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Abstract

Despite the delays and slow dynamics of the sensorimotor apparatus, hu-

mans are capable of producing an extraordinarily wide repertoire of motor

behaviours. Robots on the other hand are characterized by responsive ac-

tuation systems, and fast feedback loops. Nevertheless robots can hardly

match the dexterous manipulation capabilities of humans. Moreover the

inherent dynamics of today’s robots are dominated by actuator inertia and

friction thus complicating physically interaction. The work described in

this thesis goes in the direction of bridging the gap between the capabili-

ties of humans and robots. The first part of the thesis describes how the

back-drivability of a robot can be improved with joint torque control. This

was achieved by designing torque sensors, and by implementing joint level

torque control on the arm of the iCub robot. The second part describes

how back-drivable robotic platforms can be used to perform dynamic tasks.

Numerical methods for planning this kind of tasks were implemented and

tested in simulation.
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Introduction

Humans are capable of producing an extraordinary wide repertoire of motor behaviours.

Understanding how such skilled movements are controlled and coordinated is still an

open problem. It is known from kinesiology and motor control studies, that the human

motor system tackles this problem with complex hierarchical structures that involve

sensory feedback and partly openloop strategies [Kelso, 1982]. Some movements can

be viewed as a sort of error nullying activity where error correction is performed on the

basis of afferent signals transmitted to the central nervous system (CNS); but process-

ing these sensory signals requires time. There are however cases, e.g. when movements

are generated quickly, in which this error detection and correction strategy, based only

on sensory input, would fail. Most theories agree on the fact that the CNS adopts an

openloop control mechanism that relies on an internal model of the dynamics of the

musculoskeletal system. With reference to the field of robotics the motor control prob-

lem is often addressed with error feedback controllers whereas the feedforward aspect

has in general received less attention. This is probably due the inherent behaviour of

today’s robots whose dynamics are dominated by inertia and friction and to the diffi-

culties encountered when trying to estimate accurate parameter based dynamic models.

We nevertheless consider as very important the study of dynamic tasks and feedfor-

ward control schemes in the perspective of tomorrow’s robots becoming more and more

backdriveable. To study dynamic tasks a suitable robot is needed. Current robots

follow the mainstream design paradigm, which is based on the use of rotary electric

motors coupled with speed reducing gearboxes. This choice implies several disadvan-

tages among which high reflected inertia, backlash effects, non-linear frictional effects,

etc., which contribute altogether to “cancel” forces and torques that arise dynamically.

The RobotCub robotic platform [Metta et al., 2005] is also based on this design and is

thus also affected by this problem.
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INTRODUCTION

The work described in this thesis unfolded on two parellel research directions. The

initial part of the project focused on the improvement of the iCub arm back-driveability.

Torque sensors for the joints of an arm were designed and constructed. An experimental

upper-body prototype with joint-torque feedback was then assembled and tested.

The activity of the second part of the project focused the study of controllers for

this experimental platform. The enhanced back-drivability of the robot make it a

suitable platform to investigate topics such as dynamic tasks. These tasks are generally

challenging and their planning is not straightforward. To this end several algorithms,

based on machine learning techniques, were implemented and tested in simulation. This

work is intended to lay the bases for future implementations on the real robot. Out

of these algorithms the iLQG [Todorov and Li, 2005] performed rather well, and is

therefore considered an interesting and promising research topic.

2
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1

The back-drivability problem

It is nowadays widely accepted that back-drivability is a fundamental prerequisite for

a robotic system to interact with a surrounding unmodeled environment. Standard

industrial robotic manipulators completely lack this property being designed specifically

for precise trajectory tracking. For this application domain it is extremely helpful to

dispose of stiff robots that minimize unwanted link or joint displacements. Moreover

non-back-drivability might be useful in the case of joints that remain stationary most

of the time since they can be unpowered but will nonetheless maintain their position.

The same considerations however do not hold for robots intended to physically interact

with the environment or with humans.

As everyday experience teaches us we continuously interact with the world around

us in a stable and robust manner. Moreover if our limbs are perturbed by external

forces our musculoskeletal structure is capable of absorbing the momentum caused by

this interaction. On the other hand the vast majority of robots, with the exception

of those specifically designed for interaction purposes, behave differently. These robot

rely on the mainstream design paradigm which makes use of rotational electro-magnetic

motors. These devices deliver power efficiently at high speed and low torque regimes.

It is thus necessary to couple them with devices capable of converting the power in a

useful range. For this purpose gear trains are used to obtain the mechanical advantage

to amplify torques and reduce angular velocities to useful regimes.

As it is known, however, interactions with robots actuated by highly reduced motors

feel unnatural as these robotic systems tend to be extremely stiff. It is thus often said

that it is hard to back-drive them.

5



1. THE BACK-DRIVABILITY PROBLEM

These examples broadly describe the concept of back-drivability but do not give

a rigorous definition of what it is. Researchers have in the past proposed several

definitions. Among the first significant contributions in this field are those by Salisbury

and Townsend [Townsend, 1988; Townsend and Salisury, 1993]. The authors argue that

the back-drivability is both acceleration and velocity dependent:

“A mechanism which has good acceleration-dependent back-drivability

generates only small inertia-induced contact forces when accelerated by the

contact. [...]

Similarly, a mechanism which has good velocity-dependent back-drivability

generates small friction-induced forces in response to imposed endtip veloc-

ities.”

This definition is only qualitative as the authors do not provide any quantitative values

for “small inertia-induced contact forces” and “small friction-induced forces”.

More recently similar concepts were elucidated by Ishida and Takanishi in their

work on the development of improved actuators for the Sony SDR robot [Ishida and

Takanishi, 2006]. In this work they define back-drivability as:

“The level of easiness of the transmission from the output axis to input

axis of the movement which is occurred at the output axis by the force

which is added to the output axis in case of actuators or power transmission

mechanism.”

and they propose several methods to improve it. The authors however argue that back-

drivability mostly counts at low joint angular velocities, thus viscous frictional torques

and inertia torques are generally less relevant; they therefore redefine back-drivability

as:

“The necessary torque value to start up the rotation of the gear from

the output axis, in other words, the value of rotational torque which is

measured when the gear is rotated from the output axis with very low

speed near zero.”

The former definition has the great advantage of allowing to quantify numerically the

back-drivability of a system, but mostly focuses on the performances of the speed

6



1.1 Efficiency

reduction mechanism not taking into account the complex dynamic behaviours caused

by the other elements of the system. These definitions suggest how the back-drivability

of a robotic system heavily depends on its actuators. Moreover they point out that it

is an inherent, open-loop property of a robotic system.

1.1 Efficiency

The problem of defining back-drivability might also be considered from an “energy

balance” point of view. Robotic systems are generally forward drivable, that is their

actuators can transfer work (e.g. kinetic energy) to the robot links and to the external

environment, thus altering their states. On the other hand, back-drivability can be

regarded as a measure of how hard it is to transfer energy from the external environment

into the robotic system. First of all let us define a force1 as “driving” if it produces

positive work Wd in a machine. Conversely a force shall be defined as “resisting” if

it produces negative work Wr. Friction forces cause a passive resistance to motion

therefore produce negative work Wl. The energy balance equation can thus be written

as:

Wd = Wr +Wl (1.1)

The loss of energy in a system can be generally quantified with the efficiency index η

defined as:

η =
Wr

Wd
(1.2)

where Wr is the actual work in the machine and Wd is the amount of work in the

machine in ideal conditions (i.e. in the absence of frictional forces).

A situation that is likely to happen in a mechanism is a decrease of magnitude

of the driving force. In certain situations the resisting force might be high enough

to initiate backward movement. From energetical considerations we can discern when

motion in a machine can be revered. Let us define the “backward” efficiency η′ as the

ratio between resisting work in backward motion W ′r and driving work in backward

motion W ′d. The amplitude of driving forces in backward motion generally coincides

with that of resisting forces in direct motion. This hypothesis can be formulated as:

Wr ≈W ′d (1.3)
1In the present section forces and torques, intended as generalized forces, are going to be referred

to as forces.

7



1. THE BACK-DRIVABILITY PROBLEM

hence:

η′ ≈ W ′r
Wr

(1.4)

Being Wl and W ′l the works dissipated in direct and reverse motion respectively, the

loss of efficiency in direct and backward motion can be respectively defined as:

1− η =
Wl

Wd
(1.5)

1− η′ ≈
W ′l
Wr

(1.6)

If the two are compared:
1− η′

1− η
≈
W ′l
Wl

Wd

Wr
(1.7)

results in
1− η′

1− η
≈
W ′l
Wl

1
η

(1.8)

Let us denote with k the ratio W ′l /Wl; Eq.1.8 can be compacted as:

η′ ≈ η(1 + k)− k
η

(1.9)

This allows to draw quantitative conclusions: if η < k/(1 + k) the reverse motion

efficiency becomes negative (i.e. η′ < 0). This, in turn, implies that reverse motion

is impossible. As generally k is in the order of 1, reverse motion is possible when the

efficiency of direct motion η is at least higher than 0.5. If the condition described

by Eq.1.3 holds, these considerations help to estimate under which efficiency values

a mechanical system is not back-drivable. In the following sections an alternative

perspective on the problem of back-drivability will be presented and discussed with the

help of simple examples.

1.2 Power oriented graphs

In the current and the following chapters several examples of physical systems will

be presented. To derive the block-diagram representations, state-space equations and

transfer functions of these systems the power oriented graphs (POG) formalism will be

adopted because of its simplicity and ease of application. This section will thus present

a general overview of this technique.

8



1.2 Power oriented graphs

The bond graphs (BG) approach is a fairly know graph-based method for model-

ing physical systems [Karnopp et al., 2000; Paynter, 1961]. It is based on the concept

of power interaction between different systems. In the years, a formal graphical lan-

guage has also been developed to support physical modeling in different domains. This

technique has however some drawbacks:

• it may require more than a dozen different symbols to model a physical system

• it is not easily intelligible

• it requires a classification of the “power variables” into “effort” and “flow”

• its computational implementation is not straight-forward

A less known alternative technique to BG is the power oriented graphs (POG)

framework [Zanasi, 1991, 1993, 1994; Zanasi and Salisbury, 1992] (the reader shall re-

fer to these references for mathematical details). As for BG, POG use power interaction

between subsystems as basic concept for modeling. POG are constructed by combin-

ing in a modular way two basic block components. These two components, named

“elaboration block” and “connection block”, are respectively represented in Fig.1.1 (a)

and (b). The main feature of this representation is the direct correspondence between

G s 

x2x1
+ -

y y K t

K

y1

x2 x1

y2

(a) (b)

Figure 1.1: Modular POG blocks. The figure represents the basic construction block for
a POG; (a) represents a “elaboration block” whereas (b) represents a “connection block”.
Dotted lines represent “Physical sections”.
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1. THE BACK-DRIVABILITY PROBLEM

dual system variables and the corresponding power flow. The inner product of the two

variables passing through a “physical section” (e.g. x and y), represented in Fig.1.1 as

a dotted line, has the physical meaning of the power P [W ] flowing through the section:

〈x,y〉 = xty = P (1.10)

Because of this feature POG allow a neat representation of hybrid system, where en-

ergy is transformed from a physical domain to a different one (e.g. the electrical to

mechanical conversion of a electric motor). The elaboration block is used to represent

elements that can store and dissipate energy (e.g. a capacitor, a resistor, a spring or a

moving mass), while the connection block represents an energy transformation in the

system (e.g. from hydraulic to mechanical). In the general case the variables are not

restricted to be scalar: POG are therefore also suitable to represent multi-dimensional

systems. Moreover the systems’ transfer functions can be easily computed by apply-

ing Mason’s formula [Chen, 1997] which allows the systematic calculation of a graph

transmittances (see [—, 1960] for details). As POG are directed signal flow graphs,

their graph transmittances directly correspond to the transfer function between differ-

ent system variables. Power oriented graphs thus have the following advantages over

bond graphs:

• they require only two elements for the graphical representations

• they do not require a classification of power variables

• they allow the modeling of a wide variety of systems in different energetic domains

• they are easily readable

• their computational implementation is easy (becomes straight-forward with graph-

ical block diagramming tools such as Scicos or Simulink)

Finally if an elaboration block represents a linear transformation, i.e:

G(s) = [Ms+R]−1 (1.11)

with M symmetric and positive definite, the energy stored by the elaboration block

Es can be directly computed as:

Es =
1
2
ytMy (1.12)

10



1.3 Problem statement

and the power dissipated Pd takes the form:

Ps = ytRy (1.13)

In case all the elaboration blocks are linear there is a direct correspondence between

POG representations and the state space description of the system which can be ob-

tained simply by applying Masons’ formula and rewriting the equations in matricial

form.

1.3 Problem statement

Let us consider the dynamics of a rigid body rotating on an axis within the POG

framework; this simple system would be represented by the block diagram represented

in Fig.1.2 where τm denotes the actuator torque, τe denotes the value of torques applied

externally and Jl denotes the moment of inertia of the limb. The dynamic equations

1
J l s

em
+ -

l

Figure 1.2: Simple joint model. The figure represents a simple joint model with POG.

take in this case the simple form:

Jlω̇l =
[

1 −1
] [ τm

τe

]
(1.14)

In this context the forward-drivability F (s) of a robotic system is defined as the transfer

function from actuator torque τm to the driven link angular velocity ωl (as represented

graphically in Fig.1.3(a)). On the other hand, the back-drivability B(s) can be defined

11



1. THE BACK-DRIVABILITY PROBLEM

as the relation between the external torques τe, perturbing the link from the outside,

and the resulting link acceleration. In this case:

F (s) = B(s) =
1
Jls

(1.15)

The example given above does not take into account the fact that actuator torques

em
+ -

l

1
J l s

em
+ -

l

1
J l s

(a) (b)

Figure 1.3: Forward and backward drivability. The figure gives diagrammatic represen-
tation of forward drivability (a) and backward drivability (b).

cannot be generated ideally as in Fig.1.2 but have to be converted from other power

sources and the devices doing this have a mechanical admittance of their own.

Human limbs are generally considered a classical example of “back-drivable joints”:

by analyzing their physical properties we can draw base-line indications against which

to compare robotic systems.

