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Abstract

Software engineering and best practices promote modularity and compos-
ability to reduce debugging and development time of software applica-
tions in robotics. These approaches may increase the complexity of the
system and the effort required to properly orchestrate the interactions be-
tween modules especially in distributed architectures. Coordination of
components across different computers can easily lead to brittle systems
and scalability problems unless an appropriate strategy is adopted. The
contribution of this thesis has been divided in the three parts. The first
part addresses the coordination problem of modules in distributed archi-
tecture and proposes an approach in which coordinating logic is transpar-
ently inserted into separated reusable components along with application–
dependent data transformations. We demonstrate that by following our
approach, coordination and arbitration can be carried out directly by ex-
ploiting connections that deliver data messages between modules. For this
reason, it intrinsically reduces the number of links required for coordina-
tion and it can be built without changing existing modules.

The second part investigates how the extra requirement specific to an ap-
plication can be added to an existing module as an extensible functional-
ity. Systematically developing high–quality reusable software components
requires careful design to find a proper balance between potential reuse,
functionalities and ease of implementation. Extendibility is an important
property for software which helps to reduce cost of development and sig-
nificantly boosts its reusability. We introduce an approach to enhance
components reusability by extending their functionalities using plug–ins at
the level of the connection points (ports). Application dependent function-
alities can be implemented using a conventional scripting language and



plugged into the ports of components. The main advantage of the proposed
approach is that it avoids introducing application dependent modifications
to existing components, thus reducing development time and fostering the
development of simpler and therefore more reusable components.

The last part deals with the composition of modules in an application, their
deployment and the implemented tools to support the application build-
ing and execution. Composition and deployment of distributed modules
are time consuming and usually add a sensible overhead to the devel-
opment cycle when manual activities are required. Some modules may
need checking availability of specific hardware, computational resources
or software libraries. That adds complexity to the execution of component
on heterogeneous clusters of computers. Overall, this pushes the devel-
opment of monolithic systems that are difficult to reuse and it prevents
research in scenarios that require integrating behaviors involving cooper-
ative activities of several sub–modules. We propose an extensible formal-
ism of software components and applications in robotic. In the appendix,
we finally describe some tools that rely on this formalism to support ap-
plication development and management in the YARP framework.
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Chapter 1

Introduction

Robotic community is continuing to grow. Within the community, researchers are
developing increasingly complex humanoid robots which are aimed to be employed in
unstructured and dynamical environments. Recent advancements in robotic research
fields including mechanics, electronics, control, perception and machine learning are
pushing back the frontiers toward achieving roboticists dream: a robot operates as
human does in a human–like environment. However progress in individual domains
is not enough to achieve this. An essential component which is usually overlooked is
the software, which is what implements and integrates the individual components that
make the overall robotic system.

A good software framework is indeed a key principle for developing a robust robotic
system. Recent approaches to robot programming [15, 17, 54] push the idea that soft-
ware should be organized in different components providing a well–defined, possi-
bly, simple functionality, and that complex systems can be built by proper integra-
tion of a subset of these modules. Using Component-Based Software Engineering
(CBSE) [38, 78], an application designer can compose software systems from a mix-
ture of reusable off-the-shelf components. That significantly reduces the effort of
developing new software applications by promoting the systematic reuse of existing
solutions.

In the field of software architecture, there are five aspects of a component which should
be carefully considered during the development of a reusable software. Those are
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known as the rule of Five Cs or separation of concerns [4]: Computation (the com-
puted functionality), Communication (how the computed result being communicated),
Configuration (the parameters which defines the behavior of the component), Coordi-
nation (how component can be orchestrated) and Composition (how the components
can be properly composed in the system). In a component–based system, these five
concerns must be separated out to achieve a maintainable and reusable software.

Systematically developing high–quality reusable software components is a difficult
task and requires a careful design. An important and challenging aspect of developing
reusable software is the amount of functionality which should be offered by the compo-
nent. A component can be implemented with the limited functionalities while meeting
all of the software architecture standards. However, simplicity does not necessarily
lead to more reusable software. On the other hand, with reusability in mind, there is
a risk of over–generalization and increased complexity: to build a more generic and
reusable component, the developer tries to foresee all the possible future needs and add
them as reconfigurable functionalities to the software. Such a commitment may lead
to more complex components, polluted with application–dependent functionalities that
are more costly and difficult to maintain and use correctly. Thus, a proper balance must
be found between potential reuse and ease of implementation [74].

The glue that holds the software together, the middleware, has a big impact on its vi-
ability. Ideally, middleware helps developing reusable software, since it factors out
many details from components, leaving them simpler, cleaner, and more configurable.
Many middlewares partially support the separation of the concerns (e.g., communi-
cations) with the prospective of being simpler, more flexible and light–weight to be
easily used by inexperienced developers. These kind of frameworks usually do not
constrain users to follow any specific component model, which may leave the com-
ponents incompatible with the work of others. On the contrary, middlewares which
rely on more complex component models usually require more knowledge, learning
time and code development effort by non–experienced users. Another important issue
concerning the development of reusable software is the specific architecture depend-
ability. Experienced coders move as much functionality of a component as possible
into a general–purpose library, keeping the middleware–using part light so it can be
easier adapted with its future changes. Less experienced developer enthusiastically
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use the middleware for everything and make their software tightly coupled to the mid-
dleware and specific programing paradigm. A well–behaved middleware should limit
the downsides of that enthusiasm by providing a proper paradigm and tools for the
systematic software development and maintenance.

This research study investigates the application development requirements in robotics
and proposes some approaches to enhance reusability and the development of the soft-
ware components in distributed robotic frameworks. The work mostly concentrates on
the coordination of distributed modules, extensibility and reusability, composition and
deployment of the components to provide the users with proper methods and tools for
systematic application development for robot.

1.1 Research Objectives

The research objectives investigated in this work fall into three categories. The first
part is related to addressing the problem of coordination of modules in distributed
frameworks (e.g., YARP). The second part investigates how the extra requirements
specific to an application can be added to an existing module as extensible functionality
to foster the development of simpler and more reusable components. Finally, the last
part deals with the composition of modules in an application, their deployment and
the implemented tools to support the application building and execution. An overview
showing these categories and the corresponding chapters is given in Figure 1.1. The
rest of the section introduces the objectives of this work in terms of research questions
which have been explored.

Software engineering and best practices promote modularity and composability to re-
duce debugging and development time of software applications in robotics. This ap-
proach, however, increases the complexity of the system and the effort required to
properly orchestrate the interactions between modules. Coordination of distributed
components across different computers can easily lead to brittle systems and scalabil-
ity problems unless an appropriate strategy is adopted. Thus, the major area of focus is
the coordination of complex robotic systems. More specifically, the following research
questions is investigated in Chapter 3 and 4:
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Coordination

Chapter 3: A port-arbitrated 

mechanism for behavior selection

Chapter 4: Modeling behaviors 

using port arbitration

Extensibility

and Reusability

Chapter 5: Extending data ow 

port using scripting langauges
Chapter 6: Enhancing software module

reusability using port plug-ins: 

an experiment with the iCub robot

Composition

and Deployment
Chapter 7: Application description 

and management model in YARP

Appendix A: gyarpmanage 

and gyarpbuilder

Figure 1.1: Chapters ordered according to the research objectives investigated in this
work.

Which coordination mechanism fits better the ongoing research ob-
jectives in the field of humanoid robotics and how it can be adopted
by distributed robotic frameworks?

A challenging part of developing a reusable software is the amount of functionality
which should be implemented in a component. Usually, many application–specific
functionalities are mixed with the computational services which causes to have more
complex and error–prone components. The following research questions is investi-
gated in Chapter 5 and 6:

How application–specific functionalities can be separately added to
an existing component to promote the development of simpler and
more reusable software?

Eventually components should be composed together in an application and run on a
machine or remote machines. Composition and deployment of large number of mod-
ules are time consuming and they usually add a sensible overhead to the development
cycle when manual activities are required. From a scientific point of view, this slows
down the development of new ideas and prevents the study of complex scenarios that
require integrated behaviors involving cooperative activities of several sub–modules.
The following research questions is investigated in Chapter 7:
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How components can be modeled by an expendable formalism in
order to be used for progressively development of tools which facil-
itate application design and deployment?

1.2 Outline

This dissertation consists of 7 chapters and one appendix. Most of the core chapters
are based on the peer reviewed papers submitted to scientific conference or journal.

Chapter 2 explores the literature relevant to robot programming techniques and coor-
dination mechanisms which is the major objective of this thesis.

Chapter 3 presents a coordination mechanism based on port arbitration. Through
describing a real robotic example and comparison with the existing approaches, the
advantages of our work are demonstrated using YARP framework.

Chapter 4 introduces a representation of robotics tasks using our port arbitration ap-
proach. The model is used to describe the behavior of applications in a more compre-
hensive manner and to facilitate the coordination of components.

Chapter 5 concentrates on the extensibility of the components via port plug–ins and
separation of computational components from application–dependent functionalities.

Chapter 6 further demonstrates the potential advantages of port plug–ins and our
coordination mechanism trough presenting a step–by–step experiment with the iCub
humanoid robot which is completely built out of the existing modules without code
changes.

Chapter 7 presents a formalism for modeling applications and component manage-
ment in distributed architectures. The model is used for the development of compo-
sition (the "gyarpbuilder") and the deployment (the "gyarpmanager") tools for YARP
middleware. A short description of the tools and their features is presented in Ap-
pendix A.



Chapter 2

Background and Positioning

The problem of controlling and coordinating the functional components of an au-
tonomous robot’s software to achieve a complex goal is a highly challenging task.
Investigating a proper coordination mechanism for humanoid robotic application de-
velopment and studying the functional requirements of components for the realization
of that mechanism is one of the main focuses of this research work. Various control
architectures and programming paradigms have been proposed in different fields (e.g.
software engineering, artificial intelligence and computational neuroscience) which
due to their special convenience for particular robot operational context and research
objectives have been adopted only to a subset of robotics. The aim of this chapter
is to provide a general overview of existing approaches for the programming of an
autonomous robot control system.

2.1 Finite State Machines

Finite State Machine (FSM) is a mathematical model of computation which has been
widely used to model a large number of problems in computer programs, communica-
tion protocol, artificial intelligence and many other fields. In a simple form, FSM uses
states and transitions, and the states typically contain a set of actions which occur on
the entry or exit of a state. An extension of FSM is hierarchical state machine (HSM)
which has its origins in the state charts introduced by Harrel [36]. HSM allows that
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states to be nested in a hierarchical manner meaning that it can be in multiple states
simultaneously as long as those states have a parent-child relationship. Each state ex-
plicitly associated to one or more tasks and transitions represent the order that tasks
can get activated and access the resources (e.g., robot actuators) to define the general
behavior of the robot.

rFSM [45] or restricted Finite State Machine is a lightweight and a minimal subset of
UML2 and Harel statecharts which consists only three model elements: states, transi-
tions and connectors. It is designed to model coordination of robotic tasks and systems
with a minimal number of semantic primitives. Instead of providing a rich set of built–
in features for all possible use–cases, the rFSM model advocates dealing with com-
plexity by composition. That means both local hierarchical composition of Statecharts
or distributed composition as well as composition of core execution semantics with
run–time extensions such as event memory. rFSM provides an extensible, framework
independent and real–time safe implementation using Lua scripting language.

XRobots [80] is a domain-specific language for programming mobile robots based on
augmented hierarchical state machines. In the language, states are treated as first class
objects and thus they can be passed as arguments to other parametrized states. It also
offers the template states which allow them to be customized and instantiated.

Smach [12], is a recent and widely used state machine implementation in ROS [71].
Smach is a library for task–level execution and coordination based on hierarchical con-
current state machines which aims to rapidly compose complex robot behaviors out of
primitive ones. It introduces different container of states (e.g. StateMachine, Concur-
rent, Sequence and Iterator) thus has broader aim than being only a state machine. In
contrast to the rFSM, Smach offers the concept of concurrent container which allows
to define states with multiple child states which running simultaneously and the transi-
tion to another state can be done based on one or all of the child’s outcome. Therefore,
Smach differs from other previous approaches due to its support for having concurrent
and distributed states.
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2.2 Petri Nets

Generally, models based on finite state machines are inherently focused on the state of a
system and the observable input–output behavior. They are not well suited to studying
the interaction of concurrently active parts of a system and the combined behavior
of distributed parallel systems [43]. This is an important fact since concurrency is
source of complexity that can be rapidly overwhelming. Petri Nets [58], on the other
hand, seems to be promising tools for modeling and analyzing the system which are
characterized as being concurrent, asynchronous and distributed. A petri net usually
consist of a finite set of places (possibly with some token inside them), transitions and
arcs which link places to transition and vise versa. A transition is enabled if all input
places connected to it contain a token and all output places are empty. These properties
along with their strong mathematical representation has made petri nets popular for
modeling robotic applications especially in the filed of industrial robotics.

Robotic Task Model (RTM) [62] is a framework for implementing robotic task co-
ordination and evaluation from qualitative and quantitative viewpoints based on petri
net. A RTM consists of a set of resources (e.g. a primitive task), a set of primitive
action which robot can take to accomplish a task and a set of events which occurs
upon finishing a task (i.e. generated by an action) or detecting an error condition. In
RTM, resources are mapped to petri net places and transitions are associated to logical
conditions defined over the events. A place which possesses a token corresponds to
an available resource. When the resource is a primitive task, the token means that the
corresponding primitive action (i.e. the action chosen to translate the primitive task) is
running. Any logical condition associated to a transition is made true or false by the
occurrence of events. Each primitive task may be actually implemented by more than
one primitive action. This implies that, depending on the design, different primitive
actions might be running concurrently and the transition occurs either one of them is
performed.

The execution of coordinated tasks requires a mechanism for synchronization of ac-
tions and deterministic switch between sequential or parallel actions of the robot (i.e.
motion coordination). [9] proposes a framework for the coordinated execution of tasks
in humanoid robot based on petri net. The set of places describes the states of the
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system (e.g. robot’s arm is ready) and the set of transitions defines events (e.g. object
is grasped) that can change these states. Occurrence of events or the execution of an
operation may change the distribution of the tokens on places and put the system in
a new state. The proposed approach also decomposes a task in different subsystems
which allows them to run concurrently. Transition to another state can also take place
under the condition that different subsystems are ready at the same time. Thus, accord-
ing to [9], Petri nets can be used as an efficient tool for the coordinated motion control
in robotic systems with a high degree of freedom such as humanoid robots.

The actual task implementation (i.e., its design and coordinated execution) requires
the scheduling of the primitive tasks as well as the synchronization with the events.
Implementing sequence of actions while handling all exceptions (e.g. an event due
to a failure) results in immensely complicated network as the complexity of the task
increases. [47] propose a petri–net model for task supervision in the field of humanoid
robots. The proposed approach decompose the system in different petri nets: a network
for execution of the sequence of actions and another one to deal with occurrence of
exceptional circumstances (administration). The advantages is that the administration
network does not need detail information about the actual sequence of actions. In
another words, the administration has always identical network structure independent
from the associated execution network.

RoboGraph [48] is a robot task programming IDE based on Signal Interpreted Petri
Net (SIPN) editor [29] to program and coordinate the activity of modules written using
CARMEN [57] middleware. The IDE supports programming in different levels. The
first is to program tasks that must be executed autonomously by one robot and the
second is to program tasks that can include several robots and building elements. The
framework also consists of a centralized dispatcher to execute the Petri nets and a
monitor that shows the state of all the running nets.

Petri-net marked languages are a superset of regular languages (based on FSA) which
leads to a larger modeling power. One of the interesting point of modeling systems
using petri nets is that they do not lead to the same state explosion as combining finite
state machines [21]. Thus, It has been widely used for plan representation, analysis
and decision making in large scale [90], [55], [22].
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2.3 Behavior-Based Systems (BBSs)

The behavior–based paradigm tends to view an autonomous robot control system as
a set of asynchronous and concurrent individual behaviors. The overall behavior of a
robot is emerged as the result of the interactions of these behaviors among themselves
(i.e. inhibition or collaboration) and with the environment. In this approach, there is
no explicit representation of a robot’s context, state of execution and action.

The original concept of BBS is Brooks’ subsumption architecture [14] in which reac-
tive behaviors are used in a multilayer system and behaviors from higher level (higher
priority) can inhibit and suppress those in lower layers. However, this fixed–priority
approach tends to run into scalability problems as the number of behaviors increases.
Since then, various BBSs have been proposed which mainly differ in their approaches
of coordinating the asynchronous behaviors of a robot. The coordination can be per-
formed in a centralized or a distributed fashion using different mechanisms known as
behavior selection methods [75]. The following presents iB2C [70] and DBN [44] as
two representatives of BBSs. A comprehensive survey of behavior–based task coordi-
nation is given in [68].

Integrated Behavior–Based Control (iB2C) [70] offers an architecture of behavior–
based systems which supports a wide variety of action selection and coordination
mechanism such as priority–based and state–based arbitration, winner–take–all, su-
perposition and voting. Coordination in iB2C is done by using separate signals for
coordination (i.e. activation, stimulation, inhibition, target rating). Kertesz [44] intro-
duces dynamic behavior network (DBN) based on stimulation, inhibition and excita-
tion of the behaviors in a network. Behaviors in DBN use a set of preconditions and
the stimuli from other connected behaviors to determine their actual states at any given
time (normal, failed, activated, finished). DBN decomposes the problem in different
subsystems which consists of static and dynamic behaviors. The key concept of DBN
is that the behaviors can (dynamically) create new behaviors in their finishing or failing
actions. Although concurrency is supported by DBN, the parallelism is simulated and
the computation of the stimulus are done in iterations.
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2.4 Agent Programming Languages

As a matter of choice, a robot control system can continuously interrogates the sen-
sors and produce corresponding events whenever any change in the environment is
perceived. An event handling mechanism can be employed to query the large number
of events and produce required inputs for a task planner. In order to properly react
to these changes toward achieving the main goal, the planer selects a proper subset of
tasks to be executed. This leads us to another paradigm of robot programing known as
Agent Programming Languages which is widely used in the filed of classical artificial
intelligence.

