-tune CNN
models. To this end, a set of MATLAB functions has been developed, providing support for
calling CAFFE APIs.

To train a CAFFE model three definition files are needed, providing, respectively: the
list of training/test images, the network structure (i.e., the sequence of layers with specified
parameters) and the training protocol (i.e., SGD hyper-parameters). The aim of the provided
routines is to help the user producing these files in an programmatic way. In particular,
regarding the creation of training/test sets, if the dataset is formatted as a folder tree (as for
example the one reported in Fig. 9.5), it is possible to create arbitrary sets including, e.g. only
certain categories, or certain objects per category, or sequences per object, etc., by simply
listing the directories to be included at each level. Regarding the creation of the architecture
and SGD configuration files, once a “base” model and protocol are chosen (e.g., CaffeNet with
the default protocol), it is possible to create many variations of them, by listing the different
values to be tried for each parameter that has to be changed. A plotting tool is included to help
inspecting the performance of the experimented models.

This framework has been developed to perform the experiments reported in Chapters 6, 7
and the code will be publicly released on the same ICUBWORLD website.

9.4 On the Fly Object Recognition

In this Section we describe the visual recognition application that has been developed to teach
new objects to the robot on the fly, in an analogous setting to the one adopted for the acquisition
of ICUBWORLD. The application is called ON THE FLY OBJECT RECOGNITION and allows
to directly test the robustness of visual representations trained, e.g., on ICUBWORLD datasets,
in a real world setting. Notably, this tool is also used within other applications, relying on

4
https://robotology.github.io/iCubWorld/

https://robotology.github.io/iCubWorld/


CHAPTER 9. ROBOTIC APPLICATIONS 181

Disparity

Segmentation

Caffe/TensorRT

YARP Wrappers

Motor

Control

c
u
p

w
a
ll
e
t

s
o
a
p

c
a
r

c
a
n

learn <obj>

forget <obj>

what is this?

cup

Interaction

Manager

Incremental 

Classifier

Speech

Figure 9.6: On the fly Object Recognition: application schema.

the outcome of visual recognition to perform further actions (see, e.g., [Fischer and Demiris,
2016]).

Framework Model Precision Time Power
(batch=1) cons.

CAFFE CaffeNet FP32 33Hz 7.2W
TENSORRT CaffeNet FP16 43Hz 6.6W

CAFFE GoogLeNet FP32 24Hz 9.6W
TENSORRT GoogLeNet FP16 40Hz 8W

Table 9.1: caffeCoder and GIECoder: comparison of computational time and power con-
sumption between respectively CAFFE and TENSORRT implementations of CaffeNet or
GoogLeNet, running on the Jetson TX1 card onboard the R1 robot.

A sketch of the application is depicted in Fig. 9.6 and some snapshots of the demo are also
represented in Fig. 1.2. As in the ICUBWORLD acquisition scenario, a human teacher standing
in front of the robot shows an object holding it in the hand and pronounces its label; a routine
exploiting a bottom-up visual cue allows the robot to focus on the new entity of interest and
track it for a certain time period, during which cropped frames around the object are encoded
into vector representations and fed to a classifier module. Once done, the object is learned, and
the human can hence show it again to the robot, this time asking to recognize it. The procedure
can be repeated for all the objects that the robot has to learn. Also, specific objects can be
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forgotten with an analogous verbal command.
The application is implemented in YARP and is composed of different modules, the

most important ones reported in Fig. 9.6. A localization module segments a salient region
in the image and extracts a rectangular crop around it, that is fed to the recognition pipeline.
This latter is composed by (i) a representation extraction module that encodes images into
vector representations and (ii) a classifier module that is trained and tested on the extracted
representations. A speech recognition/production module tackles the verbal interaction and a
motor controller moves the robot’s gaze towards the localized region. The robot continuously
localizes, tracks and recognizes salient regions in incoming frames, and the visual output,
exemplified in Fig. 9.6, is an histogram of class probabilities (that is, the real time output of
the classifier), whose class with maximum score is chosen as the predicted object’s label. The
histogram can also be averaged over a time window to increase the stability of predictions,
accordingly to the results that we observed in [Pasquale et al., 2015b]. A manager module
triggers the training of the classifier depending on the processed verbal commands to train or
forget the objects.