Several studies regarding the admittance and impedance characteristics of human

limbs are available in literature. Most authors agree that joint stiffness can be approx-

imated as linear function of joint displacement; although this assumption simplifies

resulting models it might not always be applicable [McMahon, 1984]. Joint viscosity

on the other hand can be modeled with viscous friction models [Oatis, 1993; Prochazka

et al., 1997] or with a combination of viscous and Coulomb type friction [Venture

et al., 2007]. As an example let us consider the human shoulder joint. Since in general

Coulomb friction forces are low (see [Venture et al., 2007]) this joint can be modeled as

a linear spring, flywheel damped system: let Km denote the muscle fiber stiffness, Bm

12



1.3 Problem statement

their viscous damping and being Jl the limbs’ inertia the system can be represented

with the POG in Fig.1.4. The system state space description can be directly derived

e
m + -

Bm
K m

s

+
  -

l
+ -

k

1
s l

1
J l s

l

Figure 1.4: Human arm POG. The figure represents the POG block diagram for the
damped spring-flywheel system described in the main text. A integration block has been
added to derive the systems’ angular position θl.

from the POG:

 1/Km 0 0
0 Jl 0
0 0 1

 τ̇k
ω̇l
θ̇l

 =

 0 −1 0
1 Bm 0
0 1 0

 τk
ωl
θl

+

 1 0
0 −1
0 0

[ ωm
τe

]
(1.16)

Let the state vector be x = [τk, ωl, θl]t and the vector of inputs u = [ωm, τe]t. Eq.1.16

can be compactly rewritten as:

Lẋ = Ãx+ B̃u (1.17)

where L is the so-called “energy matrix”. Finally by inverting the diagonal matrix L

Eq.1.17 can be transformed into the canonical state space representation:

ẋ = L−1Ãx+L−1B̃u = Ax+Bu (1.18)

The transfer function representing the system back-drivability is then:

B(s) =
ωl(s)
τe(s)

=
1

Jls2 +Bms+Km
(1.19)

Approximate values for Jl, Bm and Km for the human arm are given in [Chandler

et al., 1975; Venture et al., 2007]: these parameters take approximately the values of

13
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Figure 1.5: Bode diagram of the function B(s). The figure shows an approximation of
the Bode diagram of back-drivability characteristic of the human arm (Coulomb frictional
effects have been neglected).

0.35[kg m2], 0.3[Nm s/rad] and 8.0[Nm/rad] respectively. Given these values and the

equation of the system we can plot the Bode diagram back-drivability transfer function

B(s) which is represented in Fig.1.5.

1.4 Conventional robot design

Let us now extend these considerations to robotics: in this case the back-drivability of

a robot can also be seen as the mechanical admittance of the system to motions caused

by external forces.

As previously mentioned most robots today are actuated by electric motors. These

motors have a typical inertia and damping which affect the overall back-drivability of

the system. Moreover since electric motors are not powerful enough to directly drive

the robots joints, speed reducers have to be employed to transform the motors output

power into a useful speed-torque ranges. From the principle of virtual works it can

be shown that a speed reduction of r produces a mechanical advantage that allows to

multiply output torques by the same factor.
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1.4 Conventional robot design

This solution is extremely effective both in terms of implementation complexity and

cost; as a result the vast majority of robots today are actuated by electric motors with

gears, and this trend is unlikely to change soon. The field of humanoid robotics makes

exception: since the early ’80 almost most robots have been developed in this way (see

[Hirai et al., 1998; Ishida et al., 2003; Kaneko et al., 2008; Metta et al., 2005; Nagakubo

et al., 2003; Tellez et al., 2008] to cite a few). Speed reduction devices are however

generally affected by several non-linearities such as:

• non-linear elastic effects

• relevant coulomb type friction

• teeth mesh elasticity induced vibrations

• mechanical dead-bands

• non-linear frictional behaviours

but their use is also detrimental for what regards the back-drivability of a robotic

system.

Let us consider a simple example of driving the system represented in Fig.1.2 with

an electric motor and gearbox combination. For simplicity none of the non-linearities

mentioned above will be modeled. Because of the motor inertia (denoted by Jm), the

addition of a motor results in an increase of the total inertia of the body to be rotated.

If r is the reduction ratio of the speed reduction device, the inertia of the motor will

be amplified by a factor of r2:

Jr = r2Jm (1.20)

The total link inertia Jt will thus be:

Jt = Jl + Jr (1.21)

It is easy to see that as r increases Jr tends to become significant in Jt. The speed

reducer introduces relevant mechanical friction. For simplicity it will be assumed the

speed reducer is of the single-stage type and that friction torques can be modeled

as viscous, with the coefficient Bm. Let us finally introduce in the model the power

dissipation caused by the back-e.m.f., with Rm denoting the motor winding resistance
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e
m + -

Bm
1
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       +

V + -

im

1
s l

K e
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r lm

1
J t s

Figure 1.6: Robotic joint POG.The figure shows the POG of a robotic joint driven with
a reduced electric motor. In this case both the viscous friction of the speed reducer and
the motor power dissipation have been modeled.

and Ke the electric constant of the motor. The resulting robotic joint POG model is

shown in Fig.1.6. The equations that describe the system in this case are:[
Jl 0
0 1

] [
ω̇l
θ̇l

]
=
[

(Ke
2/Rm +Bm)r2 0

1 0

] [
ωl
θl

]
+
[
−1 Ker
0 0

] [
τe
V

]
(1.22)

Eq.1.22 yields the back-drivability transfer function:

B(s) =
ωl(s)
τe(s)

=
1

(Jl + Jr)s+ (Ke
2/Rm +Bm)r2

(1.23)

Let us imagine we want to drive a robotic joint with the same inertia of the human arm.

Reasonable values for a system actuated with a brushless motor and a Harmonic-Drive

speed reducer for the various parameters are listed in Table.1.1.

The back-drivability characteristics of the human arm and of the robotic joint can

now be plotted and compared. Fig.1.7 shows the linear back-drivability characteristics

for a body with the inertia of a human arm. For frequencies above 2Hz the human

arm characteristic (red curves) roughly coincides with that of a freely-rotating body

(gray curves): in normal interactions, the admittance of the muscles does not affect

significantly the dynamics of the human arm.

On the other hand the back-drivability characteristic of the robotic joint (magenta

curve) is dominated by the effect of frictional forces: in this case the effect of the link

inertia comes into play only after 20Hz. Even after this frequency however the curve
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1.4 Conventional robot design

parameter value units

Jm 2.5e−5 [kg m2]
r 100 [−]
Bm 0.0025 [Nm s/rad]
Ke 0.0657 [Nm/A]
Rm 1.38 [Ω]

Table 1.1: Robotic joint parameters. The table lists the values of the parameters for the
example described in the main text. These values have been taken from manufacturers’
datasheet ([HarmonicDrive, 2010; Kollmorgen-DanaherMotion, 2010]) and are typical for a
robotic joint actuated with a brushless electric motor, and a Harmonic-Drive speed reducer
combination.
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Figure 1.7: Comparison of back-drivability characteristics. The figure shows the torque
to angular velocity transfer functions of a body whose inertia is equivalent to that of the
human arm. The gray curve is that of a freely rotating body (Eq.1.15), the red curve is
that of an inertia driven by a muscle (Eq.1.19), and the magenta curve represents the same
inertia driven by a electric motor and gearbox combination (Eq.1.23).
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1. THE BACK-DRIVABILITY PROBLEM

does not tend towards the freely-rotating body characteristic because of the reflected

inertia of the motors.

These considerations are restricted to the linear case as the important effects of

Coulomb-type friction have not been considered. Speed reducers are affected by signifi-

cant stiction-type phenomena (in the case of Harmonic-Drives the back-driving starting

torques can reach the value of half of the total rated torque of these devices). To eval-

uate the effect of these torques on the dynamic behaviour of the two systems presented

so far let us introduce Coulomb-type frictional torques in Eq.1.16 and Eq.1.22 which

become: 
τ̇k = Km(ωm − ωl)

ω̇l = (τk +Bmωl − τe)/Jl +Bcsign(ωl)

θ̇l = ωl

(1.24)

and {
ω̇l = ((Ke

2/Rm +Bm)r2ωl − τe)/Jt +Bcsign(ωl)

θ̇l = ωl
(1.25)

The value of the friction coefficient Bc for the human arm, and the robotic joint exam-

ples can be taken equal to 0.25[Nm] and 20.0[Nm] respectively (see [HarmonicDrive,

2010; Venture et al., 2007]). The system’s responses to sinusoidal external torques τe of

amplitudes varying from 5 to 20[Nm] are plotted in Fig.1.8. By comparing the scale on

the axes it is evident that frictional forces have a dramatic effect on the back-drivability

of a robotic system if compared to the human arm. It is therefore important to conceive

ways to overcome this drawback.
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Figure 1.8: Systems responses to sinusoidal torque inputs. The figure shows the velocity
profiles caused by a sinusoidal externally applied torque for the human arm system (a)
and the robotic joint system (b). As can be seen by comparing the scale of the y-axes, the
response of the robotic joint is totally dominated by the effect of Coulomb-type frictional
phenomena.
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2

State of the art

The present chapter is intended to review the state of the art of back-drivable robots.

It will basically focus on the technological approaches that have successfully been im-

plemented in complex (high number of DoF) anthropomorphic robotic platforms. Thus

this short review is to be considered far from comprehensive, but should cover most

of the relevant technologies conceived to improve the back-drivability of robotic sys-

tems. The different approaches will be presented in chronological order to describe the

evolution of robotic technologies for physical interaction.

As seen in the introductory chapter, it is fundamental to increase the mechanical

admittance of a robot if we want it to operate safely and robustly in unstructured

environments, especially if it is to cooperate with humans. As a general approach, peo-

ple developing robots for the aforementioned applications try to introduce compliance

[Van Ham et al., 2009]. Compliance can be introduced passively by designing actu-

ators coupled with spring-like elements or actively. In the latter case an appropriate

controller is designed to increase the system’s mechanical admittance. Among the first

to investigate the problem were Wu and Paul in [Wu and Paul, 1980].

As an example, let us consider the simplified 1DoF low admittance robotic joint

described in section 1.4. Let us further detail the model by introducing a joint torque

sensor as an elastic element of stiffness Ks. The driven link inertia Jl and the motor’s

rotor inertia Jm are now decoupled: it is thus necessary to add an additional inertia

elaboration block to the POG. This system can be represented with the POG shown

in Fig.2.1(a).
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Figure 2.1: Simple 1DoF system example. The figure shows the POG for the robotic
joint described in the main text. The back-drivability characteristic is represented as a
dashed blue arrow.

The graphic representation yields the system’s dynamic equations: Jm 0 0
0 1/Ks 0
0 0 Jl

 ω̇m
τ̇s
ω̇l

 =

 −K2
e/Rm −r 0
r 0 −1
0 1 0

 ωm
τs
ωl

+

 Ke 0
0 0
0 −1

[ V
τe

]
(2.1)

The open-loop back-drivability characteristic (represented as a dashed blue arrow in

Fig.2.1) can be computed from the POG by applying Mason’s formula:

B(s) =
ωl(s)
τe(s)

=
Jmr

2s2 + (r2K2
e/Rm)s+Ks

JlJmr2s3 + (Jlr2K2
e/Rm)s2 +Ks(Jmr2 + Jl)s+K2

eKsr
(2.2)

The torque sensor allows to measure the torques exchanged between the robot and the

environment. This signal can be used to design a controller C(s) that closes a feedback

loop as shown in Fig.2.2. If properly designed, this controller allows to actively increase

the admittance of the system. As an example, let us consider the effect of a simple

proportional controller: C(s) = Kp. Once again, applying Mason’s formula to the

POG, yields the back-drivability characteristic:

B(s) =
ωl(s)
τe(s)

=

Jmr
2s2 + (r2K2

e/Rm)s+Ks(1−KpKer/Rm)
JlJmr2s3 + (Jlr2K2

e/Rm)s2 +Ks((Jmr2 + Jl)−KpJlrKe/Rm)s+K2
eKsr/Rm

(2.3)
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Figure 2.2: Simple 1DoF system with feedback loop example. The figure shows the POG
for the robotic joint with a controller closing the joint torque feedback loop.

The different behaviours of the closed-loop system and of the open-loop system can

now be compared (see Fig.2.3). The Bode diagrams of the closed loop transfer function

show how the admittance of the system can be increased by control. This very basic

example outlines the approach that is generally taken to improve the back-drivability

of low admittance robots. The embodiment of this principle however varies, mainly

depending on the type of actuation scheme selected: different actuators present different

characteristics and dynamic behaviour.

This method has however several caveats. First of all the controller will have a lim-

ited and not infinite bandwidth: above this bandwidth it will not be possible affect the

systems’ behaviour. Secondly with standard PID control it is not possible to increase

the gains at will, not to surpass the system’s stability regions. There are moreover

passivity related problems, as shown in [Colgate, 1988; Hogan and Buerger, 2004], that

further limit the gains of a hypothetical PID controller. Model based feed-forward

control is thus necessary in most cases to obtain high performances.

It is worth to mention that, in the industrial automation field, a standard solution

to this problem is to equip robotic manipulators with force-torque sensors located near

the end effector instead of integrating joint torque sensors. This so-called sensor “non-

colocation” on the joints however introduces the significantly slow dynamics of the

manipulator between sensing and actuation. This approach makes it thus difficult to

23



2. STATE OF THE ART

100 101 102 103
80

70

60

50

40

30

20

10

0

10

m
a
g
n
it

u
d
e
 [

d
B

]

100 101 102 103

frequency [Hz]

200

150

100

50

0

50

p
h
a
se

 [
d
e
g
]

free inertia
B(s) open-loop

B(s) Kp=2.500

B(s) Kp=5.000

B(s) Kp=7.500

Figure 2.3: Behaviour of a joint controlled with torque feedback. The open-loop freely
rotating inertia and damped system characteristics are plotted in blue and cyan respec-
tively. Curves in tones of gray represent the admittance characteristics of the closed-loop
system for varying gains.

ensure the dynamic system stability when it is controlled in feedback (see [Eppinger

and Seering, 1987]) and to design high performance controllers. Moreover with this

approach since forces and torques are not measurable in the arm interactions have to

be limited to the end-effector.

2.1 Direct drive robots

As most of the problems described in section 1.4 are caused by speed reducers, a popular

approach at the beginning of the ’80s was to completely avoid their use. In direct drive

(DD) robots the driven links were directly coupled with high-torque, low-speed motors

[Asada et al., 1982; Asada and Youcef-Toumi, 1987]. This kind of actuation principle

is extremely appealing because:

• it introduces only minimal additional inertia and friction

• it is not affected by backlash problems

• it is not affected by transmission elasticity problems
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2.2 Current controlled robots

The benefits of using a transmission however are lost as well; this implies that the

actuator has to be on the joint and that torques cannot be amplified. Because of tech-

nological limits, the torques provided by electro-magnetic motors are not very high

[Hollerbach et al., 1992]. Even with high quality rare earths magnets, the field dis-

tribution at the motor airgap B hardly exceeds 0.5[T ]; on the other hand, effective

currents per axial length i are in the order of 35000[A/m]. From the Lorentz equation,

the maximum tangential force per unit area at the airgap can be derived as:

dF

dA
= iB ≈ 175000

N

m2
(2.4)

This peak value can only be sustained for short periods of time to avoid overheating that

would damage the motor. The constant rated tangential force per unit area is roughly

the half of this value: 8000[N/m2]. This value is not sufficiently high to construct

motors with torque-to-mass ratios suitable for robotic applications. The design of DD

robots is thus complicated in several ways. In a serial manipulator configuration, every

motor is a load for the previous one: the final weight distribution is so unfavorable that

a robot can hardly withstand gravity induced torques. This in turn implies that a robot

of this type will have to be designed with a very particular configuration and will only

be capable of moving very low payloads (see [Asada and Kanade, 1981; Youcef-Toumi,

1985]). Motor overheating is also a problem since the robot is generally required to

exert high torques for prolonged periods of time. Finally, contrary to geared motors,

the dynamics of a DD joint are not dominated by frictional phenomena and behave

as underdamped systems. Since the effect of inertia variations (which depend on the

manipulator configuration) will not be attenuated by relevant frictional forces, it is

generally more complex to design stable controllers which ensure closed-loop stability.

