
Universita’ degli Studi di Genova
Dipartimento di Informatica, Sistemistica e Telematica

Istituto Italiano di Tecnologia
Dipartimento di Robotica, Scienze Cognitive e del Cervello

From humans to humanoids: a study
on optimal motor control for the iCub

Serena Ivaldi

A thesis submitted for the degree ofPhilosophiæDoctor (PhD)

XXII Doctoral School on Humanoid Technologies
April 2011

Thesis supervisors:

Prof. Giorgio Metta (Principal Adviser)
Robotics, Brain and Cognitive Sciences
Italian Institute of Technology
&
Department of System, Communication and Sciences
University of Genova, Italy

Prof. Marco Baglietto
Department of System, Communication and Sciences
University of Genova, Italy

Dr. Francesco Nori
Robotics, Brain and Cognitive Sciences
Italian Institute of Technology

This work has been carried out by Serena Ivaldi during her Ph.D. course in Humanoid tech-
nologies, under the joint supervision of Prof. Giorgio Metta and Prof. Marco Baglietto, with
the additional supervision of Dr. Francesco Nori at the Robotics, Brain and Cognitive Sciences
Department, Italian Institute of Technology, Genova, Italy, directed by Prof. Giulio Sandini.
Her Ph.D. has been financially supported by the Italian Ministry of Education, University and
Research (MIUR), the Fondazione Istituto Italiano di Tecnologia (IIT), and by the European
Union through the projects ROBOTCUB, CHRIS, ITALK, VIACTORS.

Copyright © 2011 by Serena Ivaldi
All rights reserved

1. Reviewer:

2. Reviewer:

3. Reviewer:

Day of the defense:

Signature from head of PhD committee:

If you don’t fail at least 90 percent of the time, you’re not aiming high enough.
Alan Kay

Acknowledgments

There are many people without whom this thesis would not havebeen possible, and to whom I
am greatly indebted.
I am obliged to my supervisors for guiding me through this difficult but exciting experience in
research, and to Professor Sandini, who gave me the opportunity to join RBCS and work in
such a great research laboratory in IIT. I must thank Giorgiofor his sage advice. A special
acknowledgment to Riccardo and Olivier for reading the manuscript. My deepest gratitude
and appreciation goes to Francesco, whose teaching, guidance and friendship have been in-
valuable in many senses, and a source of inspiration. If onlywe had worked together before.
A special acknowledgment to my lab mates, theiCubers, colleagues and friends whom I have
had the pleasure to work with and spent most of the time in the last years, and particularly to
Alessandra, Valentina, Monica, Elisa and Ambra, who have been friends more than colleagues.
There are many people I should name at this point: either if you shared with me a single mo-
ment of my PhD or many, thank you.
I must thank my family, my sister, my friends, for loving and supporting me during these years.
I hope they will be proud of me.
Finally, I will never stop being grateful to Paolo for his love, patient encouragement and sup-
port, for staying with me, and still being engaged to me despite my time being absorbed by
study and work. This thesis is undoubtedly dedicated to him.

To Paolo

i

Glossary

CNS Central Nervous System
EMG Electro-Myo-Graphy/ic
CPG Central Pattern generators
M(A)JM Minimum (Angle) Jerk Model
M(C)TCM Minimum (Commanded) Torque Change Model
MVT Minimum Variance Theory
CA Cognitive Architecture

ERIM Extended RItz Method
(N)MPC (Nonlinear) Model Predictive Control
DP Dynamic Programming
LQ(G) Linear Quadratic (Gaussian)
DM Decision Makers
OHL One-Hidden-Layer
(A)NN (Artificial) Neural Networks
SVM Support Vector Machines
(N)MSE (Normalized) Mean Squared Error
CE(P) Certainty Equivalence (Principle)
FH Finite Horizon
RH Receding Horizon
IH Infinite Horizon
COD Curse Of Dimensionality

DOF Degrees Of Freedom
IK Inverse Kinematics
FD Forward Dynamics
CLIK Closed Loop Inverse Kinematics
COM Center Of Mass
EOG Enhanced Oriented Graph
RNE(A) Recursive Newton-Euler (Algorithm)
FT(S) Force/Torque (Sensor)
OS Operating System
IDE Integrated Development Environment
API Application Program Interface
PCB Printed Circuit Board
DSP Digital Signal Processing
(L)GPL (Lesser) General Public License
CAD Computer Aided Design

Synopsis

Robots are going to coexist and interact with humans, sharing the same unstructured environ-
ment and cooperating with them in many daily tasks. Even though industrial robots can achieve
impressive performances in terms of precision, relying basically on joint position controllers
and classical control theory, there is now a wide consensus that such controls are not adequate
for the next generation of robots. More specifically, motioncontrol must be improved, with a
twofold aim:

• imitating humans to produce more natural and possibly efficient behaviors;
• guaranteeing motion safety.

My research stems from these considerations. In particular, I investigated motion control for
the upper limbs of a humanoid robot, focusing on the most important primitive for any ma-
nipulation skill, i.e. reaching, taking inspiration from humans. Indeed, computational motor
control provides different models describing human motions, that can be used in the attempt
of transferring such criteria on robotic platforms. I concentrated on a theoretical framework
which allows describing the reaching problem as the result of an optimization process, where
the success in reaching the target is not the only important parameter (i.e. bringing the end-
effector of a manipulator on the target configuration) but also how the limb moves in effecting
such actions, i.e. the criteria which can be used to describeits action. If we see this as an
optimization problem, then a stochastic functional optimization problem, with a suitable cost
function, state equation and constraints must be designed.Because the solution of functional
optimization problems is almost impossiblea priori in real-time, an approximation technique
combined with model predictive control has been addressed,where the solution to such prob-
lems is explicitly precomputed via numerical techniques. Various simulations and experiments
on a humanoid platform confirmed the feasibility of the proposed approach. Subsequently,
I focused on the implementation of a theoretical framework that allows estimating joint tor-
ques and external wrenches, under suitable hypotheses, fora wide class of robotic systems,
and in particular for humanoids robots. The purpose was to provide a robot a force/torque
control framework which, combined with the optimization techniques, would enable human-
like movements with active compliance. Experimental results successfully demonstrated the
possibility of controlling a complex humanoid robot in a compliant way. This lead to further in-
vestigations regarding how to transfer human strategies invarying stiffness and torques during
point-to-point movements, using stochastic optimal control strategies. Although some activi-
ties related to this topic are still work in progress, preliminary results favor the application of
such techniques, suggesting interesting developments.

iii

Contents

Glossary ii

Synopsis iii

1 Introduction 1

2 The robotic platforms 7
2.1 The humanoid robot James 7
2.2 The humanoid robot iCub 10

3 Optimality: from humans to humanoids 17
3.1 Optimality principles in human motor control 19

3.1.1 CNS and motor control .20
3.1.2 Learning, adaptation and re-optimization 21
3.1.3 Feedback and feedforward .. . 23
3.1.4 Internal models .26
3.1.5 Optimality and movement duration 26
3.1.6 Optimality and locomotion 28

3.2 Which is the correct “cost function”? 28
3.2.1 Minimum jerk . 29
3.2.2 Minimum torque change .30
3.2.3 Minimum variance . 31
3.2.4 The Inactivation Principle 31
3.2.5 Which cost function? .. 33

3.3 Optimality: from humans to humanoids 34
3.3.1 Some implementations of optimal control models in robots 36
3.3.2 Computational limits .. . 38
3.3.3 A layered control scheme .. . 39
3.3.4 Orchestration in a control scheme: team theory 40

4 Optimal control by means of functional approximators 43
4.1 Planning “optimally” goal-directed movements 43
4.2 From functional optimization to nonlinear programming. 48

4.2.1 Stochastic functional optimization problems 48

v

4.2.2 The Extended RItz Method (ERIM) 51
4.2.3 A stochastic approximation technique 57
4.2.4 Team functional optimization problems 60
4.2.5 Some notes on the optimization phase 61

4.3 Finite and Receding Horizon control problems 63
4.3.1 Applying the ERIM to solve aT -stage stochastic optimal control problem 63
4.3.2 Variations in Finite Horizon problems 71
4.3.3 A Receding Horizon technique 75

4.4 Neural Finite and Receding Horizon regulators for reaching and tracking 84
4.5 Numerical results 87

4.5.1 A two DOF manipulator in a planar space 88
4.5.2 A three DOF nonholonomic mobile robot in a planar space. 92
4.5.3 A two DOF arm actuated by elastic joints 100
4.5.4 Discussion of methods and results 101

5 Motion control on humanoids 111
5.1 A closed loop control scheme 111
5.2 Closed Loop Inverse Kinematics 113
5.3 Forward Dynamics .. . 116

5.3.1 Robot dynamics: model or learning? 117
5.4 Force/Torque feedback for control 121

5.4.1 Wrench transformations and FTS measurements 124
5.4.2 Enhanced Oriented Graphs .. . 126

5.5 Experimental results 140
5.5.1 Closed loop motion planning with joint velocity control in James 141
5.5.2 Estimation of intrinsic and extrinsic wrenches in iCub 148
5.5.3 Joint impedance control of the iCub elbow 160

6 Conclusions 167

Publications 171

References 172

Chapter 1

Introduction

It is a common belief that the human body movesoptimally and that human movements are
grounded on feedback and feedforward control processes [Todorov and Jordan, 2002]. Human
limbs trajectories during goal-directed movements can be modeled by the optimization of a
properly defined cost functional, usually nonlinear and sometimes non-differentiable, subject
to sets of linear and nonlinear constraints [Biess et al., 2006, Berret et al., 2008].

In the literature different computational models can be found, describing trajectories in
terms of minimization of variance [Harris and Wolpert, 1998], torque change [Uno et al., 1989],
jerk [Flash and Hogan, 1985], energy of moto-neurons signals [Guigon et al., 2008], etc.

In humanoid robotics, where reaching is the fundamental action primitive, such models
are particularly of interest [Richardson and Flash, 2000],because they do not focus only on the
successful reach, but also on the trajectory performed by limbs, and the controls that cause these
actions. Through the implementation of such computationalmodels on robotic platforms it is
possible to mimic human movements and achieve, within certain approximations, human-like
behaviors. The crucial point is not to reproduce human behaviors to make the robot appearing
more human-like or natural [Seki and Tadakuma, 2004] but to achieve efficient control and to
understand which principles governing the human body can betransferred on a robotic plat-
form, assuming that the human body is the optimal reference,refined by evolution and years of
constant learning and improvement [Atkeson et al., 2000, Shadmehr and Wise, 2005]. Analo-
gous reasons explain why optimal control is frequently addressed to solve complex problems
like robot stabilization and walking [Lockhart and Ting, 2007, Atkeson and Stephens, 2007,
Schultz and Mombaur, 2010, Mombaur et al., 2010].

In this perspective, the robot must be provided with a tool that is able to plan “optimally”: if
the biological principles describing its motion are known,it must be able to generate proper tra-
jectories and execute desired motions in real-time (possibly without being too much resource-
demanding) with a suitable control scheme [Mitrovic et al.,2010].

Unfortunately, implementations on humanoid platforms face computational limits, since
most optimal control problems incur in the Curse Of Dimensionality (COD), and even the solu-
tion of simplified problems (e.g., after strong hypotheses reducing the complexity of the model)
cannot always guarantee the fulfillment of time constraints[Diehl et al., 2009]. Rather than
searching for a generalized solution to the planning problem, whose computational limits make

1

it unsuitable for online real-time control, approaches in the literature usually focus on the opti-
mization of single point-to-point movements [Simmons and Demiris, 2005, Matsui et al., 2006,
Seki and Tadakuma, 2004, Tuan et al., 2008].

The corresponding optimal control problems are tackled vianumerical methods and non-
linear programming algorithms, but the optimization process requires heavy computations and
often prevents the application in real-time. Since closed-form solutions are utterly hard to find
(impossible in many cases) approximate solutions have to beconsidered.

Among the possible options, in this thesis an off-line approximation of the global con-
trol law is preferred: the complete precomputation of a neural approximation of an explicit
Finite/Receding Horizon (FH/RH) optimal control law (supported by an intermediate control
loop to compensate modeling errors) allows finding the controls almost instantly, leaving the
machine free for other tasks during on-line execution (e.g.contact detection, learning, etc.)
[Ivaldi et al., 2009b]. The proposed solution is globally only suboptimal, and locally optimal.

More specifically, the technique consists of two steps. In the first, off-line, a suitable se-
quence of approximating functions is trained, so that they can approximate the sequence of
optimal control functions of a stochastic Finite Horizon problem. The ERIM is chosen as a
functional approximation technique, while the use of feed-forward neural networks guarantees
that the optimal solutions can be approximated at any desired degree of accuracy [Barron, 1993,
Zoppoli et al., 2002, Kurková and Sanguineti, 2005]. In theon-line phase, a single forward
computation of a neural network (consisting of few elementary operations) yields the proper
control at each time instant.

Note that conventional Nonlinear Model Predictive Controltechniques such as FH/RH
usually solve single instances of optimization problems, i.e. each trajectory is the result of
an optimization problem (typically varying its boundary conditions); conversely, in the pro-
posed approach a generalized solution is found, for all the possible initial/desired conditions.
The generalization is possible by combining functional approximation with stochastic optimal
control. Thus, in the on-line phase no further processing isrequired; the computation of the
on-line controls is very fast, consisting only in the evaluation of a functional approximator;
real-time performances can be guaranteed; furthermore, the machine controlling the robot does
not require an external optimization routine (usually resource consuming), or licensed software,
nor specific hardware.

The feasibility of this approach has been empirically demonstrated for the control of dif-
ferent linear and nonlinear systems, such as a nonholonomicmobile robot [Ivaldi et al., 2008c]
and planar manipulator; numerical results showing its effectiveness for different cost functions
have been presented in [Ivaldi et al., 2008a].

For humanoids, planning can be carried out either in the taskor directly in the robot joint
space. In the former case, the optimal trajectories can be converted into suitable –joint level–
motor commands, exploiting suitable kinematics or dynamics control layers. If Cartesian space
is used, for example, and joint velocity or position commands are used to control the robot
motion, one can use a classical closed-loop inverse kinematics algorithm (CLIK) for make the
“task to space conversion”, taking into account the manipulator physical limitations. By tuning
the CLIK parameters (regulator, regularized Jacobian pseudo-inverse, etc.) it is possible to
achieve great precision and stability in tracking the desired trajectory.

2

1. Introduction

But, if robots are going to coexist with humans, sharing the same unstructured environment
and interact with them and their objects, the capability to perform precisely a task must not sub-
ordinate to the primary requirement of motion safety. Clearly, suitable force control schemes
are necessary to address the tasks with compliance requirements and to guarantee the global
safety during motion. An interesting analysis of the effects of uncontrolled impacts of robotic
manipulators on humans can be found in [Haddadin et al., 2008a, Haddadin et al., 2008b].

Classically, and especially in industrial environment, great effort has been focused on po-
sition control rather than compliance and force control, because the application domain re-
quired precise performances (which are normally achieved by stiff, high gain joint position
feedback control). The lack of compliance has been traditionally compensated by collision
avoidance solutions, where commonly the end-effector trajectory or the manipulator configu-
ration is changed during motion so as to avoid collisions with the surrounding (or the self). The
literature in this topic is vast, and outside the scope of thethesis, but the interested reader can
refer to [Minguez et al., 2008, Kulic and Croft, 2007, Sisbotet al., 2010].

Recent developments in actuator technology have driven theattention towards systems
capable of intrinsic joint-torque control and more in general passive compliance: variable
impedance/variable stiffness actuators [Eiberger et al.,2010, Albu-Schaffer et al., 2010], se-
ries elastic actuators [Pratt and Williamson, 1995], pneumatics and hydraulics actuators, etc.
Though being intrinsically compliant and thus safer with respect to DC motors, elastic ele-
ments combined with actuators do not guarantee safety, as they can store great amounts of
potential energy, which once released can have greater impacts on both robot and environ-
ment, as recently shown in [Haddadin et al., 2010a]. Moreover, these solution often require
consistent mechanical re-design [Tsagarakis et al., 2009]and the adoption of different forms
of power sources [Amundson et al., 2005].