One of the most suitable architectures for implementing deliberative behavior is the
BDI architecture [64] inspired by the BDI (Belief-desire-intention) model of human
practical reasoning [33]. This architecture includes components such as beliefs, goals,
plans, and plan generating rules. Each plan generating rule specifies a plan reaching a
goal if executed in a specific belief state. The deliberative behavior in BDI architecture
is a cyclic process in which sensory information is processed, beliefs and goals are
updated, applicable plan generating rules are selected, and applied, and then generated
plans are executed.

Various agent programming languages have been designed and developed to facilitate
the implementation of BDI architecture. Examples of these programming languages
include 2APL [24], AgentSpeak(L) [72], Jason [13], and MetateM [10]. However, the
application domains of these languages have been mainly limited to cognitive software
agents. One reason for this might be due to the fact that the current agent programming
languages lack necessary supports for addressing different requirements of robotic con-
trol systems. This urges system developers to invent many ad hoc solutions for such
requirements, making development of such systems costly and hard to maintain.

2.5 Coordination Models and Languages

Early concurrent languages supported the interactions through shared variables which
later have been extended to adopt message passing mechanism in distributed software
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architecture. The coordination models and languages are originated from the work of
Gelernter and Carriero [32] in the context of parallel and distributed systems and has
had a large development in the last two decades. A coordination model provides a
framework in which the interaction of active and independent entities can be expressed
using a specific language. “A coordination model is the glue that binds separate ac-
tivities into an ensemble” [32]. According to [6] a coordination language can be cat-
egorized based on two characteristics: data–orient or control–orient and endogenous
or exogenous. Data–oriented coordination exploits the data flow and their interaction
while a control–oriented coordination concerned with the activation and deactivation
of control flow.

An example of endogenous coordination languages is Linda [31]. This language de-
fines a mechanism to coordinate concurrent computations by means of messages which
are formated in tuple structure and can be added to the computation environment. They
remain as named independent entities until some process chooses to receive them. Us-
ing some primitive offered by the language, the tuples can be read or written in a block-
ing or non–blocking manner, and new processes can be created to evaluate the tuples.
Linda processes are decoupled from other processes by communicating only through
the tuple space. However, endogenous languages have the fundamental drawback of
intermixing computation with coordination [6].

In contrast to endogenous language which require computations to make use of specific
primitives for coordination, exogenous language make use of coordination–agnostic
computation. One of the most prominent example of this type of languages is Reo [7].
It is a paradigm for composition of distributed software components and services based
on the notion of connectors. Reo enforces an exogenous channel–based coordination
model that defines how designers can build connectors, out of simpler ones. Applica-
tion designers can use Reo for compositional construction of connectors that coordi-
nate the cooperative behavior of components in a component–based system. Thus, the
coordination is a result of the topology of channels within the connector. A compre-
hensive and detailed survey of coordination languages is also given in [6].



Chapter 3

A port–arbitrated mechanism for
behavior selection in humanoid
robotic∗

3.1 Introduction

Recent approaches to robot programming in the literature [15, 17, 54] push the idea
that software should be organized in modules each performing a well-defined, possi-
bly simple, job and that complex tasks should be then solved by proper integration of
a subset of these modules running concurrently. Integration and coordination in large
systems is a challenging task. The typical approach is to delegate the coordination to
special objects that manage the activities of the individual behaviors. Central coordi-
nators are difficult to reuse and implement robustly. This solution easily leads to brittle
systems and scalability problems.

Consider, as an example, the following behavior: a robot programmed to grasp an
object and give it back to a person. A possible way to achieve this behavior is to de-
compose it into simpler behaviors (e.g. “Look for object”, “Reach for object”, “Grasp

∗This chapter is based on Ali Paikan, Giorgio Metta and Lorenzo Natale. A port–arbitrated mech-
anism for behavior selection in humanoid robotics. The 16th International Conference on Advanced
Robotics. Nov 2013.
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the object”, “Look for a person”, “Approach the person” and ”Release the object”)
and orchestrate them using a Finite State Machine (FSM) to obtain a sequence of ac-
tions. The FSM can consist of different states each activating one or more behaviors;
the FSM change state when a specific event is triggered. For example, transition from
state “Look for object” to “Reach for object” happens when event Object found occurs.
From here event Object is reached brings the FSM to state “Grasp object”. Even in this
simple example it may be difficult to design the FSM so that all conditions are properly
handled. For example “Reach for object” and “Grasp object” should be active only if
the object is visible. Returning the object should be done only if the robot has the
object in the hand. This requires to continuously monitor that the object is in the hand
using the available sensors and reset the FSM otherwise. Generally speaking each state
in the FSM implicitly encodes the state of the external world (e.g. assuming that the
object is in the hand while returning it to the person); a robust behavior requires that
this state is either static or continuously monitored using the available feedback.

Programming robust applications considering reactiveness, scalability and re-usability
has always been at the center of attention of researchers. Different control architec-
tures, such as deliberative, reactive or hybrid [60] have been studied in a wide verity
of robotic domains. Among them, the behavior-based approach inspired from Brooks’
subsumption architecture [14] is of particular interest due to its fast response to exter-
nal events. Traditionally, it has been used in robotic applications in which reactiveness
is crucial (e.g. [8, 86], see also section 3.2). However, it requires the addition of special
connections that carry coordination signals; in distributed architectures these signals
must also be synchronized with the ones that carry data.

We introduce a novel mechanism for coordination of behaviors in distributed architec-
tures. In our approach modules are coordinated by arbitrating their connections. In
practice, inhibition of a module is achieved by suppressing the data it receives. Be-
cause coordination relies on the same links which are already in place to transfer data
among behaviors, this solutions intrinsically reduces the number of required connec-
tions. In addition, since modules can receive data from multiple sources, it allows a
finer degree of granularity (i.e., a module can inhibit only a subset of the connections
of another module, thus allowing the latter to process data from other connections).
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Finally, our approach can be implemented directly at the level of the middleware and
it clearly separates code responsible for computation and coordination.

We implemented our approach using the YARP middleware [54] and tested it by devel-
oping a complex behavior on the iCub humanoid robot [53]. We show that using our
approach we could implement a behavior that involves a sequence of actions by inte-
grating pre-existing blocks and without the need to develop a special purpose module
responsible for coordination. More importantly we developed our behavior incremen-
tally.

The remainder of this chapter is structured as follows. The following section high-
lights some of the features of our proposed mechanism and compares it with other
approaches. Section 3.3 presents the problem addressed in this chapter and describe
the arbitration mechanism and its properties. Section 3.4 suggests some policies for
tuning the connection parameters. In Section 3.5 we describe how we have used our
approach for implementing a specific behavior on the iCub humanoid robot and in
Section 8 we present our conclusion.

3.2 Related work

The problem addressed here has some similarities with the typical action selection
problem studied in the field of ethology, neurobiology, computational neuroscience,
artificial intelligence and robotics. The original concept of behavior-based system is
Brooks’ subsumption architecture [14] in which reactive behaviors are used in a mul-
tilayer system and behaviors from higher (priority) levels can inhibit and suppress
others. However, coordinating behavior solely based on inhibition tends to limit the
flexibility and reusability of the system [60]. To overcome this limitation, Maes [50]
proposes a bottom-up selection mechanism in a non-hierarchical network of behaviors.
Coordination in [50] uses three kinds of links between the behaviors (predecessor, suc-
cessor and conflictor) and it works by adjusting the preconditions in which behaviors
can operate. According to Tyrrell [81] and Hayashi et al. [37], this mechanism is not
well suited for human-like action selection problems because the binary values used as
precondition result in a loss of information. Hayashi et al. [37] also proposes an action
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selection method based on motivation levels that resembles the dopamine system in
animals. A continuous waveform of motivation signals are divided in different con-
sciousness levels with some preassigned behaviors in each level. Based on the signal
level, corresponding behaviors are chosen for execution. Since behaviors are statically
prioritized, this approach imposes the same limitation of the subsumption architecture
(i.e., a behavior may need to be in different consciousness level depending on the order
in which it appears in a sequences of action). In contrast, our approach does not limit
behaviors to be statically prioritized.

Different behavior selection mechanisms are compared in [49, 68] and [75]. An alter-
native approach to competitive action selection is a cooperative mechanism in which
recommendations from multiple behaviors are combined to form a control action that
represents their consensus. An example of this type of mechanism is DAMN [73]. It
uses a centralized arbitrator to fuse the collected commands from different behaviors
and select the action which best satisfies the prioritized goals of the system. Nowa-
days, due to heterogeneity of data types and the complexity of the control systems, the
proposed methodology is practically limited to low-level control. The centralized co-
ordination mechanism has been successfully used in different applications, but it can
encounter scalability problems due to the overhead associated to transferring a rele-
vant amount of information over several links to the coordinator [69]. In contrast our
approach does not use any central coordinator. Inspired by voluntary action selection
in humans [88], arbitration is done using regulated stimulation levels of the outputs of
behaviors. Ayllu [84] is an architecture for distributed multi–robot behavioral control
which allows standard port–arbitrated, behaviors interaction (message passing, inhibi-
tion, and suppression) to take place over IP networks. This architecture shares some
concepts with our approach but it does not support important features such as stimula-
tion and excitation.

Integrated Behavior–Based Control (iB2C) [70] is an architecture of behavior–based
systems which supports a wide variety of action selection and coordination mecha-
nisms such as priority–based and state–based arbitration, winner–take–all, superpo-
sition and voting. Coordination in iB2C is done by using separate signals for coor-
dination (i.e., activation, stimulation, inhibition, target rating). That introduces extra
links between behaviors and causes extra overhead that could be non-negligible in a
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distributed system. In our approach, coordination is performed using properties of con-
nections and it exploits links already used to transfer data thus intrinsically minimizing
the overhead. Another advantage of our approach is that it can be implemented at the
level of the middleware and it does not induce dependencies in the implementation of
the individual modules.

Kertesz [44] introduces the dynamic behavior network (DBN) which has some simi-
larities to our approach such as stimulation, inhibition and excitation of the behaviors
in a network. Behaviors in DBN use a set of preconditions and stimuli from other
connected behaviors to determine their actual states, at any given time (normal, failed,
activated, finished). In contrast, our approach does not change any conditions or inter-
nal states of behaviors to activate or deactivate them. Instead, a behavior can decide
whether to accept or not incoming data, based on the configuration of connections.
Furthermore, our coordination mechanism allows behaviors to be really parallelized
and distributed, in contrast to DBN where, parallelism is simulated and the computa-
tion of the stimuli is done in iterations. Similar to [70] and [44], in our approach, the
complexity of the problem can be decomposed in different subsystems. In section 3.5,
we show how, using our approach, a complex system is divided in subsystems that are
configured, individually tested and finally combined together to implement the desired
behavior.

3.3 Arbitrating behaviors

There is no concise definition of behavior in the literature. We refer to behavior as a
computational unit with a set of preconditions and goals. It has a set of input ports to
receive information from other behaviors and a set of output ports to stream out the
result of its activity. Upon receiving data a behavior checks its activation conditions,
performs an iteration step and sends the results through its output ports. We make the
following assumptions for each behavior:

• The preconditions in which a behavior gets activated are local to the behavior it-
self and they are not visible to other behaviors. In other words, behaviors cannot
directly activate or deactivate others.
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Figure 3.1: Two behaviors (The Face Detector and Object Detector) are connected to
the input port of Gaze Control using connections C1 and C2. The port arbitrator in
Gaze Control coordinates the two behaviors using a set of rules and properties of each
connection (dotted box). Please refer to the text for the definition of each symbol.

• Data are streamed out if and only if the behavior is active. For example, an
object detector sends object position information through its output port only if
the object has been detected.

We focus on the typical scenario of a publish–subscribe architecture in which modules
(behaviors) can communicate asynchronously using connection points (ports). The
key features we require are i) the output of a behavior can be connected to one or
more input ports of other behaviors and ii) multiple outputs from different behaviors
can be connected to the same input port of another behavior. For practical reasons we
developed our architecture on top of the YARP middleware [1].

In the example from Figure 3.1, Face Detector and Object Detector can both send 3D
position information to Gaze Control which controls the robot’s head to gaze accord-
ingly. Behaviors run in parallel and can be distributed over a cluster of computers that
communicate through network interfaces. Since there is no synchronization among
behaviors, data can be delivered to an input port at any time, potentially causing con-
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flicts. For example, in a simple scenario where a person keeps an object in front of
the robot, Face Detector and Object Detector compete to get data to Gaze Control. An
appropriate coordination mechanism avoids conflicts and, at the same time, it allows
obtaining different behaviors (looking at a face or looking at the object).

We propose an arbitration mechanism between multiple, competitive connections to
the input port of a behavior. As an example Figure 3.1 illustrates the arbitration in
the case of a port with two connection (here, Face Detector and Object Detector are
competitive connections to Gaze Control)∗. Messages arrive to a port from different
channels (connections) and generate events. Arbitration happens in three stages: com-
putation of the activation values, evaluation of the rules and selection. First, events are
accumulated with leaky integrators to produce stimulation values for all connections.
A connection becomes active when its stimulation level reaches a certain threshold. In
the second stage, the port arbitrator selects a single connection among the ones that are
active by evaluating a set of rules (i.e., written in first order logic) associated to each
connection. This “winner” connection delivers data to the behavior whereas data from
the other connections gets discarded.

As it is shown in Figure 3.1, the port arbitrator is implemented as a multiplexer that
let, at most, one active connection deliver its data to the component at any given time.
Here, we describe the parameters of each connection. In the following sections, we
demonstrate how these parameters can be used to properly arbitrate multiple connec-
tions. Each connection Ci has the following parameters:

Ψi =< σi, τi, Φi > , i ∈ {1 .. m}

Ψi is a list of the properties of the ith connection (identified by Ci) to an input port with
m connections; σi is the stimulation gain and τi is the damping time. Φi is the selection
rule associated to the connection Ci. In the following sections, we explain how the
selection rules are represented in first order logic and evaluated based on the activation
state of the connections.

∗Notice that several models for the control of attention have been proposed in the literature that are
much more appropriate for this specific task. However, we use the control of gaze as an example to
demonstrate and validate the proposed mechanism.
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Figure 3.2: Computation of the stimulation and activation levels for each connection.
s[k] is the stimulation level at time tk. σ is the stimulation gain and τ is the damping
time. Stimulation is accumulated every time a new message arrives and it continuously
decays over time. The connection is in active state once the cumulative stimulation
reaches a threshold and until it gets completely discharged.

3.3.1 Computation of the activation values

Figure 3.2 illustrates how the activation value of each connection is computed. Ar-
bitration cycles and data delivery happen at discrete events in time and are triggered
whenever new messages arrive at the port from any connection Ci. Time values tk,
k = 0,1,2 ... , are associated to these discrete events using an internal clock. There
is a stimulation level si[k] (at time tk) associated to every connection Ci, i ∈ {1 .. m}.
All m stimulation levels in the port are updated at every instant k according to an ex-
ponential decay rule. Additionally, the stimulation level sl[k] that corresponds to the
channel l which has received the message, is increased by summing the corresponding
stimulation gain σl , formally:

[l]si[k−1] ·
(

1− e
λ(tk−tk−1−τi)

τi

)
∀i ∈ {1 ... m, i 6= l} ,

si[k−1] ·
(

1− e
λ(tk−tk−1−τi)

τi

)
+σi i = l

(3.1)

where λ and τi define the decay constants of the exponential function. Next, si is satu-
rated to be within [0,1]. Equation (3.1) formulates the calculation of si[k]. When si[k]

reaches the threshold 1.0, the connection Ci is in active state until it gets completely
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discharged and decays to zero. To simplify the notation, we drop dependence from k

and define the activation value xi as:

xi =

{
true if Ci is active,

false otherwise.
(3.2)

3.3.2 Representation of the rules

As we mentioned above, an active connection Ci (i.e., its xi = true) has the opportunity
to be selected by the arbitrator based on the selection rule specified by Φi. The rule
simply provides the necessary constraint for the selection of Ci in term of activation
values (xi ... xm)

∗.

Let see how different selection rules can implement different behaviors. In the example
from Figure 3.1 the robot will gaze at the face when data from connection C1 of Face
Detector is selected by the arbitrator at Gaze Control. To gaze at a detected object,
on the other hand, the port arbitrator should select the connection C2 so that object
position data from Object Detector is delivered to Gaze Control. In the same example,
suppose that we want the robot to track an object (continuously gaze at the object)
when it appears in the view of the robot. This means that connection C2 should be
selected when it is in active state (i.e., x2 = true), formally:

Φ2 = x2

Imagine now we also want to track the face of a person, but only if there is no object
in the scene. In other words, connection C1 should be selected if active, but only if C2

is NOT active. Therefore the corresponding rule should be specified for C1 and added
to the arbitrator:

Φ1 = x1∧¬x2

In another scenario, suppose that we want the robot to gaze at an object if there is also
a person in the scene, in terms of connections that means that the connection C2 should

∗A rule consistency validation is performed during the design time to ensure the rules specified in
the port arbitrators does not contain contradiction.
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be selected if both C1 and C2 are active:

Φ2 = x2∧ x1

In this case, we are not interested in tracking the face. Therefore we add the following
rule:

Φ1 = false

That specifies that data from connection C1 is never delivered to the Gaze Control.

3.3.3 Selection Mechanism

Using the above equations, the selection mechanism is straightforward. When data
arrives from connection Ci to an input port, the corresponding arbitrator has to decide
whether to accept or discard it. First, using equations 3.1 and 3.2 the activation values
for all connections (xi ... xm) are updated. The rule specified in Φi is structured in a
Binary Decision Diagram (BDD) [18]. Then, the arbitrator evaluates the rule and, if
the constraints specified by the rule are satisfied, the index i of the current connection
is given to the multiplexer, which in turn opens the corresponding channel to deliver
data from Ci to the behavior (in Figure 3.1, this “winner” connection is indicated by h).
Otherwise the data are discarded. Notice that when the rules Φi are specified for all m

connections in the arbitrator, a consistency check ensures that only a single connection
can be active at any given time.