Standard PID control is not sufficient to this purpose therefore DD robots require

model based controllers [An, 1986]. Despite all these drawbacks this technology is still

interesting and some research in this field is still being pursued [Aghili et al., 2002,

2007].

2.2 Current controlled robots

Since DD robots were not powerful enough, researchers began, at the end of the ’80s

and beginning of the ’90s, to consider the design of robots with low (less than 50:1)
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speed reduction ratios. Joints powered by lowly reduced motors have the advantage

of exhibiting significantly low reflected friction and inertia; moreover Coulomb-type

friction is also less relevant. Since the disturbances caused by the speed reducer become

less important, motor current measurements become an effective way to measure the

torques at joint level. The whole arm manipulator (WAM) proposed by Salisbury and

Townsend, which was specifically designed for physical interaction, was based on this

approach (see [Salisbury et al., 1991; Townsend and Salisury, 1993]). This robot (shown

in Fig.2.4) first combined two very interesting design solutions:

• a cable drive transmission system

• a differentially coupled proximal joint

(a) (b)

Figure 2.4: Whole arm manipulator. The figure shows the prototype WAM that Hong and
Slotine used for their ball catching experiment (a), and a photo of the robot commercialized
by Barrett Inc. (b).

The cable differential mechanism allows to design extremely compact joint. Cable drives

use pinions, driven pulleys and idle pulleys to transmit power between different links.

With the use of stepped pulleys, motion can be transmitted also between orthogonal

axes. A nice feature of cable drives is the wide range of possible transmission ratios

that can be obtained simply by varying the primitive diameters of coupled pulleys.

However two-stage reductions are generally necessary to obtain sufficient torques but

the resulting mechanism are rather complex and their maintenance is not straight-

forward. Unfortunately cable drives are not infinitely stiff; this elasticity poses several

problems when cable driven joints are controlled in closed loop. Nevertheless Hong and
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2.3 Joint torque controlled robots

(a) (b)

Figure 2.5: WAM humanoid robots. The figure shows a photo of the Dexter robot (a)
and of the Iowa State University robot (b), which both employ WAM commercialized by
Barrett Inc. for their arms.

Slotine were able to demonstrate dynamic tasks with a prototype of the MIT WAM

such as ball catching and throwing [Hong and Slotine, 1995]. Currently two humanoid

robots comprise the commercial version of the WAM for their arms: the Dexter robot

at the University of Massachussets Amherst Fig.2.5(a), and the Iowa State University

humanoid Fig.2.5(b). Whenever the reduction ratio is low, current feedback is a viable

alternative to measure joint torques. It is worth mentioning that this principle was also

employed by Nagakubo et al. for the development of the ETL humanoid robot (see

Fig.2.6(a)) [Nagakubo et al., 2000, 2003]. This robot was used to demonstrate complex

dynamic tasks such as the whole body rising shown in Fig.2.6(b).

2.3 Joint torque controlled robots

A possible solution to cancel the detrimental effects of friction, reflected inertia and

other non-linearities which generally affect robots is to equip them with joint-level

torque control. Since actuation bandwidth is inherently limited by the friction and

non-linearities in the actuator-transmission system, first prototypes mainly succeeded

in reducing joint friction effects [Holmberg et al., 1992; Vischer and Khatib, 1995]. To

obtain high performance levels it was necessary to integrate actuator, transmission and

sensors with concurrent design methodologies [Hirzinger et al., 2000]. This approach

was proven to be effective with the realization of the DLR light-weight robot series

(see Fig.2.7) [Hirzinger et al., 2001, 2000, 2002]. A drawback of this approach is that,
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(a) (b)

Figure 2.6: The ETL humanoid robot. The figure shows a photo of the full-body ETL
humanoid robot (a), and some frames of a whole body rising sequence (b).

(a) (b)

Figure 2.7: DLR robots. The figure shows two photos of robots developed by the German
aerospace centre (DLR). A photo of the third version of the light-weight robot series is
shown in (a) whereas photo (b) shows the Justin humanoid robot whose arms are two of
the manipulators shown in (a).
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whereas at low frequencies the manipulator can be controlled to exhibit near-infinite

mechanical admittance, above the control bandwidth its dynamic behaviour cannot be

changed. In this situation, the response of a torque-controlled manipulator is governed

by its open-loop characteristic that in practice does not differ from that of traditionally

designed robots. Although it is still difficult to obtain inherent safety, high inherent

admittance and good tracking performance over a wide range of frequencies, joint torque

control has shown to be a very effective way to improve the back-drivability of robotic

manipulators [Albu-Schaffer et al., 2003].

Transmission design, and in particular the choice of speed reducers, is critical in

joint torque controlled robots. The selection of multistage planetary gearings is a

common option. This type of speed reducers generally have a considerable amount of

backlash (specially for gear ratios inferior to 100:1). When, in these devices, the sense

of motion is inverted, this backlash generates torque spikes which eventually lead to

system instability. Although this problem can be solved by preloading the gears, this

often leads to rapid wear, higher friction and potentially shorter mechanism life.

The backlash problem of planetary gear heads can be avoided by using Harmonic-

Drive speed reducers. These however are characterized by a low stiffness which intro-

duces a resonant frequency which often falls within the controller’s bandwidth. This

problem, if not accounted for, also potentially leads to system instabilities.

2.4 Series elastic actuators

An alternative solution to increase the mechanical admittance of robots are series elastic

actuators (SEA). In this approach, the dynamics of scarcely back-drivable conventional

actuators are decoupled from those of the driven link by interposing between them an

elastic element. With this method the high frequency admittance of the robotic joint

is limited to the stiffness of the elastic coupling. On the other hand, the behaviour of

the system at low frequencies can be steered by a controller that exploits the elastic

element deflection as a measure of joint torque: this feed-back loop allows to regulate

the mechanical admittance of the joint. This approach was first introduced by MIT

researchers Pratt and Williamson which proposed their first prototype in 1995 [Pratt

and Williamson, 1995; Williamson, 1995]. The earliest versions of these actuators were
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developed for linear motions although several “rotational” versions were developed suc-

cessively. The dynamics of a 1DoF SEA robotic joint can be represented (see Fig.2.8)

and studied with the POG formalism. The POG yields the following equations describ-
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im K e

K e
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J l s

K t

s

1
J m s

+ -

+ -

Figure 2.8: POG representation of a SEA joint. The figure represents the simplified block
diagram of a SEA joint with the POG formalism.

ing the systems’ dynamics: Jm 0 0
0 1/Kt 0
0 0 Jl

 ω̇m
τ̇k
ω̇l

 =

 −K2
e/Rm −r 0
r 0 −1
0 1 0

 ωm
τk
ωl

+

 Ke 0
0 0
0 −1

[ V
τe

]
(2.5)

where Rm, Jm, Jl and Kt represent the motor winding resistance, the motor and link

inertias and the transmission stiffness respectively; ωm, ωl, θl and τk represent the

motor angular velocity, the driven-link angular velocity, the links’ position and the

transmitted torque respectively; Ke and r represent the electric constant of the motor

and the transmission ratio of the speed reducer V is the motor excitation voltage and τe
denotes externally applied torques. Interestingly, the SEA and the joint torque control

approaches are extremely similar and even the differential equations which describe

their dynamics are the same. The back-drivability characteristic of these systems is:

B(s) =
ωl(s)
τe(s)

=
Jmr

2s2 + (r2K2
e/Rm)s+Kt

JlJmr2s3 + (Jlr2K2
e/Rm)s2 +Kt(Jmr2 + Jl)s+K2

eKtr
(2.6)

Given Eq.2.6, the open-loop characteristics of a torque controlled joint and of a SEA

joint can be compared in Fig.2.9. Parameter values are taken from Table.1.1. In both

cases the maximum output torque above the open-loop mode of the system decrease

at the rate of 20dB/dec regardless of the controller used. In the case of SEA, this
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B(s) Kt=1.e5 [Nm/rad]

B(s) Kt=10[Nm/rad]
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B(s) Kt=30[Nm/rad]

Figure 2.9: Open loop system characteristics. The figure compares the open loop be-
haviour of joint torque controlled and SEA systems. Joint torque controlled systems have
transmission stiffness values in the order of 1.e5[Nm/rad]: a typical back-drivability char-
acteristic is plotted in cyan. SEA systems have lower transmission stiffnesses: three curves
in tones of grey are plotted for varying values of Kt. For comparision the characteristic of
a freely rotating body is also shown (green curves).
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presents a fundamental physical limitation of the actuator as the open-loop modal

frequencies are rather low. Since the elastic element stiffness determines this frequency,

its choice presents a tradeoff between actuator bandwidth and back-drivability. Their

main difference between the two methods is the principle on the basis of which the

stiffness of the transmission should be chosen. In the joint torque control approach, the

transmission stiffness is designed to be as high as possible; compliant behaviours can be

introduced by control below the controller bandwidth. On the other hand, SEA joints

are designed for open-loop compliance; “stiff” behaviours can be added by control at

frequencies below the first modal frequency of the system.

Few years after their first introduction SEA were employed for the humanoid robot

COG developed by Brooks et al. [Brooks et al., 1999] at the MIT AI lab. The COG

project was among the first to strongly emphasize the concpet of embodiment and

incremental learning by interaction.

(a) (b)

(c) (d)

Figure 2.10: SEA humanoid robots. The figure shows photos of four humanoid robots
actuated with SEA: COG (a) and DOMO (b) by the MIT AI lab, TWENDY-ONE (c) by
Waseda University, and the compliant arms by Meka Robotics Inc. (d).
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A group from the same laboratory later developed DOMO [Edsinger-Gonzales and

Weber, 2004]. As COG, DOMO is an upper-torso humanoid robot developed to study

robot manipulation in unstructured environments.

More recently a group at Waseda University undertook the development of the

WENDY robot, and has recently announced the finishing of its improved version

TWENDY-ONE [Iwata and Sugano, 2009] which features rotational SEA at every

joint.

Another example of SEA robot is the humanoid developed by Meka Robotics, which

is now being commercialized as a research platform for embodied cognition.

2.5 Servo-hydraulic systems

An alternative to generating torques with electro-magnetic motors is to employ hy-

draulic power. Hydraulic actuators have the highest torque-to-mass and power-to-mass

ratios currently available [Constantinos Mavroidis and Mosley, 1999; Hollerbach et al.,

1992]; these characteristics make them appealing for the design of autonomous robots.

Controlling accurately the pressure and flow rate in a hydraulic system is however ex-

tremely challenging. The fluid in the system can either be controlled by servo-valves

(which are generally electrically actuated) or directly by variable-displacement volu-

metric pumps. Servo-valves however exhibit complex, high order, non-linear behaviours

such as:

• hystereses

• deadbands

• Coulomb-type friction

• non-linear spool displacement to flow rate characteristics

• internal leakages

Moreover even high performance servo-valves generally have slow responses and their

bandwidths rarely exceed 30[Hz].

An exception is constituted by flapper-nozzle servo-valves conceived in the ’50s by

W.C. Moog. These valves are based on a two-stage design with a nearly frictionless
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(b)

(a) (c)

Figure 2.11: Hydraulic power applications in robotics. The figure shows a photo of the
Sarcos exoskeleton (a), a photo of the Boston Dynamics BigDog quadruped (b) and a photo
of a compact flow control servo-valve by MOOG (c).

pilot stage. The flapper is driven by a torque motor and regulates the aperture of a

variable orifice that drives second-stage spool. The spool position causes the deflection

of a spring that restores the torques on the flapper thus closing the feed-back loop.

These valves have been engineered into extremely compact and robust products by the

U.S. manufacturer MOOG and are now available on the market (see Fig.2.11(c)). The

datasheet provided by the manufacturer states that these valves have highly dynamic

responses and can achieve bandwidths in the order of 200[Hz].

These valves allowed the development of impressive demonstrative robot prototypes

such as the BigDog quadruped (Fig.2.11(b)) and the Petman biped by Boston Dynam-

ics, and the Sarcos exoskeleton (Fig.2.11(a)). Unfortunately all these robots are the

result of military research projects and most technical informations about them are

regarded as strategic and are therefore kept classified.

The Sarcos company (a spin-off of the research group led by Stephen Jacobsen at the

university of Utah) gained know-how with the development of animatronic robots for

entertainment industry [Hollerbach and Jacobsen, 1996], which in recent years has been

applied to develop several humanoid robots for AI research. One of the earliest robots
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2.5 Servo-hydraulic systems

(a) (b) (c)

Figure 2.12: Sarcos robots. The figure shows photos of the robots developed by Sarcos
Inc.: the Sarcos Dextrous arm (a), the DB humanoid robot (b) and the CB humanoid
robot (c).

was DB (see Fig.2.12(b)), which is the acronym for Dynamic Brain, developed for the

JAIST ERATO brain project [Atkeson et al., 2000]. This full body humanoid robot

was not powerful enough to stand on its legs but was nevertheless used to demonstrate

the acquisition of motor skill with the help of machine learning. More recently two

new robots (see Fig.2.12(c)) based on the same technology have been developed for the

computational brain project [Cheng et al., 2007]. Details on the control of the joints

of this kind of robots can be found in [Bentivegna et al., 2008].

The examples reported so far suggest that hydraulic actuation, in combination

with joint torque sensing, seems a convenient way to obtain high quality force control

for robotic applications. Apart from valve non-linearities, this technology has several

disadvantages which make it less appealing. First of all such a system requires to be

powered by a pump unit which has in general an associated reservoir tank for the

return line of the hydraulic circuit. Moreover powerful motors (typically in the order

of several [kW ]) are required to operate the pump. This results into additional bulk

which negatively affects the power-to-weight ratio of the robotic platform intended as a

whole. While for outdoor applications it is feasible to use a compact internal combustion

engine, robots designed for indoor environments generally need to be powered by an

off-board power unit which requires the robot to be tethered: these aspects negatively
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(a) (b)

Figure 2.13: Parallel drive robots. The figure shows photos of the Stanford human
friendly robot (a), and of the PR2 humanoid robot by Willow Garage (b).

affect the robots’ autonomy. Finally to implement high band-width controllers flapper-

nozzle servo-valves are practically the only viable solution. However their extremely

high cost (roughly 4000e) hampers the diffusion of hydraulic power as a solution for

the actuation of robots.

2.6 Parallel drive robots

Recently, a new class of manipulators has come to integrate the parallel drive concept

introduced in [Morrell and Salisbury, 1995; Sharon, 1989]. In these works the authors

proposed a parallel and distributed two-stage actuation scheme for robotic joints. The

basic assumption underlying this approach is that the torques to be exerted decrease

along the frequency spectrum [Zinn et al., 2004]. Therefore a high admittance actuator

located at the manipulator base is intended to provide the slow varying component

of torques. Instead high frequency torque components are provided by a smaller less

powerful and faster actuator located directly on the joint. This approach led to the

development of the Stanford human safe robots [Shin et al., 2008] and the PR series

personal robots [Wyrobek et al., 2008], which are shown in Fig.2.13.
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(a) (b)

Figure 2.14: Musculoskeletal humanoid robot. The figure shows photos of the muscu-
loskeletal humanoid robot Kotaro (a), and a photo of the muscle-unit actuators (b).