An alternative approach isactive compliance, or active force, consisting in the regula-
tion of the interaction forces at each instant of time by means of closed-loop force controllers
[Sciavicco and Siciliano, 2005]. The principle being that if external forces can be detected
or measured with suitable sensors, they can be controlled soas to regulate the interaction
forces to the desired value: thus, active force control strategies can be build [Mistry et al., 2010,
Calinon et al., 2010, Fumagalli et al., 2010a]. The main advantage of the active regulation over
the passive one is the possibility of regulating forces within a wider range of values. One dis-
advantage is the response delay of the regulator, which typically limits the bandwidth of the
controlled system. This approach, given the model of the robot (such as rigid body dynamics
model), requires the hardware necessary to measure forces/torques (not only in joints, but at
the end-effectors and at any other possible contact point ofthe robot). Traditionally, the most
adopted solution consists in modifying the motor/joint group in order to insert suitable tor-
que sensors, as was done in [Parmiggiani et al., 2009] to integrate joint-torque sensing in the
fore-arm of the humanoid iCub, or redesign the robot to include torque sensing, as was done
in [Luh et al., 1983] for a Stanford manipulator. As an alternative to placing joint torque sen-
sors, an estimation of motor torques can be obtained from thecurrent absorbed by the motors
(feasible only when most of the motor torque is transmitted to the joint – low friction).

Another approach consists in exploitingForce/Torque Sensors(FTS): FTS are relatively
small and compact, and can be often inserted in the kinematicchain easily when the available

3

space on the robotic platform is limited and passive elements cannot be inserted without radical
changes. In industrial applications, robots are typicallyequipped with FTS mounted at the end-
effector, where the most interaction with the environment occurs. The solution described in this
thesis is based instead on a set ofproximalFTS, instead at the base of the kinematic chains and
far from the end-effectors: this configuration allows measuring not only interaction forces act-
ing at the end of the chains, but also forces acting in betweenthe sensor and distal joints. A sim-
ilar solution has been adopted only once in [Morel and Dubowsky, 1996, Morel et al., 2000]
where a single FTS was used to estimate the joint torques in the first 3 Degrees Of Freedom
(DOF) of a PUMA manipulator. Here, we propose a method which exploits sets of FTS placed
proximally in a multi-branched chain to estimate joint torques of complex kinematic chains. In
particular, given the FTS measurements, if a precise dynamical model of the robot is known
(i.e. a rigid body model), internal forces and torques can becomputed easily by a classical
recursive Newton-Euler method, and if suitable assumptions hold, certain external forces can
be also estimated. As prove of the effectiveness of this approach, we successfully estimate 32
of the 53 DOF of a full-body humanoid robot.

The theoretical framework for computing simultaneously intrinsic torques and external
wrenches applied to single and multiple branches kinematicchains, is based on two funda-
mentals:

• the Enhanced Oriented Graph (EOG), i.e. a graph representation of kinematic chains,
enriched with symbols for representing unknowns and sensormeasurements;

• theRecursive Newton-Euler Algorithm (RNEA)for the computation of inverse dynamics
of fixed and floating base kinematics chains.

A systematic procedure for computingN + 1 external wrenches fromN internal wrenches
(i.e. measurements from FTS) is also given, under certain assumptions. Remarkably, under
these conditions all joint torques can be theoretically computed. In order to compute external
wrenches, the main requirement is that their application point must be known: this information
can be fixeda priori for particular robot tasks, but in general must be updated on-the-fly. On
the platform used in this work – the iCub – it is provided by a set of tactile sensors, constituting
a sort of “artificial skin” [Cannata et al., 2008, Maggiali etal., 2008].

Experiments have been performed in a variety of floating baseconditions (e.g. standing,
crawling) and with different interactions with the environment. Experimental observations
also proved that controlling joint impedance in the robot isfundamental to obtain compliant
interaction with the environment and make the robot move in amore safe and natural way.
Interestingly, the neural optimal controller has been effective in computing adaptive strategies
for controlling stiffness and torque of elastic actuators during point to point movements. Al-
though some experiments on the iCub are work in progress, preliminary results show that it is
possible to apply computational motor control models used to investigate human movements
onto robots, up to a certain extent, given the physical differences between the two systems.

4

1. Introduction

Contribution of this thesis

In this thesis two theoretical frameworks are proposed. Thefirst is a mathematical tool to im-
plement stochastic optimal motion control on humanoid robots, which in a sense seeks inspira-
tion from computational motor control models. The proposedmethod consists of a stochastic
approximation technique combined with a model predictive control scheme; intermediate con-
trols, at joint level, are introduced to comply with the robot requirements. The second is a
theoretical framework for computing the dynamics of a humanoid robot and estimate joint
torques and external wrenches. Notably, this tool enabled to create different interfaces for con-
trolling the robot in a compliant way, particularly joint torque control and impedance control.
For each of the above, C++ software libraries have been produced, the NeuBot and iDyn library
respectively. The latter has been released under GPL license as a part of the iCub Project, while
the first is available upon request from the author.

The content of this thesis has been partially published as research papers. Their detailed
references are reported in the bibliography section.

The thesis is organized as follows.
In Chapter 2, the humanoid robots which have been used as experimental platforms are

described: James, a humanoid torso, and iCub, a fully body humanoid.
In Chapter 3, the optimality principles used to describe motor control are presented. Start-

ing from a brief discussion on the experimental observations performed on humans, we overview
the main computational motor control models which have or may have or might influence mo-
tor control models in humanoids. Some successful examples of integration of optimal control
in robotics are presented, along with a discussion of the main differences between the two sys-
tems, which sometimes prevent a straightforward application of neuro-computational models
into robots.

In Chapter 4, the reaching and tracking problem are introduced in the optimal control
framework, and the approximate solution via the ERIM, combined with NMPC is discussed.
Some numerical results are discussed, pointing out the advantages and disadvantages of the
method, and particularly of the ERIM. However, its application to different problems, high-
lights its ability to adapt to different contexts: deterministic, stochastic, with linear and nonlin-
ear systems,etc.

In Chapter 5, the closed loop lower level controllers are discussed: first, the Inverse Kine-
matics, secondly the force/torque control layer. Since theiCub is not provided with joint torque
sensing, in Section 5.4 a framework for computing internal torques and external wrenches from
a set of proximal FTS (available in the iCub) is presented. Finally, Section 5.5 reports some
experiments with the humanoid platforms.

Chapter 6 draws the conclusions and suggests future works.

5

6

Chapter 2

The robotic platforms

Two humanoid robotics platforms have been used to validate the theoretical results discussed
in this thesis, and to assess the proposed methods with experimental results: the 22 DOF upper-
torso James, and the 53 DOF full-body iCub. Experiments havebeen performed at the Italian
Institute of Technology, where both robotics platforms areavailable.

(a) (b)

Figure 2.1: The humanoid robots James2.1(a)and iCub2.1(b).

2.1 The humanoid robot James

James [Jamone et al., 2006] is a 22 DOF torso (see Figure 2.1(a)), with the overall size of a 10
years old boy and a total weight of about 8 kg. It has a head, with moving eyes and neck, a left
arm with a highly anthropomorphic hand.

The robot is actuated by 23 rotary DC motors (Faulhaber [Faulhaber, www]). Torque is
transmitted to the joints by rubber toothed belts, pulleys and stainless-steel tendons. Cables
pulling solutions have been particularly useful in designing the hand, since most of the hand

7

actuation have been located in the wrist and forearm rather than in the hand itself, where size
and weight constraints would have limited the proliferation of DOF. Furthermore, tendon ac-
tuation naturally provides certain compliance to the system. Extra compliance has been intro-
duced by means of springs in series with tendons, for examplein fingers. The drawbacks of
elastic transmission are the nonlinear effects which reveal during rough movements (i.e. when
controlling joints with high velocities).

Mechatronics of James

The head has two eyes (i.e. CCD digital cameras, Dragonfly) which can pan and tilt indepen-
dently, for a total of 4 DOF. A 3-axis orientation tracker (Intersense iCube2) is mounted on the
top of the head, to emulate the vestibular system. The tracker, basically a gyroscope, provides
an absolute measure of acceleration, velocity and positionwith respect to the Cartesian axes
of a reference frame, thus it is also called inertial sensor.The head is mounted on a two DOF
neck, consisting of a tendon driven rigid spring, which allows bending forward (pitch) and lat-
erally (roll) [Nori et al., 2007a]. The actuation is obtained with a peculiar structure, recalling
the design of a tendon-driven parallel manipulator: in particular, three steel tendons, separated
by 120 degrees, are used to achieve the two motions. On the topof the neck, a custom-made
force sensor with a cantilever beam structure is positioned, so as to provide force feedback to
the three motors actuating the neck [Fumagalli et al., 2009].

The arm has seven DOF: three in the shoulder, one for the elbowand three in the wrist. In
particular, the shoulder consists of three rotative joints, actuated through tendons and pulleys by
three DC motors located in the torso: two joints (the ones yielding abduction) are mechanically
coupled, as shown in Figure 2.2(a), so as to gather the shoulder a wider range of motion.
Notably, thanks to this solution, James can perform wide range movements, for example it
can reach its torso, its right shoulder and drive its left armbehind the head: these cannot be
performed by even more recent humanoid robots, like iCub. Inthe middle of the upper arm, a
single ATI mini45 FTS [ATI, www] is located, as shown in Figure 2.2(b). When FT sensors
are added to a kinematic chain, they are usually placed on theend-effector, i.e. where most
interaction occurs. In James the proximal location1 has been chosen as the remainder of the
free space in the upper and fore-arm was entirely occupied bythe motors actuating the wrist,
elbow and fingers, and DSP boards used to control them. The benefit of this configuration
is that the FTS is able to detect interactions with the environment occurring not only on the
end-effector (e.g. a grasp) but on the whole arm (e.g. the elbow colliding with an object).
This means also that there is not a predetermined contact point, or the whole arm surface is a
possible contact point.

A highly anthropomorphic hand, designed for grasping purposes, is the end-effector of
the manipulator. The hand has five fingers, actuated by eight motors, and a total of 17 DOF:
each of the five fingers has three joints (extension of the distal, middle and proximal pha-
lanxes), and two additional DOF account for the thumb opposition and by the coordinated
abduction/adduction of the other four fingers. Tactile information is provided by custom-made
sensors, placed along the fingers and the hand palm. These sensors, constituted by a two part

1Proximal means far from the end-effector.

8

2. The robotic platforms

(a) (b)

Figure 2.2: 2.2(a). James shoulder (3 DOF). The picture shows the three DOF of the shoulder.
Notice in particular how the yaw rotation is obtained by a double rotation around two parallel axes
(image from [Jamone, 2010]).2.2(b) Detail of the upper-arm. The ATI Mini45 FT sensor (red
square) is placed below the shoulder group.

silicone elastomer, a miniature Hall Effect sensor and magnet, have been designed specifically
for James. More details on their design and application can be found in [Jamone et al., 2006,
Jamone, 2010].

Hardware architecture for control

Motor control is distributed on eight Digital Signal Processing (DSP) boards (Freescale DSP-
56F807, 80MHz, fixed point 16 bits [Freescale DSP, www]), which perform a fast low-level
control loop (1KHz rate). A CAN-bus line allows the communication between the boards
and a remote PC, where an ESD CAN-USB is provided. The middleware and the inter-
process communication is grounded on YARP [Metta et al., 2006]. Magnetic and incremental
encoders are used for the feedback position control loop implemented on the boards. Most
of the motors are directly controlled by standard PID controllers, except for the shoulder,
neck and eyes motors which require different control strategies to handle various mechani-
cal constraints. The available DSP boards have limited memory and computation capability
and cannot support but simple operations, namely low level motor control (basically PID po-
sition control), signal acquisition and pre-filtering fromthe optical encoders. For this reasons,
implementing an on-line controller directly on the DSP boards is impossible in the current
setup. Reference position and velocity commands can be set by the user through a stan-
dard YARP port, communicating in the local network to the so-called “James Interface”: a
collection of YARP threads and modules, which acts as a bridge between the device drivers
running on the boards and the remote PC. More accurate descriptions of the control archi-
tecture and the different low level as well as high-level control strategies, can be found in
[Jamone et al., 2006, Fumagalli et al., 2009, Nori et al., 2007a].

9

Figure 2.3: Some pictures of James’s arm moving in the space. Only shoulder and elbow joints
are controlled.

2.2 The humanoid robot iCub

The aim of the RobotCub consortium [RobotCub Project, www] has been the development of
an open-source infant-like robotic platform, aimed at reproducing the same motor and cognitive
abilities of a two years old child [Tsagarakis et al., 2007, Metta et al., 2010]. The iCub not only
has the shape of a human baby, but also a complex cognitive architecture reflecting the many
processes involved in the functional development [Sandiniet al., 2007, Vernon et al., 2007a,
Vernon, 2010].

iCub is a 53 DOF full body humanoid robot, of the same size as a two-three years old
child. It was designed to crawl on all fours, and sit up with free arms. The most of its DOFs
are located in the upper-body, especially in the highly anthropomorphic hands, which allow
dexterous and fine manipulation. It has comprehensively proprioceptive, visual, vestibular,
auditory and haptic sensory capabilities.

Certain features of the iCub are unique. The peculiar aspectis that it is a completely open
system platform: both hardware and software are licensed under the GNU General Public
License (GPL), and the middleware used for intra-process communication, YARP, is an open-
system too, released under GNU Lesser General Public License (LGPL) [Metta et al., 2006].

Mechatronics of the iCub

The iCub is about104cm tall and weighs22kg, with a total of 53 DOF: six in the head (yaw,
pitch, and roll in the neck, pan, tilt and vergence in the eyes), three in the torso (yaw, pitch, and
roll), seven in each arm (three in shoulder, one in the elbow and three in the wrist), six for each
leg (three in hip, one in the knee and two in the ankle), the remainder in the hands.

Actuation is provided by electric motors. The major joints are actuated by brushless DC
motors, coupled with harmonic drive gears, so that high torques (up to40Nm) are guaranteed
for the critical joints, such as hips, spine and shoulders. Head and hands are actuated by smaller
DC motors. Most of the joints (e.g. in hands, shoulder, waist) are tendon-driven: this reduces
the size of the robot and also introduces a certain elasticity (which can be a drawback if precise
controls with high velocities are addressed, an advantage for its intrinsic compliance if safety
is addressed).

The neck and the eyes are fully articulated (three DOF each),to support tracking and ver-
gence behaviors.

Each hand (see Figure 2.6) has 5 fingers and 19 joints, and is actuated by 9 motors (since
several joints are coupled). The first three fingers (thumb, index and middle finger) are in-

10

2. The robotic platforms

Figure 2.4: The humanoid iCub, fully covered by plastic shells, standing on a metallic mainstay
over a mobile platform in the RBCS laboratory at IIT.

dependent and constitute eight DOF; while the fourth and fifth ones, used only for additional
support to grasping, are coupled and constitute one single DOF. The hands allow a considerable
dexterity though being very small: the palm length is 50mm, 25mm thick; the total width of the
hand range from 34 to 60 mm at wrist and fingers respectively. These features are quite unique
in humanoid robots with similar dimensions as iCub. This solution is possible because most
of the actuation is located in the forearm, and tendons are routed to the hand joints via a wrist
mechanism. Each joint is indeed tendon driven. The flexing ofthe fingers is directly controlled
by the tendons, while the extension is based on a spring return mechanism (basically this saves
one cable per finger).

The 7 DOF arm does not allow the same motion range as in James (e.g. iCub cannot
touch its back) and additional physical constraints such asthe body covers prevent a complete
exploitation of the robot workspace. To provide better flexibility for manipulation, a 3 DOF
waist has been incorporated, to increase the range of motionof the upper body, resulting in
a larger workspace for manipulation. Finally, legs have been designed to support crawling
and sitting, but are also adequate for standing and walking.The ankle has two DOF, namely
flexion/extension and abduction/adduction (foot twist rotation was not implemented).

Additional sensing capabilities

Proprioception is provided at each joint by positional sensors, generally absolute position en-
coders. Joints positions are then retrieved directly from encoders measurements, while joints

11

velocities and accelerations are derived from position measurements through a least-squares al-
gorithm based on an adaptive window filter [Janabi-Sharifi etal., 2000, Fumagalli et al., 2010b].

Many other different devices enrich the sensory capabilities of the iCub: digital cameras
(for the eyes), gyroscopes, microphones, accelerometers,tactile and force sensors.

The latter three set of sensors are fundamental for the iCub active compliance, as will be
discussed in Chapter 5. As shown in Figure 2.7(b) and 2.7(a),iCub is equipped with one inertial
sensor (Xsens MTx-28A33G25 [Xsens, www]) located on the head, providing measurements
of linear acceleration and angular velocity and acceleration2. Four custom-made six-axes FTS
(see Figure 2.8), one per leg and arm, are placed proximally with respect to the end-effectors
(hands and feet).