3.4 Parameters tuning and design policy

The selection parameters can be used to further tune the behavior of the system. The
stimulation gain σ and the damping time τ are used together to control the reactiveness
of the system to external events. As an example, consider a behavior that checks the
sensors of the fingertips of a robot and sends events whenever the robot touches an
object. If these events are used by another behavior for collision avoidance in a safety
context, a higher value for σ should be chosen to obtain a prompt reactive behavior.
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Alternatively, if the output is used to stimulate a less time–critical behavior (i.e., a
grasping action), a smaller value of σ is preferable to collect enough evidence from
the fingers before grasping the object. The stimulation gain σ should be chosen in
combination with the damping time τ . Clearly, if σi and the stimulation rate (the
frequency with which data arrives at the channel i) are small with respect to τi, the
stimulation level Si can never reach the threshold.

3.5 Experimental validation

In the following section, we present an experiment with the iCub humanoid robot. The
main goal of the experiment is to demonstrate that our port-arbitrated mechanism al-
lows for i) coordinating different distributed behaviors which compete to control the
robot’s actuators, ii) breaking down a complex system in subsystems that are config-
ured, tested individually and finally combined together and iii) implementing a system
that is reactive to the changes in the environment. We call this behavior “Take and
return”. The robot should perform a series of actions: (A) look for an object, (B) reach
for the object, (C) grasp the object, (D) look for a person, (E) approach the person and
(F) release (return) the object.

3.5.1 First experiment: Take an object

In the first experiment we combine some simple behaviors to build a system that allows
the robot to take an object. The user shows a known object to iCub and the robot tracks

Table 3.1: Arbitration rules for “Take an Object”.

Arm Control Gaze Control Hand Control

Φ1 x1∧¬x2 - -
Φ2 false - -
Φ3 - x3∧¬x4 -
Φ4 - false -
Φ5 - - x5
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Figure 3.3: Configuration of the behavior network for “Take an object” and “Return an
object”.

it with the eyes and grasps it with the hand. Figure 3.3(a) shows the behaviors and the
configuration of the connections. For the sake of brevity, non–arbitrated connections
are not shown in the figure (e.g., camera inputs). Object Detector receives streamed
image frames from the robot cameras and produces the 3D position of the object when
it is detected. Gaze Control and Arm Control receive a 3D position in the robot root
frame and respectively control the head of the robot to gaze at the target and move the
hand of the robot to the target position. Grasp Detect monitors the positions of the
object and the hand to determine when they are close enough and issue a request to
grasp. Hand Control controls opening and closing of the hand upon receiving release
or grasp command.

As shown in Figure 3.3(a), the output of Object Detector is connected to Arm Control
and Gaze Control which causes the robot to track and attempt to reach for the object.

Table 3.2: Arbitration rules for “Return an Object”

Arm Control Gaze Control Hand Control

Φ6 x6∧¬x7 - -
Φ7 false - -
Φ8 - x8∧¬x9 -
Φ9 - false -
Φ10 - - x10
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The stimulation level σ = 0.2 and damping time τ = 3 indicate that tracking and reach-
ing should be started if there are enough events from Object Detector (i.e., at least 5
events within 3 seconds). Simultaneously, Grasp Detect checks if the object is gras-
pable and if this is the case, it generates a grasp command to Hand Control. Table 3.1
shows the arbitration rules associated to each connection from Figure 3.3(a).

Constraint Φ1 = x1∧¬x2 implies that data from connection C1 should be selected if
C2 is inactive. Φ2 = false specifies that data from Grasp Detect will be never delivered
to the Arm Control. The same rules are applied for C3 and C4 in the arbitrator of Gaze
Control. These are used to inhibit commands from Object Detector and therefore pre-
vent the motion of the hand and head of the robot while grasping the object. Φ5 = x5

implies that grasp commands from Grasp Detect can be delivered to the Hand Control
whenever the object is graspable.

3.5.2 Second experiment: Return an object

In the second experiment, we build another network of behaviors that allows the robot
to return an object to the user (assuming it has grasped it). The configuration of the
network is very similar to the previous experiment. As can be seen in Figure 3.3(b)
Face Detector, now searches for a human face in the images and, when successful,
it provides its 3D position to Arm Control and Gaze Control. That causes the robot
to track the face and to extend the arm towards it. Release Detect, generates release
commands to Hand Control if the hand is pointing toward the face, causing the robot
to release the object. Table 3.2 shows the required arbitration rules to implement the
scenario. Similar to the “Take an object” scenario, during release of the object, Release
Detect inhibits the movements of the arm and the head. Notice that for simplicity, this
behavior assumes that the robot has grasped the object. The module will be added in
the next section that explicitly checks this condition.

3.5.3 Third experiment: Take and return

In the final experiment (“Take and return”), we exploit the behaviors implemented
previously for “Take an object” and “Return an object”. Since we want the robot to
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Figure 3.4: Configuration of behaviors for“Take and Return”. The connections that
were previously used in “Take an object” and “Return an object” are shown here in
gray.

return the object only if it has previously grasped it, we first introduce a new behavior,
Grasped, which combines the information from the touch sensors and the hand en-
coders to produce a status message when the fingers are closed and the presence of an
object is detected in the hand. The output of Grasped should inhibit all the connections
in “Take an object” and enable “Return an object”. Figure 3.4 shows the configura-
tion of behaviors. The connections that were previously used in “Take an object” and
“Return an object” are shown here in gray. That emphasizes the fact that it is possible
to build complex behaviors incrementally using existing subsystems without modifi-
cations. This is done by adding constraints to the arbitration rules of the subsystems.
For example, in Figure 3.4, we want to inhibit tracking when the robot is holding the
object. That is achieved by adding the constraints “¬x12” to Φ3 in the subsystem “Take
an object”. This has the effect of inhibiting data from Object Detector (i.e., C3) when
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Table 3.3: Arbitration rules for “Take and Return”
Arm Control Gaze Control Hand Control

Φ1 (x1∧¬x2)∧¬x13 - -
Φ2 false - -
Φ3 - (x3∧¬x4)∧¬x12 -
Φ4 - false -
Φ5 - - x5∧¬x15

Φ6 (x6∧¬x7)∧ x13 - -
Φ7 false - -
Φ8 - (x8∧¬x9)∧ x12 -
Φ9 - false -
Φ10 - - x10∧ x15

Φ11 - ¬(x3∨ x4∨ x8∨ x9) -
Φ12 - false -
Φ13 false - -
Φ14 ¬(x1∨ x2∨ x6∨ x7) - -
Φ15 - - false
Φ16 - - ¬(x5∨ x10)

the output of Grasped (i.e., C12) is active. The necessary rules for inhibiting other con-
nections to Arm Control and Hand Control in “Take an object”, are added similarly.
Notice that arbitration rules are added and removed by specifying connection parame-
ters to the port arbitrators and without changing the code implementing the individual
modules. Table 3.3 represents the full list of required rules to implement “Take and
return” using behaviors from Figure 3.4.

We now add modules to put the arm in a resting position and randomly look around in
search for the object. The module Look Around sporadically sends random position
commands to Gaze Control in search for objects or faces. This behavior must be
clearly inhibited while “Take an object” and “Return an object” are active. To do so,
we add the necessary constraints to the arbitration rule Φ11 of connection C11 (i.e.,
Φ11 = ¬(x3∨ x4∨ x8∨ x9)). We also add the module Rest Arm that attempts to move
the arm to a predefined resting position by periodically sending release commands
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and arm–resting–position commands to Arm Control and Hand Control. Appropriate
constraints are added to Φ14 and Φ16 to inhibit that behavior when the robot is taking
or returning the object.

The arbitration mechanism was implemented using YARP [54] ports. The “Take and
return” behavior was then tested on the iCub robot (see Figure 3.5). Figure 3.6 plots
the stimulation values of all the connections to Arm Control during the experiment.
Stimulation is plotted in green when the corresponding connection is selected and in
orange otherwise. At the beginning and before t = 140, the hand of the robot is empty
(Grasped is inactive) and Rest Arm can command Arm Control and Hand Control, to
keep the robot arm in a resting position. That corresponds to the behavior A in which
the robot is looking for the object. Notice that, at the same time, Face Detector is
also activated (a person enters the scene); however since the selection of Face Detector
depends on the output of Grasped (i.e., Φ6 = (x6∧¬x7)∧x13), the required constraints
are not satisfied and data from Face Detector are not delivered to Arm Control. At
t = 140, the person shows the object to the robot; this increases the simulation level
of Object Detector to activation and the robot reaches for the object (behavior B). At
t = 142, Grasp Detect is stimulated; this prevents the robot’s arm from moving and at
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Figure 3.6: Arbitration in Arm Control during the “Take and return” experiment. The
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m input connections from the modules Release Detect, Grasped, Grasp Detect, Object
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shows the action of the resulting behavior, i.e., A: looking for an object, B: reaching
for the object, C: grasping, D: looking for a person, E: approaching a person and F:
releasing the object.

the same time sends grasp commands to Hand Control. That corresponds to behavior
C in which the robot grasps the object. Notice that, during B and C, Rest Arm is
also inhibited. At this point, the robot holds the object (behavior D) and Grasped is
active. The robot cannot reach for another object. That can be noticed in the plot
of the activation value C1 that corresponds to the module Object Detector: the latter
is stimulated but its output gets inhibited by Grasped. At t = 174, the person enters
again in the scene. Face detector is now activated and can be selected by the arbitrator
because Grasped is active. That makes the robot move the hand towards the face
(behavior E). At t = 178 Release Detect gets activated; this causes the robot to release
the object (behavior F). It also inhibits commands from Face detector and Rest Arm.

During the “Take and return” experiment, the behavior of the robot was tested under
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different conditions (e.g., by showing a face before grasping or by showing the robot
another object after grasping). These tests demonstrated that the overall behavior is
intrinsically reactive to the environment. In fact, all behaviors continuously monitor
the conditions under which they are activated. Unexpected situations are thus automat-
ically handled by the network of behaviors, even if they were not explicitly considered
at design time. A particular situation in the experiment demonstrated this explicitly.
While the robot was returning the object, the user decided to anticipate the robot and
took the object directly from the hand before the reaching command was completed.
As a consequence, the stimulation of Grasped decreased and prevented all behaviors
in “Return an object” to run. Finally, the output of Rest Arm was no longer inhibited
and could command the arm to go back to the initial state. Therefore, the system went
back to the initial state (A).

3.6 Conclusions

In this chapter, we have introduced an arbitration mechanism for a network of behav-
iors based on port arbitration. We have shown that our approach allows to implement a
non-trivial behavior that involves a sequence of actions. Remarkably, we have shown
that the final behavior can be incrementally built as a composition of existing, sim-
pler behaviors. Our approach is also fully distributed and minimizes the additional
links required to perform arbitration. We tested the behavior in different conditions
and demonstrated that the resulting behavior is intrinsically robust and reactive to un-
expected changes in the environment. More importantly, since no explicit modules
are required to manage the coordination, no task–dependent code was written to im-
plement the final behavior which as a result was exclusively built out of re-usable
modules.



Chapter 4

Modeling robotic behaviors using port
arbitration in YARP

4.1 Introduction

Robotic researchers are developing increasingly complex humanoid robots which are
aimed to be employed in unstructured and dynamical environments. Programming
such robots to achieve robust task execution in a dynamical environment is a daunting
task and requires dealing with many uncertainties and changes in the environment.
Behavior–based approaches have particular interest due to its fast response to external
events. Traditionally it has been used in robotic applications in which reactiveness is
crucial but it has also shown scalability problem when the number of the behaviors
increase. This, practically, has limited its application domain to low–level control
systems and the subfield of mobile robotics [8, 86].

In chapter 3 we have demonstrated an arbitration mechanism for a network of behav-
iors based on port arbitration. We have also shown that using our approach, how a
complex application can be decomposed into smaller subsystems which are config-
ured and tested individually and, finally, combined together to implement the desired
behavior. However, the approach imposes certain limitations. First, it requires setting
a certain number of parameters and rules. In the examples described in section 3.5,
that was done quite intuitively; however, this may not scale well with the number of
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modules and the complexity of the behavior. Second, since coordination is completely
distributed, it is also more difficult to characterize the current state of the system and
detect or monitor the behavior of the system as a whole. However, this information
is present in the system and it can be made available by advertising the connection
parameters.

To facilitate formulating the arbitration rules, we introduces a mechanism for mod-
eling and coordination of behaviors based on port arbitration. The main goal of the
work presented here is to build an architecture for behavior–based robot programing
while keeping interesting features of the classical behavior-based systems. Coordina-
tion between modules is achieved by defining set of rules that specify how to arbitrate
conflicts between modules that run concurrently and compete for the same resources.
The first step of our approach is to describe the software components and develop a
behavioral representation of the task. The latter is then used to extract the required
rules that allow coordinating of the software components to achieve the desired behav-
ior. We implemented our approach using the YARP middleware [54] and tested it by
developing a complex behavior on the iCub humanoid robot [53]. We show that using
our approach we could implement a task that involves a sequence of actions. More
importantly we demonstrate how, based on different behavioral descriptions, the same
software components can be reused in different applications.

4.2 Related Work

Behavior–based systems (BBSs) have been devised to program robot applications that
do not rely on models of the environment and for which reaction to sensory feedback
is crucial. However, BBSs are difficult to design when the task involves large num-
ber of modules and connections carrying heterogeneous data. Perhaps, this is one of
the reasons why behavior–based approaches are not widely applied to the humanoid
robot applications. The crucial problem is to represent behaviors and components sep-
arately so that the latter can be reused more freely. In modern robotic software mid-
dlewares coordination is more difficult because components run asynchronously and
are distributed across a network of computers. Generally, these problems are not well
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addressed by existing frameworks. For example, iB2C [70] limits behaviors to be im-
plemented as a single component, DBN [44] does not allow behaviors to be distributed
and parallelism is simulated in iterations, whereas DAMN [73] forces behaviors to be
coordinated using a centralized coordinator.

Best practices in robotics [15] promotes the idea that composition and coordination
of software component should be separated during the life–cycle of software devel-
opment. Nicolescu et al. [61] also emphasize that a proper abstract representation
of the behaviors is crucial for the development of complex robotic application. Our
behavior–based framework provides support for both these key features. In our ap-
proach, building an application out of reusable software is done in two phases. First,
software components are configured and interconnected in the (distributed) system.
Second, a behavioral model is developed which describes the desired behavior of the
system. Coordination is then defined by extracting a set of rules from the behavioral
model. These rules determine how data is allowed to travel across the network of com-
ponents and therefore implicitly define which components are inhibited or free to run.
Therefore, based on different behavioral description, the same software components
can be reused to implement different robotic applications.

4.3 Representing arbitration rules using named con-
nections

In the previous chapter, we have demonstrated the concept of port arbitration and how
the arbitration constraint can be represented based on the activation status of each con-
nection. In the following section, we concentrate on the representation of arbitration
rules in YARP framework where the connection can be described as a pair of named
source and destination ports.

In the example from Figure 4.1, Object Detector is a component which processes the
streamed images from the robot camera and produces the 3D position of the object
when detected. Its output is connected to Gaze Control which receives a 3D position
in the robot root frame and controls the head of the robot to gaze at the target point. The
output port of Object Detector is also connected to the Arm Control component which
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Figure 4.1: An example of different YARP components and the connections among
them. The shaded box represents how an arbitrator is employed in the input port of a
component to arbitrate between multiple connections to the same port.

moves the robot arm’s end–effector to reach the target point received from its input
port. A crucial aspect is that multiple outputs can be connected to the input port of a
component. Without proper coordination among the components, data from different
components can be delivered to an input port at any time, potentially causing conflicts.
To solve this problem, as we have explained before, every input port has an arbitrator
which can be configured with a set of rules to properly arbitrate the data received
from multiple sources. We propose a mechanism to describe the behavioral model
of the task. This model allows to derive the necessary rules that properly configure
the arbitrators to implement the task. We define the ingredients of our port–arbitrated
coordination system as follow:

• A pair of source and destination names identifies the connection from an input
port to an output port (e.g. {/Face/pos:o, /Gaze/pos:i}).

• An active connection is a connection which has recently delivered data. When
data arrives to an input port from a connection, the latter becomes active and
remains active for a constant time T . The connection will be inactive if no more
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data arrives within time T . Notice that the activation of a connection is defined
solely in terms of the data it delivers to the port and irrespectively of the result
of the arbitration.

Each input port has an arbitrator which selects a single connection among the ones
that are active at each time. This concept is also illustrated in Figure 4.1 for the case
of three connections. The Rest Arm periodically sends the resting position of the arm
through RestArm/pos:o to Arm Control. This causes the robot to park and keep the
arm in the resting position. To grasp an object we want to hand over control of the
arm to another component (i.e., Object Detector) that sends the position of the object
to be grasped to Arm Control. This can be done by inhibiting the connection from
/RestArm/pos:o to /Arm/pos:i in the arbitrator of /Arm/pos:i. In other words we
want to specify a rule so that the connection {/RestArm/pos:o, /Arm/pos:i} can
be selected only if connection {/Object/pos:o, /Arm/pos:i} is inactive, formally:

/RestArm/pos : o ∧ ¬/Object/pos : o⇒ Select(/RestArm/pos : o)

Suppose now we add another component which is responsible for stopping the the arm
upon collision. This component is called Collision Detector in Figure 4.1 and it sends
status messages through the port /collision:o when it detects that the arm collides
with an object (e.g. using tactile or torque sensors). The desired behavior can be
achieved by adding rules in /Arm/pos:i so that activation of /RestArm/pos:o and
/Object/pos:o is inhibited by /collision:o, i.e.:

/RestArm/pos : o ∧ ¬/Object/pos : o ∧ ¬/collision : o
⇒ Select(/RestArm/pos : o)

/Object/pos : o ∧ ¬/collision : o⇒ Select(/Object/pos : o)

Notice that if no rules specifically select a connection, the latter can never deliver
data to the component. In our example, no rule is written for /collision:o in Arm
Control; so Collision Detector will never deliver data to this component. As it is, its
activation state is only used in the evaluation of the rules of other connections.
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4.4 Modeling the behaviors

In general, behavior-based robotic controllers consist in a collection of behaviors and
are implemented as control laws to achieve and/or maintain goals [52]. In our ap-
proach, behaviors can be described as a set of rules for the port arbitrators. In Fig-
ure 4.1, Face Detector sends the position of the detected face to Gaze Control to fol-
low it. In other words, to implement a behavior called Follow Face, the connection
/Face/pos:o to /Gaze/pos:i should exist and be selected by the port arbitrator in
/Gaze/pos:i. To implement another behavior we call Look Around, the connection
{/RandomLook/pos:o, /Gaze/pos:i} should be selected by the port arbitrator in
/Gaze/pos:i to deliver the random position data generated by Random Look to the
Gaze Control. Desired behaviors, therefore, can be implemented by selecting connec-
tions which are required to deliver data among specific components. At the behavioral
description level, we concentrate only on the connections among the components and
the necessary rules that select these connections in the arbitrators. The rules can be
provided by specifying configuration of the connections required for implementing the
behavior, under which condition the behavior can be activated and the list of behaviors
it should inhibit.