2.7 Musculoskeletal humanoids

Finally it is worth citing another type of back-drivable robot which is difficult to assign

to any of the previous categories. Since 2002 a group at the University of Tokyo

has been developing a musculoskeletal humanoid robot [Mizuuchi et al., 2002]. This

robot is actuated by so-called “muscle-units” that comprise an electric motor with a

planetary speed reducer, a position sensor and an optical tension sensor [Mizuuchi et al.,

2004]. The robot Kotaro [Mizuuchi, 2006] and the actuator are shown in Fig.2.14. This

design tackles the back-drivability problem from two sides: firstly the actuation does

not reduce significantly the admittance of the robot, and secondly, the actuators can

be controlled in closed force loop to further increase the robot’s admittance.
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3

Setup description

The scope of the current work was focused on the main joints of the arms of the iCub,

neglecting for the moment the forearm and wrist joints, which are less critical for

our purposes. These joints constitute a 4DoF manipulator with one rotational 3DoF

proximal “shoulder” joint and a rotational distal “elbow” joint (see Fig.3.1).

θ
elbow

θ
pitch

θ
roll

θ
yaw

force-torque
sensor

Figure 3.1: The iCub arm. A CAD view of the arm of the iCub robot with superimposed
joint labels (θpitch for shoulder pitch, θroll for shoulder roll, θyaw for shoulder roll and θelbow

for the elbow rotation). The figure also represents the approximate position of the six axis
force torque sensor integrated in the arm.

The initial specifications for the design of the robot aimed at replicating the physical

abilities of a three-year-old baby [Metta et al., 2005]. To enable natural and stable

manipulation tasks, and by considering biomechanical models, it was decided, in the
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design phase, that the iCub arm should have had seven DoF: three at the shoulder

level, one at the elbow and two at the wrist. Moreover, the mass distribution and the

ranges of motion were designed to be similar to those found in humans (see Tables 3.1

and 3.2).

Joint range of motion
Human iCub

shoulder flex/extension [-8,+200] [-50,+230]
ab/adduction [-85,+200] [-90,+150]
rotation/twist [-54,+127] [-90,+90]

elbow flex/extension [0,+160] [0,+140]

Table 3.1: Ranges of motion. The table lists the ranges of motion for the various joints
of the arm for a three-year-old and for iCub.

Body section mass [kg] length [m]

upper arm 1.15 0.15
forearm (hand included) 1.25 0.13

Table 3.2: Mass distribution. The table lists the masses and lengths of the links of the
arm.

Having determined a suitable kinematic structure, the design process moved to

dynamic performance criteria. An open source software package for three-dimensional

rigid body dynamics was used to simulate the behaviour of the robot. More specifically,

the torques normally exerted during sinusoidal and crawling movements were measured

[Metta et al., 2004]. These data, whose peak values are are listed in Table 3.3, provided

a baseline for the selection of the robots’ actuators. These values are however rather

Joint peak torque [Nm]

shoulder flex/extension 40.5
ab/adduction 18.1
rotation/twist 7.9

elbow flex/extension 18.6

Table 3.3: Peak torques. The table lists for the various arm joints the values of peak
torques exerted by the robot to perform a crawling motion.
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high: recent tests on the iCub prototype suggest that in normal manipulation tasks

(e.g. while performing fast reaching movements), joint torques rarely exceed the value

of 8Nm.

3.1 The motor groups

To match the torque requirements listed in Table3.3 three modular motor groups were

developed: this allowed their reuse throughout the main joints of the robot. All of them

are similar since they all comprise a Kollmorgen-DanaherMotion RBE 012 type brush-

less frameless motor [Kollmorgen-DanaherMotion, 2010] and a CSD frameless Harmonic

Drive flat speed reducer [HarmonicDrive, 2010]. Harmonic Drive speed reducers allow

to obtain very high reduction ratios in small spaces, are very light, and have practically

no backlash. Brushless motors have have a very good power density and generally

outperform conventional brushed DC motors. The use of frameless components allows

to further optimize spaces and to remove the unnecessary weight of the housings.

Two different motor groups (shown in Fig.3.2) are used in the arm:

• the high power motor group: capable of delivering 40Nm of torque, it is based on

the RBE 01211 motor and a CSD-17-100-2A Harmonic Drive, and has, roughly,

a diameter of 60mm and a length of 50mm.

• the medium power motor group: capable of delivering 20Nm of torque, it is based

on the RBE 01210 motor and a CSD-14-100-2A Harmonic Drive, and has, roughly,

a diameter of 50mm and a length of 50mm.

3.2 Frame structure

The total weight design specification was particularly hard to difficult with: special

care had to be taken in the design of structural elements to avoid adding mass. For

what concerns the materials, the major part of the structural elements of the robot were

fabricated with the Al 6082 aluminum alloy. Its internal grain structure is governed

by the addition of large amounts of manganese. With its ultimate tensile strength

(UTS) of 310 MPa and roughly the typical density of aluminum 2700 kg/m3 Al 6082
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Figure 3.2: Right shoulder motor assemblies. The figure shows exploded CAD views
of iCub’s right shoulder motor groups (top) and the elbow motor group (bottom) from a
front and rear view. The high power motor group is coloured in yellow whereas the medium
power motor groups are coloured in green.
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is among the best materials in the 6000 alloy series [Matweb, 2010b]. For these reasons

it is considered a noteworthy structural material.

Critical components were manufactured with the Al 7075 aluminum alloy. This ma-

terial is typically employed for aerospace applications because of its excellent strength

to weight ratio. The use of zinc as the primary alloying element results in a strong

material, with good fatigue strength and average machinability. The density of Al 7075

has a density of 2810 kg/m3 which is slightly higher than normal aluminum; its UTS of

524 MPa [Matweb, 2010c] is comparable with that of medium quality steels and make

it one of the toughest types of aluminum alloys currently available.

Finally, highly stressed parts (such as joint shafts) were obtained from the high

resistance stainless steel 39NiCrMo3. This material, known in the AISI standard as

AISI 9840 is a nickel-chromium-molybdenum steel, that exhibits a good combination

of strength, fatigue resistance, toughness and wear resistance. Its UTS is high, around

1.2 GPa [Matweb, 2010a].

3.3 The shoulder joint

The shoulder joint is based on a cable differential mechanism similar to the one in-

troduced by Salisbury et. al. [Salisbury et al., 1991; Townsend, 1988] and detailed in

[Townsend and Salisury, 1993]. The shoulder joint has the peculiarity of having its

three axes of rotation intersecting at a single point (which is a typical characteristic of

robotic wrist mechanisms). In normal “serial” manipulators all the motors and speed

reduction units are mounted directly on the joints, thus increasing the inertial loads on

the motors. Instead, the iCub shoulder comprises a “coupled” epicyclic transmission

system (shown in Fig.3.3). This mechanism allows the joint to be remotely driven:

motors can thus be mounted in the proximity of the joint rather than on the joint

itself. The three motors driving the shoulder are in fact housed in the upper-torso of

the robot.

A mechanism of this kind has several advantages:

• large workspace,

• compact size, low weight and inertia,,

• “quasi”-spherical motion
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but is affected by some drawbacks such as:

• higher mechanical complexity (higher manufacturing costs and longer assembly

time),

• lower mechanical stiffness,

• less intrinsic robustness.

Cable drives allow the transmission of power between different bodies with driven

pulleys, stepped pulleys, pinions, and idle pulleys and are a good alternative to gears

when space is limited.

motor 1

motor 2

motor 3

idle pulley
system

reducing
pulleys

Figure 3.3: The shoulder joint. A CAD view of the shoulder joint mechanism indicating
the three motors actuating the joint and the pulley system.

In the current embodiment the first motor actuates directly the first joint whereas

the second and third motors actuate two pulleys that are coaxial with the first motor.

These pulleys have slightly different primitive diameters thus producing a transmission

reduction r equal to the ratio of their diameters:

r = 40mm/65mm ≈ 0.615385 1/r = 1.625 (3.1)

The pulley motion is then transmitted to the shoulder roll and pitch joints through a

second set of idle pulleys.

Since the joint is highly coupled the relations between the velocities and torques at

motor and joint level are not straightforward. The technique outlined by Tsai in [Tsai,
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Figure 3.4: Shoulder mechanism. The figure shows the simplified functional schematic
representation of the shoulder mechanism.

1999], for robotic wrist mechanisms, will be adopted to thoroughly analyze shoulder

mechanism. This method is particularly convenient for the analysis of complex epicyclic

transmissions such as the mechanism that constitutes the iCub shoulder. The method

firstly requires the derivation of the canonical graph representation of a mechanism.

This graph is then used to derive a system of linear equations with the theory of funda-

mental circuits. Redundant equations are finally eliminated with coaxiality condition

equations.

To derive the graph representation of a mechanism it is convenient to start from

its simplified representation. The functional schematic representation of the shoulder

mechanism is shown in Fig.3.4. As can be seen, the mechanism is very complex. As

generally done, the following simplifying assumptions were made to obtain this repre-

sentation:

1. all parallel and redundant paths are shown as a single path only. Whenever a link

is supported by two or more bearings on one shaft only one will be considered,

2. rigidly connected elements are considered as a single link,

3. all joints are assumed to be binary. Multiple joints are replaced with a proper

combination of binary joints,
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4. all transmission pairs constituted by cable drives are represented as gear pairs.

In Fig.3.4 the motor groups 1, 2, and 3 are represented as links 2, 8 and 9 respectively.

For presentation clarity, the shoulder angular displacements θpitch, θroll and θyaw will

be renamed as θ2,1, θ3,2 and θ4,3 respectively (the pedices indicate the two links whose

relative displacement is being considered). To simplify the description (without any

loss of generality) all transmission pairs constituted by cable drives will be represented

and referred to as gear pairs.

3.3.1 Kinematic analysis

Any kinematic chain can be represented as a graph. This abstract representation has

several advantages:

• graphs allow for a more organized and systematic kinematic and dynamic analysis

of the mechanism,

• the topology of a mechanism can be uniquely defined (this also allows to identify

similarities between various mechanism embodiments),

• some mathematical graph properties can be applied directly.

In a graph representation the vertices represent the mechanism links and the edges

represent its joints. To distinguish between pair connections, the edges can be coloured

and labeled. Following the convention described in detail in [Tsai, 1999], gear pairs are

drawn as heavy edges, whereas turning pairs are drawn as thin edges. Turning pairs

are also labeled according to their axis locations. Once the fixed link of a kinematic

chain is assigned, its topological structure is completely defined: this link is generally

represented in the graphs with two concentric circles.

Ambiguities in the graph representations may however arise when three or more

links share a common axis. Because of the previously described assumptions, the turn-

ing pairs among coaxial links can be reconfigured at will without affecting the func-

tionality of the mechanism. These possible alternative mechanism representations are

called pseudoisomorphic graphs. To disambiguate between these different possibilities,

the kinematic chain has to be derived in an univocal way, thus yielding the canonical

mechanism graph. The graph is canonical if all the thin edges paths beginning from the
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Figure 3.5: Canonical graph. The figure shows the canonical graph of the iCub shoulder
mechanism. Turning pairs are represented as labeled thin edges and gear pairs as thick
edges.

base link have different edge labels. The functional schematic representation in Fig.3.4

can therefore be reduced to its canonical graph which is represented in Fig.3.5.

If mechanical limits are neglected, an epicyclic gear train should allow unlimited

rotations. This in turn implies that there should be no circuits formed exclusively by

turning pairs (otherwise unlimited rotations would be impossible). Moreover, each gear

in epicyclic transmissions has to have a turning pair on its axis to maintain a center

distance between a gear pair. These considerations imply that the subgraph formed by

removing all the geared edges from the graph of an epicyclic gear train, is a tree. The

tree of the iCub shoulder mechanism is shown in Fig.3.6.

Adding any geared edge back to the tree, forms a circuit which is called fundamental

circuit. The number of fundamental circuits in a gear train is equal to the number of

gear pairs. Every fundamental circuit has a node such that all the thin edges on one of

its sides have identical labels and the edges on the opposite side have different labels:

this node is called transfer vertex and it corresponds to the carrier of a gear pair. The

fundamental circuits and transfer vertices of the shoulder mechanism are listed in Table

3.4.

Every fundamental circuit has an associated fundamental circuit equation that re-

lates the angular displacements of its links. The fundamental circuit equation can be
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Figure 3.6: Canonical tree. The figure shows the canonical tree of the iCub shoulder
mechanism. Geared pair edges have been eliminated from the canonical graph.

fundamental circuit transfer vertex

1-5-8 1
1-6-9 1
2-3-5 2
6-7-2 2
7-4-3 3

Table 3.4: Fundamental circuits. The table lists the fundamental circuits and transfer
vertices of the iCub shoulder mechanism.
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expressed as:

θi,k = ±Nj,iθj,k (3.2)

where θi,k and θj,k denote the displacements of gears i and j with respect to the carrier k

respectively, and Ni,j denotes the reduction ratio of the gear pair. The sign in Eq.3.2 is

determined by the sign of the rotation of gear j produced by a rotation of gear i relative

to the carrier k. The fundamental circuits of the shoulder mechanism thus yield the

following system of linear equations (1:1 reduction ratios are omitted for clearness):

θ5,1 = −N5,8θ8,1

θ6,1 = −N6,9θ9,1

θ3,2 = −θ5,2

θ6,2 = −θ7,2

θ7,3 = −θ4,3

(3.3)

To solve the kinematics of epicyclic gear trains, the fundamental circuit equations must

be coupled with the coaxiality conditions which relates the angular displacements of

coaxial links. Given three coaxial links, i, j, and k the following relation between their

relative displacements holds:

θi,k = θi,k − θj,k (3.4)

Being 2-3-7 and 1-2-5-6 the tuples of coaxial links, the following linear equations can

be derived: 
θ7,3 =θ7,2 − θ3,2

θ6,2 =θ6,1 − θ2,1

θ5,2 =θ5,1 − θ2,1

(3.5)

Combining Eq.3.3 and Eq.3.5, unwanted angular displacements can be eliminated, thus

yielding as result the equations describing the relationship between the actuator dis-

placements and the joint angles:
θ8,1 =

1
N5,8

(−θ2,1 + θ3,2)

θ9,1 =
1

N6,9
(−θ2,1 + θ3,2 − θ4,3)

(3.6)

Link 2 is directly an input link; the following identity can thus be written:

θ2,1 = θ2,1 (3.7)
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Finally Eq.3.6 and Eq.3.7 can be combined in matricial form: θ2,1

θ8,1

θ9,1

 =

 1 0 0
−1
r

1
r 0

−1
r

1
r −1

r

 θ2,1

θ3,2

θ4,3

 (3.8)

where the reduction ratios N5,8 and N6,9 have been substituted with their actual value

r. Adopting the notation introduced in Tsai [1999], denoting the vector of input angular

displacements as φ = [θ2,1, θ8,1, θ9,1]t and the vector of joint angular displacements as

θ = [θ2,1, θ3,2, θ4,3]t, Eq.3.3.1 can be compactly rewritten as:

φ = Tθ (3.9)

3.3.2 Static analysis

The expression that relates torques generated at the actuator level and the ones effec-

tively applied at joint level, can finally be derived by applying the principle of virtual

works. Being δφ = [δφ1, δφ2, δφ3] and δθ = [δθ2,1, δθ3,2, δθ4,3]t the actuator and joint

virtual displacements respectively, let ξ = [ξ1, ξ2, ξ3]t and τ = [τ1, τ2, τ3]t denote the

torques exerted at actuator and joint level respectively. The virtual work δW produced

by the active forces is thus given by:

δW = ξtδφ− τ tδθ (3.10)

The relation for virtual displacements can be derived from Eq.3.9 as:

δφ = T δθ (3.11)

which combined with Eq.3.10 yields:

δW = (ξtT − τ t)δθ (3.12)

The system is in equilibrium if and only if, for any infinitesimal virtual displacement,

the virtual work is zero thus:

ξtT − τ t = 0 (3.13)

which can be rearranged as:

τ = T tξ (3.14)
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3.4 The elbow

It is interesting to note that this relation is independent of the mechanism orientation

and is only a function of its topology. Finally, given a tuple of desired joint torques φ,

the motor torques ξ can be derived with:

ξ = T−tφ (3.15)

being:

T−t =

 1 1 0
0 −r −r
0 0 −r

 (3.16)

3.4 The elbow

The 1 DoF elbow joint is rather simple in its design. The output link is driven through

a pulley system which conveys the motion from the motor group. The motor is housed

at the centre of the assembly oriented 90deg with respect to the axis of rotation of the

elbow. On the upper part of the elbow assembly is mounted the six-axis force-torque

sensor.

force-torque
sensor

output
link

transmission
pulley system

motor
group

Figure 3.7: The elbow sub-assembly. The figure shows the elements of the elbow sub
assembly.
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3.5 Sensors and electronics

3.5.1 Joint position sensors

For what concerns position sensing, each actuator units contains three Hall effect sen-

sors integrated in the motor stator that can be used as an incremental rotary position

sensor. Moreover every joint angular position is sensed with an absolute 12bit angular

encoder (employing the AS5045 microchip from Austria Microsystems).