Sets of distributed capacitive tactile sensing elements are integrated on most of the plastic
shells covering the robot limbs [Cannata et al., 2008], and provide a tactile feedback for pos-
sible contacts with the environment. This sort of “artificial skin” is constituted by a layer of
capacitive pressure sensors included on a flexible Printed Circuit Board (PCB), with embedded
electronics, covered by a silicone foam to protect each taxel (i.e. tactile element) and make the
skin also more compliant. An example of the device for the forearm is shown in Figure 2.9.

Moreover, a set of fingertips, one per each finger, provides additional tactile information,
for fine manipulation. The first prototype consisted of rectangular sensitive zones, made of
conductive ink painted on an inner support and connected to arigid PCB. The final device is
made of a capacitive pressure sensor, a flexible PCB layer with circular taxels, wrapped around
the inner support, and covered by layers of silicone foam andconductive rubber connected to
the ground [Schmitz et al., 2010].

Hardware architecture for control

A set of DSP-based control cards, custom designed to fit the limited space available in the
iCub, takes care of the low-level control loop. Each controlboard runs at1 kHz, and is con-
nected to the main relay CPU (a PC104, located in the robot head) via CAN bus (four lines
in whole), which retrieves all motor-sensory information,handles synchronization and refor-
matting of the various data streams. More demanding computation can be performed on a
PC cluster connected to the PC104 via a Gigabit Ethernet. Additional electronics have been
designed to sample and digitalizes the numerous sensors: also in this case, all the signals con-
verge to the PC104 by means of additional connections (e.g. serial, firewire). Moreover, the
robot is equipped with an umbilical cord containing both an Ethernet cable and power supply
line: with this solution, it can move freely in the space without being constrained to a specific
position. A simple scheme describing the hardware/software architecture for control is shown
in Figure 2.10.

Software architecture

The core of the iCub software architecture is a set of modulesdeveloped on top of YARP
[Metta et al., 2006, Fitzpatrick et al., 2008]. YARP is a set of cross-platform C++ libraries,

2Precisely, angular acceleration is found using an adaptivewindow filter.

12

2. The robotic platforms

which supports modularity, and provides universal interfaces with hardware and device mod-
ules. The philosophy is code reuse, which is to wrap each native device API, and provide a
simple generic interface for any hardware device, so that changes in the hardware do not imply
rewriting all modules, but only changing the API calls. Moreover, YARP is independent from
both operating system and development environment, thanksto ACE and CMake: the first
is an OS-independent library for inter-process communication, the second a cross-platform
make-like tool to generate platform and IDE specific projectfiles.

In the YARP framework, a suitable real-time layer is in charge of the low-level control of
the robot, namely a set of processes running on the boards located through the robot body, inter-
facing sensors and actuators with the PC104. A pool of YARP modules defines a soft real-time
communication layer, when multiple processes can coexist and exchange data through a se-
ries of universal ports, following the observer pattern by decoupling producers and consumers.
This architecture is evidently suited for cluster computation: each module can be called or
observed remotely from within the network. One evident drawback is that this architecture nat-
urally excludes direct real-time control (i.e. a module directly sending commands to the joints),
because of the many layers interposed in between the controller module (typically a module
running on a cluster PC) and the robot hardware. Issues related to real-time performances must
be addressed elsewhere.

13

(a)

(b)

Figure 2.5: Top (2.5(a)): some snapshots of the “Yoga” demo, where iCub perform periodically a
set of pre-programmed movements in the space. The base frameis fixed, being iCub supported by
a metallic mainstay.Bottom (2.5(b)): some snapshots of iCub crawling on a carpet. Black straps
are used to protect knees and wrists and simultaneously improve the friction of the plastic covers
with the floor. Limbs motion is orchestrated by a controller based on central pattern generators
[Degallier et al., 2008]. Self-body collision is preventeda priori. Interaction with the environment
occurs on knees and wrists. The base frame is floating.

Figure 2.6: The iCub hand: in evidence, the embedded electronics (a MAISboard on the
top), the tactile skin covering the palm and the tactile fingertips. More details can be found in
[Schmitz et al., 2010].

14

2. The robotic platforms

(a) (b)

Figure 2.7: Right (2.7(a)): the force/torque and inertial sensors used in iCub.Left (2.7(b)): a
mechanical scheme of the humanoid robot iCub: in evidence, the four proximal six-axes FTS (legs
and arms) and the inertial sensor (head).

Figure 2.8: The custom FTS developed for iCub. Left: the sensing element. Center: the embedded
electronics. Right: the assembled sensor. Notice the CAN line, going out from the sensor, which
transmit sampled digital measures at1ms rate (image from [Fumagalli et al., 2010b]).

15

Figure 2.9: Distributed tactile elements constitute a sort of artificial “skin”. The plastic cover, the
elements and the final device for the fore-arm are shown. Details about skin fabrication and how
iCub has been covered with it can be found in [Roboskin Project, www].

G
b

 E
th

e
rn

e
t

8
 C

A
N

 b
u

s
lin

e
s

(1
M

b
p

s)

PC 104

iCubInterface

RobotMotorGui

WholeBodyTorqueObserver

Inertial Sensor

Force/Torque Sensors

DSP boards

COM

Motion Planning

Figure 2.10: A scheme showing the networked control infrastructure. ThePC104 collects
joints measurements from the DSP boards, inertial measuresfrom a specific COM port, and
FTS measures via CAN bus. Each FTS is equipped with embedded electronics, with A/D con-
verters. Through the iCubInterface, all measurements are replicated in the YARP local net-
work, where a PC cluster is available, and multiple processes coexist. Among these, one is
dedicated to the computation of “virtual” joint torques (asdescribed in Section 5.4), one to
the selection of the control modality (e.g. joint position,velocity or torque control). The
estimated torques are sent back via the PC104 to the DSP boards to enable torque feed-
back. More details on this scheme can be found in the online documentation of the iCub:
http://eris.liralab.it/wiki/Force Control.

16

Chapter 3

Optimality: from humans to
humanoids

Novel trends in computational neuroscience suggest that optimal control theory is crucial to
understand the motor commands and the motor control that thehuman exerts during a task.
Many researchers support the theory that the motions we observe in humans and animals are
“optimal”, because the sensorimotor system is the product of millions of years of evolution,
but also because it constantly “evolves” being subject to continuous process such as learning,
adaptation and training, which improve behavioral performance in terms of stability, accuracy
and efficiency [Shadmehr and Wise, 2005, Franklin et al., 2008]. Even if the physical structure
of the human body precludes certain motions, among a wide variety of possibilities, the CNS
chooses to implement a selected set of planning strategies.We will consider these movements
(that we can observe everyday) as “optimal”, with the meaning that optimal control is a good
modeling tool for human motor control. The idea that a motor controller is not only adaptive,
but also optimal, suggests statingthe motor problem as a stochastic optimal control problem.

It is a common assumption that the motions we observe in humans and animals are “opti-
mal”, because the sensorimotor system is the product of millions of years of evolution, but also
because it constantly “evolves” being subject to continuous process such as learning, adapta-
tion and training, which improve behavioral performance interms of stability, accuracy and
efficiency [Shadmehr and Wise, 2005, Franklin et al., 2008].Even if the physical structure of
the human body precludes certain motions, among a wide variety of possibilities, the CNS
chooses to implement a selected set of planning strategies,leading to the “optimal” arm move-
ments that we can observe every day.

Stochastic optimal control theory might provide the important link across the three lev-
els of motor system: motor behavior, limb mechanics and neural control [Todorov, 2005,
Todorov and Jordan, 2002, Todorov, 2004]. It naturally provides a mathematical framework
to explain which are the controls generating the observed behavior, by providing or exploiting
a cost function to describe the motion criteria.

Moreover [Scott, 2004], it might help to unravel how the primary motor cortex and other
regions of the brain plan and control movement, providing valuable insights into the adaptive
task-dependent control of movements. For this reason, neuroscientists and engineers cooperate

17

Figure 3.1: Optimal feedback control as the neural basis for motor control. The basic principle
is that feedback gains are optimized on the basis of some index of performance. Such controllers
correct variations (errors) if they influence the goal of thetask; otherwise, they are ignored. Optimal
state estimation is created by combining feedback signals and efferent copy of motor commands.
The latter uses a forward internal model to convert motor commands to state variables (image from
[Scott, 2004]).

for identifying the possible one-to-one correspondences between CNS and control schemes.
In general, all models agree on a certain control scheme, where the body (limbs, muscles,

etc.) is the plant to control, the optimal controller provides feedback, sometimes feedforward
terms, relying on an internal model of body and environment,while delayed signals are fed
to a state estimator. The corresponding conceptual scheme,in one possible representation, is
shown in Figure 3.1. A more detailed scheme is shown in Figure3.2.

Concerning the optimal controller, two principal approaches can be used to select or iden-
tify a motion criteria. The first is to exploitinverse optimal control theory[Dupree et al., 2009,
Krstic, 2009]: after recording experimental data, trying to infer the cost function to which the
observed behaviors are optimal. The second, which is actually the most used, is to choose a pri-
ori a sound cost function and a mathematical model, and to verify its effectiveness in capturing
the motion principles by comparing model predictions with experimental observations.

However, it is still uncertain how the CNS determines such optimal control policies. Mo-
tor control and learning explain the exceptional dexterityand rapid adaption to changes, which
characterize human motor control, but do not provide an unique answer to the questions regard-
ing the criteria which are at the basis of such plasticity anddexterity. So far, many different
computational models have been proposed.

Existing optimization principles can be divided into two groups:

1. Deterministic approaches, where the cost is typically expressed as the integral of some
deterministic function over the movement time. The problemis stated as the minimiza-
tion of the cost subject to a set of dynamic constraints and boundary conditions.

• Minimum jerk model [Flash and Hogan, 1985]
• Minimum torque change model [Nakano et al., 1999]

2. Stochastic approaches, where random disturbances are included in the description of the
model, thus the expected value of the cost function, subjectto dynamic constraints and

18

3. Optimality: from humans to humanoids

Figure 3.2: A schematic model for generating goal directed movements. With specific reference
to the model proposed by Shadmehr and Krakauer, the cost/reward function refers to basal ganglia,
the state estimation is performed by the parietal cortex, while the forward model can be put down
to the cerebellum. The feedback controller is actually a combination of different modules which
can be referred to the premotor and motor cortex (image from [Shadmehr and Wise, 2005]).

boundary conditions, can be minimized.

• Minimum variance model [Harris and Wolpert, 1998]
• Minimum intervention model [Todorov and Jordan, 2002]

In the following we will overview the main basic principles of human motor control which
can be considered as “optimal”, and focus on some computational models which have been
developed to model goal directed movements. However, the question “which is the cost func-
tion?” will remain unanswered. We will then discuss our views on trying to transfer the concept
of optimality from humans to humanoids, trying to identify the challenges and introducing the
method we propose in this work, which will be object of the next chapter.

3.1 Optimality principles in human motor control

Human movements in adults show several prominent features.Multi-joint arm trajectories for
discrete point-to-point planar movements, for example, have some spatiotemporal invariant
features: roughly straight hand paths, bell-shaped velocity profiles and smooth acceleration
[Morasso, 1983, Flash and Hogan, 1985, Kelso, 1982].

These invariant features can be seen as the result of an twofold optimization process: one
coming from the CNS, evolved in time since the origin of our species, one from the personal
ontogenesis process, where movements are refined. Even if the latter should yield in each
person a certain variability to the motor trajectories, experimental results bring evidence that
behaviors in human motor control are basically stereotyped.

Despite the huge number of possible combinations of agonistic and antagonistic muscle
tensions that can generate the same torque, and the intrinsic noise of the motor system, ob-
served hand trajectories are stereotyped, and the EMG signals show a typical triphasic pattern

19

activation. Clearly, the motor control system solves such infinite-dimensional problems ac-
cording to some principles.

In the following, we will briefly describe the CNS, i.e. the biological structure in charge
for motor control, and some insights on the learning and adaptation mechanisms which make
the primate rough infant movements evolve to adult ones. Then, a review of the main computa-
tional motor control models, which can be of interest for robotic applications, is presented and
discussed.

3.1.1 CNS and motor control

The CNS we study nowadays is the product of millions years of evolution, it is worth an
analysis since it can provide some insights for a human inspired motor controller .

The CNS is a complex system which allows us to move, acquire skills, and adapt those
skills to a variety of contexts. Each time we reach for an object, the CNS must solve a com-
plex physical problem, to control and coordinate our limbs during interaction with a changing
environment, subject to gravity [Shadmehr and Wise, 2005].

It consists of two major parts: the spinal cord and the brain,composed by the brainstem,
divided into forebrain, midbrain and hindbrain (in its turndivided into medulla and pons). All
levels of the CNS participate in motor control and motor learning, and in primates they all
contribute to visually grounded reaching and pointing.

The forebrain, consisting of diencephalon and telencephalon, contains several structures
that play a role in motor control. The hypothalamus, which isthe main controller for the body
functionalities, including homeostasis, reproduction and defense. The basal ganglia, receiving
an efference copy of the motor commands, and providing an internal model of the body1. The
thalamus, integrating the distributed brain systems (cerebellum, cerebral cortex, basal ganglia,
globally named “loops”) into sub-cortical motor systems.

The spinal cord contains numerous types of neurons. Among them, motor neurons send
command signals to muscles via motor nerves, while sensory nerves transmit sensory feedback
to the CNS, i.e. information from skin, muscles and generally all body parts. Sensory nerve
fibers terminate in the spinal cord, directly connected to the brain; special sets of neurons,
called central pattern generators (CPG) in the spinal cord produce motor commands underly-
ing rhythmic behaviors. The brainstem also has motor neurons and sensory nerves, and with
additional neural networks can modulate the CPG activity. Moreover, it contains reticular for-
mations regulating reflexes, and cerebellum, which is the principal region devoted to motor
control.

The cerebellum is the largest component of the brainstem motor system: its main activity
is the control of posture, gait, tone and ongoing activity inmuscles, reaching and pointing
movements; it also accounts for limb coordination, contributes to motor skills by reducing
variability in the timing of movements and in force of musclecontractions. The connections
between premotor cortex and cerebellum allows planning, integrating and executing smoothly

1Of course, the description of the functionalities of the brain is simplified, it is meant to provide a rough idea of
the CNS structure. The interested reader can refer to [Shadmehr and Wise, 2005] for a more complete dissertation
of the CNS particularly for motor control.

20

3. Optimality: from humans to humanoids

complex movements. Moreover, the cerebellum is involved inthe motor learning and in the
continuous process of re-learning, adjusting and refining reflex responses.2

The functional organization of the CNS inspired control schemes based on optimal feed-
back control. The parietal cortex integrates proprioceptive and visual outcomes, as well as
sensory feedback, playing a role of state estimator. Premotor cortex and motor cortex trans-
form predictions into sets of moto-neuronal discharges, encoding for force and direction of
movement. The global control strategy takes into account the internal models built by the cere-
bellum to correct motor commands, while optimal control is yield by basal ganglia, facilitating
the integration of different modules.

3.1.2 Learning, adaptation and re-optimization

Invariance, information, feedback and optimality play a role in the selection and adaptation of
any movement through evolution and development.

Children show a constant developmental refinement of their motor control capabilities:
starting from simple motor reflexes, the motor control systems evolves, until motions becomes
stereotypic, typically in adult age, and a certain degree ofkinematics and dynamics invariance
is observable.

Recent findings indicate that these stereotyped arm kinematics patterns are not prewired
or inborn, but the result of constant learning during ontogenesis: infants dramatically improve
their kinematic performance during their first months, but the developmental process towards
stereotypic joint kinematics continues. It is not known when this learning process finally leads
to adult-like motor responses and what proximal joint configurations underlie the manifestation
of stable endpoint kinematics [Konczak and Dichgans, 1997]. In Figure 3.3, the development
of reaching trajectories in infants is shown. Trajectoriesstraightens in time, although the uni-
modal velocity profiles and the inertial variability suggest that producing straight hand path
may not be the first priority of the system during motion planning, and definitely not the most
important criteria of the learning process.

During goal-directed movements such as reaching or pointing, the CNS overcomes the
joint-level redundancy of the human motor system by applying coordinative constraints, lead-
ing to unique movement solution, e.g. straight hand paths with bell-shaped velocity profiles
[Morasso, 1983].

Stochastic optimal control and optimal feedback control have been successful in modeling
human reaching movements, as a minimization of motor commands during the movements and
position error at the end of the movement.