In Figure 4.1 we have shown an example of the composition of some components and
their connections. Based on them, in Figure 4.2 we depict an example of behavioral
description for a task in which the robot searches around, follows human’s faces and
tracks an object with the hand. In the figure, Follow Face, Look Around, Rest Arm and
Track Object represent behaviors. Follow Face and Look Around are grouped together
to describe, by composition, another (meta behavior) behavior called Be Curious. Be

Curious implements a behavior that let the robot randomly look around or follow a
human’s face if a person appears in the scene. The red arrow form Follow Face to
Look around gives higher priority to the first behavior whose activation inhibits the
second. Rest Arm describes a behavior that keeps the arm in the resting position. Track

Object implements tracking of an object with the gaze and reaching for it with the
hand. It also inhibits Rest Arm and the meta behavior Be Curious to prevent them from
interfering during tracking. The condition “¬ /collision” in Track Object implies
that robot can track an object only in absence of collisions. Track Object, Rest Arm
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Figure 4.2: An example of the behavioral model that uses the components from Fig-
ure 4.1 to implement the Search–and–Track behavior. This behavior allows the robot
to look around in search for a face or an object. When the robot detects a face it tracks
it with the gaze. When it detects an objects it follows it with the gaze and reaches for
it. The overall behavior is implemented by coordinating simpler behaviors. Correct
coordination is implemented by inhibitions among behaviors (red arrows). See also
the description in the text.

and Be Curious are further grouped to describe another meta behavior we called Search

and Track.

4.4.1 Behavior Specification

A behavior (or a meta behavior) has the following properties:

Configuration of a behavior is the list of connections which should be selected by
the port arbitrators to implement the behavior. For meta-behaviors, configuration is
as a list of behaviors or other meta-behaviors. For example, in Figure 4.2, the con-
figuration property of Track Object implies that to follow an object with the head,
/Object/pos:o should feed data to Gaze Control at /Gaze/pos:i. Tracking with the
hand is achieved by sending /Object/pos:o to Arm Control at /Arm/pos:i. Notice
that here we focus only on the connections which define the behavior of the system, but
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other connections are required for proper functioning of some modules (e.g. Face De-
tector and Object Detector require connections from the robot cameras) For simplicity
we do not consider these connections here.

Condition is an optional property which specifies in, first–order logic, a constraint that
should be verified for the behavior to be activated. The condition ¬ /collision : o of
Track Object requires that all the connections specified in its Configuration should be
selected only if the port /collision:o is inactive (i.e. it is not sending messages). In
a meta-behavior the Condition affects all its child behaviors, i.e. conditions from all
parent meta-behaviors in a hierarchy are conjuncted and inherited by all child behav-
iors.

Inhibition, specifies inhibitions between behaviors or meta-behaviors. Specifying in-
hibitions allows coordinating behaviors that are competing for the same resources. In
Figure 4.2 we define the behavior Look Around which is implemented by connecting
ports of Random Look to Gaze Control. We also define Follow Face and Track Object.
These behaviors compete to control the gaze of the robot by sending commands to
Gaze Control at /Gaze/pos:i. Conflicts are avoided by further specifying the overall
behavior of the robot and assigning inhibitions. In Figure 4.2 Follow Face inhibits
Look Around. In more details this tells the arbitrator in /Gaze/pos:i that connec-
tion {/RandomLook/pos:o, /Gaze/pos:i} should not be selected when connection
{/Face/pos:o, /Gaze/pos:i} is active, because Face Detector is sending data to
Gaze Control. A behavior can also inhibits a meta-behavior. In this case, the behavior
inhibits all the behaviors in the meta-behavior. In Figure 4.2, Track Object inhibits Be

Curious, i.e. it inhibits Follow Face and Look around. In practice this corresponds to
assigning decreasing priorities to Track Object, Follow Face and Look around to avoid
conflicts in Gaze Control. Similar rules are applied if a meta-behavior inhibits another
behavior or another meta-behavior. For the sake of modularity and reusability, behav-
iors can only inhibit other behaviors within the same meta-behavior. For example in
Figure 4.2, Follow Face is not allowed to inhibit Rest Arm.
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4.5 Extracting Rules from Behavioral Model

In the previous section we have described how behaviors are modeled using connec-
tions between ports. In this section we explain how the necessary rules for the arbitra-
tors are extracted from the behavioral model. Every behavior has a list of connections
specified by its Configuration property. The properties Conditions and Inhibition deter-
mine an extra set of constraints that are applied to the port arbitrators of its connections.

For example in Figure 4.2, Look Around is inhibited by Follow Face. Both behav-
iors have a connection to /Gaze/pos:i; Thus the following rule is added to the port
arbitrator in /Gaze/pos:i:

/RandomLook/pos : o ∧ ¬/Face/pos : o⇒ Select(/RandomLook/pos : o)

Look Around is also inhibited by Track Object (through the inhibition to Be Curious).
Therefore the previous rule is updated with “¬/Object/pos : o” to reflect the new
constraint:

/RandomLook/pos : o ∧ ¬/Face/pos : o
∧ ¬/Object/pos : o ⇒ Select(/RandomLook/pos : o)

A behavior’s Condition and the conditions that are inherited from the parent groups are
also added in the same way to the port arbitrators of all of the connections specified
in Configuration. For example, the constraint “¬/collision : o” is added to the rules
for /Object/pos:o in the arbitrators at /Gaze/pos:i and /Arm/pos:i.

To summarize, the algorithm to extract the arbitration rules from the behavior model
is easily done in two steps for each behavior i in the model. First: the Condition of
i is updated with all the conditions it inherits from the parent meta-behaviors. This
condition is added as an extra constraint to the port arbitrators of all the connections
specified in Configuration. Second: further conditions are extracted from all inhibitors
of i and added to the rules of the corresponding port arbitrators.

4.6 Reference Implementation in YARP

The behavioral model described in the previous section can be represented using Ex-
tensible Markup Language (XML). Listings 4.1 illustrates the representation of Be
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<group name="Search">

    <behavior>Look</behavior>

    <behavior>FollowFace</behavior>

    <group></group>

    <condition></condition>

</group>

<group name="Take">

    <behavior>ReachObject</behavior>

    <behavior>GraspObject</behavior>

    <behavior>ResetHand</behavior>

     <group>Search</group>

     <condition>~ ${grasped}</condition>

</group>XMLXML

<group name="Search">

    <behavior>Look</behavior>

    <behavior>FollowFace</behavior>

    <group></group>

    <condition></condition>

</group>

<group name="Take">

    <behavior>ReachObject</behavior>

    <behavior>GraspObject</behavior>

    <behavior>ResetHand</behavior>

     <group>Search</group>

     <condition>~ ${grasped}</condition>

</group>XMLXML

Arbitration Rule 

Extractor

<group name="Search">

    <behavior>Look</behavior>

    <behavior>FollowFace</behavior>

    <group></group>

    <condition></condition>

</group>

<group name="Take">

    <behavior>ReachObject</behavior>

    <behavior>GraspObject</behavior>

    <behavior>ResetHand</behavior>

     <group>Search</group>

     <condition>~ ${grasped}</condition>

</group>XMLXML

Components 

Configuration

Behavioral 

Description

Final

Application

Figure 4.3: Application generation from behavioral description.

Curious behavior in XML format. The model are used by a third–party tool to ex-
tract the arbitration rules and update the configuration of connections. The concept is
illustrated in Figure 4.3.

<define name="gaze"> /Gaze/pos:i </define >

<group name="Be Curious">

<behavior >Look Around </behavior >

<behavior >Follow Face</behavior >

<condition ></condition >

</group>

<behavior name="Look Around">

<configuration at="${gaze}">/RandomLook/pos:o</configuration >

<condition ></condition >

<inhibition ></inhibition >

</behavior >

<behavior name="Follow Face">

<configuration at="${gaze}">/Face/pos:o</configuration >

<condition ></condition >

<inhibition >Look Around </inhibition >

</behavior >

Listing 4.1: The representation of "Be Curious" behavior in XML format.

YARP framework offers a way to describe the configuration of components and their
connections in XML format which known as application description file (See Chap-
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ter 7 for further information). In short, the application description file contains all the
required modules, their configuration via parameters, the way they are interconnected,
and the necessary information for their deployment. The required information for or-
chestration (coordination) of these modules can be represented in another XML file
using our behavioral model based on port–arbitrated mechanism. The final applica-
tion, thus, can be generated by the combination of these files using the third–party
tool (i.e., ’yarpmanager’). Therefore, based on different behavioral model, the same
components can be used to developed different applications.

4.7 Experimental Validation

To demonstrate the applicability of the approach, we refer to the similar “Take and
return” experiment from previous chapter (Section 3.5) and re–implement it using our
behavioral description ∗. As we have explained before, The robot should perform the
following actions in a series: (A) look for an object, (B) reach for the object, (C) grasp
the object, (D) look for a person, (E) give the object to the person and (F) release the
object†. We show that our behavioral model can be used to describe the behaviors
and constraints to let the robot achieve the task. The necessary rules are extracted
to configure the port arbitrators to properly coordinates all components. We used the
components from Figure 4.1 (with the exception of Collision Detector) and add other
components which are shortly described here:

• Hand Control, controls opening and closing of the robot’s hand upon receiving
release or grasp commands at the input port /Hand/cmd:i.

• Grasp Detect, monitors the relative position of the object and the hand to deter-
mine when they are close enough and, when this happens, it issues a request to
grasp through /Grasp/cmd:o.

∗The complete source code and the configuration files used to perform the experiment can be freely
accessed at https://svn.code.sf.net/p/robotcub/code/trunk/iCub/contrib/src/behaviorBased

†To simplify, the robot releases the object when the hand is close to the person; this is achieved by
monitoring the relative position of hand and the person’s face
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• Release Detect, determines when the hand is close to the person and the object
can be released. If this is the case, it generates release commands to the Hand
Control through /Release/cmd:o.

• Open Hand, this module keeps the hand open by periodically sending release
commands through /OpenHand/cmd:o to Arm Control.

• Grasped, combines sensory feedback from the hand to produce a status message
through /grasp:o whenever the presence of an object is detected in the hand.

For the sake of brevity, the integration of the components and connections used in the
experiment are not represented here. However they can be inferred from the behavior
model shown in Figure 4.4 and from the Figure 3.4.

First we shortly review the behaviors which are used in the experiment and then we
demonstrate how they are constrained to implement the “Take and return” scenario. In
Figure 4.4, three meta-behaviors are defined: “Rest and Search”, “Take” and “Return”.

Rest and Search lets the robot keep the hand and arm in the resting position while
randomly looking around. This is implemented using Rest arm and Look Around.
Open Hand is constrained by “¬/grasped : o”, this allows to hold the object in the
hand after it has been grasped.

Take allows the robot to track and grasp the object by combining the behaviors Track

Object and Grasp Object.

Within Take, Grasp Object inhibits Track Object to prevent moving the hand and the
head while the robot is closing the object. Take is also subject to “¬/grasped : o”.
This means that this behavior is executed only if required (i.e. the hand is empty).

Return represents a behavior for returning the object to a person. It combines Reach

Face to track with the gaze the face of a person and extend the arm towards it. Release

Object checks if the hand of the robot close to the the person to release the object.
Release Object inhibits Reach Face to maintain the robot stationary while it releases
the object. Execution of Return is constrained by the condition “/grasped : o”. This
means that this behavior is executed only when required, i.e. if the robot is holding the
object in the hand.
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Figure 4.4: The description of the behavior “Take and Return” implemented on the
iCub robot.

Inhibitions between the meta-behaviors allows the correct interaction. The resulting
behavior alternates Rest and Search, Take and Return. It is important to point out that
activation of the behaviors is dictated by the sensory feedback and the activation of
the other modules, and, as such, is intrinsically reactive. This means that transitions
between behaviors can happen at any time and do not follow a predefined, fixed order.

At the beginning of the experiment the hand of the robot is empty and no faces or
objects are visible. Take, therefore, is idle. Return is inactive because “/grasped : o”
is inactive (the component Grasped does not send messages). Rest and Search is not
inhibited and can control the robot to look around while keeping the arm in the resting
position and the hand open.

Then a user appears and shows the object to the robot. The Object Detector component,
detects the object and streams out its position. Take is no longer idle because Track

Object gets activated. Take inhibits Rest and Search and the robot starts tracking the
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object. Grasp Object checks whether the robot hands is close to the object. If this is
the case it gets activated and start sending commands. It stops the robot by inhibiting
Track Object and it requests to grasp the object (through /Hand/cmd:i).

When the robot successfully grasps the object, the condition “¬/grasped : o” is no
longer satisfied. Take does not run and no longer inhibits Rest and Search. Thus the
robot starts looking around and keeps the hands in the resting position. The condition
“¬/grasped : o” prevents Open Hand to become active and avoids that the object
is dropped. On the contrary, the necessary condition in Return are satisfied. Thus
when a person appears in the scene, Reach Face is activated and starts extending the
hand toward the person. At the same time, Release Detector monitors if the hand
points toward the person. When this happens, it starts sending release commands to
/Hand/cmd:i through Release/cmd:o and the robot releases the object. While this
happens Release Object inhibits Reach Face to maintain the arm stationary. During
this process Return inhibits Rest and Search. After the robot has released the object,
the condition “/grasped : o” is no longer satisfied and the behavior goes back to the
initial state in which only Rest and Search is active.

The experiment is completely implemented using the described behavioral model. The
correctness of the behavioral model and the extracted arbitration rules has been proven
by comparing them with those which were manually developed for the same experi-
ment in the previous chapter.

4.8 Conclusions

This chapter has introduced a mechanism based on port arbitration for modeling and
coordination of behaviors. We have illustrated that our approach allows implement-
ing a non–trivial behavior that involves a sequence of actions. We tested the behavior
in different conditions and demonstrated that it is intrinsically robust to unexpected
changes in the environment. We have shown how robotics tasks can be represented
using our behavioral description model and coordinated in a distributed component–
based framework without any central coordinator. Remarkably, We demonstrated that
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in our framework, based on different behavioral descriptions, several robotic applica-
tions can be implemented using the same reusable software components.



Chapter 5

Extending Data Flow Port with
Monitoring and Arbitration using
Scripting Languages∗

5.1 Introduction

Writing a reusable software component requires a sense of taste. Two important
choices to be made are how the component expresses its output, and what it expects
of its input. With reusability in mind, there is pressure to be as generic as possible: to
offer everything useful the component “knows” on the output, and to accept all sorts
of variants on the input side. However, for any particular application, this general-
ity is decidedly suboptimal. It can result in slow development and higher bandwidth
requirements. The opposite approach is to let specific applications drive the develop-
ment of the component; this may lead to faster development but can seriously limit
component reusability. Indeed the “5C” paradigm [16], which is gaining popularity in
robotics, dictates separation of concerns between Computation, Communication, Co-
ordination, Configuration and Composition. Following this paradigm we introduce an
approach where coordinating logic can be transparently inserted into a reusable com-

∗This chapter is based on Ali Paikan, Paul Fitzpatrick Giorgio Metta and Lorenzo Natale. Data
Flow Port’s Monitoring and Arbitration. Journal of Software Engineering for Robotics.
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ponent, along with data transforms unanticipated by the component author. With this
approach, a robot’s coordination system is no longer limited to passively receiving re-
ports from far–flung components in their chosen formats and on their chosen schedule.
It can now actively change how data is summarized and how it is communicated. This
is achieved by using the component’s common middleware as a hook to load arbitrary
coordination logic into the external-facing interface of components.

5.1.1 Motivating Example

In order to clarify the main concern and contribution of this chapter, we consider a
typical object tracking and reaching scenario, in which the robot is programmed to
detect a moving object, to follow that object with its gaze, and to reach for it with its
hand . Figure 5.1 illustrates the Data–flow architecture of the scenario. The image
data from a pair of stereo cameras are given to two instances of Object Detector each
computing the 2D position of the object in the camera frames. These modules feed
this information to the 3D Position Estimator module, which performs the required
geometric computations to calculate the position of the object in the robot frame, and
finally sends those coordinates to the Head Control and Arm Control modules. The
latter control the robot’s head and arm respectively to look at the object and reach for
it.

The overall behavior of the system can be fairly robust if every subsystem behaves as
intended. However, some failures or uncertainties in the object detection or 3D position
estimation can cause nondeterministic behavior of the robot. Klotzbucher et al. [45]
characterize this as a typical coordination problem and propose having a lightweight
coordination system using a state machine. The coordinator reacts to explicit events
(e.g., events generated by the 3D Position Estimator if the object is not visible to the
robot) and changes the state of the system so that an appropriate decision can be made,
such as stopping the Arm Control module.

To increase the robustness of the coordinator and reusability of the subsystems (i.e.,
computational modules), Klotzbucher et al. also propose the Coordinator–Configurator
pattern to separate the coordinator from the computational module. A pure coordina-
tor requires to be informed via events about relevant changes in system state. Required
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Figure 5.1: Data–flow architecture of an object tracking application

events for the coordinator can be generated in different ways. One way to achieve that
is to extend the functionality of computational modules and configure them to raise the
proper events. For example, 3D Position Estimator can generate different events when
the object is not visible or the certainty of detected object drops below a configurable
threshold. Klotzbucher et al. argue that this approach can be favorable if the constraint
for generating event is computational dependent. On the other hand, if the constraint
is application domain specific (e.g., a latency in communication between Object De-
tector and 3D Position Estimator), this approach severely limits the reusability of the
computational module. Moreover, to reuse components with different coordination
systems (e.g., event processing in BDI [89]), the required events by the coordinator
should match with those generated by the computational modules. If this is not the
case, the subsystem from one side should be modified.