At present, the object localization and tracking is dealt with the same attention system
described in Sec. 9.3.1, exploiting the depth as discriminant cue for the object. Nevertheless,
alternative solutions could be plugged at this level. Similarly to the acquisition of ICUBWORLD,
also this demo can work in a different modality, where the robot takes the object in its hand
and explores it, instead of tracking it in the scene (we called it the “Robot Mode” in Sec. 5.3.1).
To demonstrate the robustness of the recognition pipeline however, the “Human Mode” is more
suited since it allows to teach objects in shorter times and to “stress” the system with more
challenging conditions.

The code is hosted in the GitHub robotology organization5 and is implemented both
for the iCub and R1 platforms. In the following, we briefly describe the two components of the
recognition pipeline (while we skip the speech and motor controller modules since these are
not part of this work).

9.4.1 Representation Extraction

This step is performed by a YARP module that wraps a CNN model implemented in a deep
learning framework, CAFFE in this case. Specifically, the module receives a batch of images as
input, feeds them to a CAFFE model, runs a forward pass and provides their corresponding
representations as the output of one of the intermediate layers of the architecture. Every CAFFE

model can be used, since the module internally calls CAFFE APIs. For instance, either an off-
the-shelf model, or one fine-tuned within the ICUBWORLD FRAMEWORK, can be employed.

5
https://www.github.com/robotology/onthefly-recognition

https://www.github.com/robotology/onthefly-recognition
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Also the layer at which to extract representations can be changed (e.g., when choosing the
output layer, the predictions of the network can also be directly obtained). The module,
called caffeCoder, is hosted in the himrep repository6 (that stands for hierarchical
image representations), together with the YARP module previously employed for
visual recognition on the iCub robot, which was based on a Sparse Coding dictionary learning
strategy proposed in [Fanello et al., 2013c].

Note that caffeCoder requires a GPU (Graphics Processing Unit) in order to process
images in real time. When using the iCub, the module runs (like all other modules) on external
nodes, which can be easily provided with a GPU. However, we care to point out that the
module runs in real time also on the embedded GPU onboard the R1 robot.

Optimizing CAFFE models for R1. To this regard, a second module has also been imple-
mented, with the same functionality of caffeCoder but exploiting the recently released
NVIDIA software tool TENSORRT to process CAFFE models and produce further optimized
implementations. In particular, the TENSORRT7 library optimizes the implementation of
deep CNN models in various supported frameworks (comprising CAFFE), in order to reduce
their memory and computational requirements. This library processes the definition of the
architecture of a CNN model (e.g., the order and size of convolution, pooling, non linearity
layers, etc.) and produces an equivalent model, with a more efficient implementation for each
layer, which runs faster, particularly on embedded GPUs like R1’s NVIDIA Jetson TX1. The
module is hosted at the same himrep repository under the name of GIECoder, where GIE
stands for GPU INFERENCE ENGINE, the initial name of the TENSORRT framework. The
module, while originally developed for R1, it is in fact usable on every supported GPU.

In Table 9.1 the computational time of one feedforward pass of a single image through
CaffeNet or GoogLeNet is reported, comparing caffeCoder and GIECoder modules
running on the NVIDIA Jetson TX1 onboard the R1 robot. Also the power consumption
is reported, as the difference between the Jetson’s consumption with or without the module
running. As can be noticed, both modules achieve (almost) real time performance. Moreover,
TENSORRT allows to run complex models like GoogLeNet on memory-constrained platforms
like the one considered, with even better performance. Note that TENSORRT offers the
possibility of optimizing computations with FP16 precision with particular efficiency, with
negligible numerical differences in the output representations that do not affect predictions.

The full ON THE FLY RECOGNITION demo including the GIECoder can run entirely on
the Jetson TX1 in real time, without the need of external additional computational resources.

6
https://www.github.com/robotology/himrep

7
https://developer.nvidia.com/tensorrt

https://www.github.com/robotology/himrep
https://developer.nvidia.com/tensorrt
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9.4.2 Classification

The incremental version of RLSC proposed in Chapter 8 is currently under development and
will be released soon. For the time being, on the robots we use the linearClassifier
module, hosted in the himrep repository and employing the liblinear8 library.