An additional problem is constituted by position sensing in the shoulder joint.

Because of space limitations it was unfeasible to integrate an encoder directly on the

yaw axis. The missing information is recovered by placing an encoder on the axis of

motor 3. The observed positions θo = [θpitch, θroll, θm3]t are then mapped to the actual

joint positions θj with the following transformation matrix:

θj = Oθo O =

1 0 0
0 1 0
1 −1 1/r

 (3.17)

As can be seen from Fig.3.3 there are no places to fit a position sensor on the

external part of motor 1 and 2, as there are no parts in front of them which remain

fixed with respect to the frame. For this reason it was necessary to locate the position

sensor in the rear of the motor. To do this the “slow” motion of the output link is

transmitted through the motors’ rotor hollow shaft with a thin shaft that carries the

magnet for the sensor: this particular arrangement is show in Fig.3.8.

3.5.2 Six-axis force-torque sensor

The iCub arm also comprises a six-axis force-torque sensor [Tsagarakis et al., 2007].

The sensor load cell is based on a three spoke structure machined from stainless steel

Fig.3.9(a). On each side of each spoke is mounted a semi-conductor strain-gauge:

opposite strain gauges are connected in a half Wheatstone’s’ bridge configuration. The

sensor integrates an electronic board for the data acquisition and signal conditioning

Fig.3.9(b). The board samples six analog channels with an INA118 instrumentation

amplifier: each input is connected to one of the six aforementioned half Wheatstone’s’

bridges. The analog to digital conversion is performed by an AD7685 converter on the

multiplexed signals of the six channels. It is besides possible to add an offset by means

of a DAC. The board also allows the installation of thermal compensation resistors
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3.5 Sensors and electronics

(a) (b)

Figure 3.8: Motor groups cross section. The figure shows CAD representations of the
motor groups 1 and 2 cross sections ((a) and (b) respectively). Fixed parts are represented
in blue, “fast” rotating components in yellow and “slow” ones in green.

(a) (b)

Figure 3.9: Six-axis force-torque sensor. The figure shows photos of the sensors’ three-
spoke structure (a), and the integrated electronic board (b).
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that minimize the thermal drift effects of the semi-conductor strain gauges. All the

operations are managed with a 16bit DSP from Microchip (dsPIC30F4013) which also

provides digital signal filtering and the linear transformation needed to project the

signals of the strain gauges to the force/torque space. The data are finally broadcast

through a CAN bus interface at a frequency of 1kHz.

3.5.3 Control boards

The arms’ brushless motors are controlled with the BLL (BrushLess Logic) and the BLP

(BrushLess Power) electronic boards shown in Fig.3.10. The BLL board processes the

various signals provided by the sensors and generates the control signals that govern

the motion of the motors. These signals are then passed to the BLP board which

contains the actuator high-power drivers: the voltages applied to the three phases are

controlled by the amplifiers with pulse width modulation (PWM). All the electronics

are embedded on-board near the motor joint assemblies. Data to and form BLL boards

are exchanged through a CAN bus interface.

Figure 3.10: BLL and BLP electronic boards.

3.5.4 Communication bus

The BLL boards and the six-axis force-torque sensor communicate on a 1Mbit CAN bus;

the bandwidth of the bus allows to pass, roughly, eight 8bit packages every millisecond.

All the electronics described so far are connected as shown in Fig.3.11.

54



3.5 Sensors and electronics

motor10

m
otor11

ft-sensor

motor1

joint0

joint3

joi
nt2

m
otor01

motor00

CAN

SPI

PWM (HIGH VOLTAGE)

PWM (LOW VOLTAGE)

BLL0

BLP

BLL1

BLP

Figure 3.11: Arm connection diagram. The figure shows a diagram of the internal electric
and electronic connections of the right arm.
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4

Joint torque sensor design

Among all the possible solutions to improve the back-drivability of a robotic manipula-

tor, described in chapter 2, joint torque control was chosen as the most suitable method

for the iCub. As described in section 2.3 the implementation of joint torque control

requires a measure of joint torques. This problem is not trivial because of the stringent

weight and size limitations which characterize robotic manipulators. The problem of

joint torque sensor design dates back to the introduction of joint torque control.

In [Hirzinger et al., 1993; Holmberg et al., 1992] the use of inductance based dis-

placement transducers is introduced.

Among the first to consider the problem in a systematic way were Visher and

Khatib. In [Vischer and Khatib, 1995] the authors describe the sensor design pro-

cedure they followed and present several sensor geometries and torque measurement

techniques. They describe the trade-offs in sensor design and different possible sensor

placements. The proposed design also employs the alternative measurement principle

of magnetic inductance. This design allows to overcome several limitations of strain-

gauge sensors. However since inductive transducers are not as compact as strain-gauges

this solution has not been widely adopted.

In [Aghili et al., 1997, 2001] Aghili et al. describe the design of a joint torque sensor

for the McGill/MIT direct drive joint. The authors propose several different designs

and compare them on the basis of their capability of rejecting exogenous force-torque

components. These works also nicely describe the trade-off between high mechanical

stiffness and high torque sensitivity, normally encountered in torque sensor design. The
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4. JOINT TORQUE SENSOR DESIGN

ideal sensor geometry is, in this case, determined with the help of finite element analyses

(FEA).

In [Hirzinger et al., 2000] a new strain-gauge based joint torque sensor is described

for the second version of the DLR light weight robot series. The sensor is based on

a four spoke structure; eight strain gauges are glued on the side of each spoke. The

sensor geometry is optimized with finite element simulations.

Another torque measuring technique has been proposed for robotic joints with

Harmonic-Drive speed reducers. Since these speed reducers contain a flexible element

several authors proposed to exploit it as a torque transducer by measuring its defor-

mation with strain gauges [Hashimoto, 1989; Hashimoto et al., 2002, 1993; Kazerooni,

1991, 1995; Taghirad and Belanger, 1999]. The advantage of this method is that no

additional parts are required. Unfortunately measurements are corrupted by charac-

teristic torque ripples of Harmonic Drives. This problem can be solved with estimator

based techniques (e.g. Kalman filtering). An additional problem is constituted by the

periodic deformation of the flexspline caused by the wave-generator. These disturbances

can be compensated for with a proper arrangement of the sensing elements. Finally

the electrical wiring needs to be conducted out of the gearbox for signal processing,

but is generally attached to a rotating part. All these drawbacks make this method

less appealing and hamper its diffusion.

4.1 Design specifications

The above mentioned works found in the literature were then matched to other project

requirements. The design process therefore began with the following set of specifica-

tions:

1. high frequency joint level torque feedback: high frequency torque feedback loop

is essential for smooth control; 1[kHz] loop rate was considered to be sufficient

for the intended application

2. high resolution torque feedback: for every sensor 16bits over a dynamic range

dictated by the joint peak torques (see Tab.3.3) were chosen as appropriate
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4.2 Semi-conductor strain gauges

3. sensor resistance to exogenous force and torque components, i.e. the sensor shall

not respond to forces and torques other than the one which it is intended to

measure.

4. full electronic and mechanical retro-compatibility: the hardware upgrade had to

be considered as a sort of “plug-in” and was thus required to seamlessly integrate

on the current iCub robot version

The fourth requirement was particularly difficult to fulfill because it implied that the

addition of joint torque sensors should not have interfered with any of the functional

part dimensions: this restricted significantly possibilities at the design stage. An ad-

ditional requirement for properly measuring the deformations of an elastic element is

a local “evenness” of the strain field. This can, in general, be quantified as a 10 to 1

ratio between the absolute values of the first and second principal strain components.

4.2 Semi-conductor strain gauges

To increase the signal to noise ratio and to obtain high resolution it is desirable to design

a structure which can generate the highest possible strain. However this generally

results in increasing the internal stresses in the part. The sensor design problem is

thus complicated by two conflicting requirements: mechanical robustness and torque

sensitivity. To measure deformations metal-alloy strain gauges are widely employed: an

alternative is constituted by semiconductor strain gauges (SSG). In SSG the change in

resistivity depends on piezo-resistive effects of boron doped silicon. The semiconductor

bonded strain gauge is a thin slice of silicon substrate with the resistance element

diffused into a substrate of silicon (see Fig.4.1). The wafer element usually is not

provided with a backing, and bonding it to the strained surface requires great care as

only a thin layer of epoxy is used to attach it. Although more expensive, SSG have

several advantages over standard metal strain gauges among which higher sensitivity

(less deformation is needed to produce the same effect), higher fatigue life, higher

output signal.

Since the current application required a very high sensitivity and large signal to

noise ratio, SSG were preferred over standard metal strain gauges. A drawback of SSG
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4. JOINT TORQUE SENSOR DESIGN

(a) (b)

Figure 4.1: Semiconductor strain gauges. The figure shows a photo of a SSG (a) and a
detail of the SSG from the same photo magnified (b).

is their attachment process, which is very delicate and requires long curing and settling

times.

Moreover SSGs are very sensitive to temperature changes: the resistivity of these

components drifts up to 10% for a 10◦C temperature shift. The standard solution

to cope with these temperature-caused resistivity drifts is to arrange four SSGs in a

Wheatstone bridge configuration, or two in a half-bridge configuration: provided that

the resistivity changes occurring in the different SSGs are similar, the bridge remains

balanced.

SSGs maintain a linear strain-resistivity behavior up to ±1000µε while the maxi-

mum strain they can tolerate is ±5000µε. Their choice implied therefore an additional

design constraint regarding the strain levels in the region of the deformable part where

they were to be glued.

4.3 Torque measurements in simple structures

Semi-conductor strain gauges only measure deformations in one linear direction. Mea-

suring forces or torques generally requires using several SSGs appropriately attached

to a structure whose deformation under load is known. However, calculating the de-

formation of a structure is not an easy task. Therefore, to develop torque sensors, one

of the simplest and most robust solutions is to employ beam-like structures. Torques

applied to slender beam structures can be subdivided into two main classed:
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4.3 Torque measurements in simple structures

• torsional, i.e. when the moments are coaxial with the beam axis, as in Fig.4.2(a),

• flexional, i.e. when the moments are perpendicular to the beam axis, as in

Fig.4.2(b).

(a) (b)

Figure 4.2: Torsion and bending moments in beams. The figure shows the sketches of a
torsion moment (a) and a bending moment (b) applied to a slender beam.

Predicting the deformation of a structure is not trivial as it requires the solution of a

partial differential equation (PDE). This PDE allows to calculate the unknown function

describing the deformations of the structure from the displacements constraints and

applied loads boundary conditions. Closed form solutions have so far only been found

for structures with simple geometries: the bending of slender beams and the torsion of

beams with circular cross sections fall in this category. For the details on the derivation

of the formulas cited in the next sections the reader shall refer to theory of elasticity

classics such as [Timoshenko and Goodier, 1970].

4.3.1 Flexion

The Euler-Bernoulli beam theory allows to calculate the displacements of a loaded

beam, under the assumption that the beam sections remain plane after loading. It

furthermore allows to derive the classic formula for determining the flexional strains in

the axial direction ε:

ε =
Mb

IE
d (4.1)

where Mb is the bending moment, I is the moment of inertia of the section calculated

with respect to the beam neutral plane, E is the Young’s modulus, and d is the distance

from the beam neutral plane. This equation is valid for beams of constant cross-

sections, made of isotropic, homogeneous, linearly-elastic materials. Fig.4.3 shows the
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4. JOINT TORQUE SENSOR DESIGN

d ε

(a) (b)

Figure 4.3: Beam section deformations under bending. The figure shows a three dimen-
sional view (a) and a diagram (b) of a beam section deformation under a bending moment
load.

deformation diagrams of a rectangular beam section. As can be seen, the highest

deformations are in the top and bottom faces of the beam. If two strain gauges are

attached on these opposite faces (Fig.4.4), the relative difference of the strains they

measure provides a good measure of the bending torque. This layout has the advantage

of being insensitive to loads applied in other directions (e.g. normal or shear forces and

torsion torques).

Figure 4.4: Optimal SSGs placement to measure flexion. The figure shows two three
dimensional views of the optimal SSGs placement to measure a bending torque applied to
a beam of rectangular cross section. SSGs are represented as black patches.

4.3.2 Torsion

The shear strains γ caused by the torsion torque in a circular cross section beam is

given by:

γ =
Mt

IpG
r (4.2)
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4.3 Torque measurements in simple structures

where Mt is the torsion moment, Ip is the polar moment of inertia of the section

calculated with respect to the beam axis, G is the shear modulus, and r is the distance

from the beam axis. In this case the highest shear strains build up on the beam’s outer

r
γ

(a) (b)

Figure 4.5: Beam section deformations under torsion. The figure shows a three dimen-
sional view (a) and a diagram (b) of a beam section deformation under a torsion moment
load.

cylindrical surface. However SSGs cannot be directly used to measure shear strains

as they can only be employed to measure linear strains. Nevertheless shear strains

can be resolved into their principal linear strain components via Mohr’s circle analogy.

In this case the principal strain components are oriented at a π/2 helical angle with

respect to the beam axis. The principal components have however opposite sign: one

is compressive and the other is tensile. Therefore the best solution to measure torsion

torques in beams of circular cross sections, is to attach two SSGs at a π/2 helical angle

with respect to the beam axis (see Fig.4.6) and measure the difference of their relative

deformations.