Another approach is to introduce a separate component which remains between the
computational module and the coordinator. The component can act as a monitor which
communicates with the computational module and generates events for the coordina-
tor. Alternatively, it can be used to translate existing events into the format which is re-
quired by the coordinator. That, in fact, requires implementing an application specific
(likely not reusable) module and introduces additional communication and deployment
overhead to the system which may not be acceptable in some distributed applications.

To overcome these shortcomings, we propose an approach which is a pragmatic com-
promise between reusability and performance. In our approach, components’ data
flow ports [76] are extended with scripting programming language capability. Using
the scripting language, a monitor entity can be embedded in the output or input ports
of component which monitors data and generates proper events for the coordinator.
We call this a Port Monitor Object. The approach allows for computational depen-
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dent and application specific event generation at the same time, and has the following
definite advantages. First, it does not pollute the computational module with applica-
tion specific details. Depending on the coordination mechanism being used (e.g., state
machine, BDI-based system), the required events can be freely generated in the port
monitor during application development time. Second, it also simplifies component
implementation, since the developer does not necessarily need to be concerned with
generating all possible events which can be used in different circumstances. For exam-
ple, instead of parameterizing Object Detector to generate a coordination event (e.g.,
“certainty_low”, “certainty_high”, “target_outside_workspace”), the com-
ponent can freely output the certainty value (using a separate port or along with 2D
position data) which can be used by port monitor to raise the proper events. Moreover,
by embedding monitoring into the port, communication and deployment overhead of
having a separate monitor component is no longer introduced to the system.

5.1.2 Contribution and outline

This chapter proposes some approaches and guidelines to improve the reusability and
robustness of robotic systems. More specifically, it alleviates the problem of coordi-
nation and reusable component development by embedding data monitoring and arbi-
tration into components’ data flow ports. The contribution of this work can be divided
into three parts. Firstly, it proposes the Port Monitor Object which extends a compo-
nent port’s functionality with monitoring and event generation using runtime scripting
languages. Secondly, the Port Arbitrator and its application to robotics is presented
which extends a port’s capability to arbitrate input data from multiple sources. Lastly,
it represents some guidelines and further applications of these approaches to improve
the reusability a of computational component and simplify its implementation.

The concept of port arbitration and its applications have been discussed in details in
Chapter 3. However, one of the limitation of the approach is that the coordination
logic can be solely written based on the activation status of the connections. That is,
whether they are transferring data or not; and not by considering the data are trans-
mitted through the connection. That limits the system to monitor only the status of
connection for coordination and not the data. In this chapter, we introduce a more
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sophisticated mechanism where the coordination logic can be written based on the
generated events by monitoring the data of each connection.

The rest of this chapter is structured as follows. Section 5.2 describes the port mon-
itor object and its implementation using the YARP framework. The concept of port
arbitration, the architecture and its implementation is described in Section 5.3. Fur-
ther potential applications of the proposed approach are explained in Section 5.4. In
Section 5.5 we present the conclusion.

5.2 Port Monitor Object

One way to inform a coordinator about state changes of the system is to employ a sepa-
rate monitor module and configure it with a set of constraints to generate proper events.
That is shown in Figure 5.2(a) for coordinating components of the object tracking ex-
ample from Section 5.1.1. The Monitor component receives data from 3D Position
Estimator and generates status events for Coordinator. To increase reusability of the
composite subsystem in different architectures or with an alternative coordinator, the
Monitor module should offer a generic way to be configured with the required con-
straints for generating events. Representation of the constraint and logic to raise the
events are highly dependent on what is being monitored. Although this can be made
to work, it can lead to a suboptimal solution or a nonviable software module. More-
over, the overhead of communication and deployment should also be considered in
distributed architectures.

Scripting languages have been used for decades to extend the functionality offered by
software components without needing to rebuild or even tweak the base system. These
extensions are dynamically loaded and plugged into the component at runtime. Using
a plugin system, an alternative approach is to attach a runtime monitor object to the
ports of a module. The monitor object is implemented using a scripting programming
language and can be loaded by ports at run time.

Figures 5.2(b) and 5.2(c) elaborate the concept of Port Monitor Object. As shown in
Figure 5.2(b), the port monitor entity (drawn as a box marked M) is attached to the
source side of connection between 3D Position Estimator and Arm Control. Using
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Figure 5.2: Different ways to provide required events for coordinator.

scripting language, users can develop light–weight code to access and monitor the
data which is streamed out through the port. Computationally relevant events are now
freely generated in the port monitor object in any required format for the coordinator.
Alternatively, one can move the monitor object to the other side of connection and
attach it to the input port of Arm Control module (Figure 5.2(c)). In this way, the
connection between 3D Position Estimator and Arm Control can also be monitored
and events can be generated in case of delay or failure in communication.

5.2.1 Port monitor life cycle and API

To illustrate the applicability of the described approach, we present the implementa-
tion of port monitor objects using the YARP [54] framework. In YARP, programs
communicate via units called ports. Messages can be sent between ports, using the
connections between them. Connections are not constrained to use the same protocol.
A single port may transmit the same message across several connections using sev-
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eral different protocols; likewise it may receive messages from several sources using
different protocols. The core YARP library does not concern itself with the proto-
col in use for a connection, except in broad terms (is it reliable? is there a way to
include meta-data? are replies possible? etc.) The detailed implementation of indi-
vidual protocols are encapsulated in plugins called “carriers.” Carriers have a variety
of use-cases: running messaging over a new kind of network, allowing successive im-
plementations of protocols to live side-by-side during a graceful deprecation period,
supporting network-level interoperation with programs from a different community,
etc.

Until recently carriers in YARP have been seen as essentially passive elements, trans-
mitting data in various forms but not actively modifying it. But in fact carriers can be
used as hooks that give intimate access to the consumers and producers of data in a
network, inserting arbitrary action that is local to a component rather than remote from
it. This is the opportunity the port monitor object is building on. A port monitor is
implemented∗ as a carrier plugin which can be attached to one side of a connection
and configured to load a user’s script. For the time being, only the Lua [39] script-
ing language is supported by the port monitor but it can be easily extended to other
languages.

Figure 5.3 illustrates the life cycle of a port monitor object. A callback function is
assigned to each state of the monitor’s life cycle (except Waiting) which can have a

∗The source code and relevant examples can be found at https://github.com/robotology/
yarp/tree/master/src/carriers/portmonitor_carrier

https://github.com/robotology/yarp/tree/master/src/carriers/portmonitor_carrier
https://github.com/robotology/yarp/tree/master/src/carriers/portmonitor_carrier
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corresponding implementation in the user’s script. Using these callbacks, users have
full control over the port’s data and can access it, modify it and decide whether to ac-
cept the data or discard it. Listing 5.1 represents the callback functions corresponding
to the port monitors’ states in Lua.

PortMonitor.create = function () return true end

PortMonitor.accept = function(rd) return true end

PortMonitor.update = function(rd) return rd end

PortMonitor.trig = function () return end

PortMonitor.destroy = function () end

Listing 5.1: Port monitor callback functions in Lua

Monitor’s life cycle starts with the Create state where the PortMonitor.create call-
back is called. The initialization of user’s code can be done here. Returning a true
value means that user’s initialization was successful and the monitor object can start
watching data from the port. When data arrives to the monitor, PortMonitor.accept
is called. Using a data reader handler passed to the function, the user can access (for
reading only) the data, check it and generate events. The return value of this function
indicates whether data should be delivered (accepted) or discarded. If data is accepted,
PortMonitor.update is called, at which point the user has access to modify the data.

A port monitor will usually act as a passive object [59] where accept and update call-
backs are called only upon arriving data. However, one may need to periodically mon-
itor a connection (within a specific time interval) and, for example, generates proper
events in case of delay in the communication. For this purpose, a port monitor object
can be configured to call PortMonitor.trig within desired time intervals. In Sec-
tion 5.4.1 we demonstrate how PortMonitor.trig can be used to monitor the latency
in communication. Finally, PortMonitor.destroy is called when a port monitor ob-
ject is detached from the port on disconnection.

Based on the object tracking example from Figure 5.2(b), we show how these callbacks
can be used to generate events for the coordinator when the certainty of 3D Position
Estimator drops below a desired threshold. Listings 5.2 shows a Lua script which is
loaded by the port monitor object attached to the output port of estimator module. In
PortMonitor.create a YARP port is created which will be used to dispatch events.
This allows other modules (e.g., Coordinator) to receive these events by subscribing
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to this port. Monitoring data and event generation is done in PortMonitor.accept.
The port’s data is read and the the condition for generating the event is checked. If
the certainty is below the threshold (e.g., 0.8), e_certainty_low is generated and
sent out using the dispatcher. Finally, in PortMonitor.destroy, the dispatcher port
is closed.

1 PortMonitor.create = function ()

2 dispacher = yarp.Port()

3 return dispacher:open("/estimator:event")

4 end

5

6 PortMonitor.accept = function(incoming_data)

7 -- read object_pos from 'incoming_data '

8 if object_pos.certainty < 0.8 then

9 dispacher:write(event("e_certainty_low"))

10 end

11 return true

12 end

13

14 PortMonitor.destroy = function ()

15 dispacher:close ()

16 end

Listing 5.2: An example of monitoring data and dispatching events.

5.3 Port Arbitrator Object

In robotic applications there are cases where making an immediate decision upon state
changes of the system becomes crucial to overall behavior of the complex system [51].
In terms of coordination, it can be much simpler and more efficient to have a reactive
decision made quickly rather than introducing delay in the control loop by making
every minor (and sometimes inessential) state change of the system explicitly visible
to the coordinator.

Figure 5.4(a) shows a simplified architecture of an object tracking application by a
robot. Template Matching and Particle Filter modules are configured to recognize a
desired object based on different object detection algorithms. The reason for using two
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Figure 5.4: Different ways to select desired data from multiple sources.

different modules for the same purpose is that depending on the environmental con-
dition and how object appears in the scene, one algorithm performs better than other.
Each module sends 3D position of the detected object along with its certainty to the
Head Control component. The latter should receive data from the module which is
more confident about its result. This is again a problem of coordination. Yet, how to
coordinate these competitive modules? It should be clear that delegating this respon-
sibility to Head Control is not the right choice since it strictly limits reusability of the
module.

One solution to this problem is to implement a specific selector which receives data
from both detector modules, chooses the one with higher certainty value and sends
it to Head Control (Figure 5.4(c)). The drawback of this approach is that, firstly, it
introduces overhead of transferring data to and from Selector. Secondly, execution of
Selector further delays delivering data to Head Control. Finally, Selector module is
hardly likely to be reused in different applications; unless one makes the selector more
generic with the cost of lower performance.

Another solution is to monitor output values of each module and make any changes
in the certainty level visible to a separate Coordinator using proper events (e.g.,
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e_certainty_low, e_certainty_ok). The Coordinator is then responsible for con-
tacting all the involved modules to inquire each to block or deliver their output to
Head Control. This requires extending modules that perform computation and intro-
duce specific logic to enable or suspend sending output data. In case modules are al-
lowed to talk to multiple receivers, this logic should also become aware of the current
network topology (for good reasons this information is usually hidden by the middle-
ware). Moreover, proper coordination requires that a certain amount of messages and
acknowledgments are exchanged between the modules involved in the arbitration and
the Coordinator. This “bureaucracy” introduces latencies, bandwidth overhead and
adds complexity to the application.

For this family of coordination problem, we propose another approach based on arbi-
trating data from multiple sources in the input port of a component. We call this a Port

Arbitrator. The approach can be used in the design of any robotic system where im-
mediate reaction to changes in the system’s state is required and these minor changes
are not necessarily needed to be reasoned about by a third-party component. For the
object tracking example, minimizing delays is functionally more important than mak-
ing every change of the system’s state explicitly visible to the coordinator via events
(notice that, although these events are not used by a separate component, they can be
made available to higher level decision makers or monitors, if required).

Figure 5.4(b) shows how a port arbitrator object is used in the object tracking example.
The port arbitrator (drawn as a box marked A) is attached to the input port of Head
Control. The arbitrator is configured with a set of constraints to properly arbitrate
between data arriving from Template Matching and Particle Filter modules. As for
port monitors, the arbitrator object can be dynamically loaded and plugged into an
input port. Thus the communication and deployment overhead of having a separate
selector or coordinator component are no longer introduced into the system.

5.3.1 Internal Architecture of Port Arbitrator

Figure 5.5 represents the internal architecture of the port arbitrator object. The aim of
using a port arbitrator is to allow data from, at most, one connection at a time to be
delivered to an input port. A port arbitrator consists of a set of selection constraints,
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Figure 5.5: The architecture of Port Arbitrator object. Straight lines show the data flow
and zigzag lines represent event flow.

an event container and a selector block. In fact, when a port monitor object is attached
to an input port, the user’s script can access the extended API for arbitration. List-
ing 5.3 represents the extended port monitor’s API in Lua which can be used with port
arbitrator.

PortMonitor.setEvent(event , life_time)

PortMonitor.unsetEvent(event)

PortMonitor.setConstraint(rule)

Listing 5.3: Port monitor extended API in Lua for arbitration

A port monitor object can be attached to each connection (Ci) going through the port
arbitrator. It monitors the connection and inserts the corresponding events into a shared
container. A monitor can also remove an event (if previously inserted by itself) from
the container ∗. Normally events have infinite life time. This means that they remain
valid in the container until they are explicitly removed by the monitor object. An event
can also have a specific life time. A time event will be automatically removed from the
container when its life time is over. For each connection Ci, there is a selection con-
straint written in first order logic as a boolean combination of the names of symbolic

∗This is similar to the Event–Mask mechanism used in user interface programming or in operating
systems.
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events. Upon the arrival of data from a connection, the selector evaluates the corre-
sponding constraint and if it is satisfied, it allows the data to be delivered to the input
port; otherwise the data will be discarded. Clearly a consistency check on the boolean
rules must be performed to guarantee that only a single connection Ci can deliver data
at any given time.

5.3.2 Representation and Evaluation of Constraints

We refer to the object tracking example from Figure 5.4(b) to demonstrate how
selection constraints are represented and how they can be evaluated based on events
from a container. As we have mentioned before, Head Control should receive data
from the detector module which is more confident about its result. The confidence
level is indicated by the certainty value sent out from the module to Head Control.
A monitor object is attached to each connection. The monitor reads the certainty
value associated with the detected object and inserts an event into the container when
the certainty is above a desired threshold. The event is removed from the container
if the certainty value drops below the threshold. In our example connections are
named C1 and C2 for Template Matching and Particle Filter, respectively, whereas the
corresponding events are e_template_ok and e_particle_ok. To allow data from
Template Matching (C1) to be delivered to Head Control when e_template_ok exists
in the event container we add this rule:

C1 if e_template_ok

A similar constraint should also be set to receive data from Particle Filter. Suppose
now we want to give preference to data from Particle Filter if both trackers are confi-
dent about their results. This can be achieved by modifying the selection constraint
for C1 (Template Matching) as follow:

C1 if e_template_ok and not e_particle_ok

As we have described for the object tracking example, constraints can be expressed
as boolean combinations of symbolic events. To evaluate the expression, every sym-
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bolic event is substituted with a boolean value. If the event exists in the container, it
represents a true value in the expression; otherwise it is evaluated as false.

5.3.3 Reference Implementation

Port arbitrator is an extended functionality of the port monitor object. It extends mon-
itor’s scripting API for setting constraints and altering events in the container. In
fact, when a port monitor object is attached to an input port, the user’s script can
access the extended API for arbitration. To illustrate this, we show how the extended
functionality of port monitors can be used for arbitrating connections in the object
tracking example of Figure 5.4(b). To do this, a monitor object is attached to each
connection of the input port of Head Control. Each monitor object loads a script in
which we set the constraints described in section 5.3.2; each monitor alters the corre-
sponding events by parsing the incoming data and evaluating the associated certainty
value. Listing 5.4 shows the script for setting selection constraint and monitoring data
from Template Matching. The selection constraint (i.e., e_template_ok and not

e_particle_ok) is set in the create callback using PortMonitor.setConstraint.
The certainty value of the detected object is monitored in the accept callback. If the
certainty is above the desired threshold, e_template_ok will be added to the container
using PortMonitor.setEvent. Similarly, it will be removed from the container using
PortMonitor.unsetEvent whenever the certainty value drops below the threshold.
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1 PortMonitor.create = function ()

2 PortMonitor.setConstraint("e_template_ok and

3 not e_particle_ok")

4 return true

5 end

6

7 PortMonitor.accept = function(incoming_data)

8 -- read object_pos from 'incoming_data '

9 if object_pos.certainty > 0.8 then

10 PortMonitor.setEvent("e_template_ok")

11 else

12 PortMonitor.unsetEvent("e_template_ok")

13 end

14 return true

15 end

Listing 5.4: Setting selection constraint and monitoring data from Template Matching.

Setting the selection constraint of Particle Filter and monitoring its data is done in the
same way. Notice that each monitor object can set its own selection constraint and
only alters its own events in the shared container.

5.4 Potential Applications

We have explained how the port monitor object can be used for monitoring data and
generating corresponding events. We have also shown how this object is extended to
instantaneously arbitrate data from multiple connections. In previous work we demon-
strated that this arbitration mechanism can be effectively used to implement complex
tasks without resorting to centralized coordinators [66]. In the remainder of this section
we show other applications of our approach that can further improve the performance
of robotics system and increase component reusability.