What happens to the optimization process when learning a newdynamic environment?
Traditionally, adaptation (i.e. the mechanism which is triggered when facing a new dy-

namic environment) has been viewed as the process of canceling the effects of novel environ-
ment, on a noise rejection basis, so as to make the movements return to near baseline conditions
(i.e. trajectory in unperturbed situation). For example in[Wolpert et al., 1995], perceived kine-
matic error played a role during adaptation, and subjects tended to maintain a visually straight

2Indeed, cerebellar lesions in particular cases can have transient effects as the system re-organizes and learns
new ways to control motor activity [Konczak et al., 2010].

21

Figure 3.3: Evolution of reaching trajectories in infants. The pictureshows sagittal hand paths of
an infant at different developmental times, showing the progression toward the smoothing of the
endpoint motion (image from [Konczak and Dichgans, 1997]).

Figure 3.4: Re-optimization of reaching trajectories when adapting the arm to a new dynamic
environment. The pictures show a comparison between the baseline trajectory (when the force
field is null), and the ones learned when the external force field is deterministic (green line, signed
σ0) and stochastic (red line, signedσL), with clockwise and counterclockwise orientation (image
from [Izawa et al., 2008]).

22

3. Optimality: from humans to humanoids

path in front of perturbations. However, in [Scheidt et al.,2000] it was later shown that kine-
matic errors are not necessary for adaptation, i.e. the internal kinematic and dynamic model is
continuously adapted even in absence of visual kinematic feedback.

In [Mistry et al., 2008] it is shown that humans learn the new force field “dynamically”
as opposed to solely rejecting the disturbances via increased stiffness and co-contraction. In
detail, the authors suggested that when facing a novel dynamic environment, the CNS attempts
to return to the baseline trajectory as a methodological strategy to learning an unknown dy-
namics. Subsequently, once the internal model is properly learned, the CNS can turn its ef-
forts into re-optimizing the motor cost, altering the baseline trajectory if necessary. Similarly,
[Izawa et al., 2008] suggested that adaptation entails accuracy and motor cost, and not the kine-
matic error from a desired baseline trajectory: thus, a re-optimization process computes a new
optimal motor control trajectory whenever the external force field changes, as shown in Fig-
ure 3.4.

Goal-directed movements originate to acquire a rewarding state at a minimum cost, in
a stochastic optimal control framework, then it is likely implausible that the brain computes a
desired movement trajectory and that trajectory remains invariant with respect to environmental
dynamics. Instead, when the environment changes, the learner performs at least two different
computations: update the internal models (i.e. the mappingbetween the consequences of motor
commands in terms of changes in the sensory states) and exploit the refined model to find re-
optimize the trajectory planning strategy. As discussed in[Izawa et al., 2008], the cerebellum
is the key structure for computing such models, since cerebellar damages produce impairments
in the ability to adapt reaching to environmental changes. However, the mechanisms for the
brain use this models to re-optimize movements are still uncertain.

In conclusion, motor adaptation entails both learning continuously accurate forward mod-
els, compensating environmental changes, and finding the optimal controllers that maximize
rewards / minimize costs of planned movements. When facing unpredictable tasks, like pick-
ing a box without knowing its load, the CNS initially generates highly variable behaviors, but
eventually converges to stereotyped patterns of adaptive responses, which can be explained by
simple optimality principles [Braun et al., 2009].

3.1.3 Feedback and feedforward

Many theories of motor function are based on the concept of “optimality”: they quantify task
goals as cost functions, and apply the tools from optimal control theory to obtain detailed
behavioral predictions, or to explain empirical phenomena. In the need of anticipating or re-
sponding optimally to trajectory perturbations, humans must combine feedback and feedfor-
ward signals.

Fast and coordinated limb movements cannot be executed under pure feedback control,
because biological feedback loops are too slow (i.e. the delay in the sensory feedback cannot
be neglected - it is about 60ms) and have small gains. Hence, coherently with recent theories
in neuroscience [Diedrichsen et al., 2010], we believe thatthe CNS solves this and many other
problems by combining multiple identification and control processes: precisely, exploiting
integrated state estimators, internal models, and feedforward and feedback commands.

The most remarkable property of human movements is that theycan accomplish complex

23

Figure 3.5: The cerebellar feedback error learning model. The “controlled object” block stands
for a physical model of the limbs and body parts controlled bythe CNS. The inverse model is a
neural representation of the mapping between desired movement trajectory and corresponding mo-
tor commands required to attain the goal, thus it provides a feedforward command. The feedback
command can be a simple PID or a more complex controller (image from [Wolpert et al., 1998]).

24

3. Optimality: from humans to humanoids

Figure 3.6: Reaching around an obstacle affects the subsequent trial when there is no obstacle. Left
column shows the trajectories from the control group, reaching with or without an obstacle. The
middle and right columns show data for a group where two consecutive movements were randomly
with (+) or without (-) an obstacle (image from [Diedrichsenet al., 2010]).

high-level tasks in presence of disturbances, noise, delays, and unpredictable changes in the
environment. Internal models support such plastic behavior, providing a fast prediction of
the current system state to the motor controller (anticipating the feedback signals, which for
structural and physical properties come with a certain delay both in humans and robots). But
even with a quasi-perfect model of the body, open-loop approaches can only yield suboptimal
performances in unstructured stochastic environments. Feedback is then necessary to explain
the performance achieved by the system when adapting its strategies to tasks, environments,
physical constraints, since it allows solving a control problem repeatedly rather than repeating
its solution, thus affording remarkable efficiency and plasticity. Figure 3.6 reports the evidence
of the continuous optimization process, which takes into account changes in the environment:
when an obstacle impairs unconstrained reaching movements, the normally straight trajectory
is modified to avoid the obstacle. If the obstacle is removed,the CNS does not “switch” to
the control law found without obstacles, but rather adapt the previously found law to the new
optimal one.

Another interesting feature of optimal feedback controllers is that desired trajectories do not
need to be planned explicitly but simply fallout from the feedback control laws. This explains
the trial-to-trial variability of trajectories performedby humans during repetitive tasks, like
hand motion when subjects perform a goal-directed tasks: this variability cannot be explained
by an optimal controller which purely executes trajectory tracking (i.e. if it tracks a pre-defined
desired trajectory), but is captured by an optimal feedbackcontroller that each time tries to
minimize global task errors [Scott, 2004].

25

3.1.4 Internal models

Motor control must necessarily incorporate a constant adaption mechanism in order to cope
with a changing environment [Shadmehr et al., 2010b]. Sensory feedback is noisy and de-
layed, which can make movements unstable or inaccurate, thus it is plausible that, together
with feedback control relying on sensory measures, feedforward commands are employed to
pre-compensate and internal models are used to predict the effect of actions on a changing
body and its surrounding. Such models are usually called “forward models”, as they build
prediction of sensory consequences based on motor commands: as shown in Figure 3.6, they
receive a copy of the motor commands, called “efferent copy”, eventually access to the cur-
rent state of system (even if a connection is not explicitly drawn) and produce a prediction
of the sensory consequences of the action, which can be used “immediately” to refine control
strategies, that is largely before the measured sensory feedback which is inevitably affected
by delays. Predictions from internal models can be used to both calibrate continuously move-
ments, and to improve the ability of the sensory system to estimate the state of the body and
the environment. In particular, internal models have a learning dynamics such that prediction
of the consequences of adopted controls is learned before they learn to control their actions
in response to task or environmental changes [Flanagan et al., 2003]. Forward models remain
calibrated through motor adaptation: that is, learning is driven by sensory prediction errors.

It is not yet perfectly clear whether the cerebellum contains an explicit representation of
both forward and inverse models. While forward models seem necessary to compensate for the
biological delays in the sensory apparatus, it is not equally evident if an inverse model (i.e. a
model providing the neural commands necessary to achieve a desired trajectory) exists for all
body parts and corresponding movements.

3.1.5 Optimality and movement duration

Optimal control theory has been recently proposed to explain the mechanisms for movement
duration [Shadmehr et al., 2010a]. Human movements show several prominent features, the
principal being described by [Viviani and Flash, 1995]:

• isochrony principle: movement duration is nearly independent of movement size
• two-thirds power law: instantaneous speed depends on movement curvature
• movement compositionality: complex movements are composed of simpler elements

Isochrony is strongly connected to the decomposition of complex movements into units of mo-
tor action. In [Viviani, 1986] it was suggested that the portion of trajectories with constant
velocity gain factor may correspond to autonomous “chunks”of motion planning, i.e. elemen-
tary pieces of trajectories. The isochrony principle applies both globally to the entire trajectory
(from the initial to the endpoint) and locally to the small motor actions units. An adequate
theory capable of successfully accounting for all these principles, and explaining motor control
features by means of motor primitives, is still under debate.

In particular, the mechanism underlying the selection of movement duration in the brain
is still under investigation. During reaching, curvature path and angular velocity are closely

26

3. Optimality: from humans to humanoids

related, by the so called “two-thirds power law”:

V =KC2/3 =K(1
R
)2/3 (3.1)

whereV is the angular velocity,K a velocity gain factor,C the curvature andR the radius
of curvature. This model, proposed by [Lacquaniti et al., 1983], was later extended and re-
fined by [Viviani and Stucchi, 1992], and led to many further investigations on its relationship
with the motion segmentation [Richardson and Flash, 2002] theory, based on the movement
compositionality principle.

The average velocity of point-to-point movements increases with the amplitude of motion,
while its duration is weakly dependent on the motion extent.It has been shown that the average
velocity increase is due both by the velocity gain (depending on the amplitude of motion) and
by the distribution of curvatures along the trajectory. These two factors contribute to the relative
invariance of movement duration, and particularly the strong dependence of velocity gain to the
amplitude of motion suggested thatisochronycould best describe this experimental cue.

Most studies in movement duration are grounded on Fitts and Schmidt’ laws [Fitts, 1954,
Schmidt et al., 1979], which relates the average movement duration with the amplitude of mo-
tion and the error tolerance when reaching the target, on thebasis of either a logarithmic or a
linear relationship of their ratio. According to Fitts’ psychomotor model, the time required to
accomplish a movementT is a logarithmic function of the following type:

T = a + b log2 (D
W
+ c) (3.2)

wherea, b, c are empirical constants [Beamish et al., 2006],D is the amplitude of movement
(i.e., the distance between the initial and the endpoint position), andW is the target ampli-
tude. ParameterD represents the Euclidean distance between the initial and target points in the
Cartesian 3D space. The idea is that a certain amount of time is required to perform a move-
ment, but the more the movement has to be precise (i.e. we wantto touch a pin instead of a big
ball) the more time is required to “adjust” the final positionto the desired. Several analysis and
extensions to this law have been done [MacKenzie, 1992], in particular for 2D tasks. These
and other models, such as the minimum time principle [Tanakaet al., 2006], predict movement
duration correctly, but only for point-to-point movements.

More recently, in [Bennequin et al., 2009], a theory of movement timing was proposed, and
it was suggested that movement time is continuously selected by the brain based on the combi-
nation of different geometrical measures along curves. This hypothesis does not contravene the
description of the whole trajectory by optimization criteria: on the contrary, invariance is com-
patible with different optimization principles such as theminimum-jerk [Flash and Hogan, 1985]
or the minimum variance principles [Harris and Wolpert, 1998], and with optimal feedback
control [Todorov and Jordan, 2002], and in general can be used together with optimization
principles to solve redundancy problems at the task level, or to control the optimal selection of
the relevant parameters which could enhance a trajectory description.

27

Figure 3.7: Schematics of the CNS controller proposed in [Kuo, 2005]. Right: A general feed-
back control model produces motor commands driving the bodydynamics; sensory processing is
used to compute the estimate of the body state. Left: detail of the state estimation, exploiting an
internal model of the body and sensor dynamics, and the efference copy (i.e. the copy of the motor
command). The integration of multiple sensors is computed optimally, in the sense that feedback
gains are iteratively adjusted to minimize prediction error (image from [Kuo, 2005]).

3.1.6 Optimality and locomotion

Many researchers support the theory that optimization principles also explain the generation of
gait and locomotors trajectories [Mombaur et al., 2008, Arechavaleta et al., 2008]. In humans
the control of posture and goal oriented movement during locomotion is possible through a
number of neural mechanisms, whose controls range to the head stabilization (creating a mo-
bile reference frame) [Pozzo et al., 1990], to the exploitation of the vestibular system, to the
generation of trajectories. Again, different models have been proposed.

In [Kuo, 2005] an optimal model for estimation and control ofhuman postural balance is
proposed. Assuming that the CNS estimates the postural “state” with a certain delay, and that
this estimate is used to produce a feedback control to stabilize the system, as shown in Fig-
ure 3.7, the author propose a computation model based on stochastic optimal control. In detail,
a linear quadratic controller is addressed, where the cost function is the sum of quadratic terms
weighting the joints displacement from the equilibrium configuration and the neural effort, i.e.
the amount of muscle activation used to stabilize the system; sensory noise is taken into account
in the model, both as body model and transducer noise. Similarly, in [Lockhart and Ting, 2007]
it is argued that an optimal control model with delayed feedback rule is at the basis of the neu-
ral effort produced by mammalians to keep the balance. Particularly, a feedback control law (a
combination of the errors of position, velocity and acceleration of the COM of the body with
respect the stable steady configuration) was optimized according to a quadratic cost function,
weighting COM kinematic deviations and muscle effort (fromEMG measurements).

3.2 Which is the correct “cost function”?

Stochastic optimal control theory provides an elegant mathematical framework for describing
movements: by the notion of “motion criteria” transposed into “cost function” or “reward func-

28

3. Optimality: from humans to humanoids

tion” we can explain why a limb performs a certain trajectoryamong all possible options, while
the solution of the optimal control problem yields the laws generating the observed behaviors.

The crucial point in this approach is the choice of the cost function to be minimized (or the
reward function to maximize). Computational neurosciencedoes not provide a unique answer
to this issue.

To tackle this problem, two are the main approaches which canbe identified in literature.
The first is to try to identify the cost function by means ofinverse optimal control, but the

solution of such class of problems is very difficult to find in most situations, almost impossible
when the search for a criteria is combined to systems with nonlinear dynamics. Closed form
solutions exist, but in particular conditions such as in thewell-known LQG formulation, where
the system is linear, the cost is quadratic and the stochastic variables have Gaussian distribu-
tions. Recently, it was proposed as a promising approach to transfer biological motions into
robots [Mombaur et al., 2010].3

The second approach consists in making some hypotheses on the structure of the cost, and
trying to validate the model by comparing the predicted trajectories with experimental data.
This is the most adopted choice, because the leading assumptions on the cost function are
mainly inspired by cues emerging from human observed behaviors. For example, bell-shaped
velocity profiles during point-to-point movements can be achieved by minimizing the jerk
[Flash and Hogan, 1985] or high-order derivatives of the position; muscular inactivation can
be explained by an absolute-like term in the cost function tobe minimized [Berret et al., 2008].
However, it often happens that different models are suggested to explain certain behaviors, and
that despite the variety of principles proposed in the models, it is difficult to confute the sound-
ness of one model against the others: they usually provide solid arguments, and sometimes the
model itself is so obvious that one may find it more appealing over the others just because of
its implementation.

A clarifying example of the aforementioned arguments is given by the numerous models
attempting to unveil point-to-point movements.

3.2.1 Minimum jerk

The experimental evidence is that goal-directed movementssuch as reaching or pointing result
in straight hand paths with bell-shaped velocity profiles.

On this basis, in 1985 Flash and Hogan proposed theMinimum Jerk Model(MJM)4 to
describe the planar trajectories of the human arm while performing unconstrained point-to-
point movements. The cost to be minimized is:

J = 1

2
∫ T

0

⎛
⎝(

d3x

dt3
)2 + (d3y

dt3
)2⎞⎠dt (3.3)

whereT is the fixed duration of movement, whilex(t), y(t) define the time-varying hand
position with respect to a fixed Cartesian coordinate system[Flash and Hogan, 1985]. In some

3In [Mombaur et al., 2010], all computations have been performed offline, without considering the physical
robotics platform. However, the authors point out that the time to compute the optimal trajectory is lower than a
standard delay of a humanoid before it starts walking. More specific details in this regard are not given.

4The jerk is the third derivative of the position, or the derivative of the acceleration.