Figure 4.6: Optimal SSGs placement to measure torsion. The figure shows a three
dimensional view of the optimal SSGs placement to measure a torsion torque applied to a
beam of circular cross section. SSGs are represented as black patches.
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4.4 Conceptual design and design procedure

As show in [Aghili et al., 1997] there is a tradeoff between a sensor’s sensitivity and its

mechanical resistance. It would be desirable to design a sensor with the highest possible

deformations to increase sensitivity. High deformations however cause high stresses

which negatively affect the overall system robustness. As described at the beginning

of chapter 3 the iCub motor groups are slightly over-dimensioned. This considerably

complicates the design of sensors as they are required to resist the corresponding joint

peak torque values and still be sensitive enough to measure lower torques with sufficient

resolution. A rather low safety factor, close to one, was therefore adopted to ensure

sufficient sensitivity.

The issue of integrating the torque sensing elements onto the arm joints was then

considered. To solve this problem there are generally two alternatives: a first option

is to redesign and sensorize one of the elements of the transmission chain whereas

a second alternative is to insert in the transmission chain an additional controlled

deformation transducer. This latter choice is generally easier to implement because it

frees the designer of the dimensional constraints posed by the existing parts. Another

important decision is whether to place the torque sensors at the joint level or at the

motor level in the coupled shoulder joint (described in Sec.3.3). It was decided to

place the sensors at the joint level for two reasons: firstly we considered that it is

most important to know the torques exerted by the robot rather than to simplify its

controller; secondly placing the sensors at the motor level requires dimensional changes

incompatible with the third design specification. Moreover introducing the sensors

at joint level allows to compensate transmission non-linearities (friction, elasticity)

although makes the controller more complicated.

For each sensor the following iterative procedure was followed:

1. possible locations for the sensors in the current structure of the arm were initially

identified

2. once a plausible sensor placement was identified, the initial sensor geometry and

dimensions were determined with the equations of linear elasticity [Timoshenko

and Goodier, 1970]
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4.5 Sensors placement

3. the tentative sensor design was firstly validated with structural finite element

analyses (FEAs), performed with the Ansys commercial software package

4. analyses where then iterated several times to optimize critical geometric features

4.5 Sensors placement

4.5.1 Shoulder pitch joint (joint 0)

The complex mechanism of the shoulder joint made the integration of the sensor for the

pitch axis a rather difficult design problem. It was in the end decided to position the

sensor directly on the motor output shaft. Firstly the shaft cross-section was reduced

locally, to obtain strain levels tailored to the SSGs operating range. This particular

placement however required to route the sensor wires out of the mechanism to the signal

conditioning electronics. This issue was solved by designing a new hollow motor shaft

10mm

shoulder
pitch sensor

hollow
wire shaft

``motor 1''

wire exit
hole

Figure 4.7: Shoulder pitch sensor. The figure shows a CAD cross section of the new
shoulder joint: the sensor and the ire shaft are labeled.

that allowed to extract the cable from the rear of the motor (Fig.4.7). Because of the

small spaces available and of the strong motor EMI, a special four-wire shielded micro-

cable with 1.01mm outer diameter had to be employed. As the mechanical robustness

of the sensor was critical 36CrNiMo4 stainless steel was chosen as construction material.
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4. JOINT TORQUE SENSOR DESIGN

4.5.2 Shoulder roll joint (joint 1)

The sensor for the roll axis was inserted, as an additional part, in the transmission

chain conveying the motion to the shoulder roll joint. The terminal part of the set

of pulleys driven by the second motor was modified, and a new part, fixed externally,

was added (Fig.4.8). The new part has two beam-like structures in its terminal part

whose flexion is proportional to the transmitted torque. Ergal7075 was the material

chosen for this part: its low Young’s modulus implies that less force is required to

induce measurable strains, thus increasing the sensitivity of the sensor. Its rather high

mechanical resistance is another desirable characteristic.

SSGs
placement

(a) (b)

Figure 4.8: Shoulder roll joint. The figure allows the comparison of the previous joint
design (a) and its upgraded version (b).

4.5.3 Shoulder yaw joint (joint 2)

No additional sensors were required for the shoulder yaw joint, since its axis coincides

z axis of the six-axis force-torque sensor mounted after the shoulder joint.

4.5.4 Elbow joint (joint 3)

The elbow joint was modified by adding two grooves thus creating a spoke-like struc-

ture: measuring the flexion of this part allowed to measure the torque exerted by the

elbow joint (see Fig.4.9). This modification required however some minor changes of

the subassembly bearings and their supports. Because of these changes 36CrNiMo4

stainless steel was chosen for this sensor because of its high mechanical resistance.
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spoked 
structure

(a) (b)

Figure 4.9: Elbow joint upgrade. The figure shows the changes undergone by the elbow
joint: the old version is shown in (a) whereas the new part is shown in (b).

4.6 Finite element analyses

As mentioned in section 4.4 sensor designs were validated the help of finite element

analyses (FEA). ProE CAD models were processed with the Ansys Educational FEA

software. A linear elastic analysis type was considered as the most appropriate since

the sensors are not affected by relevant non-linearities and still allowed fast convergence

to the solution.

The meshes for the FEA were generated automatically with a patch independent

tetrahedron algorithm with refinement conditions in the critical regions to better model

the stress/strain gradients.

For what concerns the boundary conditions all the simulations were performed with

face loading and restrained displacements The torque loads for each joint were taken

equal to the corresponding peak values listed in Tab.3.3. The screws used to fix the

parts were modeled with a zero displacement (x, y, and z directions) condition. In

the shoulder pitch and elbow sensors bearings were modeled by constraining the radial

displacements of the surfaces they were acting on. In the shoulder roll joint, to simulate

simply the contact with the subjacent part, the vertical displacements of the base of

the sensor were constrained to be zero.

The results of the simulations are shown in Fig.4.10, Fig.4.11 and Fig.4.12. The

last iteration of the FEAs allowed to obtain in the region to be sensorized strain levels
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4. JOINT TORQUE SENSOR DESIGN

appropriate to the SSGs operating range (±500µε to ±1000µε).

Figure 4.10: Shoulder pitch joint FEA. The figure represents the strain field for the
shoulder pitch joint sensor.

68



4.6 Finite element analyses

Figure 4.11: Shoulder roll joint FEA. The figure represents the strain field for the shoulder
roll joint sensor.

Figure 4.12: Elbow joint FEA. The figure represents the strain field for the elbow joint
sensor.
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Sensor validation

The sensors described in chapter 4 were constructed and instrumented with SSG (see

Fig.5.1). It was the necessary to perform some preliminar tuning before they could be

(a) (b)

Figure 5.1: Joint torque sensors. The figure shows a photo of the shoulder pitch and roll
sensors (a) and a photo of the elbow sensor (b).

employed.

5.1 Temperature compensation

Among the first problems to consider was the temperature compensation mechanism

of the SSG. SSG are very sensitive to temperature changes: the resistivity of these

components drifts up to 10% for a 10◦C temperature shift. The standard solution

to cope with these temperature-caused resistivity drifts is to use up to four SSG in

a Wheatstone bridge configuration (see Fig.5.2(a)). In this way, since temperature

drifts occur in all the SSG, the bridge remains balanced and the offset shift is somehow
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5. SENSOR VALIDATION

corrected. However a more sophisticated strategy can be adopted: two resistors (of

appropriate value) of constant value are added in series and in parallel to one of the

SSG of the bridge (as in Fig.5.2(b)), in order to keep the resistivity difference of the

two SSG of the bridge as low as possible.

SG1

SG2

SG4

SG3

Vcc

Vout

GND

SG1

SG2R3

R4

Rp

Rs

Vcc

Vout

GND

(a) (b)

Figure 5.2: Wheatstone bridge temperature compensation circuits. Strain gages and
normal precision resistor are indicated with the SG and R letters respectively. The standard
4-gages bridge is show in (a); the alternative stabilizing circuit which we adopted is show
in (b).

At this point the value of the two resistors (Rp and Rs) had to be determined. To

this end the resistivity changes of the SSG attached on the sensors were measured at

varying temperatures. The sensors were placed in a Binder constant climate chamber.

From an initial value of 20◦C the temperature was first increased up to 50◦C with

three 10◦C steps. The temperature was then reduced back to 20◦C with the same

temperature step size to check if the system exhibited hysteresis. Before measuring the

resistivity of the SSG the component was left settle for one hour to allow it to reach

temperature steady state. This suitable time value was found empirically by assuming

the component behaved as a first order system. To check the behavior of the SSG

the linear regressions curves for the data obtained were computed. The residuals of

the fitted lines were rather small (i.e. < 0.1◦C); it was therefore determined that the

behavior of the SSG in the 20÷50◦C range can be considered as linear.The appropriate

values for the series and parallel resistors for each channel were finally calculated using

a non-linear least-squares technique adopting the trust-region algorithm.
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5.2 Force torque sensor calibration

5.2 Force torque sensor calibration

The second problem to be addressed was the calibration of the six-axis force-torque

sensor (see section.3.5.2). The calibration matrix is a 6×6 matrix that allows to convert

the raw voltage data measured with the strain gauges into the real components of forces

and torques. Being f the 6×1 forces-torques vector, v the 6×1 measured voltages vector

and C the 6×6 calibration matrix, the following equation holds (see Fig.5.3):

f = Cv (5.1)

f = C ● v

1
6 6

6
6
1

Figure 5.3: Calibration matrix linear transormation.

Given 6 linearly independent load conditions in the form of a 6×6 matrix F and

the relative digital data V the calibration matrix C could be derived as:

C = FV −1 (5.2)

Theoretically these 6 conditions would suffice to calibrate the sensor; in practice

many more data are used. The squared error between the measured voltages, multiplied

by the calibration matrix, and the corresponding force and torque values, is minimized

by varying the elements of the calibration matrix. This process yields as result the

36 coefficients of the calibration matrix. Voltage data are gathered (for more than six

conditions) in the rectangular matrix V which is then inverted with the Moore-Penrose

pseudo-inverse algorithm was used (the process is represented in Fig.5.4).

One of the easiest ways to generate known loads and to apply them to the sensor

is to use a truss structure and hang weights to it. Given the weights and the geometry

of the truss structure, the value of forces and torques applied to the sensor can be

derived. A calibration was designed and constructed: the structure is represented in

Fig.5.5. To properly elicit measurements in the six channels of the force-torque sensor a

set 24 loading conditions (lited in table 5.1) was empirically chosen: this constitued the
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Figure 5.4: Calibration matrix calculation outline diagram.

Figure 5.5: Calibration structure. The figure shows a photo of the structure used to
calibrate the sensors.
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5.3 Joint torque sensor calibration

known loads matrix F . It is worth noting that the loading conditions do not need to

comprise pure forces and torques as long as there are at least six linearly independent

conditions (i.e. the rank of matrix F is 6).

These loading conditions are visualized in Fig.5.6; Fig.5.7 shows a detailed view of

the residual quadratic errors after the calibration of the force-torque sensor.

5.3 Joint torque sensor calibration

The joint torque sensors were calibrated against the gravity torques generated by the

arm. The gravitational torques at the joints were measured and compared with their

expected value. The results of this test are shown in Fig.5.8. The curves were traced by

measuring static joint torques at various joint postions, spanning the joint range at 5deg

increments. Some mismatches can be appreciated, specially for the elbow joint. Various

reasons for these behavoiurs can be conjectured such as unmodeled frictional stiction

effects or non-linear elastic characteritics in the steel tendons and the Harmonic-Drive

reducers: further analyses in this sense are required. Moreover the shoulder yaw joint

yields slightly more noisy measures. The digital signals are in general affected by 2 to 3

bits of noise thus reducing the final resolution to 13 bits. Nevertheless sensor readings

generally correlate nicely with the corresponding expected results.
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component Fx Fy Fz τx τy τz

units [N ] [N ] [N ] [Nm] [Nm] [Nm]

condition
number
1 0 0 51.01 -7.52 0 0
2 0 0 51.01 0 -7.52 0
3 0 0 51.01 7.52 0 0
4 0 0 51.01 0 7.52 0
5 -51.01 0 0 0 -0.26 -7.14
6 -51.01 0 0 0 -9.44 0
7 -51.01 0 0 0 -0.26 7.14
8 0 -51.01 0 0.26 0 -7.14
9 0 -51.01 0 9.44 0 0
10 0 -51.01 0 0.26 0 7.14
11 51.01 0 0 0 0.26 -7.14
12 51.01 0 0 0 9.44 0
13 51.01 0 0 0 0.26 7.14
14 0 51.01 0 -0.26 0 -7.14
15 0 51.01 0 -9.44 0 0
16 0 51.01 0 -0.26 0 7.14
17 0 0 -247.21 0 0 0
18 0 0 247.21 0 0 0
19 -247.21 0 0 0 -1.24 0
20 247.21 0 0 0 1.24 0
21 123.61 214.09 0 -1.07 0.62 0
22 -123.61 -214.09 0 1.07 -0.62 0
23 123.61 -214.09 0 1.07 0.62 0
24 -123.61 214.09 0 -1.07 -0.62 0

Table 5.1: Loading conditions
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Figure 5.6: Calibration loading conditions. The figure shows the values of the forces as
yellow bars. On each component, in every condtion, is stacked the corresponding residual
error represented ar a red bar. A more detailed plot of the errors is shown in Fig.5.7.
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Figure 5.7: Residual quadratic errors for the loading conditions. The figure shows a plot
of the residual quadratic errors for each loading condition, and for the six components of
forces and torques.
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Figure 5.8: Sensor validation. The joint torque measurements on the shoulder pitch,
shoulder roll and elbow joints are shown in (a), (b), and (c) respectively.
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Dynamic tasks

81





6

Motor control, primates and

robots

This short chapter intends to present a brief description of how the motor control

problem is solved in robots and primates. This introduction will introduce several

basic concepts, that will help to elucidate the relevant motivations to study dynamic

tasks.

The primate motor system is capable of generating a remarkable variety of move-

ments. If the sensorimotor system is analyzed from a “control systems” point of view

[Schaal and Schweighofer, 2005] it can be subdivided into several units that cooperate

to achieve a desired movement. The central nervous system (CNS) takes care of the

movement planning, and generates a motor command as a set of muscle activation pat-

terns. These, in turn, govern muscular contractions which produce the movements of

the limbs. To improve the control of movements the feedback signals of different sensory

modalities are collected and sent back to the CNS. Biological muscles however have a

relatively limited actuation bandwidth. Moreover sensory feedback is not instantaneous

and its transmission might require up to 200[ms] (depending on the modality). Despite

all these limitations humans perform with relative ease a wide range of motor skills,

from extremely fine manipulation (e.g. sewing, writing, playing musical instruments)

to fast, highly coordinated, powerful movements (e.g. weight-lifting, long jumping, jug-

gling). The way in which these movements are planned and controlled is still an open

issue.
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6. MOTOR CONTROL, PRIMATES AND ROBOTS

6.1 Models for biological motor control

6.1.1 Internal models

It is by now widely accepted that the primate brain relies on the computational principle

of internal models [Kawato, 1999]. These processing units, probably located in the cere-

bellum and the primary motor cortices [Wolpert et al., 1998], mimic the input/output

characteristics of the motor apparatus. In [Wolpert and Ghahramani, 2000] the sen-

sorimotor loop is subdivided into three main subprocesses which continuously run in

parallel(Fig.6.1):

• the inverse model

• the forward dynamic model

• the forward sensory model

The inverse model given a task, a state and a context issues a motor command. The

way by which this is done is not yet clear. A rather accredited theory is that the brain

contains a map that allows to transform all the points that constitute a given trajectory

into motor commands [Kawato et al., 1987]. The forward dynamic model given a state

signal and an issued motor command predicts the next state of the system. The forward

sensory model given the current state of the system and a motor command allows to

predict the sensory feedback it will produce. As mentioned earlier the transduction and

transport of sensory signals to the CNS involves considerable delays. Moreover these

signals are generally corrupted by noise. In this sense the forward dynamic model and

the forward sensory model form a sort of predictive observer capable of reducing the

uncertainty in the state estimation caused by noisy and delayed feedback signals. This

provides a reliable state signal which can be used to compute the motor command

by the inverse model. Moreover the forward dynamic model can be used for mental

simulations of intended movements thus providing a support for the planning phase.