5.4.1 Monitoring communication for QOS

To achieve robust behavior of a robotic application, the behavior of subsystems and
communication among them should be properly monitored. A port monitor object can
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be attached to an input port to monitor the connection between the components and
raise proper events in case of latency or failure in the communication. The events can
be used by a coordinator to control urgent critical situations or monitor the quality of
service over longer periods. QOS events can also be used by an arbitrator to select
the component which instantaneously provides data with least latency. In the object
tracking example from Figure 5.4(b), choosing between data from Particle Filter and
Template matching can be done not only based on confidence level of their results, but
also by checking which one is producing data with lower latency, higher or just more
reliable frequency (i.e. lower jitter). This “quality of service” can vary due to current
bandwidth usage in the network connection or computational load of the node in which
the module is deployed.

To show how port monitor object can be used for monitoring communication fre-
quency, we refer to the example from Figure 5.2(c) and report the pseudo-code of
the script to raise an event whenever receiving data by Arm Control is delayed for a
specific time.

1 PortMonitor.create = function ()

2 PortMonitor.setTrigInterval (0.2)

3 return true

4 end

5

6 PortMonitor.accept = function(incoming_data)

7 received = true

8 return true

9 end

10

11 PortMonitor.trig = function ()

12 if received == false then

13 --- raise 'e_qos_not_ok ' event

14 else

15 received = false

16 end

17 end

Listing 5.5: An example of monitoring communication for QOS.

As shown in Listing 5.5, first we setup a trigger to call PortMonitor.trig every
200 ms. Whenever data arrives to the monitor object, a flag (received) is set. On
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every call to PortMonitor.trig, the flag is checked and if it has not been set, the
e_qos_not_ok event is generated (for the sake of brevity, the required code for dis-
patching events is omitted from the listing). The flag is also reset in the trig callback
for the next check. In this example, the script only raises an event regarding delay
in the communication. Noticed that the check performed in this case is overly sim-
plified but this example can be easily extended in a real application. An interesting
extension is monitoring failure in the communication and raising proper events using
PortMonitor.destroy callback.

5.4.2 Data Guarding and Filtering

Developing reusable software is hard; systematically developing high quality reusable
software components is even harder [83]. With reusability in mind, there is a risk of
premature generalization and increased complexity. In other words, to build a reusable
component, the developer tries to foresee any future needs and add them as reconfig-
urable functionalities to the software. Such a commitment may lead to more complex
computational components which are polluted with application–dependent functional-
ities. Imagine that, for the object tracking example from Figure 5.1, we want to limit
the operational workspace of the robot’s arm to reach for the object only in a specific
region. One way to achieve this is to configure the 3D Position Estimator module to
send object position if it is within the desired region. The problem is that the output of
the estimator module is also used by Head Control. Thus, it also limits the operational
space of the robot’s head. Another approach is to delegate this responsibility to the
Arm Control module by configuring it to accept the position data if it is within the
desired limit. However, if the Arm Control is mutually used by other modules (which
need to control the arm in different workspaces), it should be reconfigured every time
it receives data from a different module.

A more flexible approach is to use a port monitor object (e.g., in the output port of 3D
Position Estimator) and constrain it to pass the data within the desired limit. That can
be done by monitoring data packets in the PortMonitor.accept callback and reject-
ing any that do not satisfy application’s needs. In this way, developers are not forced
to include any application–dependent functionalities into their components. Hence,
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components can be reconfigured with the parameters which purely affect their compu-
tational functionalities.

5.4.3 Data Transformation

Components exchange data through their ports. To establish a meaningful communi-
cation, they should commonly agree on the type of exchanging information. Based on
data type, Brugali et al. [15] classify them into strongly–typed and loosely–typed and
discus the pros and cons of each category. Strongly–typed communication is known
to be more efficient and easier to debug but at the same time limits the reusability of
component. In contrast, loosely-typed communication is more flexible but requires
more manual programing; that is the interpretation of messages should be handled in
the component implementation.

Scripting languages due to their text–processing capabilities have been known to be
well suited to the task of data transformation and munging [23]. Port monitor ap-
proach allows for data modification (PortMonitor.update) using scripting program-
ming languages. Thus, it is potentially an ideal place for basic data conversion. One
can attach a port monitor object to an input port of a component and implement a sim-
ple script to take the data and convert it into the format which is required by the com-
ponent. Moreover, using port monitor for loosely–typed data mapping, we simplify
component implementation since the component does not need to bear the responsibil-
ity of interpreting information.

5.4.4 Logging and Performance Monitoring

To analyze the runtime performance of a robotics system, the behavior of components,
their interactions and in general, any critical state changes in the system should be
monitored over long periods. This is analogous to the Top–Down passive monitoring
in the field of application performance management [25]. Passive monitoring is usually
an appliance which leverages network port mirroring. The idea of port monitoring can
be applied to record the quality of service provided by a computational component
over time. The only way components can communicate with the external world is via
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their ports. Through explaining port monitor object (Section 5.2) and its application
(Section 5.4.1), we have clearly shown how port monitor object can be used to generate
both computational and communicational events. Thus, these events can be locally
recorded by port monitor for off–line analysis or easily sent to a central events logger.

5.5 Conclusions

This chapter has introduced port’s data monitoring and arbitration to alleviates the
problem of coordination and facilitate development of reusable components. We have
illustrated the port monitor object and how it extends a component port’s functionality
with monitoring and event generation using runtime scripting languages. To demon-
strate our approach and its potentials we presented a reference implementation of each
approach using the YARP framework.

We showed that our approach allows separating the computation from application de-
pendent code. This increase the reusability of the components and it simplifies their
implementation. We also demonstrated that how port monitor object can be used to im-
plement data filtering and transformation, and implementing quality of service and per-
formance monitoring. Overall this can substantially improve the robustness of robotics
application.

We proposed an extension of port arbitration and how we enhanced the port’s capa-
bility to arbitrate input data from multiple sources based on the rules written using
generated events. Our approach to port arbitration can also contribute to improving
the performance of a robotic system when changes to the system’s state can be kept
local to certain components and immediate reaction is required. However, choosing
between an explicit coordination mechanism and more reactive but less explicit way of
orchestrating components, is a design choice and depends on functional requirements
of robotics system.



Chapter 6

Enhancing software module
reusability using port plug-ins: an
experiment with the iCub robot∗

6.1 Introduction

Robotics software community is continuing to grow. Within the community, re-
searchers have been developing large number of software components using some of
the most common robotic middleware, such as ROS [71], YARP [35], OROCOS [17],
OPROS [42] and Open-RTM [5] or based on their customized frameworks using stan-
dard communication libraries (e.g., CORBA [63], ICE [41], ØMQ [3]). They try to
adopt lessons learned from best practices in robotics [15, 16] and software architecture
techniques and standards [74] to build their modules as reusable as possible. Even
so, it is quite unlikely that components from different communities fit into a specific
off–the–shelf deployment scenario, without any adaptation by third party users. Het-
erogeneity and lacking standards are not the only bottlenecks burdening reusability.
Even within a community of developers who share the same middleware, software

∗This chapter is based on Ali Paikan, Vadim Tikhanoff, Giorgio Metta and Lorenzo Natale. Enhanc-
ing software module reusability using port plug-ins: an experiment with the iCub robot. International
Conference on Intelligent Robots and Systems - 2014 (submitted).
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components can be developed with different taste and still hard to reuse. Systemati-
cally developing high–quality reusable software component is, indeed, a difficult task.
Many developers keep their modules simple. However, simplicity does not necessar-
ily lead to more reusable software. On the other hand, with reusability in mind, there
is a risk of over–generalization and increased complexity: to build a more generic
and reusable component, the developer tries to foresee all possible future needs and
add them as reconfigurable functionalities to the software. Such a commitment leads
to complex components, polluted with application–dependent functionalities that are
more costly and difficult to maintain and use correctly. Thus, a proper balance must be
found between potential reuse and ease of implementation [74].

Software should be extensible enough to be adapted to possibly unanticipated
changes [87]. Extensibility is an important property for software which significantly
boosts reusability. One direction to extend a module is via its interfaces. In distributed
systems interfaces are implemented by exchanging messages through special connec-
tion points that are call ports. This plays an important role in nowadays robotic soft-
ware architectures. In Chapter 5 we have explained how the port’s functionalities is
extend in order to dynamically load a run–time script and plug it into the port of an
existing module without changing the code or recompiling it.

Plug-in platforms, in general, extend a core system with new features implemented as
components that are plugged into the core at run time and integrate seamlessly with
it. When an application supports plug-ins, it enables customization, thus, provides a
promising approach for building software systems which are extensible and customiz-
able to the particular needs [85]. Probably one of the more prominent example of a
platform which broadly supports plug-ins is Eclipse IDE [30]. Eclipse offers a frame-
work to develop plug-ins in Java which are delivered as JAR libraries. There are also
some generic frameworks for plug-in development and management such as Pluma [2]
which allows loading plug-ins as dynamic linked libraries or FxEngine [1] for data
flow processing and the design of dynamic systems. plug-ins can also be developed
using scripting languages. Scripting languages have been used for decades to extend
the functionality offered by software components and they have special interests within
the game developer communities. The main advantage of script–based plug-ins is that
they are usually easier to be developed and maintained. Despite plug-in system has
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been broadly used by software developers over the last decades, to our knowledge, less
attention has been devoted to study their potentials in the robotic field.

This chapter presents a practical application of port plug–ins using iCub humanoids
robot [53] and demonstrates its distinct advantages in software reuse. The experiment
is completely built using modules from the iCub software repository∗. It focuses on
reusing (with no modifications) existing modules by extending the required function-
alities using port plug–ins.

6.2 A step–by-step example

The overall behavior of the experimental task is demonstrated using a simplified activ-
ity diagram in Figure 6.1(b). The goal of the task, as shown in the activity diagram, is
to clean the table by removing all the object and place them in a bucket located along-
side the table. We allowed the robot to use a tool at his disposal (a rake), located on a
rack, to reach objects of interest that are out of his workspace. The modules that allow
the robot to grasp and use the tool are implemented as described in [79]. Furthermore,
we consider also the case in which the object is so far that it cannot be reached even
by the use of the tool. In this case the robot should look for a human and asks his
intervention (put the object within reach). Figure 6.1(a) shows the experimental setup
and it illustrates the three areas in which objects can be placed.

The activity diagram depicted in Figure 6.1(b) may give the impression that the task is
only composed of a few simple steps that the robot should follow to accomplish it. But
in fact, there are many uncertainties and unexpected conditions which should be taken
into consideration to make the task robust. For example, the proper decision should
be taken if an object drops from the hand while the robot is placing it into the bucket.
Similarly the robot should behave appropriately while it is holding the tool to pull the
object closer, the human might intentionally intervene and move the object within the
iCub’s workspace. Considering all possible uncertainties, in fact, reveals the under-
lying complexity of the task which requires that many modules (e.g, for perception,

∗Modules can be downloaded from: https://github.com/robotology/icub-main.git and
https://svn.code.sf.net/p/robotcub/code/trunk/iCub/contrib
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(a) The experimental setup.
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(b) The simplified activity diagram.

Figure 6.1: The experimental setup and the simplified activity diagram of table–
cleaning application. The reachable zone is depicted in green, the orange zone repre-
sents the zone reachable with the tool and finally the red zone indicates the unreachable
space, for which the robot needs human intervention.

action and coordination) are properly used and orchestrated (e.g, coordinating robots,
gaze, arm, speech) to perform the required task.

Table 6.1: A subset of modules used for the experiment

Module Input Output Type

Face–Detector image pos_3D perception
Object–Detector image List<pos_3D> perception
Bucket–Detector image pos_3D perception
Look–Around - pos_3D implicit action
Head–Control pos_3D - action
Pick–and–Place msg_cmd msg_status action
Pull–Object msg_cmd msg_status action
Speak msg_text - action

The modules used in this experiment are chosen from the iCub software repository
and listed here in Table 6.1. To build the desired application, a few modules might
simultaneously require to grab the camera image frames from the robot, control the
arms and hands in various modes, such as Cartesian or joint space using velocity or
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position control. However, for the sake of brevity, only a subset of these modules are
described here. We use the previously mentioned Face–Detector and the Look–Around
modules.

Object–Detector gets as an input image from the cameras and produces a list of blobs
and extracts 3D positions of all the possible graspable objects as its output. Bucket–
Detector is, in fact, an instance of a generic object detector which is configured and
trained to recognize this specific object. As we previously mentioned, Look–Around
randomly produces positions in 3D space which are used by Head–Control to move
the gaze in various positions. The Pick–and–Place module receives a set of commands
(e.g., take <3D_pos>, put <3D_pos>) to take an object and release it on a specific
position. The internal status of the module (e.g., e_taken, e_arm_idle) is continu-
ously sent out using status messages. Pull–Object is a complex set of modules which
together get the position of an object on the table and use a tool to bring the object
closer [79]. Similar to Pick–and–Place, the internal status of the Pull–Object module
is advertised via its output. The Speak module receives a text message and performs
a text–to–speech synthesis. Generally speaking, in order to be able to integrate some
modules for building an application, two important points should be considered: i)

data type on both side of the connections should match and ii) a proper coordination
mechanism should orchestrate modules to perform the task. We start with the simplest
case in which the objects are reachable by the iCub and progressively extend it to build
the complete table–cleaning application.

6.2.1 Handling reachable objects

First our application should select the closest object within the reachable area and take
it (see Figure 6.2-A ). To do that, we connect the output of Object–Detector to the
input of Pick–and–Place. Using the port monitor, we implement a simple script that
goes through the list of objects, select the one that is closest to the robot and produces
the proper ‘take’ command (i.e., take <3D_pos>) for execution. Similarly, to put the
object into the bucket we connect the output of Bucket–Detector with the same input
of Pick–and–Place and attach to this connection another port monitor that generates
the ‘put’ command (i.e., put <3D_pos>) for execution (see Figure 6.2-B )
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A B

Figure 6.2: The iCub performing table–cleaning on reachable objects. The robot takes
the object (A) and places it into to bucket (B).
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Figure 6.3: Configuration of the modules for handling reachable objects on the table.

Furthermore, an object should be taken only if the hand of the robot is free and the
robot is not performing another action using the arm. On the other hand, the ‘put’
command should be sent to the Pick–and–Place module if the robot is holding an ob-
ject. To this aim, the status of the Pick–and–Place module should be monitored and the
required arbitration rules should be added to the system to properly coordinate taking,
placing and releasing actions. Figure 6.3 represents the configuration of the modules
that perform this simple task on the reachable objects. As shown in the figure, the
status output of the Pick–and–Place module is used to inform the arbitrator about the
internal state of the module. Below we illustrate how this is achieved.

As we have previously mentioned, a monitor object is assigned to each connection go-
ing through the port arbitrator. Listings 6.1, 6.2 and 6.3 respectively represent pseudo–
scripts which will be loaded by each monitor object for connections C1, C2, and C3.
Listing 6.3 demonstrates the script which is assigned to the monitor object of connec-
tion C3. This monitor receives status messages from Pick–and–Place (i.e., e_taken,
e_arm_idle) and adds them to the event container of the port arbitrator. These events
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will be used for the selection of C1 and C2. Notice that the connection C3 and the cor-
responding script (Listing 6.3) are created to make the status events available for the
arbitration. These events will be never delivered to Pick–and–Place. This is achieved
by refusing to accept the data from the connection C3 (return false).

1 PortMonitor.create = function ()

2 setConstraint("not e_taken and e_arm_idle")

3 return true;

4 end

5

6 PortMonitor.accept = function(object_list)

7 -- find closest_obj in the object_list

8 if closest_obj.dist > HAND_REACHABLE then

9 return false

10 end

11 return true

12 end

13

14 PortMonitor.update = function(object_list)

15 return command("take", closest_obj.pos)

16 end

Listing 6.1: Monitoring and arbitrating connection C1.

1 PortMonitor.create = function ()

2 setConstraint("e_taken and e_arm_idle")

3 return true;

4 end

5

6 PortMonitor.update = function(bucket_pos)

7 return command("put", bucket_pos)

8 end

Listing 6.2: Monitoring and arbitrating connection C2.

1 PortMonitor.accept = function(status_event)

2 setEvent(status_event , 0.5)

3 return false

4 end

Listing 6.3: Monitoring connection C3 for generating events.
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Figure 6.4: The iCub performing table–cleaning using a tool (rake). The robot take the
tool (A), reaches for the object (B,C), pulls the object (D), grasps the object (E) and
finally places it into the bucket (F).

Listing 6.1 deserves particular attention: First, within the ‘create’ callback, the required
selection rule for the connection C1 is set into arbitrator. The rule implies that data
from corresponding connection should be delivered if the robot has not already taken
(not e_taken) an object and if it is not performing an action (e_arm_idle). In the
‘accept’ callback, first the closest object to the robot is selected from the list of detected
objects. If the object is reachable (the data is accepted), the ‘update’ method will be
called to generate the ‘take’ message to be delivered to Pick–and–Place. If the object
is out of reach, it will be discarded (return false). Similar Listing 6.2 represents the
script that generates the ’put’ command and that specifies the condition under which
performing the corresponding action.

6.2.2 Handling objects using tool

We now extend the previous application to allow the iCub to use a tool to bring un-
reachable object within its workspace (see Figure 6.4 ). Figure 6.5 represents how
Pull–Object is integrated in the application. The output of Object–Detector module
provides a list of objects; this list should be filtered to select one object that is within
the tool–reach area and out of the robot’s workspace. The position of this object should
be given to the Pull-Object to trigger a sequence of actions to take the tool from the
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Figure 6.5: Configuration of the modules for handling objects within tool–reach space.

rack, reach for the object with the tool, pull the object and finally putting back the tool
on the rack (see Figure 6.4-B, C, D ).

1 PortMonitor.create = function ()

2 setConstraint("not e_taken and e_arm_idle")

3 return true;

4 end

5

6 PortMonitor.accept = function(object_list)

7 -- find closest_obj in the object_list

8 if closest_obj.dist > TOOL_REACHABLE then

9 return false

10 end

11 return true

12 end

13

14 PortMonitor.update = function(object_list)

15 if closest_obj.dist < HAND_REACHABLE then

16 return command("cancel", nill)

17 end

18 return command("pull", closest_obj.pos)

19 end

Listing 6.4: Monitoring and arbitrating connection C4.