9.5 Conclusions

In this Chapter, we have presented the software tools that have been developed and made
available as a product of this Thesis. The ICUBWORLD FRAMEWORK comprises a data
acquisition application, which allows to quickly record large-scale collections of annotated
image sequences while interacting with the robot. An additional set of MATLAB functions
accelerate the use of the acquired sequences to train or fine-tune deep CNN models by
interfacing with CAFFE APIs.

The ON THE FLY RECOGNITION application allows to assess the performance of the
proposed recognition pipeline in a similar human-robot interaction scenario, where new objects
can be taught to the robot on the fly. An optimized module extracts in real time image
representations as the output of an intermediate layer of a CNN model, and a downstream
classifier is trained and tested online in the representation space. The CNN model can be chosen
off-the-shelf or fine-tuned, possibly on sequences previously acquired within the ICUBWORLD

FRAMEWORK.
The overall system allows users to quickly train a deep CNN on the recognition problem

of interest, and assess the efficacy of the resulting visual representation within the same real
world scenario where the robot will be expected to operate.

8
https://www.csie.ntu.edu.tw/~cjlin/liblinear/

https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Figure 9.A.1: iCub: Skin sensors.

Appendices

9.A Robots Details

We expand the two descriptions provided in Sec. 9.1, adding some more details on the adopted
robotic platforms.

9.A.1 iCub

The iCub humanoid is ⇠ 1m high and ⇠ 25 kg in weight. In the following, its main features
are listed.

Actuators. The robot has 53 actuated Degrees Of Freedom (DOFs), distributed in this way:

arms: 7 each
hands: 9 each (3 for the thumb, 2 for the index, 2 for the middle finger, 1 for the
coupled ring and little finger, 1 for the adduction/abduction). As can be noticed, the
hands have been designed to support sophisticate manipulation skills.
head: 6 (3 for the neck and 3 for the cameras)
torso: 3
legs: 6 each

It also has lines of red LEDs representing mouth and eyebrows mounted behind the face panel
for making facial expressions, and speakers.

Sensors. The iCub is one of the few platforms in the world with a sensitive full-body skin to
deal with safe physical interaction with the environment. At present, the skin covers the chest,
arms and forearms, hand palms and finger tips (see Fig. 9.A.1), legs and calfs.

We already described the stereo pair enabling 3-dimensional perception of the environment.
Some versions of the robot are also equipped with two asynchronous bio-inspired Dynamic
Vision Sensors (DVS) [Lichtsteiner et al., 2008], event-based cameras that allow the perception
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of fast changes in the scene with super real time temporal resolution.

Two microphones are mounted where the ears are in humans. A gyroscope and an
accelerometer are also mounted on the head to act like the human vestibular system. Joint
encoders and 6-axis F/T sensors in each limb are also present.

Computational Capabilities. The robot is controlled by an on board PC104 controller which
communicates with actuators and sensors using CANBus. It is not equipped with other on
board processors and, while in previous versions, an umbilical cable provided power and
network connection, the most recent version is endowed with a WiFi connection and a battery
mounted as a backpack.

Software. As anticipated, the iCub software relies on the YARP (Yet Another Robot Plat-
form) [Metta et al., 2006a] middleware, a set of C++ libraries, protocols, and tools to keep
software modules cleanly independent on specific devices and operative systems. Its function-
ality is equivalent to the Robot Operative System (ROS)9 [Quigley et al., 2009], both aiming
to ease the complexity of developing robotics applications through software modularity. By
means of the YARP middleware, applications can be composed by connecting multiple YARP
modules running independently on nodes of a cluster and communicating peer-to-peer data and
instructions through a YARP network. Indeed, YARP supports asynchronous or synchronous
communication and many protocols like tcp, udp, multicast, local, MPI, mjpeg-over-http,
XML/RPC, tcpros. It is written in C++, like most of iCub software, but it includes interfaces to
other languages like Python, LUA, Matlab. It supports Windows, Linux/Debian, MacOs, iOs
and Android, and flexible interfacing with the hardware devices used on the robot platform.