6.1.2 Optimal control

An alternative perspective on the motor control problem has been proposed by Todorov

in [Todorov, 2004]. In this review several examples show how optimality criteria allow

to predict and model complex behaviours. This approach is appealing because the
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Figure 6.1: Sensorimotor loop diagram. The figure shows a diagram of the human
sensorimotor loop (adapted from [Wolpert and Ghahramani, 2000; Wolpert et al., 1998]).

assumption that the sensorimotor system continuously aims at improving behavioural

performance and overall efficiency is well justified. The author shows how traditional

methods generally require as input a detailed description of how a desired goal is to

be accomplished. On the other hand the optimal control framework allows to derive a

control strategy simply by specifying a performance criterion. Optimal control methods

can be subdivided into two main categories: open-loop and closed-loop, depending

on whether the role of on-line sensory feedback is considered or not. In a practical

implementation an open-loop optimization would yield a motor plan to be executed by

a feed-back controller. In a closed-loop optimization process also the controller can be

tuned, thus allowing the plant and the task to shape the controller that best solves the

task (see Fig.6.2). Notably this elegant and coherent approach is well in accordance with

the results of several fast reaching experiments presented in [Desmurget and Grafton,

2000]. Interestingly this framework is similar to the one presented in the previous

section as in both cases an internal model, relying on predicted feed-back, is needed to

predict state changes. The author however argues:

“[...] what are usually called internal forward models as distinguished
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Figure 6.2: Sensorimotor loop diagram. The figure shows a diagram of the human
sensorimotor loop (adapted from [Todorov, 2004]) in its closed-loop variant.

from internal inverse models. The latter are thought to transform task goals

into motor commands, but because this is the job of a controller, I believe

the “inverse model” terminology should be avoided.”

Indeed in the optimal control framework, the motor command is not computed by

the pre-programmed inverse model, but by the controller generated by the closed loop

optimization procedure. The main difference between the inverse model and closed-

loop optimization frameworks is the form of the controller, which among different tasks,

remains fixed in the former case and is allowed to change in the former. To solve this

limitation of the inverse model approach Wolpert and Kawato proposed a framework

based on multiple parallely running inverse models [Wolpert and Kawato, 1998].

A basic problem of optimality based methods is the form of the cost function. What

is generally done in optimal control studies in primates is to choose a cost function a

priori and to check its validity a posteriori by comparing the theoretical predictions of

a model with experimental observations. Several criteria have been proposed, such as

the minimum jerk, the minimum torque change, (see [Todorov, 2004] and references

therein) but the large body of experimental data that have been gathered seem to

suggest that the optimality criterion varies among different tasks. A recent study by

Berret et al. shows how the minimum absolute work cost function allows to integrate
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in the planning both inertial and gravitational forces on the limb to minimize energy

expenditure [Berret et al., 2008]. The model allows to describe several features of arm

reaching performed in normal conditions and in the absence of gravity. Mathematical

tools allowing to infer the cost function from behavioural data would be extremely

desirable. Although several mathematical methods for inverse optimal control have so

far been proposed (e.g. inverse reinforcement learning) there does not seem to be a

well established procedure.

Finally despite the solid theoretical bases of this approach, the computational com-

plexity of optimal control methods makes their application to real world problems

extremely difficult.

6.2 Traditional robot control

The way in which robots are normally controlled differs significantly from the sensori-

motor processes taking place in the primate brain. This is most probably caused be the

inherent “hardware” differences between the human body and conventionally designed

robots (as described in chapter 1). These differences can be summarized into three

basic points:

1. robots’ sensory feedback generally have only minimal delays, typically below few

[ms]. This lag is about one to two orders of magnitude lower than the corre-

sponding typical values for the human nervous system

2. robotic actuators generally have a rather large bandwidth, once again one to two

orders of magnitude superior to that of biological muscles

3. the mechanical admittance of robotic actuators is considerably lower than that

of biological muscles (as described in section 1.4)

Out of these points only the third is generally considered as a drawback. The first

two points imply that, contrary to the human sensorimotor system, error correction

schemes, such as PID controllers, are a very effective way to control robotic manipula-

tors [Franklin, 1993]. This aspect often allows robotic control system designers to avoid

the integration of a predictive component, which as described in the previous section, is

essential for sensorimotor control in humans. A large number of well established meth-

ods to compute feed-forward compensation commands (such as the computed torque
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method) can be found in the robotic literature (see [Spong et al., 2006] and references

therein). These methods generally rely on an precise analytical formulation of the

robots’ dynamics, which is however rather difficult to derive because of model errors,

actuator dynamics and unmodeled nonlinearities. Moreover the overdamped dynamic

characteristic caused by high speed reductions contributes to cancel forces arising dy-

namically. These factors altogether contribute to making high gain PID trajectory

tracking the standard solution for the control of robots.

Biological systems have been forced to evolve open-loop predictive controllers, be-

cause of large latencies and slow dynamics. On the other hand, robotic systems are fast

and responsive enough to render this problem less critical. However feedback control

inherently constrain the performance of the system and this will probably turn out to

be a limiting factor in the near future. As the research in the field of physical robot in-

teraction advances, robotic platforms tend to increasingly back-drivable and compliant

designs. In such platforms the role of intrinsic dynamic forces (i.e. forces not actively

generated by the robot) will become progressively more important, eventually to the

extent it will not be possible to neglect them any more. For this reason the study

of dynamic tasks and of suitable controllers to perform them, eventually inspired to

the way primates control their movements, is considered as a interesting and crucial

research topic which is thus worth pursuing.
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7

Planning dynamic tasks

Let us define dynamic tasks as tasks to be performed in short lapses of time and in which

the effect of forces not actively generated by the robot (such as inertial or gravitational

forces), considerably affect the achievement of the task.

In this context the two link pendulum swing-up has become in the last fifteen years a

standard benchmark problem. In this task a two link pendulum, as the one represented

in Fig.7.1(a), with limited torque at the joints, has to move from its stable downward

pointing equilibrium position to its upright position shown in Fig.7.1(b).

2

1

g

1=

2=0

(a) (b)

Figure 7.1: Two link pendulum swing up problem. The figure represents the benchmark
problem of the two link pendulum swing up problem. The angle conventions are defined
in (a) while the goal state is represented in (b).
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The equation that generically describes the rigid body dynamics of a manipulator

is:

τ = M(θ)θ̈ +C(θ̇,θ) +B(θ̇) +G(θ) (7.1)

where τ denotes the vector of joint torques, θ̈, θ̇ and θ the vectors of joint angular ac-

celerations, velocities and positions, M(θ) the configuration dependent inertia matrix,

C(θ̇,θ) the Coriolis term, B(θ̇) the friction term and G(θ) the gravity torques. For

the system represented in Fig.7.1, Eq.7.1 can be explicited as the following system of

equations: {
τ1 = M11θ̈1 +M12θ̈2 − Cθ̇2

2 − 2Cθ̇1θ̇2 +G1 +B11θ̇1 +B12θ̇2

τ2 = M21θ̈1 +M22θ̈2 − Cθ̇2
1 +G2 +B21θ̇1 +B2,2θ̇2

(7.2)

where Mij denotes the ith row and jth column element of the inertia matrix:

M11 =m1s
2
1 + J1 +m2s

2
2 + J2 +m2(l21 + 2l1s2 cos θ2)

M12 =M21 = m2s
2
2 + J2 +m2l1s2 cos θ2

M22 =m2s
2
2 + J2

(7.3)

and the other terms are:

C =m2l1s2 + sin θ2

G1 =g(m1s1 sin θ1 +m2(s2 sin(θ1 + θ2) + l2 cos θ1))

G2 =gm2s2 sin(θ1 + θ2)

(7.4)

where m1 and m2 denote the links masses, l1 and l2 their lengths, s1 and s2 the distances

of the centres of masses of the two links from the preceding joint, J1 and J2 the inertias

of the two links and g the gravity acceleration. From Eq.7.2 angular accelerations can

be computed as:

θ̈ = M(θ)−1(τ −C(θ̇,θ)−B(θ̇)−G(θ)) (7.5)

Eq.7.5 is the forward dynamic equation of the system that, if integrated, allows to

determine the future states of the system, given a current state x and control action

u. Let the state be x = [θ1, θ2, θ̇1, θ̇2]t and the control inputs u = [τ1, τ2]t we can write

Eq.7.5 as:

θ̈ = h(x,u). (7.6)

Being joint torques limited the system cannot reach directly any point of the state

space. It is however possible to transition to the upright position by exploiting system
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dynamics, that is by gathering momentum by swinging back and forth. Once enough

energy has been acquired, the final swing bringing the system in the upright position

can be performed.

Among the first investigators to consider the problem was Spong, which proposed

a swing-up strategy based on partial feedback linearization and a linear quadratic reg-

ulator (LQR) [Spong, 1994].

Other pioneering studies on exploiting dynamics for the manipulation of objects

were conducted Lynch and Mason from 1996. In [Lynch and Mason, 1996] the au-

thors increased the manipulation capabilities of a 1 DoF robot with open loop control,

by exploiting the intrinsic dynamics of the manipulated object. For motor planning

a sequential quadratic programming (SQP) gradient descent non-linear optimization

method was used.

In the context of exploiting dynamics Williamson used oscillators to control the

humanoid robot COG (see section 2.4) to successfully perform a number of dynamic

tasks such as juggling, turning cranks, playing with a Slinky toy, sawing wood, throwing

balls, hammering nails and drumming [Williamson, 1999].

It is worth to note that problems such as dynamics exploitation and feedforward

control of fast movements have been thoroughly considered in the robotics literature

on robotic juggling (see [Aboaf et al., 1989; Buehler and Koditschek, 1990; Riley and

Atkeson, 2002; Rizzi and Koditschek, 1992; Schaal and Atkeson, 1993] to cite a few).

Grzeszczuk and Terzopulos proposed an algorithm which was based on the acqui-

sition of a model of the plant to be controlled [Grzeszczuk and Terzopoulos, 1998].

The model was learnt with a feedforward neural network trained with backpropaga-

tion. The learnt model was then used to plan the task by optimizing a cost function

by gradient descent. This approach has several similarities in common with the distal

learning method introduced in [Jordan and Rumelhart, 1992].

Another interesting approach is the one introduced by Rosenstein in [Rosenstein,

2003] and further developed in [Rosenstein et al., 2006]. In these works it has been

shown how a 3DoF weightlifting robot can optimize motor synergies, to exploit dynam-

ics to perform a task with better performances or under severe mechanical constraints.

Their control architecture is based on equilibrium point motor control whose param-

eters are gradually tuned with a simple random search (SRS) reinforcement learning

algorithm.
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A problem similar to the two link pendulum swing up was also used as an example by

Todorov and Li in [Todorov and Li, 2005], where the authors introduce an approximate

iterative method (iLQG) to solve efficiently non-linear optimal control problems.

One of the major limitations of the iLQG method is that it relies on an accurate

analytic description of the system dynamics which is in practice hard to derive. In

[Mitrovic et al., 2010] the authors propose an alternative solution based on learning the

forward dynamics of the system.

More recently Kober and Peters have developed an algorithm applicable to com-

plex motor learning tasks [Kober and Peters, 2008] such as the ball-in-a-cup game.

In this work they put a strong focus on episodic case reinforcement learning by us-

ing a parametrized policy which is then optimized with the expectation-maximization

algorithm. In [Kober and Peters, 2009] the same authors show how a good initializa-

tion of the algorithm provided by demonstration allows to speed up considerably the

convergence of the algorithm.

As the aim of this study was to develop a controller to demonstrate dynamic capabil-

ities on a real robot all the methods and analyses focused on discrete time formulations.

The state transition equation Eq.7.7 can be discretized by Euler integration with time-

step ∆t. In this case for any time t, given the state transition equation h, the current

state xt and control action ut:

xt+∆t = xt + h(xt,ut)∆t = f(xt,ut) (7.7)

This approach variant nicely adapts to the discrete way of handling data of the digital

signal processors (DSP) used to control robots.

7.1 Finite time decision problem

In general all the methods cited so far propose an approximate solution of the finite time

decision problem. This problem is solved by minimizing the so called value function V

which represents how good it is to perform a given action in a given state. The strategy

followed by the agent when trying to minimize the cost is called “policy”, and will be

denoted with π. For a deterministic system, the policy defines the action that will be

taken at time t in state xt: u = π(t, xt). The finite time decision problem takes the
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following general form:

V (xt) = min
π

(
φ(xT ) +

T−1∑
t=s

C(xt, π(t, xt))

)
(7.8)

= min
ut→T−1

(
φ(xT ) +

T−1∑
t=s

C(xt, ut)

)
(7.9)

where xt denotes the state at time t, ut the control action at time t, φ(xT ) the at cost

at the terminal time T , and C(xt, ut) the cost for taking action ut from state xt. The

system dynamics are described by the forward dynamics state transition function f :

xt+∆t = f(xt, ut) (7.10)

Among all the possible policies there is always one that has the the property of being

better or equal to all other policies. This policy is called the “optimal policy” and

is denoted with π∗ The minimization of Eq.7.9 yields a sequence of actions u∗ that

constitute the optimal policy π∗. All the optimal policies share the same optimal value

function V ∗:

V ∗(xt) = min
π
Vπ(xt) (7.11)

A property of the optimal policy is that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard to the state

resulting from the first decision. This allowed Bellman to formulate a recursive solution

the finite time decision problem. Function V ∗(xt) can indeed be computed recursively

by backstepping from the final time:

V ∗(xT ) = φ(xT ) (7.12)

V ∗(xt) = min
ut→T−1

(
φ(xT ) +

T−1∑
s=t

C(xs, us)

)

= min
ut

(
C(xt, ut) + min

ut+1→T−1

(
φ(xT ) +

T−1∑
s=t+1

C(xs, us)

))
= min

ut

(C(xt, ut) + V (xt+∆t))

= min
ut

(C(xt, ut) + V (xt + f(xt, ut)))

(7.13)

The dimension of this problem scales linearly in time and exponentially in the number

of dimensions (because of the well known “curse of dimensionality” problem). This
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implies that solving Eq.7.13 becomes numerically intractable for systems with more

than three or four states.