29

peculiar conditions, closed-form solutions forx(t), y(t) can be found. For example, given the
boundary conditionsx(0) = x0, y(0) = y0, with zero velocity and acceleration at the beginning
and end of the trajectory,̇x(0) = ẏ(0) = ẍ(0) = ÿ(0) = 0, ẋ(T) = ẏ(T) = ẍ(T) = ÿ(T) = 0,
the explicit solution is:

x(t) = x0 + (x0 − xf)(15τ4 − 6τ5 − 10τ3)
y(t) = y0 + (y0 − yf)(15τ4 − 6τ5 − 10τ3) (3.4)

whereτ = t/T ∈ [0,1]. Extensions to non-null boundary velocities, path segmentation through
multiple “via points” easily follow.

It must be noted that trajectories are purely kinematics andare completely independent
of the dynamics of the arm. However, the trajectories predicted by the MJM are straight-line
Cartesian paths with bell-shaped velocity profiles, which is consistent with the experimental
data for rapid human movements in absence of accuracy constraints.

The MJM is defined in an extrinsic-kinematic space (i.e. Cartesian space). An analogous
model, defined in the arm joint space, was proposed in 1995 by Rosenbaum et al., where the
function

J = 1

2
∫ T

0

n∑
i=1

(d3θi
dt3
)2 dt (3.5)

whereθi is thei-th joint angle. The model was called Minimum Angle Jerk Model (MAJM),
always predicted straight paths in the joint space but in contrast to the MJM it allowed to
represent trajectory curvatures.

3.2.2 Minimum torque change

The main defect of the MJM is that it always predict straight paths, so it does not fit to wide
range movements and curved trajectories which occur for example during transverse move-
ments, regardless of the influence of arm dynamics, arm posture, external forces, and move-
ment duration.

Overcoming this issue, in 1989 Uno et al. proposed theMinimum Torque Change Model
(MTCM), where trajectories were selected so as to minimize the rate of changes in torques,
precisely:

J = 1

2
∫ T

0

n∑
i=1

(dτi
dt
)2 dt (3.6)

whereτi is the torque at thei-th joint of the chain [Uno et al., 1989]. The MTCM takes into
account the arm dynamics, and is able to reproduce graduallycurved trajectories. One con-
troversial point in the MTCM is whether the CNS actually minimize torques, which seem to
be difficult to estimate and integrate over a real trajectory(being dependent on the muscles
dynamics). Computing an optimal trajectory with the MTCM isactually demanding.

Ten years later, Nakano et al. proposed a variant of MTCM, called TheMinimum Com-
manded Torque Change Model(MCTCM) [Nakano et al., 1999], which provided a computable

30

3. Optimality: from humans to humanoids

Figure 3.8: A schematic representation of the main difference between MTCM and MCTCM
(image from [Nakano et al., 1999]).

approximation of the MTCM while taking into account both link and muscle dynamics.5 A
schematic representation of the two models is shown in Figure 3.8. The cost to be minimized is
identical in both MTCM and MCTCM: the main difference between the two is the dynamical
model of arm and muscles used to compute the torque commands.The MCTCM confirmed
experimental observation in humans (see Figure 3.9), whereother models such as MJM failed
to reproduce trajectory curvatures depending on movement location and direction represented
in intrinsic body coordinates. Their results indicated that CNS may plan optimally in intrinsic
coordinates considering the arm muscles dynamics and usingmotor commands representations
which include muscle tension.

3.2.3 Minimum variance

In 1998 Harris and Wolpert observed that both eyes and arm movements were generated by
neural controls corrupted by a signal-dependent noise, i.e. whose variance was proportional to
the amount of control signal itself. Thus, rapid motions, requiring larger control signals, would
deviate from the desired trajectory as an effect of the disturbed control, resulting at the end in
unsuccessful or imprecise final positions [Harris and Wolpert, 1998]. Thus, they proposed the
Minimum Variance Theory(MVT) which states that the accuracy in goal-directed movements
is maximized by minimizing the variance of the final configuration. The MVT speed-accuracy
tradeoff agrees with Fitts’ law; moreover explains why repeated movements generally improve
limb motion, as optimal trajectories can be learned during exercise.

3.2.4 The Inactivation Principle

In 2008 Berret et al. proposed a cost including a term called “absolute work of forces”, re-
flecting the mechanical energy effort of a motion. In contrast to previous models, this term is
non-smooth and non-differentiable, being based on an absolute function, however it is reason-
able since it is grounded on the Inactivation Principle [Berret et al., 2008]. According to this

5The MTCM assumes null viscosity in the arm model, while MCTCMuses a non-null viscosity matrix in
calculating the joints torques, thus considering both linkdynamics and muscles as controlled object in the model.
For more detail, see [Nakano et al., 1999].

31

(a)

(b)

Figure 3.9: A comparison among different motor control models.3.9(a)Observed and predicted
planar trajectories.3.9(b)observed and predicted velocity, acceleration and torque profiles during
planar trajectories (images from [Nakano et al., 1999]).

32

3. Optimality: from humans to humanoids

Figure 3.10: Velocity profiles of a pointing finger, and EMG recordings of the muscles during 1
DOF arm upward and downward movements. The speed profiles show muscular inactivations in
proximity of velocity peaks (DA/DP=Deltoid Anterior/Posterior, BI=Biceps, TR=Triceps - image
from [Berret et al., 2008]).

principle, supported by experimental observations from EMG signals (see Figure 3.10), mini-
mizing absolute terms implies simultaneous inactivation of agonistic and antagonistic muscles
acting on a single joint, near the time of peak velocity. In detail, the proposed cost is of the
following type:

J = ∫ n∑
i=1

∣τiθ̇i∣ +αiθ̈
2

i (3.7)

Notably, (3.7) accounts for a hybrid model, where both kinematics and dynamics variables are
taken into account.

3.2.5 Which cost function?

Table 3.1 reports a summary of the aforementioned cost functions, and of many others, and still
it is not fully comprehensive of all the models that have beensuggested in literature. From the
point of view of an engineer, it is difficult to choose which among the proposed models should
be implemented on a robotic manipulator or sustained for future implementations.

One possible criteria to choose a model could be its explicitsolution, for only those mod-
els with closed form solution could be implemented easily. This criteria rules out all models
except the MJM, but explains why it is frequent to find comparisons between its predictions
and experimental data from observed behaviors in humans. Overall, this model is quite ap-
pealing for roboticists too: since the analytical solutionis provided (and it is also very simple),
its implementation is straightforward. Furthermore, jerkminimization is beneficial if control

33

Criterion Cost functionJ References

Hand jerk ∫ T
0

...
x2 + ...

y 2dt [Flash and Hogan, 1985]

Angle jerk ∫ T
0

...
θ1

2 + ...
θ2

2

dt [Wada et al., 2001]

Angle acceleration ∫ T
0

θ̈1
2 + θ̈22dt [Ben-Itzhak and Karniel, 2008]

Torque change ∫ T
0

τ̇1
2 + τ̇22dt [Uno et al., 1989]

Torque ∫ T
0

τ21 + τ22 dt [Nelson, 1983]
Geodesic ∫ T

0
[θ̇⊺M(θ)θ̇]1/2dt [Biess et al., 2007]

Energy ∫ T
0
∣θ̇1τ1∣ + ∣θ̇2τ2∣dt [Berret et al., 2008]

Effort ∫ T
0

µ2
1 + µ2

2dt [Guigon et al., 2008]

Table 3.1: Different cost functions (and related computational motorcontrol models) for point-to-
point movements.

strategies must be implemented on real devices: since the velocity and acceleration profiles are
very smooth, the system is less “stressed”.

From a robotics perspectives, one desirable feature is to produce controls which do not
stress the mechanical structure of the manipulator or tend to minimize energy efforts. In this
sense, MCTM or MCTC support this motivation, even if the biological counterpart seems a bit
unclear.

It must be also pointed out that in humanoids robots motion trajectories can be controlled
either with kinematics or dynamics loops, e.g. with joints velocity or joint torques. Thus,
control variables must be taken into account as decision criteria.

The conclusion of this argument is twofold: first, in computational neuroscience there are
many sounds models that can be used to study and describe human motions; second, many
models are eligible for implementation in robotics, and thechoice is basically application and
robot dependent.

As if all this was not enough, recently some researchers debated the structure of this costs
[Nagengast et al., 2011]. In particular, they suggested that humans not only optimize the aver-
age cost associated to a movement, but being risk-sensitive, while optimizing the mean payoff
they also take into account the variability of the payoff itself. In other words, they minimize the
average cost together with its mean variance. According to the authors, early experimental re-
sults suggested that the CNS acts like a risk-sensitive decision maker, which trades off the mean
and the variance of movement effort. These claims suggest that the stochastic optimal control
framework alone may not be sufficient to address the optimization problem behind motor con-
trol, and that other mathematical tools like decision theory and multi-objective optimization
should be inevitably taken into account.

3.3 Optimality: from humans to humanoids

In the previous section an overview of the main features of human motor control was presented.
Despite the incredible number of research studies and experiments, we still do not known pre-
cisely which are the correct mechanisms underlying the CNS controlling and learning complex

34

3. Optimality: from humans to humanoids

motor skills, except that most models assume optimal feedback control as a framework for mo-
tor control. All models are sound and could be advantageous for robotics, but require different
implementations.

Nowadays, in robotics great attention is devoted to reproduce the behavior and the learn-
ing mechanisms of living creatures, developing systems that exhibit and replicate the control
and learning abilities observed in animals or human beings.While modern mechatronics has
reached great results (even within technology limitations), and humanoid robots exhibit shapes
and structures which closely imitate humans, the great challenge is still to reproduce the learn-
ing processes and the interactions between the brain and thesensory and nervous system, that
generate controls, emotions etc. and that could provide therobot with a real intelligent control:
the challenge is cognitive control [Metta et al., 1999, Sandini et al., 2004].

Computational motor control models can provide useful guidance in the design of ad-
vanced control solutions for robots. Actually the two areasof research benefit from mutual
achievements [Schaal and Schweighofer, 2005], because many problems faced by the primate
brain in the control of movement have parallels in robotic motor control, while models and
algorithms from automatic control and robotics research can bring useful inspiration, baseline
performance, and sometimes direct analogs for neuroscience.

Indeed, it is our belief that only with the study of the human it is possible to build better
controls for humanoid robots.

As engineers, we aim to a control policyu(t) = γ(x(t),w), whereu is a control vector,
γ a control function or policy,x the system state vector andw a set of parameters which
determine the policy. A policy can resort into direct control (i.e. direct generation of motor
commands) or indirect control, that is the most common case in robotics, where for example
desired planned trajectories are converted into motor commands (in this case, decoupling the
system can notably simplify the control architecture).

The policy itself or its parameters (or both) can be fixed or adaptive. In the latter case, if
the control problem is stated as an optimal control problem,an optimization routine can be set
so that policy and parameters can be found, e.g.

γ○,w○ = argminJ (x(t), u(t))
s.t. u(t) = γ(x(t),w)

whereJ is the cost function defining the motion criteria.
In automatic controls there is a vivid research in the designof optimal control laws and the

solution of such optimization problems, which sometimes can also have explicit solution (e.g.
thanks to Riccati’s equations, under the well-known LQG assumptions) [Vidyasagar, 1987,
Bertsekas and Tsitsiklis, 1996, Sastry and Bodson, 1994]. Many application of optimal con-
trols to robotics refer to classical approaches: for example in [Kim et al., 2000], where a robust
control is found combining a stabilizing control (based on Riccati and Lyapunov equations) and
a neural network accounting for unknown dynamics; in [Barambones and Etxebarria, 2002] a
robust neural sliding mode controller is presented, while tracking controllers are discussed in
[Sun et al., 2002, Braganza et al., 2005]. However, the high complexity and the desire to de-
sign an adaptive plastic system, as close as possible similar to the human, impose limitations
on the use of classical controls, even if they provide a wide and assessed theory for stability,

35

convergence and optimality. The main limitation of such classical control schemes is that they
are not suitable for cognitive functionalities. The biological inspiration we seek, force us to
overcome the limits of traditional automatic controls, andchoose new schemes to emulate the
adaptation and learning capabilities of humans, combined with the optimality principles which
have been observed experimentally.

Thus, we need more specific tools. In this perspective, we must design a suitable control
scheme, which can guarantee all the good properties (such asstability, robustness, etc.) that
traditional automatic control have; which can possibly benefit from decoupling and simplifying
the systems and the control architecture, exploiting modularity; which is naturally arranged to
be integrated with one or multiple learning mechanisms. Moreover, we need a mathematical
tool which is able to compute trajectories and controls “optimally”: it must be able to solve
a general optimal control problem given the problem statement, the computational model and
the cost function to be minimized.

In the following, we will briefly present the state of the art implementations of biologically
inspired optimal control in robotics, particularly in humanoid robotics. Finally, we will intro-
duce the key aspects of our proposed framework, to motivate the mathematical tool described
in this work. Some insights of future developments will be also given.

3.3.1 Some implementations of optimal control models in robots

Reaching

Among the computational models presented in Section 3.2, only few have been actually imple-
mented on real robotic platforms. An analytical solution exists (and can be easily implemented)
for the MJM and the MAJM. An interesting implementation of a MJM based controller for
the iCub robot can be found in [Pattacini et al., 2010]. An implementation of the MVT for
a 2DOF arm was done in [Simmons and Demiris, 2005]. Models involving torques, such as
the MCTCM, require the arm dynamics, thus a constrained nonlinear optimization problem
must be solved, minimizing the cost function under some constraints (the nonlinear dynamics)
and the boundary conditions (start and final configuration ofthe arm, physical limits). The
solution of this class of problems is generally difficult, and depending on the problem state-
ment there could be more than one method (or none) suited for its solution. For example, in
[Kaneko et al., 2005] a solution to the MCTCM is found by meansof a numerical optimization
of the Euler-Poisson equation: though describing a generalprocedure, the authors admit the
impossibility to guarantee the convergence of the routine,thus making the algorithm unsuit-
able for real-time planning or control in robotic applications. In [Shiller and Dubowsky, 1991]
optimal control is used to compute time-optimal motions of arobotic manipulator, considering
nonlinear dynamics, actuator constraints, joint limits, and obstacles. In [Zhao and Chen, 1996]
an optimal motion planning is addressed to control a flexiblespace robot, in order to minimize
the maneuvering time along with control and vibration energy. In [Mettin et al., 2010] an op-
timal control problem is used to find controls for ball pitching with an under-actuated 2DOF
human-like arm, where in particular only the shoulder is actuated while the elbow is a pas-
sive spring with adaptive stiffness: the criteria is to maximize the ball velocity along a certain
elevation angle. In [Matsui, 2008, Matsui et al., 2009] the authors propose an experimentally-

36

3. Optimality: from humans to humanoids

validated 3DOF model of the human arm during constrained andunconstrained reaching move-
ments, where the criterion (i.e. the cost to be minimized) isbased on energy and torque change,
constrained by the hand-joint’s freezing mechanism, explaining the experimental fact that the
hand joint hardly changes its angle during reaching movements. Again optimal control theory
is used to find the optimal trajectories of the hand during goal-directed motions.

Locomotion

The use of optimal control for humanoids has become recentlypopular to solve the gait and
locomotion problems, and particularly both for stabilizing the robot and to plan optimally walk-
ing trajectories [Chevallereau and Aoustin, 2001, Kanoun et al., 2009]. In [Tlalolini et al., 2011]
the authors suggest that human walking analysis could improve the current humanoid robots
walks, an particularly to reduce the energy consumed duringwalking. In detail, they prove that
a foot rotation subphase (specific during human fast walking) introduced in the gait contributes
to the minimization of a torques-based cost, thus yielding optimal motions.

In [Arechavaleta et al., 2008] the authors investigate human goal-directed walking, with the
underlying assumption that locomotors trajectories are chosen according to some optimiza-
tion principle. With the attempt to identify the criteria which are optimized (duration, length,
etc.), they found that the time derivative of the curvature is minimized, and that trajecto-
ries are well-approximated by the geodesics minimizing theL2 norm of the control, shaped
as clothoids6. In [Whitman and Atkeson, 2009] dynamic programming is usedto optimize
body motion, foot placement and step timing for a two link inverted pendulum model. In
[Schultz and Mombaur, 2010] running is modeled as a multiphase periodic motion with dis-
continuities, based on multibody system models of the locomotors system with actuators and
spring-damper elements at each joint; thus, running motions are generated as the solution of
a an optimal control problem, based on energy criteria, solved by an efficient direct multiple
shooting algorithm. In [Blair and Iwasaki, 2011] the authors suggest that the basic principle
underlying animal locomotion is a mechanical rectificationthat converts periodic body move-
ments to thrust force through interactions with the environment: thus, an optimal gait problem
is formulated, where a quadratic cost function is minimizedover a set of periodic functions
subject to a velocity constraint, and the system is represented by a bilinear dynamic model,
assuming small oscillations with respect to a nominal posture. In [He and Geng, 2007] optimal
control is used for stable jumping of a one-legged hopping robot, with the goal to maximize
energy efficiency of the motion. In [Lengagne et al., 2009] optimality is again exploited to
make kicking motions more accurate, exploiting a combination of an off-line planning aimed
basically at minimizing torques, with a fast re-planning process, which adapts the controls de-
pending on the current target configuration. In detail, the cost function they try to minimize
in the planning step is the sum of squared joints torques, which corresponds to the goal of
improving the robot autonomy. As an optimization tool, the authors use IPOPT. The authors
point out the limitations of their method, by admitting thatthe optimization of an instance of
the problem takes about two hours CPU time (without more specific details).