Once the object is located within the reachable area of the robot, the previous picking–
and–placing application is activated. Appropriate selection rules should be added to
the system to properly arbitrate pulling and pick–and–placing.
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Listing 6.4 represents the pseudo code of the script which is used in the port monitor
of connection C4. The selection constraint (not e_taken and e_arm_idle) filters
messages to Pull–Object when the robot is already involved in other actions (i.e. pick-
ing and placing an object). Similar to Listing 6.1 from the previous application, first the
closest object is extracted from the list of detected objects. This object is accepted and
generates a ‘pull’ command if it is within the tool–reach area. Otherwise it is discarded.
An interesting behavior is the fact that the pulling action is composed of several sub–
actions that should be aborted if the tool becomes unnecessary (e.g. if a human moves
the target objects in the workspace of the robot). This is achieved by continuously
monitoring the target object in the ‘update’ function and generating the ’cancel’ com-
mand when necessary. Notice that as opposed to Pick–and–Place, Pull–Object ignores
redundant ‘pull’ commands until all ongoing sub-actions are accomplished or aborted
(with the ‘cancel’ command). Therefore, unlike Pick–and–Place, we do not need to
monitor the internal status of Pull–Object and filter conflicting ‘pull’ commands.

Clearly Pick–and–Place and Pull–Object are conflicting behaviors. To avoid conflicts
the selection rule for connection C1 must be updated to prevent generation of ‘take’
commands while Pull–Object is active (i.e. not idle). This is achieved by making
the internal state of the Pull–Object available in the arbitrator of Pick–and–Place via
connection C5 and by modifying the selection constraint of Listing 6.1 as follows:
`not e_taken and e_arm_idle and e_pull_idle'

As for the connection C3, Listing 6.3 is used for the port monitor of connections C5

and C6 to inserts the status events into the corresponding event containers.

6.2.3 Handling objects with human assistance

In Chapter 4 we explained how the Face–Detector and Look–Around modules can
be properly used with the Gaze Control (i.e., similar to the Head–Control module) to
implement a basic face tracking application. In this section, we use these modules to
complete our table–cleaning application. When an object is completely unreachable,
the robot should look for a person and asks assistance (see Figure 6.6). Figure
6.7 depicts the complete system. The output of Object–Detector arbitrates the
connections from Face-Detector and Look-Around via C7 and C11 so that when
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A B C

ED

Figure 6.6: The iCub performing table–cleaning with human assistance. The robot
detects an unreachable object (A), detects the presence of a human and asks assistance
(B,C), grasp the object (D) and finally places it into the bucket (E).

required, the robot will look around searching and tracking human faces. This is
achieved in Listing 6.5 by monitoring the closest object and generating an event
'e_unreachable' when the latter is out of the tool–reach area. Notice that this event
is cleared (removed from the container) only when the object becomes reachable again.

1 PortMonitor.accept = function(object_list)

2 -- find closest_obj in the object_list

3 if closest_obj.dist > TOOL_REACHABLE then

4 setEvent("e_unreachable")

5 else

6 unsetEvent("e_unreachable")

7 end

8 return false

9 end

Listing 6.5: Monitoring connection C7 and C11.
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Figure 6.7: Configuration of the modules for table–cleaning application.

1 PortMonitor.create = function ()

2 setConstraint("e_unreachable")

3 return true;

4 end

5

6 PortMonitor.accept = function(data)

7 if time() - time_prev < DESIRED_TIME then

8 return false

9 end

10 time_prev = time()

11 return true

12 end

13

14 PortMonitor.update = function(data)

15 return msg("Please put the object closer!")

16 end

Listing 6.6: Monitoring and arbitrating connection C10.

Messages from Look–Around and Face-Detector are discarded depending on the inter-
nal state of Pick–and–Place and Pull–Object via connections C12 and C13 and the event
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generator script (i.e., Listings 6.3). This prevents moving the head when the robot is
picking, placing or attempting to pull an object. Finally the output of Face–Detector
generates a voice message synthesized by the Speak module. This is achieved by con-
necting the two modules (C10) and adding a script to the corresponding port monitor.
This script generates a text message (a valid command for the Speak module) if a
human face is detected, but only if a certain amount of time has passed from the last
command, to reduce verbosity (Listing 6.6). Notice that these commands are arbitrated
by C11 so that the speech is activated only when necessary.

6.3 Conclusions

To demonstrate the potential advantages of our approach, we illustrated the design and
implementation of a complex application on the iCub humanoids robot. The appli-
cation was completely built out of existing modules without code changes. All the
functionality specific to the application were implemented and integrated as plug-ins
scripts.

The key idea of our plug–in system is to extend modules functionalities by adding
scripts to the ports that allow data monitoring, filtering, transforming and arbitration.
The main advantage of our approach is that it allows to limit application specific func-
tionalities to scripts that are external to the modules and are added and executed at
runtime. This maintains modules clean from unnecessary complexity and enhances
their reusability. Finally, by using embedded scripts inside the ports, we can avoid
introducing specific modules to achieve the required functionalities, thus, reducing
communication and deployment overhead.



Chapter 7

Application description and
management model in YARP

7.1 Introduction

Autonomous robots have evolved into complex systems which require many concur-
rent activities to collaborate and interact in a distributed environment. Designing con-
trol system with multiple processes running on a set of machines seems to be a good
compromise between performance and the time spent struggling for code optimiza-
tion [54, 70]. Code reuse and real–time constraints motivate researchers even further
toward using distributed modular frameworks [5]. A similar trend can be seen in the
automation and industrial robotic systems where smart sensors and actuators indicate
remarkable benefits in having more computational power of distributed systems [67].

Despite many decades of work in robotic, we still lack a common robotic middleware.
Research objectives, operational requirements, uncommon consensus and many other
issues prevented the emergence of a well-accepted framework [77]. Robotic devel-
opers from different research laboratories have applied software engineering tools in
designing and integrating the modules that compose modern robotics apparatus [34].
Thus, many robotic frameworks which share similar design principles, have evolved
independently [17, 20, 40, 54, 71]. The key concept of these frameworks is support
for modular or component–oriented architectures where software modules can be dis-
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tributed over a cluster of machines and data is shared via well–defined interfaces or
connection ports. Peer-to-peer architectures (e.g. publish/subscribe) [26] are widely
used in this respect. Although connections can be established automatically inside the
modules, it is far preferable to factor out details concerning interconnections between
modules. The advantage of this is that connections can be established dynamically and
differently depending of the execution context, thus favoring reusability and portabil-
ity. It is therefore more common to interconnect modules at run-time or when specific
applications are designed.

Much work has been devoted to provide users with useful APIs for module implemen-
tation, integration and communication; unfortunately scant attention was devoted to
module management on a cluster of computers. Scalability, dependency and portability
of applications in cluster of machines are mostly left in the background by robotic re-
searchers. We believe this has strong implications on the field since it prevents research
to scale up from tackling relatively simple scenarios that focus on specific problems
addressable with few modules, to complex scenarios that require proper execution and
cooperation of several modules working together.

This chapter introduces a systematic method to enhance scalability and management
of software modules in distributed robotic architectures. We specifically focused on
practical difficulties that, as developers, we encountered in dealing with execution and
monitoring of large number of modules on a cluster of machines. The work we propose
is the result of our long–run experience in developing humanoids robotic applications
using the YARP framework [54].

The remainder of this chapter is organized as follows. In Section 7.2 we motivate
our work and review relevant approaches in the literature. Section 7.3 discusses the
main concepts which are used to model the problem. In Section 7.4 we describe the
representation we use and an algorithm for reasoning on the representation (i.e. solving
dependencies and connections between modules). Section 7.5 illustrate an example of
the implementation of our approach in YARP which also demonstrates how it can be
adopted by a robotic framework. Finally in Section 7.6 we discuss the conclusions.
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7.2 Motivation

In distributed programming paradigm a complex control system is broken down into
simpler tasks known as components or modules. The latter are implemented as exe-
cutables or dynamic linked libraries which can be executed using a specific deployer.
Each module has a set of input ports to receive data and deliver the results of the com-
putation to its output ports. Alternatively, in some architectures, input and output might
be implemented as a unique bidirectional interface. Modules can be distributed over a
cluster of computers and based on the communication architecture and protocol (e.g.
standard TCP/IP, CORBA, ICE), the outputs of one module can be delivered to one or
many inputs of other modules.

Using the above-mentioned paradigm, developing robotic applications involves two
stages: 1) implementing modules and 2) testing, i.e. running and establish connections
between modules. The second stage is particularly important in research environment,
because modules are switched in and out to test performance, experiment with alterna-
tive algorithms, different hardware and configurations. This is indeed the main concern
of our discussion, which is discussed throughly in this section.

7.2.1 Dependencies

In a collaborative environment, many modules are executed together and information
are properly transferred from one to another, literally forming a hierarchical data fol-
low. This, in fact, implies a hierarchical dependency among modules. While develop-
ing an application, users must be aware of these dependencies, understanding module’s
inputs and outputs, data type and which outputs can be candidates for an input. Some
of the robotic frameworks [5] provide specific utilities for developing applications but
automatic dependency resolving are not well addressed and their approaches are usu-
ally tighten to their architecture.
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7.2.2 Interconnection

Developers should have clear understanding of each module’s interface and the prop-
erties which are needed to be properly set for interconnecting modules. Employing
modules in behavior–based architectures or state–machines might require some extra
connections to be made for controlling their activities. As a consequence execution of
large applications brings overhead associate to the task of managing connections and
connection parameter; these tasks are usually error prone and tedious if done manually
but can easily be automated.

7.2.3 Integration and composition

Robotic applications in complex scenarios can suffer of limited scalability as the num-
ber of modules and connections increase. Having different levels of application granu-
larity in which modules can be integrated and grouped as sub–applications, seems to be
reasonable approach. However, there are some issues which should be dealt with when
different instances of an application are employed. [82] proposes a solution for plug-
ging modules into groups and propagating data through different levels. Although this
looks like a satisfactory solution, it still requires that specific features are implemented
and made available in the underlying software middleware.

7.2.4 Execution and monitoring

Eventually modules should run on a machine or remote machines. Remote deployment
and execution of modules, in fact, is not a new issue and has been addressed by many
researchers from different fields. In the field of cluster and grid computing, there are
verity of approaches and tools for application description [46], software deployment
[19, 27] and monitoring [28]. Some frameworks have their own deployment protocol
(e.g. yarprun from YARP) or other tools based on some standard approaches (e.g.
deployer-corba from OROCOS, roslaunch from ROS). What we are interested
in here is not actually how to remotely launch a program. Instead, we look at how
to use the available approaches in a systematic way to monitor modules and execute
them with respect to their dependencies. For example, execution of a module might
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need to be delayed until another activity has been performed or some interfaces are
initialized by other modules. Moreover in our approach, we require multi–platform
(e.g. Windows, Linux) execution and automatic interconnection of modules.

7.2.5 Application migration and load balancing

Robotic systems are heterogeneous and robotic applications are highly platform de-
pendent [77]. Due to intensive hardware dependencies, developers mostly prefer to
manually decide which module should run on which machine. This, in the one hand,
solves the dependency problem but on the other hand hinders application migration
and load balancing of modules in cluster of computers. In [11] a generic model and
an architecture for a dependable deployment is presented. Similar approaches with
slightly different modeling can be also seen in [19, 27]. Although these approaches
propose strong logic for reasoning over dependencies, they do not strongly support
intensive device–dependent applications. Load balancing is also widely addressed in
the field of grid computing [56]. However, many of load–balancing approaches should
be employed and integrated with dependable deployment methods to fulfill robotic
applications requirements.

7.2.6 Cross–middleware deployment

As stated in the introduction several software middlewares have been developed in the
robotics community. Reusability of software modules from other frameworks is there-
fore an interesting topic. The bottleneck mostly resides on the communication interface
in which some frameworks provide specific solution to interconnect with others (e.g.
YARP offers tools and protocol to communicate with ROS). Apart from interconnec-
tion, a variegated application which consists of modules from different middlewares,
requires a generic multi–framework deployment tool. We do not claim our approach
effectively solves this problem. In fact, we do not believe that such a deployment tool
exists. However in Section 7.4 we provide a deeper insight into this issue.
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7.3 Conceptual Representation

In this section we provide a conceptual representation of the elements which define
the semantic of our work. The concepts can be expressed using any classic conceptual
modeling approaches or modern ontology representation. They are used to formalize
the problem and the requirements that have been discussed in the previous section. For
sake of brevity, some of details and properties are not shown in corresponding figures.

7.3.1 Resource

A resource refers to any physical or logical devices which are available in a cluster
of machines or required by a program. As shown in Figure 7.1, a GenericResource

is categorized as PhysicalResource, LogicalResource and CompoundResource. Every
hardware devices can be seen as PhysicalResource. Operating systems, libraries, de-
vice drivers and etc belong to LogicalResource. A Computer is a CompoundResource

which has a set of peripheral resources, logical resources and all of the primary re-
sources. PrimaryResources are processors, main storage, memory and standard net-
work device. Properties value of primary resources (e.g. the architecture, number of
cores, load average of a Processor) are automatically recognized by the system re-
source discoverer.

Each computational node of a cluster can be expressed as a Computer. Any extra
resources (e.g. GPU, shared library), can be specifically expressed by their properties
and values as either PeripheralResource or LogicalResource of Computer.

7.3.2 Module

A module is a separate, interchangeable component which accomplishes a task or ac-
tivity and contains everything necessary to accomplish this. Module is typically incor-
porated into the program through its Interfaces. In other words, it receives Data with
specific DataType from Input and send the results trough Output. Some input data are
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GenericResource

Available: bool
Disable: bool

PhysicalResourceCompoundResource LogicalResource

<hasPeripheral>

<hasPrimary>

<hasLogical>

PeripheralResource PrimaryResource

Computer

Figure 7.1: Conceptual representation of resource.

required for a module to be able to operate properly∗ and some should be available
for initialization prior to execution of the module. In Figure 7.2 these are shown as
required and priority properties of Module. ModuleProperty and InterfaceProp-

ery respectively are framework-dependent properties of module (e.g. command–line
parameters, environmental variables) and interface (e.g. connection type). Rank in-
dicates the popularity of a module among the users with respect to the other modules
which accomplishes similar activity. It can be given based on module’s computational
cost, quality of services it provides and etc.

A Module might depends on specific hardware devices, libraries, platform and etc.
In our conceptual model it is shown as resources of Computer. Every module’s re-
source dependencies can be expressed within multiple Computer concepts which are
combined in form of disjunction and conjunction. Thus, for example, one can say a
module requires a computer with GPU or a computer with at least four processor’s
cores and more than one gigabyte free memory space. In Section 7.5 we will show
how it can be represented using XML language.

∗Notice that not all of the inputs are required by a module such as those that involve requesting
status or specific services.
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Figure 7.2: Conceptual representation of module and application.

7.3.3 Application

An application consists of collections of Modules which are interconnected by a set of
Connections and collaborate to accomplish an specific goal. For example, a grasping
application can be made of attention system, gaze control, reaching and grasping mod-
ules. A Connection is composed of a pair of source–destination interfaces with their
properties. To achieve decreasing levels of granularity, different applications can be
integrated as sub–applications (for example the grasping application described above
can be used as a building block in a larger application in which the robot has to fetch
objects from the fridge and bring them to the user). Some global properties of modules
or connections can be introduced using ApplicationProperty. It can be advantageous
when different instances of one application are integrated.
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Figure 7.3: Multilayer architectural design of Yarpmanager.

7.4 System Architecture

In an architectural perspective, the system is composed of different components, which
are combined in a multilayer architecture as shown in Figure 7.3. Three separate layers
can be identified: Entity layer on the top, System core and manager in the middle, and
an abstract Module Launcher and Interconnector for module execution and intercon-
nection at the bottom.

For each implemented module in a framework, there should be a Module

description (e.g. in form of metadata or manifest file) which recites the mod-
ule’s characteristics based on the conceptual model explained in the previous section.
Resource description details available machines in a cluster according to the Com-

puter conceptual model. In the simplest form, it is a name–list of cluster’s machines
(e.g. hostname or IP address). Similarly, application’s properties, integrated mod-
ules and their connections are expressed using Application description. Entities
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which are listed in module, resource and application descriptions are loaded by Entity
loader and structured in a dependency graph using Entity graph generator.
Dependency resolver reasons on the graph to find a set of modules to be exe-
cuted and the relevant connections to be established. Resource discoverer is re-
sponsible for discovering and updating PrimaryResources of clustered machines (e.g.
CPU’s load average, free memory space) which are used by Load balancer to assign
each module to the proper machine. Eventually, modules are robustly launched, in-
terconnected and monitored by Supervisor using appropriate middleware–dependent
launcher and interconnector from deployment layer. This layer can be enhanced with
multiple deployers from different frameworks for cross–middleware deployment.

7.4.1 Dependency graph

The graph generated by Entity graph generator deserves particular attention. Fig-
ure 7.4 represents an example of dependency graph which is automatically generated
based on the module, application and resource descriptors. As shown in the figure,
application A1 requires sub–application A2 and module M1. Application A2, by itself,
requires M2 and M3. Each module Mi needs a set of required resources which are
shown as single node Ri. Node Ci represents each machine of the cluster. There is an
arc between each node Ri and C j if and only if C j fulfills all the required resources
of Ri. For example, C1 and C2 meet requirements in R2. Hence the relevant links are
created among them.

Dependency graph G= (N,A) is a directional graph where N is a finite set of nodes ni

and A is a finite set of arcs from ni to n j. Each node ni ∈ N belongs to one of the subset
Nc, Nd or Nt where

• Nc ⊆ N is a subset of conjunctive nodes which implies that each ni ∈ Nc depends
on all of its successor nodes.

• Nd ⊆ N is a subset of disjunctive nodes which implies that each ni ∈ Nd depends
on one of its successor nodes.

• Nt ⊆ N is a subset of terminal nodes or leaves of G.
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Figure 7.4: An example of graph used for dependency resolving. Ai indicates an ap-
plication. Mi is a module, Ri and Ci are respectively required resource and computer,
oi and ii are respectively output and input of a module.

Each node ni is properly labeled as either Application, Module, RequiredResource,

Computer, Input or Output.