9.A.2 R1

The R1 humanoid is made of plastic and fiber of carbon and metal (50%), ⇠ 1.25m high and
⇠ 50 kg in weight. It is simpler than the iCub, and very robust, accordingly with its commercial
purpose. In the following we provide a brief comparison between the two platforms:

Actuators. With respect to the iCub, R1 replaces legs with wheels, achieving a 2Km/h speed
(threshold set mainly for safety reasons). It has plier-like hands, with a spherical wrist that can
lift up to 1.5Kg. Globally, it has 28 DOFs:

arms: 8 each
hands: 2 each (1 for the thumb, 1 for the fingers).
head: 2 (neck)
torso: 4
wheels: 1 each

9
http://www.ros.org/

http://www.ros.org/
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Notably, its arms and torso are extensible (13cm and 15cm respectively), to allow reaching for
far objects. Differently from iCub, its head is fully covered with a LED monitor to communicate
expressions and sentences (and of course it is provided with speakers).
Sensors. R1’s skin does not cover the full body but only the most critical parts including
forearms, hand palms and the thumb tip. We already described its visual system, composed of
both a fixed stereo pair and one RGB-D sensor. Also, a LIDAR (Laser Imaging Detection And
Ranging) is mounted on the basis.

Finally, a microphone, gyroscope and an accelerometer are mounted on the head, and
6-axis F/T sensors on the shoulders.
Computational Capabilities. We already pointed out that R1 is a fully autonomous platform,
provided with WiFi connectivity, a battery and three powerful computational units: an FPGA
(Field Programmable Gate Array), an Intel i7 CPU, and an NVIDIA Tegra (Jetson Tx1), which
we can exploit to run the developed recognition system in real time, as described in Sec. 9.4.1.
Software. As described, R1 shares the same YARP middleware with iCub, facilitating also
software reusability.





Chapter 10

Future Directions

In this Chapter, we consider possible directions for future research, in order to address the
challenges that emerged from this study and mitigate the impact of the gap with web-scale
image classification settings when performing visual recognition in robotics. The goal of this
discussion is to consider different research topics together in the same picture to present how,
in our opinion, the visual recognition problem in robotics could be addressed from multiple
fronts.

Improving invariance

We showed that modern deep Convolutional Neural Networks (CNNs) can learn specific
invariances from data, and our results confirm that improving representation invariance is
crucial to perform visual recognition in real world scenarios [Pinto et al., 2008, Pinto et al.,
2011, Borji et al., 2016, Poggio and Anselmi, 2016]. Within this perspective, the effects of
training these models on sequences that represent objects undergoing specific visual nuisances
should be definitely further investigated. In particular, it would be interesting to gain more
insights on the relevancy of viewpoint invariance in categorization tasks, an aspect which
evidenced unexpected results in our setting and which has also been considered in recent work
employing the iLab-20M dataset [Zhao et al., 2016, Zhao and Itti, 2016].

Increasing semantic variability

We clearly observed how this point is critical to object categorization. The simplest method is
to share data acquired from different robotic platforms. We have seen in Sec. 5.2 how [Levine
et al., 2016b] use this strategy to collect the necessary data to learn hand-eye coordination
with deep CNNs, or, similarly, the Million Object Challenge [Oberlin et al., 2015] which aims
to acquire a dataset of 1M object models by sharing acquisitions from different laboratories
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owning a Baxter robot 1. Along a similar direction, we explained how we plan to expand
ICUBWORLD with the help of the community of the iCub robot. Beyond expanding the dataset
in the direction of semantic variability, this would also allow to collect multiple acquisitions
of the same object in different conditions, extending the analysis presented in this work in
multiple directions.

An alternative, or complementary, approach, is data augmentation. We have seen in
Sec. 4.1.2 how this method is largely employed to increase viewpoint/illumination variability
by applying synthetic transformations to the images in the training set. Visual augmentation
to cope for semantic variability is a much more challenging problem, although recent work
on inverse graphics [Mansinghka et al., 2013, Kulkarni et al., 2014, Kulkarni et al., 2015] is a
starting point in this direction.

Exploiting 3D Contextual Information

As we saw in Sec. 1.3.2, the exploitation of 3D information in robotics has largely been investi-
gated. Recently, the depth has been integrated in CNNs with encouraging results [Schwarz et al.,
2015, Eitel et al., 2015, Redmon and Angelova, 2015, Carlucci et al., 2016]. While [Schwarz
et al., 2015, Eitel et al., 2015, Redmon and Angelova, 2015] leverage off-the-shelf representa-
tions learned with RGB data and include the depth channel through colorization schemes, [Car-
lucci et al., 2016] synthetically generate a large-scale RGB-D dataset and train a CNN model
entirely on it, reporting further improved performance with respect to previous approaches.