6The clothoid or Cornu spiral is a curve, whose curvature grows with the distance from the origin.

37

3.3.2 Computational limits

Implementations of the aforementioned biologically inspired models on humanoid platforms
face notable computational limits, since most optimal control problems incur into the COD, and
even the solution of simplified problems (e.g. after strong hypotheses cutting the complexity
of the model) cannot always guarantee the fulfillment of timeconstraints [Diehl et al., 2009].
Rather than searching for a generalized solution to the planning problem, whose computational
limits make it unsuitable for online real-time control, many proposed approaches in literature
usually focus on the optimization of single point-to-pointmovements [Simmons and Demiris, 2005,
Matsui et al., 2006, Seki and Tadakuma, 2004, Tuan et al., 2008].

The corresponding optimal control problems are usually tackled via numerical methods and
nonlinear programming algorithms, but the optimization process requires heavy computations
and often prevents the application in real-time.

As an example, in [Tuan et al., 2008] a single movement generation is reported to take
from 1 to 4 minutes, even with a fast optimizer as IPOPT [Wächter and Biegler, 2006]. In
[Bauml et al., 2010], the optimization of a single trajectory for a 7DOF arm is performed in
real-time, but under numerous assumptions regarding the system dynamics and kinematics, and
most of all by a parallel computation on a cluster of 32 CPU cores, yielding 80% of success in
the desired task.

Since closed-form solutions are utterly hard to find (impossible in many cases) approximate
solutions can be addressed.

For example, Nonlinear Model Predictive Control (NMPC) methods can be used, but even
the explicit precomputation of NMPC laws is prohibitive forstate/parameters aboveR10. For
example, in [Diehl et al., 2006] a NMPC with fast direct multiple shooting algorithm and sev-
eral approximations were made to reduce a 20 CPU seconds computations on a 3GHz Pentium
IV to 200ms, for a 5 state150ms trajectory. The reader should see [Diehl et al., 2009], where
off-line precomputation, delay compensation and other techniques were surveyed, discussing
reasonable compromises between computational time, convergence of the method, approxima-
tion performances and real-time guarantee.

One remarkable point is that optimal control schemes applied in robotics must take into
account the platform constraints, and particularly the hardware and software limitations. For
example, the generation of direct joint-level control mustcomply with their control loop rate
(e.g. 1KHz in iCub and James); simultaneously, it requires aconsiderable amount of computa-
tions, both in term of time and resources. Thus, despite local computations should be preferred
because they could fasten the control cycle, it may not be feasible to perform such processing
on local boards (i.e. the boards directly connected to the joints) if they have limited processing
capabilities. This, which is the case of iCub and James, implies that most computations must
be performed by one or more PC in a cluster, which is remotely connected to the robot; in this
configuration, real-time constraints cannot be a priori guaranteed, and in general the safety of
this controls can be solved only up to a certain level.

38

3. Optimality: from humans to humanoids

3.3.3 A layered control scheme

The implementation of cognitive control for a complex humanoid robot is a challenge. An intel-
ligent control system, modeled after biological systems and human cognitive capabilities, must
possess learning, adaptation and classification capabilities, providing improved performances
with respect to classical controls, but guaranteeing stability and adaptation in the presence
of unknown disturbances, unmodeled dynamics (because the modeling is too difficult or be-
cause these dynamics have been neglected), and unstructured uncertainties [Metta et al., 1999,
Sandini et al., 2004].

The control architecture we propose is particularly targeted for those systems where some
computations can be only performed remotely. In detail, we support a layered architecture,
where the task planning level is decoupled from the generation of low-level commands. The
transformation between the two spaces can be performed by anintermediate level, which is
basically constituted by an Inverse Kinematics (IK) moduleand eventually by a Forward Dy-
namics (FD) module, as shown in Figure 3.11.

Remark 1. The layered architecture proposed hereinafter, reflects a traditional pattern of
reaching, considered a two-stage process, where a planningphase is followed by an execution
phase (and planner and controller can be two separate modules). This traditional view has
been challenged by the dynamical system approach to movement control, claiming that there
is no explicit trajectory planning, but rather an implicit set of trajectories which are generated
by a dedicated dynamical system. An example is the VITE model[Hersch and Billard, 2006].
Here, we do not support such schemes, even if our technique iscapable of coping with the
dynamical systems theory.

Planning
Task

Optimal
ROBOTTask to Joint Space

J x∗, ẋ∗ τ∗ or q̇∗

Figure 3.11: A conceptual scheme of a classic hierarchical control scheme for robotics. The
task parameters, such as the control function to be minimized, the current status of the robot, the
task goal etc. are fed to the optimal planner, which computesthe optimal trajectory, typically in
the operational space (e.g. Cartesian space). An intermediate layer is in charge with converting
commands from operational to joint space. In this scheme, feedback loops are not voluntarily
depicted.

The planning module is the core of this work. To describe the planning problem as an
optimal control, the modeler has to specify:

• a family of admissible control laws
• a quantitative definition of task performance
• a compatible robot kinematics and dynamics model

The latter is usually known, since the kinematics and dynamics model of the robot is in general
easy to find from the CAD specifications, thus the robot can be described by means of a set of

39

differential equations. In general, parameters are not perfectly known, and many dynamics can-
not be fully modeled, so a supervised learning model could beused instead. The task is instead
specified by a cost function: this usually comes with the computational motor control model
adopted to plan the movement. The family of admissible control laws is difficult to choose,
a priori, because it is strongly connected both to the robot model and to the task. Planning
optimally a trajectory according to some principles, in a stochastic optimal control framework,
is generally a tough problem. Without a priori hypotheses onthe structure of the problem (cost,
system model, constraints, etc.) it is impossible to state whether a given algorithm is guaran-
teed to yield a solution within a certain time. In Chapter 4 wewill present a method to compute
optimal trajectories, which concentrates the computationin an offline phase, but under suita-
ble assumptions allow retrieving almost instantly the solution online, taking into account the
feedback on the current status of the system. Moreover, given the particular structure of our
controller, we will show that not only it is possible to learnthe optimal solution online thorough
an intensive learning phase, but it is possible to update thesolution incrementally, combining
control and adaptation, in case for example the system changes.

The IK and FD can be both learned from experimental data, or estimated if an accurate
model of the robot kinematics and dynamics is available. In Chapter 5 we will discuss some
possible methods that can be used, along with their advantages and disadvantages.

3.3.4 Orchestration in a control scheme: team theory

The optimal controllers inspired by the CNS and the many motor control models must be ob-
viously integrated in the robot Cognitive Architecture (CA), that is the software system that
implements the processes of the CNS [Vernon et al., 2007b] and constitute the effective “intel-
ligence” of the robot. The CA usually consists of a set of independent modules, interconnected
according to hierarchy, antagonism and cooperation, including all the relevant aspects for the
modules across different application domains7.

The primary requirement of a CA is to provide a complete perceptual representation of the
robot state: the robot is a complex plant, subject to a continuous excitation of its sensory sys-
tem, including all types of sensors, from proprioceptive (e.g. encoders) to visual (e.g. cameras)
and tactile (e.g. skin).

There are many technological challenges in dealing with a great amount of sensor-collected
data [Albers, 2002], in generating new actions and control strategies, and in the meantime
in learning through data and interaction with environment,in self-organizing and adapting
sensor strategies. Our belief is that motor control models,represented as stochastic optimal
controllers, could be integrated and enriched in significance in the context of a team theory
framework.

Team theory is an area of game theory (see [Radner, 1962, Ho and Chu, 1972]) that pro-
vides a mathematical framework which can easily describe the cooperation among devices,
such as sensors and controllers, hereafter named asDecision Makers(DM), in highly complex
systems. A team is a family of autonomous devices able to perform a task. It can often been

7Decision making, at any level; attentive system; prediction and internal models of self and environment; rea-
soning; autonomous exploration; memory and learning, etc.

40

3. Optimality: from humans to humanoids

viewed as a network in which each team member controls, observes, measures, gets different
information, and decides to elaborate, share or transmit some personal information to the other
team members, trying to maximize some common benefit or minimize a common cost.

The CNS can be modeled by a dynamic systemS, resulting from the aggregation ofN
dynamic subsystemsS1, S2, . . . , SN , connected among them, interacting, and evolving in a
synchronous way. We conjecture that human “controllers”, either performing high-level ac-
tivities (e.g. learning, memory) or generating simple loops, can be represented as a family
of different DM, each having a different task, processing capabilities and reacting to different
stimuli. Each decision makerDMi acts on one or more subsystems, as a controller or, when
behaving as intelligent sensor, it generates the signals tobe sent to the other decision makers.
In all cases,DMi influences the decisions and the behavior of the other team decision makers.

Whenever a dynamic system is controlled by a plurality of decision makers, a first problem
insists in identifying the goals pursued by the decision makers. Within the human organism,
it is reasonable to presume that controllers, sensors, and organs, though having different infor-
mation, cooperate to the accomplishment of a common goal: wellbeing, growth (learning) and
health of the living being. The existence of cooperation among the decision makers and the
fact they possess “individual” information lead us to statethe problem of their cooperation in
the framework of team theory.

More specifically, ifN decision makersDMi, i = 1, . . . ,N , cooperate to the minimization
of a common cost functionalJ , the optimization problem can be stated as follows:

min
γ1,...,γN

E {J [γ1(I1), . . . , γN(IN), ξ]} ,
whereξ represents a set of exogenous random variables,γi is DMi’s decision or control func-
tions, andIi is its information vector. The expectation is evaluated with respect toξ.

The solution of a team optimal control problem is a hard task,and can be solved, in ge-
neral, only through approximation methods. However, thereare many examples in literature
of solutions exploiting functional approximators [Zoppoli et al., 2011, Baglietto et al., 2001b,
Zoppoli et al., 2002, Baglietto et al., 2001a]. Even in this case these methods allow obtaining
approximate solutions to such functional optimization problems, that benefit by the fundamen-
tal property of not incurring the COD phenomenon,” i.e., theexponential growth of the number
of parameters with the complexity (suitably measured) of the problem dealt with.

In this perspective, using ANN to approximate the optimal planning control functions
seems a promising approach, which could be integrated in a more complex scenario where
multiple controllers or more generally decision makers, cooperate for the achieving of a com-
mon goal.

41

42

Chapter 4

Optimal control by means of
functional approximators

4.1 Planning “optimally” goal-directed movements

In robotics, the task of positioning the end effectors and toreach a goal is fundamental: when-
ever a robot has to move its arm to grasp an object, track a moving target, avoid collision with
the environment or just explore, reaching is involved [Brock et al., 2008, Nori et al., 2007b].
Given the desired position it is common practice to plan a suitable trajectory in the Cartesian
space using parameterized functions (e.g. polynomials or splines) and then to find the cor-
responding joint or torque commands analytically, exploiting traditional robotics schemes to
perform the conversion from the operational space into joint space.

In humanoid robotics, the focus is not only on reaching the target, but on the way the target
is reached, that is the criterion which the limbs accomplishwhile performing a movement. One
of the main goals of humanoid robotics is indeed to exploit redundancy and constraints of the
humanoid shape to achieve behaviors that are approximatelyas efficient as human movements,
and to provide a testing platform for computational models,such as the ones presented in
Chapter 3. In this perspective, a technique must be providedto the robot which allows finding
optimal control commands for any given cost function or task, implementing different motion
criteria.

Design of optimal control laws for robots is not new. In the area of automatic controls,
there’s a tradition in using simple and robust controls which yield to optimal control laws (i.e.
solving a LQ problem by Riccati’s equations). However, the biological inspiration force us to
overcome the limits of traditional automatic controls, which are not sufficient to implement the
adaptability of the control laws to new tasks, criteria and unknown dynamics.

The goal of the planning module is to find the optimal trajectory which makes the end-
effector accomplish a certain task in an optimal fashion, i.e. minimizing a given cost func-
tional. It must be quick, i.e. not computationally demanding in terms of time and resources,
reactive to unpredictable target’s changes, able to cope with the manipulator’s physical limita-
tions (singularities, joint limits, etc.) and control architecture.

A planning policy can resort into direct control or indirectcontrol:

43

• direct control accounts for direct generation of motor commands, joint-level, of the fol-
lowing type:

τ∗ = γ(x) or q̇∗ = γ(x)
whereτ, q̇ ∈ Rn are the vector of joint torques and joint velocities, respectively (thus
referring to joint torque or joint velocity control schemes), andx the operational space
configuration of the end-effector

• indirect control, that is the most common case in robotics,where for example desired
planned trajectories are converted from the operational space into motor commands in
the joint space, for example by means of Inverse Kinematics (IK) or Forward Dynamics
(FD) modules:

ẋ∗ = γ(x) then q̇∗ = IK(x∗, ẋ∗), τ∗ = FD(q∗, q̇∗)
Sometimes it is better to segregate the trajectory planningfrom the trajectory execution, so that
it is possible to tune both modules separately: in this case,indirect control is preferred.

Among different possible approaches, we decided to state the planning problem as a Fi-
nite Horizon (FH) or Receding Horizon (RH) problem, and to use functional approximation
techniques in order to approximate numerically the global solution to the optimization prob-
lem, to pre-compute the optimal control laws. The RH approach becomes necessary whenever
the duration of the movements cannot be predicteda priori. One argument is that the dura-
tion of motion can be found by computational models like the ones described in Section 3.1.5
(e.g. Fitts’ law). Unfortunately, it is difficult to cast similar predictions for humanoid robots
and to generalize these models for different tasks such as tracking or reaching. Nevertheless,
the RH solution comes for free since it is immediately available once the generalized FH so-
lution is found, for example by applying at each time instantonly the first FH control law
[Parisini and Zoppoli, 1995], as will be explained later on.Having both solutions available,
we can tailor the solution depending on the task: e.g. a FH strategy is more suited for pure
reaching movements, while a RH strategy for tracking targets moving indefinitely.

Trajectory planning finally consists in the computation of atime-invariant, feedback, stochas-
tic optimal control law. In detail, a suitable sequence of neural networks is trained off line, so
that they can approximate the optimal solutions of a stochastic FH control problem, which
is generalized for every possible state configuration (i.e.every possible system and target
states belonging to an opportune set of admissible states).The Extended RItz Method (ERIM)
[Zoppoli et al., 2002] is chosen as a functional approximation technique, while the use of feed-
forward neural networks (thanks to their well-known approximation capabilities [Barron, 1993])
guarantees that the optimal solutions can be approximated at any desired degree of accuracy
[Kurková and Sanguineti, 2005] by using a parsimonious number of parameters to be opti-
mized.

In this way, the computation demand is concentrated in the off-line phase, while in the
on-line phase only the computation of a single control law (corresponding to a neural network
forward) is performed et each time. Thus the control action is generated with a very small
computational effort. The feasibility of this approach hasalready been tested on the control
of a thrusts-actuated nonholonomic robot [Ivaldi et al., 2008c]. Numerical results showing its
effectiveness for different cost functions were presentedin [Ivaldi et al., 2009b], for the motion

44

4. Optimal control by means of functional approximators

of a 2DOF manipulator. Experimental results were presentedin [Ivaldi et al., 2010] for the
control of the 4DOF arm of James.

If planning is performed in the operational space, an intermediate control loop is in charge
with converting the desired trajectory into proper joint torque or velocity commands, taking
into account the platform physical constraints. This mid-layer will be discussed in Chapter 5.
Conversely, if planning is performed directly at joint-level, the system state model embedded
in the problem formulation already takes into account the platform physical constraints.

While addressing the problem of finding the optimal control laws for the motion of the
robot, many issues occur, in particular the problems of adapting the control laws to the time-
variant, nonlinear dynamic system (as the robot is), and at the same time counteracting the
disturbances due to unmodeled dynamics (friction, backlash, etc., which are in general difficult
to model), delays, and the uncertainties in the model itself. To simplify the problem, some
reasonable assumptions can be made.