The various approaches cited in the previous section propose algorithms to overcome

this problem. The reinforcement learning equilibrium point approach [Rosenstein et al.,

2006], and the iLQG framework [Todorov and Li, 2005] seemed particularly promising

and were therefore taken as test cases. Finally a preliminary implementation of LD-

iLQG was developed.

7.2 Reinforcement learning

Reinforcement learning (RL) is a computational approach to learning in which an agent

tries to minimize the total amount of costs (or to maximize the total amount of rewards),

it receives while interacting with a given environment [Sutton and Barto, 1998]. As

the rewards and costs are not given immediately, and the environment (i.e. function

f) is generally unknown the solution of this learning problem is not straight-forward.

Nonetheless this framework has the advantage of being extremely general and can thus

be applied to a wide range of problems. Broadly RL algorithms work as follows. Being

Vπ the value function for policy π is defined as:

Vπ(xt) = Eπ(C(x)) (7.14)

where Eπ denotes the expected value for an agent following policy π. The environment

is initially unknown, therefore as the agent explores and interacts with it, the value

function is constructed progressively. The objective of RL is to compute the optimal

value function V ∗ that allows to compute the optimal policy π∗:

V ∗(xt) = min
π
Vπ(xt) (7.15)

To do this practically all existing RL methods adopt the general policy iteration (GPI)

approach. This method consist in iteratively computing the value function for a policy,

then improving the policy. As the process is iterated the RL algorithm eventually

converges to the optimal value function V ∗ and the optimal policy π∗. It is important

to note that to perform these operations it is not necessary to have a model of the

environment as the knowledge about it is gathered with experience.
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Let us now consider the method reported in [Rosenstein et al., 2006] for the swing

up task. In this work the authors define the policy as a sequence of i proportional

derivative (PD) controllers in the form

τ (θ, θ̇) = W i(Kp(θ∗i − θ)−Kd)θ̇ (7.16)

where θ and θ̇ are the joint positions and velocities, τ is the vector of joint torques,

W i is the ith gain matrix, θ∗i represents the ith equilibrium point, and Kp and Kd the

proportional and derivative gains respectively. The policy switches from a PD controller

to the following one at the instants ti. The final PD controller is set in the goal position

to heuristically help the convergence of the algorithm. This is not very strong problem

simplification as the knowledge of the final desired state might be assumed a priori.

The policy search iteration adapts the θ∗i , W i and the vector of switching instants t

parameters with the simple random search (SRS) algorithm. The SRS algorithm is a

derivative-free optimization algorithm similar to simulated annealing. In this method

however a “memory” of the current minimum is maintained: if while exploring, the

solution ends up in local minima it is attracted back to the current best minimum.

7.3 iLQG

As mentioned in section 7.1 an alternative to global optimization is constituted by

local methods, which efficiently improve in an iterative way a suboptimal solution. The

iLQG method falls in this category [Todorov and Li, 2005]. The approach is based on

a iterative linearization of the non-linear plant dynamics around the current trajectory.

For quadratic cost functions this procedure allows to derive locally valid Riccati-like

equation that are then used to improve the trajectory by quadratic optimization. Non-

linear constraints can be introduced by modifying the linear feedback gain matrix.

Optimizing a quadratic function is only possible when the Hessian is positive definite.

Non-linear dynamics, and control constraints can cause the Hessian to have negative

eigenvalues. To avoid problems the Hessian is “fixed”: this procedure yields a new

quadratic approximation of the cost function which is successively accounted for when

minimizing the cost-to-go function. For mathematical details the reader should refer

to [Li, 2006; Todorov and Li, 2005] where a more comprehensive description of this

method is presented. It is rather important to remember that this method relies on
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the knowledge of the explicit model of the system to derive the approximate discrete

equations.

The two-link pendulum swing-up problem can be solved with the iLQG method by

discretizing Eq.(7.5) as in Eq.(7.7). Let the goal state be θ∗ = [π, 0]t, the quadratic

cost-to-go function can be written as:

V = wp

2∑
i=1

(θi(T )− θ∗i )2 + wv

2∑
i=1

θ̇i(T )2wc

T∑
t=0

u2
t (7.17)

where wp, wp and wr denote the weighting factors for the distance to the target at final

time, velocity at final time and accumulated squared torques terms respectively.

Although the iLQG algorithm was developed for stochastic systems the study pre-

sented in this thesis focused on its deterministic version, which has the advantage of

having an simpler mathematical formulation.

7.4 iLQG-LD

Among the most important limitations of the iLQG algorithm is that it relies on the

analytic formulation of the system dynamics. In robotics deriving or etimating accurate

analytic dynamic models is a rather complex problem. In the iLQG-LD framework

[Mitrovic et al., 2010] this it is avoided with the help of non-linear function regression.

This method is based on learning the function f ′(xi,ui) which best approximates the

forward dynamics of the system f(xi,ui). The approximation of function f(xi,ui)

inevitably introduces errors ε:

f(xi,ui) = f ′(xi,ui) + ε (7.18)

which will in turn be included in the planning of the movement. A consequence of this

is that, in general, the control command sequence u′ planned with f ′(xi,ui) will differ

from the optimal one, namely u planned with f(xi,ui). When the action sequence

u′ is executed the “real” system dynamics will cause the system to drift from the

predicted trajectory x′. This deviation eventually prevents the system from reaching

the goal state. To cope with this problem a feedback control action can be added to

the feedforward control commands. The appropriate feedback signal can be calculated
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Figure 7.2: iLQG-LD learning and control scheme. The figure shows a block diagram of
the iLQG-LD learning and control scheme.

given the sequence optimal feedback gains L and the predicted trajectory x′ calculated

by the iLQG algorithm and the current state of the system xt as:

δut = L′t(x
′
t − xt) (7.19)

The iLQG-LD learning and control scheme is represented in Fig.7.2.

In [Mitrovic et al., 2010] the authors used locally weighted projected regression

(LWPR) [Vijayakumar et al., 2005] to approximate the forward dynamics of the robotic

manipulator.

Notably this approach closely resembles the method previously proposed in [Grzeszczuk

and Terzopoulos, 1998], which however did not comprise the feedback controller.
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8

Learning experiments

8.1 Reinforcement learning

The policy was composed as the succession of three PD controllers Similarly to [Rosen-

stein et al., 2006] the SRS algorithm was allowed to tune the gain matrices W i the

equilibrium points θ∗i and the vector defining in which moment to activate the different

force fields t. The initial value of the parameters were initialized at random. The joint

torques were limited to the [-5,5][Nm] range.

An extensive search to optimize the parameters of the SRS algorithm was con-

ducted. Every set of parameters was tested in a so-called parameter run. Each run was

constituted by 5000 trials. Each trial consisted in a four second time lapse in which

the task had to be accomplished. Each simulation was run with a constant 1[ms] time

step.

A complete experiment employed, roughly, 50000 seconds, that is around 16 hours,

on a normal desktop PC (Intel Core 2, 1.8[GHz]). A low percentage of the trials

(≈10%) did not converge to a good solution. An example of a good trial is shown in

Fig.8.1 and in Fig.8.2.

Among the good aspects of this approach was that it did not depend strongly on the

set of parameters . One of the major drawbacks of this method was its initialization.

Several tests confirmed that the quality of the solution found with the SRS algorithm

and the rate of convergence to the optimal solution heavily depended on the random

choice of the initial policy. This, in turn, did not allow to discern if the learning proce-

dure benefited mostly by the SRS optimization or by the random policy initialization.
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Figure 8.1: Successful swing-up trial. The figure shows the evolution of the system’s
angular position in a successful trial (top), and the torque profiles generated by the attrac-
tor based controller (bottom). As can be seen in (bottom) joint torques saturate for long
periods.
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Figure 8.2: Reinforcement learning trial. The figure shows the outcome of a successful
learning run with the stick diagram of the swing up.
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Another limiting factor of this approach was that the policy parametrization was some-

how “stiff”. To allow the learning of more complex movements it would be necessary

to increase the number of PD controllers or to make it variable. But this would fur-

ther complicate the long solution search process. Because the big number of required

trials would make it impractical to run the algorithm on a real robot, and because of

the aforementioned limitations, it was decided to try a more structured model-based

approach.

8.2 iLQG

The algorithm described in section 7.3 was run with a 10[ms] timestep. The parameters

wp, wp and wr were set to 1.e4, 1e3 and 1. respectively. The time in which the task had

to be accomplished was set to 1.5[s] As in the previous experiment the joint torques were

limited to the [-5,5][Nm] range. After parameter tuning, the algorithm converged in

6[s] on a normal laptop (Intel Core 2, 1.8[GHz]). The result of the converged algorithm

is shown in Fig.8.3 and Fig.8.4.6
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Figure 8.3: Converged swing-up trial. The figure shows the evolution of the system’s
angular positions in a converged trial (top), and the torque profiles generated by the iLQG
controller (bottom).
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Figure 8.4: iLQG learning trial. The figure shows the outcome of a learning run with
the stick diagram of the swing up.

The iLQG algorithm internally relies on the Levenberg-Marquardt gradient descent

algorithm (see [Nocedal and Wright, 2006] for details) to optimize the sequence of

control commands u. The Levenberg-Marquardt algorithm in turn, is based on the

iterative adaptation of a damping factor λ with a scaling factor µ. The initial values

λ0 and µ are generally chosen in an empirical way.

To verify the robustness of the iLQG algorithm to variations of these parameters

several simulations were performed on the test problem. Fig.8.5 shows the plots of

the cost versus computation time for different combinations of λ0 and µ. As can be

seen from the trend of the curves, the cost decrease rate does not depend strongly on

the choice of the initialization parameters. Excluding tests with high values of µ (i.e.

µ > 10), the time required to reach convergence is below 6 seconds. Low values of the

initial damping factor seem to allow faster convergence. In general λ0 = 0.1 and µ = 8

seem a reasonable choice for the LMA parameter initialization.
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Figure 8.5: Algorithm convergence. The figure shows the effect of the LMA parameters
on the decrease of the total cost.
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Notably there is a dramatic difference in the time taken to solve the same task by

iLQG and the RL method described in section 8.1. RL methods are a viable alterna-

tive for solving optimal control problems when no information about the environment is

available. For many problems however, RL alone is impractical and the learning prob-

lem has to be structured to take advantage of domain knowledge. The iLQG method

on the other hand, strongly depends on the knowledge of the system’s dynamics for

fast convergence.

8.3 iLQG-LD

Solving the swing up problem with the iLQG-LD method required learning the forward

dynamics of the system. Two different methods were used to approximate Eq.7.5:

• a feedforward neural network,

• a LWPR neural network.

The input vectors i were constructed by stacking the state and control vectors i =

[x,u]t. The output vectors o contained the angular accelerations: o = [θ̈1, θ̈2]t. The

dataset comprised 1e6 samples generated with the analytic forward dynamic model.

Input and output data were normalized to be bounded in the [−1, 1] interval.

The feed forward neural network had two layers: a sigmoidal input layer, and a

hidden layer of 30 linear neurons. The neural network was trained with the backprop-

agation algorithm for 277 epochs and achieved a nMSE in the order of 6.8e−6. The

system dynamics equation learnt with the feed forward neural network trained with

the back-propagation algorithm will be denoted as fffbp(xt,ut).

The LWPR neural network was initialized by setting the initial distance metric to

1. Gaussian kernels were chosen as basis functions. To approximate the input-output

relationship the LWPR algorithm allocated a total of 91 receptive fields. After training

the neural network exhibited a rather high nMSE, in the order of 2.3e−2. Although

several network initializations were tried no extensive parameter search was performed.

The system dynamics equation learnt with the LWPR technique will be denoted as

flwpr(xt,ut).

The models were then used to solve the task described in section 8.2.
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Fig.8.6 compares the cost decrease curves of iLQG-LD with the one obtained with

the analytic model. As can be seen, when the iLQG algorithm has to rely on inexact

system models the overall performance of the method decreases.
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Figure 8.6: Convergence of the iLQG-LD algorithm. The figure shows the cost decrease
curves for the iLQG algorithm run with the analytic, the feed-forward neural network, and
the LWPR neural network forward dynamic models.

The predicted trajectories are plotted in Fig.8.7 The action sequences computed

with the iLQG-LD algorithm however do not take into account model errors. If the feed-

forward controls are applied to the “real” the system is driven as shown in Fig.8.8 This

prevents the systems whose control actions were planned with learnt models to reach

the desired final state. More in detail the control sequence planned with fffbp(xt,ut)

fails in bringing θ2 to θ∗2, while the one planned with flwpr(xt,ut) fails in bringing θ1

to θ∗1. The error in the former case is lower than the error in the latter case: this is

probably caused by the large nMSE difference between fffbp(xt,ut) and flwpr(xt,ut).

The iLQG-LD method presents itself an interesting alternative to avoid the re-

quirement of the explicit forward dynamics equations typical of the iLQG algorithm.

Although the preliminary results shown so far seem promising, additional tests are

required to determine to which extent prediction errors can be tolerated.
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Figure 8.7: Predicted trajectories. The figure shows the predicted joint trajectories for
the action sequences planned with the analytic, the feed-forward neural network, and the
LWPR neural network forward dynamic models.
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Figure 8.8: Real trajectories. The figure shows the real joint trajectories for the action
sequences planned with the analytic, the feed-forward neural network, and the LWPR
neural network forward dynamic models. The real trajectories are plotted as solid lines.
The predicted trajectories are plotted as dotted lines.
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Conclusions

Despite the advances of 60 years of research in the field of robotics the dexterous

manipulation capabilities of human are difficult to replicate in artificial system. Indeed

this might be due to the inherent “hardware” differences between robots and humans.

Robotic actuators are rather fast and powerful respect to muscles. Nevertheless they

are characterized by a very low back-drivability: this aspect considerably complicates

physical interactions.

In the first part of this thesis the problem back-drivability was introduced and

discussed. It was furthermore shown that to increase the mechanical admittance of a

robot joint torque control can be used. Joint torque sensors were designed, tested and

finally integrated in a iCub arm prototype.

A backdrivable robot can then be used to demonstrate dynamic motor skills. The

problem of planning dynamic tasks was addressed in the second part of this thesis. To

this end, numerical, machine learning based, methods were implemented and tested in

simulation to identify a suitable way to synthetize controllers capable of performing

dynamic tasks. The iLQG method turned out to be rather efficient for the present

purpose. Preliminary tests integrating a learnt forward dynamics model were also

carried out. Further tests in this direction are needed to check how the method scales

with the dimensions of the problem, and how tolerant it is to model errors.

Unfortunately because of time limitations it was not feasible to test them directly

on the robot: this part remains to be done as future work.

The current trend in research and development of humanoid robots tends to in-

creasingly backdrivable designs, more similar to their human counterparts. The current

robot control paradigm, based on trajectory tracking with high gain feedback loops,

will prove to be incapable of guaranteeing high performances, as tomorrow’s robots
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structures and actuators evolve. In this context the study of dynamic tasks based on a

combination of feedforward and feedback control will become increasingly relevant.

The work presented in this thesis goes in this direction and shall be considered

a step in the direction of bridging the gap between the manipulation capabilities of

humans and robots.
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