The spatial structure of the scene can also be exploited as an additional self-supervisory sig-
nal, or prior information, to make the prediction more robust. Examples are the work of [Song
et al., 2015], where, for instance, the 3D reconstruction of the room helps discriminating
between known objects and newly introduced ones. Interestingly, [Pillai and Leonard, 2015]
implement a SLAM-aware detection system where the 3D reconstruction of the objects in the
scene allows to project them back on frames and make their localization on the images more
robust. With this approach, object instances could also be autonomously discovered by the
robot.

Exploiting Temporal Contextual Information

While it is important to push the limits of visual recognition at the frame level, a robot is
typically exposed to a continuous stream of images, in which the visual information is highly
correlated. We showed in [Pasquale et al., 2015b] how the prediction accuracy of a system
can be remarkably improved by exploiting this correlation, even with trivial solutions as the
temporal averaging of predictions. More elaborated solutions have been proposed in the

1
http://www.rethinkrobotics.com/

http://www.rethinkrobotics.com/
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literature, including the use of recent Recurrent Convolutional Neural Networks [Donahue
et al., 2015].

The temporal correlation among consecutive frames can be exploited as well as an addi-
tional self-supervisory signal. For instance, in [Wang and Gupta, 2015] and [Goroshin et al.,
2015b, Goroshin et al., 2015a, Jayaraman and Grauman, 2015, Agrawal et al., 2015], visual
representations are learned in absence of label annotations at each frame, by enforcing, e.g.,
the representations of consecutive frames to be similar.

Self-supervised Learning

We opted for the use of a human teacher in the acquisition of ICUBWORLD TRANSFORMA-
TION because we needed a relatively fine control on the movement of the objects. However,
ICUBWORLD could be extended by introducing self-supervision in the acquisition process.
Indeed, we mentioned in Sec. 1.3.2 that a way to reduce the cost of supervision is to imple-
ment explorative strategies in which the robot autonomously interacts with the environment
to collect training samples. Strategies specific to the robotic domain could be devised by
integrating multiple sensory modalities [Sinapov et al., 2014,Higy et al., 2016] and a repertoire
of explorative actions (like grasping or pushing objects [Montesano et al., 2008, Fitzpatrick
et al., 2003, Högman et al., 2016, Pinto et al., 2016]) designed to extract useful cues. The work
of [Pinto et al., 2016] is interesting because, while there has been significant work in the vision
and robotics community to develop vision algorithms for performing robotic tasks, as grasping,
they reverse the pipeline and use robotic tasks for learning visual representations.

Incremental and Multi-task Learning

We pointed out in Sec. 6.5 how this is a crucial aspect in the development of an adaptive
recognition system that must guarantee reliability in lifelong learning scenarios. To this end,
firstly, suitable datasets should be collected (extending, e.g., ICUBWORLD28 to more days,
conditions, and so forth). Then, leveraging the proposed incremental pipeline based on RLSC
as a tool that allows to keep computations feasible, further investigation of the behavior of the
considered learning models in such settings should be carried on.

Within this perspective, in line with the literature on “learning to learn” and transfer
learning [Thrun, 1996], future research should also focus on strategies to exploit knowl-
edge of previous, well-represented classes, to improve classification accuracy on novel and
under-represented ones. Indeed, as empirically observed in recent work [Tommasi et al.,
2010, Kuzborskij et al., 2013, Sun and Fox, 2016], sharing information and structures among
classification tasks can dramatically improve performance.
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To this regard, while in this work we adopted a typical approach to categorization, where
no similarity or relation is assumed among different classes, object categories do have common
visual features (e.g. wheel-like parts, legs, handles and so on) and sharing such information
within the learning model could improve the overall accuracy of a system, especially in
presence of scarce training data.

The literature on multi-task learning proposes different ways to model the relations across
tasks/categories and directly enforcing them on the problem when available a priori [Crammer
and Singer, 2000,Micchelli and Pontil, 2004,Evgeniou et al., 2005,Joachims et al., 2009,Fergus
et al., 2010, Lozano and Sindhwani, 2011] or learn them when unknown [Argyriou et al.,
2008, Jacob et al., 2008, Minh and Sindhwani, 2011, Dinuzzo et al., 2011, Sindhwani et al.,
2012, Ciliberto et al., 2015a, Ciliberto et al., 2015b].
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