The following are assumed to hold:

Assumption 1. The robot’s joints position, velocities and accelerationsare perfectly measur-
able, without noise or delay.

Assumption 2. The robot’s kinematics and dynamics are perfectly known (e.g., the Jacobian
is known without errors).

Assumption 1 is not verified on a real platform, and particularly in robots like iCub or
James, where encoders provide a joint position measure only. The latter is very precise, and
up to a certain degree can be treated as noiseless. In contrast, joint velocity and acceleration,
which can be retrieved by double differentiation, are corrupted by a significant quantization
noise, which must be filtered. Delay instead cannot be neglected. However, in this chapter
we are going to address the method more formally, and these issues will be discussed with
more detail in future sections. Assumption 2 holds if a fairly precise model of kinematics and
dynamics exists. The kinematic model is relatively easier to write, since it relies on a Denavit-
Hartenberg description of links and joints. The dynamics isfair more complicated, because of
the many parameters which are more difficult to estimate, such as inertias. For example, iCub is
described by a rigid-body dynamics model, whose parametershave been retrieved by the CAD
model of the robot: hence, its forward dynamics is known. However, dynamics parameters are
not always “fixed”, but could be time-varying: e.g. mass or inertia may vary depending on the
load which is applied to the manipulator.

If the robotic system is known, the following assumptions onthe goal state that the target to
reach (in case of goal oriented movements) is unpredictableand unknown, but can be measured
at each time instantt.

Assumption 3. The target Cartesian positions and velocities can be perfectly measured.

Assumption 4. The target kinematics or dynamics is unknown.

Now let us consider the following scenario, where the robot is actively engaged to its
environment: looks around trying to identify interesting objects and eventually attempts to
reach them with the hands in order to grasp or manipulate; recognize people and engage in

45

cooperative tasks, thus driving the hand towards a desired tool to take it and deliver it to its
companion.

The aforementioned goal-directed movements can be formalized as optimization problems:
exploiting the models presented in Chapter 3, the goal is to find the control laws which make
the robot move according to some “optimal” criteria i.e. driving the end-effector to a target
position in a finite time while minimizing a certain cost function.

The following definitions are necessary:

• xt the state vector containing the Cartesian coordinates and velocities of the end-effector,
at time instantt;

• ut the control vector, containing velocity commands in the Cartesian space;
• x∗ the state vector representing the target/desired Cartesian positions and velocities in

the Cartesian space; it can be fixed or time-varying, and in this case it is denoted byx∗t ;
• γ the optimal control function which steer the current statext to the desired.

Then the problems can be stated in the following way:

Problem 1 (Reaching). Find a sequence of optimal control lawsγ0, . . . , γN−1 which drive
the end-effector from the initial posext towards the targetx∗, supposed fixed, inN control
instants, while minimizing a certain cost functionJ .

Problem 2 (Tracking). Find the optimal control lawγ which at each time instantt drives the
end-effector from the current posext towards a targetx∗t moving unpredictably in the space,
while minimizing a certain cost functionJ .

The statement of this problems is very generic, and there is no mention of models, dis-
turbances acting on the system, or of the unpredictable actions that might change the current
status of the problem. Generally speaking, we can consider the system to be modeled as

xt+1 = f(xt, ut, ηt)
wherext ∈ Xt ⊆ Rn is the state vector,ut ∈ Ut ⊆ Rm the control vector,ηt ∈ Nt ⊆ Rn a noise
vector acting on the system; the control function can be written as

J = N−1∑
t=0

ht(xt, ut) + hN(xN)
whereht, hN constitute the partial costs of the functionJ to be minimized.

Different approaches for the solution of such optimizationproblems have been presented in
literature. A classical method is the well-known Dynamic Programming (DP) [Bertsekas, 1995],
a generic global optimization procedure providing the optimal control lawsγ○(xt), by repea-
tedly solving the Bellman’s recursive equation

J○t (xt) =min
ut

[ht(xt, ut) + J○t+1(xT)]
at sampled statesxt. One of the main advantages of DP is that there exists an explicit analytical
solution to the control problem if it is stated under the known LQG hypotheses (linear system,

46

4. Optimal control by means of functional approximators

.......

xN−1xN−2 xN
x(1)

x(2)
t

NN − 1N − 2
Figure 4.1: An example of bidimensional state “grid”, used for Dynamic Programming. The state

variablext = col(x(1)t , x
(2)
t).

quadratic cost function and mutually independent Gaussianstochastic variables). In the general
case, one has to look for numerical approximations of the global solution.

This is usually done by sampling properly the state space andthe controls, so that the
functional equation that defined the DP procedure can be solved only in correspondence of a
finite number of state values. Typically, states, controls,and value function are represented
on a regular grid, for each control stage, and some interpolation is used to approximate these
functions within each grid cell, as shown in Figure 4.1: in literature many methods can be
found, from statistical-based sampling to neural approximations of the cost-to-go functions.
The main drawback of DP is the computational complexity, i.e. the exponential dependence
of space and computation resources needed on the dimensionality of the state, which limits
its application in practice. If the sampling is uniform, andD samples are retained for each
component of the state (e.g.D samples for eachxi ∈ Rn, i = 0, . . . ,N ,), then the number
of samples grows with(T + 1)Dn: such growth of the number of parameters restricts the
application domain of DP to small dimensional problems, or require demanding resources.
For example, in [Atkenson and Whitman, 2009] DP is used to findthe optimal trajectories for
biped walking: the authors performed the computations on a cluster of 100 nodes, each having
8 CPU cores, connected by a 16Gbit/s connection, where each grid cell was performing local
optimization on a sub-sample of the state space. Also [Mandersloot et al., 2006] used DP to
control velocity in bipedal walking: but despite the various simplifications introduced to avoid
the COD (as the simplified model of locomotion, the disregardof dynamic effects such as
swinging legs and footsteps), the authors could not go over astate of dimensionn = 3.

Alternative solutions to DP range from the application of Pontryagin’s Maximum Principle
to the transformations of the functional optimization problem into a nonlinear optimizing one.
Among the investigated solution, we can cite [Mitrovic et al., 2010], where iLQG was applied
to compute optimal torques for the control of a planar arm, and [Diehl et al., 2006], where a
multiple shooting Sequential Quadratic Programming method was used to find the minimum
time control for a 5DOF simulated robotic arm.

In the following section, we will describe the theoretical tools at the base of our proposed
method.

47

4.2 From functional optimization to nonlinear programming

Functional optimization problems deal with the minimization of functionals with respect to ad-
missible functions, belonging to infinite-dimensional spaces. Under general hypotheses, these
problems cannot be solved analytically, however it is possible to provide arbitrarily accurate
suboptimal solutions by solving a suitable approximate nonlinear optimization problem. In the
following one of this methods, the Extended RItz Method (ERIM), is described.

4.2.1 Stochastic functional optimization problems

The general formulation of a functional optimization problem is:

Problem 3. Find
inf
γ∈S
F(γ) = inf

γ∈S
E
z
{J [γ, z]} (4.1)

whereγ ∈ S are the admissible solutions to the problem, beingS the subset of an infinite-
dimensional real normed linear spaceH of functionsγ ∶ B ⊆ Rn ↦ R

m; F ∶ S ↦ R is a cost
functional, whileJ ∶ Rm × Z ↦ R is a given cost function; finallyz ∈ Z ⊆ R

p is a random
vector taking values from a known setZ with a known distribution, setting the problem in a
stochastic context.

The target of Problem 3 is to find the optimal solutionγ○ among the admissible functions
γ ∈ S, that minimizes the cost functionalF(γ). The method described hereinafter is stated
within a stochastic environment, however it can be applied also in deterministic situations. The
stochastic formulation is more complex but is necessary in the presence of random variables
acting on the system, which must be comprised in the problem formulation (e.g. noise, initial
or final states with a probability distribution).

The solution of this class of problems is not easy. The analytical computation of the op-
timal solution of Problem 3 is feasible in few cases, again principally under LQG conditions.
In all the other situations, since finding the analytical solution is hard, it is possible to use
numerical techniques to approximate the desired optimal functions. The principal difficulty is
that in functional problems the goal is to find one or more specific functions over an infinite
dimension space:γ○ = argminF(⋅). Further complications arise in presence of functional
dependencies: anticipating later discussions, if two or more functions must be found, e.g.
γ1, γ2 = argminF(γ1, γ2) and there exists a functional dependency, e.g.γ2 = γ2(γ1), then
they must be found jointly, i.e. they cannot be decoupled. Anusual approach to functional
optimization is to constrain the solution to take on some structure (e.g. searching for linear
solutions only), so that to obtain a suboptimal solution butthat can be expressed in a simpler
and closed form. Other approaches consists in giving up searching for global solutions and
stop at local ones, after simplifying the problem, or aimingat the global solution via numerical
approximations, using parameterized functions.

There are several ways to solve such optimization problems by means of functional ap-
proximation: the method proposed for this work constrains the functions to take on a fixed
structure with a finite but sufficiently large number of free parameters. By substituting these
parameterized functions in the cost functional and in the constraints expressed by the subset

48

4. Optimal control by means of functional approximators

S, nonlinear programming problem can be obtained, whose solution can be found by means
of a proper descent algorithm. With the increase of the number of free parameters, the param-
eterized functions can “cover” the subsetS, and the solution of the corresponding nonlinear
programming problem approximates more accurately the optimal solution of the “original”
functional problem.

The structure of the parameterized approximating functions is unlimited. The simplest is a
linear combination of “fixed” basis functions1:

γ̂(x) = col(ν∑
i=1

cijϕi(x), j = 1, . . . ,m) (4.2)

where the parameters are the coefficients{cij} of the linear combination, andϕi is a basis
function (e.g. a sigmoid, a cosine, a Gaussian,etc.). Of course,x ∈ Rn, and the notation
col(. . .) accounts for all the elements of vectory = γ̂(x) ∈ Rm, such that:

yj = γ̂j(x) = ν∑
i=1

cijϕi(x) (4.3)

whereϕ1(x), . . . , ϕν(x) ∈H is a sequence of given basis function. Eq. 4.2 leads to the known
Ritz method for calculus of variations [Ritz, 1909]. Traditionally, this method is not indicated
for solving problems with a large number of variables, beingsubject to the well known COD
issue [Bellman, 1957]: that is, the number of basis function(equivalent to the number of co-
efficientsci in (4.2)) necessary to yield an approximation error (i.e. the maximum acceptable
error in computing the approximation of the control functions) lower or equal than a certain
ε may grow withn exponentially or in either way very rapidly, typically witha rate of order
O(1/εn).

ϕ

ϕ

ϕ

ϕ

x1

xn

κ1

κν

κν+1

κν+m

γ̂1

γ̂m

Figure 4.2: The fixed parametrized structure of an approximating function.

It is possible to lower this growth and indeed reduce the number of parameters choosing
different approximating functions, in particular linear or nonlinear combinations of basis func-

1In the following,col(x1, . . . , xn) ≜ [x1 . . . xn]
⊺.

49

tions containing free parameters (instead of fixed basis functions), in the form:

γ̂(x,w) = col (γj(x,wj), j = 1, . . . ,m) (4.4)

where

γ̂j(x,wj) = ϕν+j(ϕ1(x,κ1), . . . , ϕν(x,κν), κν+j), j = 1, . . . ,m (4.5)

as shown in Figure 4.2.

Remark 2. The following must be remarked:

• the hidden layer containsϕi, i = 1, . . . , ν, while the output layerϕi, i = ν +1, . . . , ν +m;
• the subscripti denoting eachγi is used to disambiguate the basis functions, which in

principle can be of different type; generally, all the functions in a layer adopt the same
basis function homogeneously, for example, one can have a linear output layer and a
sigmoidal hidden layer (in that case, it is simply said that the OHL-NN has sigmoidal
basis functions);

• for a generic basis functionϕ(⋅, κ), κ ∈ RK is the generic vector containing the free
parameters;K = dim(κ) depends on the basis function type, for example ifϕ(x,κ) =
c⊺x + b, thenκ = col(c1, . . . , cn, b) ∈ Rn+1;

• w = col(κi; i = 1, . . . , ν +m) ∈ RW is the big vector of parameters to be optimized, with
W = ∑ν+m

i=1 dim(κi);
• Eq. 4.4 is a two-layer NN, which is known to be a universal functional approximator

[Hornik et al., 1989], i.e., there are conditions which state the existence of a sufficient
number of neural units and of the corresponding optimal vector of parameters, given
a desired accuracy in approximation. In general, continuous functions can be approx-
imated to any degree of accuracy on a given compact set by feedforward NN based on
sigmoidal functions, provided that the numberν of neural units is sufficiently large. Then
if the functionγ○(x) is unique, and is a continuous functionC(X,Rn), for everyε > 0
there exist an integerν and a weight vectorw (and a corresponding “neural” function
γν(x,w)) such that∥γ○(x) − γν(x,w)∥ < ε, ∀x ∈ X. Of course, multi-layer NN can be
used, guaranteeing further approximation capabilities but at the cost of a larger number
of parameters.

Common basis functions are parameterized splines, sigmoidal or radial basis functions.
Using (4.4) instead of (4.2), the number of parameters to be optimized grows “moderately”
(polynomially or even linearly) withn. The latter choice leads to the so-calledExtended
RItz Method(ERIM), which was first formalized in [Zoppoli et al., 2002],and refined un-
til [Zoppoli et al., 2011]. The theoretical aspects discussing the fundamental property of the
polynomial growth ofW with respect ton and the approximating properties of the method
were discussed in [Kurková and Sanguineti, 2005], as long as the concept ofP -optimizing se-
quences, which will be introduced later on. The ERIM has proven to be effective in the solution
of functional approximation problems in a variety of context and conditions, with stochastic
constraints/costs, binary signals, linear and nonlinear systems.

50

4. Optimal control by means of functional approximators

4.2.2 The Extended RItz Method (ERIM)

The ERIM basically consists in constraining the admissiblecontrol functionγ(x) ∈ H from
Problem 3 to take on a suitable parameterized but fixed structure γ̂(x,w) ∈ S, as in Eq. 4.4,
with a certain number of free coefficientsw ∈ RW .

The most common structure with the ERIM is aOne-Hidden-Layer Neural Network(OHL-
NN), with the following form:

y = γ̂(x,w) = col(ν∑
i=1

cijϕ(x,κi) + bj , j = 1, . . . ,m) (4.6)

where:

• w ∈ RW collects all the parameters to be optimized:w = col ({cij} ,{κi} ,{bj}); i =
1, . . . , ν; j = 1, . . . ,m; cij , bj ∈ R, κi ∈ RK ; thenW = νK +m(ν + 1);

• x ∈ Rn, y ∈ Rm so thatγ̂ ∶ Rn ×RW ↦ R
m;

• ϕ ∶ Rn × RK ↦ R are theparameterized basis function(i.e. fixed structure, variable
parameters)

Incidentally,γ̂ ∶ Rn ×RW ↦ R
m describes a OHL-NN with linear output layer, whereν ∈ Z+

is the number of “neurons” constituting the network (i.e. the number of “neural units” in the
hidden layer) and(ν + m) the total number of “neural units”.ν is also calledcardinality
number of the OHL network. W is the finite number of free parameters, and grows linearly
with ν: W = νK +m(ν + 1). The main approximation properties of OHL-NN are discussed
in [Hornik et al., 1989, Barron, 1993].

A common structure for the basis functionϕ is theperceptron, represented in Figure 4.3.
A perceptron unit consists of a linear combination ofx, where each variable elementxi is
multiplied by a so-called “weight” (i.e. a varying coefficient), plus a bias coefficient, and their
sum is processed by a so called “activation function”.

Remark 3. Except for the additional biasbj , the main difference between (4.6) and (4.4) is
that the sequence of basis functionsϕ0, . . . , ϕν in the hidden layer (where subscripti meant
that each could have a different structure) has been replaced with a set ofν parameterized
basis function, each of the same type. The reason is that by increasing the cardinalityν we can
avoid using different functions if the combination of the simple parameterized basis functions
ϕ(⋅, κi) ∈ H,∀κi ∈ Rk has “sufficient” approximation properties. Choosing the most appro-
priate OHL networks is crucial: for example, when approximating the solution of Problem 3,
generally nonlinear OHL networks require fewer parametersto be optimized with respect to
linear ones (the approximating accuracy being equal).