In addition, system can automatically resolve dependencies across modules based on
data they required (input) and produce (output). If AutoDependency property of Mi is
enabled, a sub–graph Gs ⊆G is generated for each required input ii of Mi ∈G . Gs

includes all modules M j which their output o j has the same DataType as ii. In Figure
7.4, module M1 require a specific data (e.g. 3D position data) from its input i1 which
can be produced by either M4 or M5. Hence, these modules are added to G and the
relevant links from i1 to o4 and o5 are created.
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7.4.2 Dependency resolving and load balancing

Dependency resolving and load balancing involve finding required set of modules and
their connections to run on proper set of clustered machines. Solution Snodes(ni)⊆N is
a minimum subset of nodes which satisfy dependencies of ni and consecutively all its
successors. ni ∈ Nc is considered as satisfied if and only if all its immediate successors
are included in the solution. Similarly, ni ∈ Nd is considered as satisfied if at least one
of its immediate successors is included in the solution. In Figure 7.4, Nd = {i1,R1..5},
Nt = {c1,c2} and the rest belong to Nc.

There are some issues should be dealt with when searching for a solution. For exam-
ple, while resolving dependencies of disjunctive node i1, a proper decision should be
taken to choose between o4 or o5. Moreover, if o4 is chosen, the relevant connection
from i1→ o4 should be added to the solution which later will be used by deployer to
interconnect modules M1 and M4. Therefore, we define solution S =< Snodes,Scons >

where Scons is a list of required connection ni→ n j and ni,n j ∈ Snodes.

Formalizing the problem using dependency graph, breaks down the complexity of solu-
tion finding into graph exploration where different standard methods can be employed.
Algorithm 1 demonstrates a recursive approach to find solution S from the given node
ns. Line 1, initializes Nsuc with a subset of immediate successors of ns which are not
satisfied. Lines 2 – 4 constraints that every leaf of graph must be of type Computer.
Lines 5 – 20 propagates the algorithm in Nsuc, taking proper decision while facing a
conjunctive or disjunctive node. If ns is a conjunction, all its successors are explored
and added to the solution. On the other hand, if ns is a disjunction, bestO f (Nsuc)

chooses the proper successor node ni to be explored. If ns is of type Input, first call to
bestO f (Nsuc) will return a successor which its corresponding Module has the highest
rank. For example, in Figure 7.4, bestO f ({o4,o5}) chooses o4. Consecutive calls
to bestO f will return the second–highest rank and etc. If ns is of type Computer,
bestO f (Nsuc) behaves as load balancer and selects the computer with less load aver-
age. Whenever required, line 19 add the necessary connection (i.e. from an input to
output) to Scons. Line 22 adds the current node ns to the solution to be considered
as satisfied. Finally the algorithm return true value if all the required dependencies
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Algorithm 1 DEPRESOLVER(ns)

Require: G, ns ∈ N.
Ensure: < Snodes,Scons >.

1: Nsuc = Successors(ns)\Snodes

2: if ns ∈ Nt and ns /∈ Ncomputers then
3: return f alse
4: end if
5: if ns ∈ Nc then
6: for ni ∈ Nsuc do
7: if not DEPRESOLVER(ni) then
8: return f alse
9: end if

10: end for
11: else if ns ∈ Nd then
12: repeat
13: ni← bestO f (Nsuc)

14: until not DEPRESOLVER(ni)

15: if ni =∅ then
16: return f alse
17: end if
18: if ns ∈ Ninputs then
19: Scons← Scons∪{< ns,ni >}
20: end if
21: end if
22: Snodes← Snodes∪{ns}
23: return true

are satisfied∗. Snodes includes every type of nodes. Therefore, the final step is to se-
lect nodes labeled as Module and their corresponding machine which are labeled as
Computer from Snodes.

∗Detail explanation of load balancing and proof of the algorithm is out of the scope of this work.
However, readers are motivated to apply different decision making and load balancing mechanisms.
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7.5 An example in YARP

To demonstrate how our proposed approach can be adopted by distributed robotic
frameworks, we briefly describe the implementation of Yarpmanager over YARP.
Through this, we explain how the abstract layers shown in Figure 7.3 and our generic
conceptual model can greatly facilitate adaptation procedure to desired robotic frame-
works.

YARP is a multi–platform distributed robotic middleware which consists of a set of
libraries, communication protocols, and tools to keep modules and devices cleanly
decoupled. Based on Observer pattern, communication in YARP allows the state of
special port objects (which is named such as /port) to be delivered to any number of
observers, in any number of processes which are distributed over different machines.
Modules written using YARP libraries, are complied into runnable programs which
can be launched on different machines using a special service (i.e. yarprun) and
interconnected from an external program (e.g. another YARP program, the shell or
shell script).

The implementation procedure of our proposed approach in YARP mostly involves two
general phases: 1) Defining a standard to store and load the description of each entity;
2) Implementing a proper module launcher and interconnector. In our implementation,
we use XML language to describe and store the information of each module, applica-
tion and resource. Listing 7.1 exemplifies description of the resources used in Figure
7.4. It simply defines two computers C1 and C2 where C1 is equipped with a specific
GPU.
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1 <resources >

2 <computer >

3 <name>C1</name>

4 <gpu>

5 <name>Tesla C1060</name>

6 <capability >1.3</capability >

7 </gpu>

8 </computer >

9 <computer >

10 <name>C2</name>

11 </computer >

12 </resources >

Listing 7.1: Resource description in YARP.

Module M1 is also described in Listing 7.2. It shows that M1 requires an input data
of type 3D-Position from its port i1. Moreover, to operate properly, it needs a GPU
which its computational capability is higher than 1.2.

1 <module >

2 <name>M1</name>

3 <input>

4 <type>3D-Position </type>

5 <required >yes</required >

6 <priority >no</priority >

7 <port>/i1</port>

8 </input>

9 <dependencies >

10 <computer >

11 <gpu>

12 <capability opt="higher">1.2</capability >

13 </gpu>

14 </computer >

15 </dependencies >

16 </module >

Listing 7.2: Module description in YARP.

The description of application A1 in Listing 7.3 states that A1 needs module M1 and
another application A2. Using <node>, it is possible to specifically indicate on which
computer runs M1. In this example, this field is left empty to let Algorithm 1 auto-
matically selects the proper computer from those which are listed in Listing 7.1. It is
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also possible to indicate which module launcher should be employed to execute the
module. In the same way, the description of A2 can be provided in another XML file.
Detailed explanation of XML template files and the standard can be found in [65].

1 <application >

2 <name>A1</name>

3 <module >

4 <name>M1</name>

5 <node></node>

6 <autodependency >yes<autodependency >

7 <deployer >yarprun </deployer >

8 </module >

9 <application >

10 <name>A2</name>

11 </application >

12 </application >

Listing 7.3: Application description in YARP.

The Deployment layer in YARP, is implemented using yarprun. It is a distributed
client–server tool which receives the necessary information for running modules from
remote clients and launch them on the server’s host. Deployment layer provides es-
sential routines to start, interconnect and manage the modules by communicating with
yarprun. Using these routines, Supervisor can robustly execute, interconnect and
monitor modules in separate state–machines; this also allows it to take the proper de-
cision in case of failures (module crash or termination). Moreover, using yarprun, the
Deployment layer also offers to the Resource discoverer routines for collecting the
status of the machines in the cluster (CPU load, memory usage, etc.).

7.6 Conclusions

This chapter has introduced a systematic approach to enhance scalability and man-
agement of software modules in distributed robotic architectures which results from
our long–run experiences in developing humanoids robotic applications. We have dis-
cussed some practical difficulties which developers usually encounter for managing
large number of modules distributed over different machines. Dependency resolving
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of collaborative software components, heterogeneous modules deployment and porta-
bility of robotic applications are some issues which are mostly left in the background
by robotic researchers. We have formalized the problem using our conceptual model
which might not be totally general but still fairly comprehensive to be employed by
many robotic frameworks. We have proposed a specific graph exploration algorithm to
deal with the dependency resolving and load balancing. A example in YARP has been
presented to demonstrate how our multilayer architectural design facilitates adaptation
of the approach to any robotic framework.



Chapter 8

Conclusions

8.1 Contribution

This research study investigated the application development requirements in robotics
and proposed some approaches to enhance reusability of the software components in
robotic frameworks. The work has been divided in the three parts. The first part ad-
dressed the coordination problem of the modules in distributed architecture. The sec-
ond part investigated how the extra requirement specific to an application can be added
to an existing module as an extensible functionality. Finally, the last part dealt with
the composition of modules in an application, their deployment and the implemented
tools to support the application building and execution. The following presents the
contribution of this research work in different parts.

8.1.1 Coordination of components in distributed architectures

We have introduced a coordination mechanism for a network of behaviors based on
port arbitration. We have shown that our approach allows to implement a non-trivial
behavior that involves a sequence of actions. We have shown that the final behavior can
be incrementally built as a composition of existing, simpler behaviors. Our approach is
also fully distributed and minimizes the additional links required to perform arbitration.
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We tested the behavior under different conditions and demonstrated that the resulting
behavior is intrinsically robust and reactive to unexpected changes in the environment.

We have also illustrated a mechanism for modeling and coordinating behaviors based
on our port arbitration approach. We have shown how robotic tasks can be represented
using our behavioral description model and coordinated in a distributed component–
based framework without any central coordinator. Remarkably, we demonstrated that
in our framework, based on different behavioral descriptions, several robotic applica-
tions can be implemented using the same reusable software components.

8.1.2 Extensibility and reusability of components

We have introduced the port plug–in system to extend modules functionalities by
adding scripts to the ports that allow data monitoring, filtering, transforming and ar-
bitration. Based on our approach we have developed specific plug–ins for port’s data
monitoring and arbitration to alleviate the problem of coordination and facilitate the
development of reusable components.

The main advantage of our approach is that it allows to limit application specific func-
tionalities to scripts that are external to the modules which can be added and executed
at runtime. This maintains modules clean from unnecessary complexity and enhances
their reusability. Finally, by using embedded scripts inside the ports, we can avoid
introducing specific modules to achieve the required functionalities, thus, reducing
communication and deployment overhead.

8.1.3 Composition and deployment of components

We have illustrated a systematic approach to enhance scalability and management of
software modules in distributed robotic architectures and discussed some practical dif-
ficulties which developers usually encounter when managing large number of modules
distributed over different machines. Dependency resolving of collaborative software
components, heterogeneous modules deployment and portability of robotic applica-
tions are some issues which are mostly left in the background by robotic researchers.
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To address these issues, we have formalized the problem using our conceptual model
which might not be totally generic but it is still fairly comprehensive to be employed by
many robotic frameworks. We have proposed a specific graph exploration algorithm
to deal with the dependency resolving and load balancing.

8.1.4 Software and Tools

The coordination mechanism using port arbitration has been developed and completely
integrated in the YARP framework as a new carrier recognized as priority_carrier. The
port plug–in system has also been implemented in form of another carrier (portmon-

itor_carrier) which allows to access, modify and arbitrate data using LUA scripting
language. The source code and the relevant examples demonstrating different poten-
tial usages of the port plug–in system can be found in the YARP repository.

Some essential tools for robotic application development and execution have been also
developed in the YARP framework. These tools support the major component–based
software development cycle: i) configuration, composition and coordination of the
modules (the “gyarpbuider") and ii) deployment and monitoring (the “gyarpmanager").
The software and tools have been developed under GNU General Public License (GPL)
and can be freely downloaded from the YARP repository along with the relevant doc-
umentation.

8.2 Discussion and Future works

There is still no emerging consensus over a generic robot programing paradigm. The
decision to choose between explicit and implicit representation of the knowledge or
between model–based and model–free highly depends on the research context and its
objectives. Coordination of software components in a distributed architecture usually
adds considerable overhead to the robotic application design process and often pulls
the development of software components in specific direction. That can make signif-
icant impact on the reusability and viability of software components. Thus, solutions
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offered by a paradigm might be still suboptimal in other contexts. However, the soft-
ware architecture techniques and frameworks should limit the downside effect of each
paradigm on the reusability of the software components.

We have introduced a coordination mechanism which makes use of existing data con-
nections among the components and arbitrates them based on their activation status.
The definite advantage of the proposed coordination mechanism is the simplicity and
its generality over different robotic middlewares since the concept of the data–flow
ports, has become a de facto standard in distributed software frameworks. Despite
many robotic applications can be designed using port arbitration within the context of
behavior–based system, the approach can suffer loss of information for coordination
which is not made available in the arbitrator. A better solution to this problem is to
use the port plug–in system which allows to define the coordination logic (arbitration
rules) by also inspecting the data transmitted through the connections. The proposed
coordination domain is not limited to the data–driven systems nor to data arbitration in
the input ports. The same approach can be also used in control–driven architectures by
arbitrating separate event messages which drive the coordination of the components.

Even though coordination based on port arbitration can cover a wide variety of robotic
application developments, we have experienced certain limitations in the system. First,
communication of software components with the external world is not limited via its
streaming ports. Since arbitration is usually done on the data from unidirectional con-
nection to an input port, it cannot be easily used in a service–oriented system where
interactions between modules is bidirectional and done using blocking remote proce-
dure calls. Moreover, a robotic task might require performing a sequence of actions
in different steps where actions in each step should be synchronized with the internal
states of the components which implement the corresponding actions. In other words,
to perform an action, a series of commands should be given to a component in a spe-
cific order and its internal state should be monitored before sending a new command.
This can be also made by port monitoring and arbitration, nevertheless, delegating this
responsibility to a dedicated, external component can be preferable in favor of simplic-
ity and performance.

The port arbitration approach can be used in the design of any robotic system where
immediate reaction to changes in the system’s state is required and these minor changes
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are not necessarily needed to be reasoned about by a third–party component. For in-
stance, minimizing delays in a distributed control application is functionally more im-
portant than making every change of the system’s state explicitly visible to a separate
coordinator via events. However, choosing between an explicit coordination mecha-
nism and more reactive but less explicit way of orchestrating components, is a design
choice and depends on functional requirements of robotics system. It is important to
notice that the coordination approach using port arbitration does not constrain and limit
the application designer to a specific mechanism for the orchestration of components.
For example, the application designer can build part of the coordination using state ma-
chine and another part using port arbitration. The necessary functionalities to integrate
these two parts can be provided using port plugin system.

The formalism for representation of the components and their configuration in applica-
tions, concentrates mostly on the necessary information for dependency resolving and
deployment of the component in a distributed architecture. Most of the future work
will be dedicated to extend the available formalism to support description of compo-
nents at every level of composition. That is, software modules can be integrated and
interconnected to build another component and new type of data can be also created
by proper employment of port monitor plug-ins. In other words, a component designer
can chose a mixture of off-the-shelf components and put them together. The port–
arbitration mechanism (or other coordination) can be employed to coordinate these
sub–modules. The designer can also implement some extra functionalities (e.g., data
filtering and conversion) using port plug–in system and specify which interfaces should
be exposed by the final component. All the process can be done using proper tool (i.e.,
by extending the "gyarpbuilder" to support the new formalism) and without any mod-
ification to the subsystems. Another important issue which will be investigate in the
future work is the behavioral verification of the components and applications. This
should be done by extending the current formalism and the corresponding tools (e.g.,
the "gyarpbuilder") to employ a suitable formal model in the literature for verification
of behavior of the system.



Appendix A

Tools

This appendix shortly presents some tools, which have been developed with the goal
of facilitating the application development in YARP framework. The tools support
the major component–based software development cycle: i) the configuration, com-
position and coordination of the modules ( the “gyarpbuider") and ii) the deploy-
ment and monitoring (the “gyarpmanager"). They are developed under GNU Gen-
eral Public License (GPL) and can be freely downloaded from the YARP repository at
https://github.com/robotology/yarp.git.

A.1 The gyarpmanager

The command–line utility, the “yarpmanager", and its graphical companion, the
“gyarpmanager", are a set of deployment tools for running and managing multiple
programs on a set of machines. The implementation partially uses YARP framework
and fully supports Windows, Linux and Mac Os.

The prominent features of the tool–set are as follows:

• Running, stopping, killing and monitoring multiple programs on the current or
remote machines.

https://github.com/robotology/yarp.git
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Figure A.1: A screenshot of gyarpmanager.

• Supporting different customizable deployer such as “yarprun", “yarpdev",
"local–broker", “script–broker".

• Establishing ports connections manually and automatically.

• Managing multiple programs which are grouped as different applications.

• Running programs concerning their dependencies.

• Recovering programs from failure.

• Automatically assigning programs to proper machines using load balancing and
smart resource discovery mechanism to improve their execution performance.

• Discovering information and status of machines in cluster of computers (e.g.,
hardware, platform, CPU load).
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• Enabling users to specify the resource dependencies of the program using mod-
ule description file.

• Enabling users to provide information about specific devices (e.g GPU) on a
machine using resource description file.

• Enabling users to build an application which is composed of multiple sub–
applications.

• Remapping ports name at run time using port prefix mechanism.

• Inspecting and monitoring data of the connections using YARP standard tools
such as “yarp read”, “yarpview”, “yarphear” and “yarpscope”.

A.2 The gyarpbuilder

The “gyarpbuilder” is a cross–platform (supports Windows, Linux and Mac Os) graph-
ical tool for rapid application development in YARP framework. It enables the user to
easily develop an application by configuring and interconnecting the available mod-
ules.

The tool makes use of the YARP module descriptions (as described in Chapter 7) and
represents them in a graphical way. To build a new application, a developer can put the
modules together, configure and interconnect them. The “gyarpbuilder” also performs
some simple model checking and warns the user if some of the constraints such as
required input connections or parameters for a module are not satisfied.

The port arbitration mechanism (see Chapter 3) can be also used for coordination of
the corresponding components during the application development using the “gyarp-
builder”. An application developer can add an arbitrator entity to any input port and
easily configure it with the necessary rules for the arbitration. Whenever a new rule is
added to the arbitrator, a consistency check on the rules is performed to guarantee that
only a single connection can deliver data at any given time.

Using the provided resource description of the available machines in a cluster (see
Chapter 7), the deployment information can be manually set for the execution of the
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Figure A.2: A screenshot of gyarpbuilder

modules or they can be configured to be deployed using the automated load balancer.
Eventually, the application can be loaded and launched using the “gyarpmanager”.
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