Sometimes (4.6) is enriched, for example it can have an activation function in the output
layer different from a simple linear combination of the signals from the hidden layer with a

51

yp = σ(zp)x1

xq

xn

1

wp0

wp1

wpq

wpn

σ

zp

Figure 4.3: A perceptron neural unit, precisely thep-th in the hidden layer of a OHL-NN. Here,
σ is the “activation function” of the unit (e.g. a sigmoid),w is a generic “weight”,x is the input
vector to NN, whiley is the output of the hidden layer. A perceptron can be also thebase unit for
the output layer of a OHL-NN: in that case,yp = γ̂p(x,wp), while x (in the figure) is the vector
coming from the hidden layer.

bias, as anticipated in Remark 22.3

In practical implementations, Eq. 4.6 can be further slightly different. To keep the formu-
lation as clear as possible, two important operations have been omitted from the equation (but
will be discussed later on): the input and output normalization functions, i.e. the mappingsMx,My for the range of the variables fed to the NN and exiting the NN is within the range[−1,1]. Using sigmoidal as activation functions ,γ̂ is consequently adapted so that it complies
with the constraints on its admissible values:

γ̂(x̃,w) = col(σ̃j [ν∑
h=1

chjσ(x̃, κh) + bj] , j = 1, . . . ,m) (4.7)

where the notations̃σ andx̃ account for the output and input normalization: the input variables
x are normalized from their original range to[−1,1], while the NN outputs are scaled from[−1,1] (the output range of a sigmoidaltanh-based neural network) to the admissible range
of γ(x). A graphical representation of the OHL-NN in that case is shown in Figure 4.4. This
operations are particularly useful whenx andy = γ(x) have a physical meaning, as will be
clear in Chapter 5.

Common choices for the parameterized basis functionsϕ(x,κi) are:

2Sometimes a sigmoidal output layer (instead of a classical linear output layer) is preferred since it naturally
generates bounded values within a specific range, which can be made consistent with the real output ranges after
data normalization. This choice allows removing signal constraints and not taking care of the possibility that the
NN generates inconsistent values.

3It must be noted that the use of OHL-NN is particularly convenient, for its simplicity and for the theory
assessing their approximation properties. However, NN with more than two layers can be used –the so called
multi-layer NN – which in general may behave even better.

52

4. Optimal control by means of functional approximators

ϕ

ϕ

x1

xn

x̃1

x̃n

κ1

κν

c11

cν1

c1m

cνm

b1

bm

z1

zm

σ

σ

ỹ1

ỹm

y1 = γ̂1

ym = γ̂m

My
1

My
m

Mx
1

Mx
n

Figure 4.4: A OHL network with normalized input/output. The normalization blocks are put in
evidence (magenta and yellow), and the normalized variables are put in evidence by the notation
x̃, ỹ. Single “neural” units (green boxes) as well as the parameters to be optimized (blue text) are
also highlighted.

• radial constructions:
ϕ(x,κi) = h(∥x − τi∥2Γi

),
where∥x∥2

Γi
= x⊺Γix, Γi = Γ⊺i ,Γi > 0, while κi = col(τi, non-redundant elements of

Γi); an example is represented by Gaussian functions, likee
−∥x−τi∥

2

Γi ;
• ridge constructions:

ϕ(x,κi) = h(α⊺i x + βi),
whereκi = col(αi, βi), with βi ∈ R, αi ∈ Rn; moreover,h ∶ R ↦ R can be a linear
function (such that, e.g.,h(x⊺αi + βi) = x⊺αi + βi) or a nonlinear function, e.g. a
sigmoidal one4. Feedforward neural networks with one hidden layer and linear activation
functions are also ridge constructions.

Remark 4. Sometimes to simply the output normalization (My) a common choice is to choose
a NN with sigmoidal output layer, for example using

ϕ(z) = ez − e−z

ez + e−z
. (4.8)

4Sigmoidal functions are continuous, differentiable, real-valued functions with a “S” shape and the following
properties: lim

z→+∞
σ(z) = 1, lim

z→−∞
σ(z) = 0/ − 1. The most common “sigmoid” is the logistic function

σ(z) =
1

1 + e−z

defined within[0,1]. Another sigmoidal function, frequently used in NN, is the hyperbolic tangent

tanh(z) =
ez − e−z

ez + e−z

defined within[−1,1].

53

which intrinsically generates bounded values within the range[−1,1]. Then, ifγ̂ must generate
admissible values within the range[−U,U], it is straightforward to multiply the output of the
NN byU to obtain the desired.5.

Solution to nonlinear programming problems

By substitutingγ(x) with γ̂(x,w) in Eq. 4.1, the functionalF(γ) becomes a function of a
finite number (W) of parameters:

F(w) ≜ F(γ̂(⋅,w)) (4.9)

Therefore the original functional optimization problem isturned into a nonlinear programming
one, which can be solved by means of some nonlinear programming descent algorithm. In
particular, by substituting (4.6) withν = 1,2, . . ., a sequence of “approximating nonlinear
problems” is obtained, each of them defining a nonlinear programming problem equivalent to
Problem 3 and defined by the cardinalityν:

Problem 4. Find
inf
w∈Ψ
F(w) = inf

w∈Ψ
E
z
{J [w,z]} (4.10)

wherew ∈ Ψ ⊆ R
W ,W = W (ν) is the vector of admissible parameters, related to the con-

straints ofS: Ψ ≜ {w ∶ γ̂(⋅,w) ∈ Aν ∩ S}.
In order to define the conditions for which the nonlinear programming problem can “ap-

proximate” the functional optimization one, i.e. the parameterized solution approximates the
functional one, some properties ofF and some conditions must hold.

Assumption 5. An optimal solutionγ○ to Problem 3 exists, and the infimum and minimum are
coincident:

γ○ = argmin
γ∈S
F(γ), F○ = F(γ○)

Assumption 6. An optimal solutionw○ to Problem 4 exists, and the infimum and minimum of
functionF(w) are coincident and attained forw○:

w○ = w○ν = argmin
w∈Ψ
F(wν), F○ = F○ν = F(w○ν), γ̂○ = γ̂○ν = γ̂(⋅,w○ν)

Note thatν is explicit inw○ = w○ν , F○ = F○ν and γ̂○ = γ̂○ν to make evidence of the depen-
dence on a particular cardinality numberν; but the subscriptν can be dropped whenever the
optimal parameterized solution is intended and it is not necessary to clarify which particularν
is used. Moreover, the following properties are required:

5The guarantee of admissible outputs is fundamental when themethod is exploited for generating controls for a
real physical platform like a humanoid robot, where unpredictable or wrong controls could damage the system the
environment, the robot itself or, the worst, people interacting with it.

54

4. Optimal control by means of functional approximators

Assumption 7. The sequence{γ̂○ν}∞ν=1 is such thatlim
ν→∞

F (γ̂○ν) = F ○.
Assumption 8. The sequence{γ̂○ν}∞ν=1 has a limit functionγ○, i.e. lim

ν→∞
∥γ○ν − γ○∥ = 0, where

∥⋅∥ is the norm defined in the spaceH.

If Assumption 5, 6, 7 and 8 hold, then formallya sequence of problems like Problem 4, with
increasingν, approximates better and better Problem 3. The sequence{γ○ν}∞ν=1 is defined as
P-optimizing sequence, and the corresponding OHL-NN is defined asP-optimizing network. It
must be pointed out that the limits in Assumption 7 and 8 do notimply each other necessarily:
precisely, if theepigraphsof the sequence of Problem 4 converge to the epigraph of Problem 3,
then{γ̂○ν}∞ν=1 → γ○ and{F○ν}∞ν=1 → F○.

.

..

. . .

γ̂○
1

γ̂○
2

γ̂○ν

A1

A2

Aν

Figure 4.5: A schematic representation of{Aν} and its relationship with the optimal solution̂γ○ν .

Remark 5. Note that the aforementioned assumptions are related to theparticular instance of
the functional optimization problem: generally it is specified by the triple(H,S,F), that is by
the linear spaceH, the set of admissible solutionsS and the cost functionalF . Conversely,
the OHL-NN depend on the definition of the functional optimization problem through the re-
quirements the function̂γ (or γ̂ν if ν is explicit) belong toH. Now the following definition are
recalled from [Zoppoli et al., 2002]:

Definition 1. Aν is the set containing all the functions (4.6) belonging toH, given a certain
ν: Aν = {γ̂(x,w) ∈H ∶ w ∈ RW ,W =W (ν)} , ν = 1,2, The sequence{Aν}∞ν=1 has the
infinite nested structure:A1 ⊂ A2 ⊂ . . . ⊂ Aν ⊂ . . . (see Figure 4.5).

Definition 2. A sequence{Aν}∞ν=1, such that
∞⋃
ν=1

Aν is dense inH, is defined asH-approximating

sequence, and the OHL-NN belonging each setAν are calledH-approximating networks.

The following assumption then relates the approximating networks ofH with the approxi-
mating functional problem:

55

Assumption 9. The decisional functionγ ∈ S benefits by certain regularity properties so that
∞⋃
ν=1

Aν is dense inS and the correspondingH-approximating sequence exists.

Of course, this assumption is not sufficient to guarantee theexistence of aP -optimizing
sequence. Indeed, the existence ofH-approximating sequences only ensures that an optimal
solution to Problem 3,γ○, is an accumulation point for “some” sequence{γ̂ν}∞ν=1, not neces-
sarily for the{γ̂○ν}∞ν=1 determined by ERIM after solving a sequence of Problem 4.

The convergence properties of the P-optimizing sequences are fundamental to establish the
complexity of the method. If the convergence speed of the sequences{F(γ○ν) −F○}∞ν=1 and{γ̂○ν) − γ̂○}∞ν=1, that is the speed at which the optimal solutions of a sequence of Problem 4,
with ν = 1,2, . . . epi-converge to the optimal solutions of Problem 3, can be described by:

∃p, q, p′, q′ ∈ R+ ∶ F(γ̂○ν) −F○ ≤ O (n
p

νq
) , ∥γ̂○ν − γ○∥ ≤ O (n

p′

νq
′)

then given an approximation accuracyε it is sufficient to choose a cardinality numberν satis-
fying:

∃c, c′ ≥ 0 ∶ F(γ○ν) −F○ ≤ cn
p

νq
≤ ε, ∥γ○ν − γ○∥ ≤ c′n

p′

νq
′ ≤ ε

to have

ν ≥max

⎡⎢⎢⎢⎢⎣
(c
ε
)

1

q

n
p

q ,(c′
ε
)

1

q′

n
p′

q′

⎤⎥⎥⎥⎥⎦
. (4.11)

If a P-optimizing sequence verifies (4.11), then it is calledpolynomially complex P-optimizing
sequence, as given the maximum approximation errorε (for whichF○, γ○ are approximated)
the basis cardinality numberν grows at most as a power ofn, which is the input dimension
of the OHL-NN, hereby calledpolynomially complex P-optimizing network. The existence of
a polynomially complex P-optimizing sequence makes the approximate solution of Problem 3
computationally feasible, and by (4.11) ensures that it is possible, by acting onν, to obtain any
desired degree of accuracy in the approximation by using networks containing a suitable but
moderate number of parameterized basis functions.

Remark 6. The polynomial growth ofν in the ERIM is a fundamental improvement with
respect to the equivalent of the classical Ritz, where typically the growth is in the order of
O(1/εn). In literature many limitations of the latter method are reported, the major being
the inability to deal with the setS of admissible functions depending on a large number of
variablesn, and the consequent COD. Furthermore, the known error estimates (for the Ritz
method) either refer to the casen = 1 or provide upper bounds which do not make explicit
the dependence onn: hence, it is unclear to which extent it is possible to obtainarbitrarily
accurate approximations by means of a “moderate”ν when the admissible decision functions
γ depend on a large numbern of variables.

The upgrade of the approximating functions (from linear to nonlinear basis ones) is the key
of the ERIM, which makes it avoid the COD. Several kinds of approximating networks behave

56

4. Optimal control by means of functional approximators

like “polynomially complexH- approximating networks”, if the functions to be approximated
attain some regularity conditions. In particular, for various triple(H,S,F) it has been shown
that a proper sequence of OHL-NN can be constructed by minimizing the functional overS ∩
Aν : the resulting is polynomial complex P-optimizing sequence. To this extent, the functionalF must exhibit the properties of continuity and convexity. More discussions on the convergence
rates in this case can be found in [Kurková and Sanguineti, 2005, Krurková, 1997], where the
upper bounds of the rates are found: the interesting property is that the errorF(γ○ν) −F(γ○)
(both when the cost functionalF is continuous only and continuous and uniformly convex) is
bounded by a quantity which is at least inversely proportional to ν1/2, thus independently on
n. Notwithstanding, a largeν is not sufficient alone to lower the approximation error, as its
upper bound is also proportional to the variation norm of theoptimal solution,∥γ○∥Gn

ϕ
, being

Gn
ϕ ≜ ϕ(⋅, κ) ∶ κ ∈ Rk is the set of functions that can be obtained by varying the free parameters

in the basis functionsϕ. That is, the norm is related to the basis functionsϕ in the OHL-NN
and can be estimated if some a-priori knowledge on the admissible solutions is available. It
is important to remark that the conditions which allow constructing the polynomially complex
sequences, regard the functionalF and the set of admissible functionS, and are specified
by geometric and regularity properties stated in a “static”context: a dynamic system evolving
during the optimization process is not taken into account, or, if it exists, is implicitly considered
and embedded in the properties ofF andS.

4.2.3 A stochastic approximation technique

Problem 4 can be solved by means of a classical gradient technique, if the following funda-
mental assumption regardingJ (see Eq. 4.10) is verified:

Assumption 10. J (w,z) is aC1 function with respect tow, ∀z.

In the following, the various constraints onw, which define the setΨ ∶ w ∈ Ψ, are taken
into account through penalty functions, so that Problem 4 isreduced to an unconstrained non-
linear programming problem. If “exact” constraints onw must be fulfilled, there exist specific
stochastic approximation techniques that can handle them as required [Kusher and Yin, 1997].
If Assumption 10 is verified, then under some additional regularity hypotheses alsoF(w) is a
C1 function, thus its gradient can be computed, i.e. all the partial derivatives ofF with respect
to the parametersw. Then, it is possible to compute the set of optimal parametersw○ by means
of a classical nonlinear programming technique.

Among classical nonlinear programming algorithms, we focus our attention on gradient
algorithms to introduce the concept of stochastic approximation in a simple and straightforward
way. A general gradient descent algorithm is in the form

w(k + 1) = w(k) + α(k)s(k), k = 0,1, . . . (4.12)

wheres(k) is a generic descent direction, andα(k) is a positive step-size. The idea of gradient
methods is to exploit the derivative of the cost functionJ (w) to find its minimum, attained at
w○, where∇J (w) = 0. A descent directions(k) satisfies the condition∇J (w(k))⊺s(k) <
0. The numerical procedure consists in starting from a guess or a random realization of the

57

parameters,w(0), to generate a sequence of parameters valuesw(1),w(2), . . . ,w(k),w(k+1)
which satisfiesJ (w(k)) > J (w(k+1)). Typical examples of gradient descent algorithms are:

• Steepest Descent:w(k + 1) = w(k) −α(k)∇J (w(k))
• Newton:w(k + 1) = w(k) −α(k)[∇2J (w(k))]−1∇J (w(k))
• Quasi-Newton:w(k + 1) = w(k) − α(k)D(k)∇J (w(k)), whereD(k) is an approxi-

mation of the Hessian

Incidentally, it must be noticed that the aforementioned algorithms are designed for a numerical
approximation based on a deterministic gradient,∇J . In our case, the gradient is stochastic,
becauseF = E {J }. In this case, the stochastic gradient (which is particularly tough to com-

pute) can be substituted by its numerical approximation, and specifically by the gradient which
is computed if a single realization of the stochastic variable occurs. Without going into further
details of the algorithms, we will bring forward with our discussion using the steepest descent
algorithm, that turns out to be the best choice for this problems [Spall, 2003].

The iterative steepest descent algorithm which allows solving Problem 4 is:

w(k + 1) = w(k) −α(k)∇w E
z
J (w(k), z) , k = 0,1, . . . (4.13)

Due to the general assumptions of Problem 4, it is practically impossible to compute an-
alytically the gradient∇wE

z
J (w(k), z): indeed, at each iteration stepk, the gradient of a

complex function resulting from a multiple integral, related to the stochastic properties ofz.
Stochastic approximation, applied to overcome such computational difficulties, consists in

using∇wJ [w(k), z(k)] i.e. the gradient computed after a single realization of thestochastic
variablez. Thus, instead of (4.13), the following updating algorithmis used:

w(k + 1) = w(k) − α(k)∇wJ [w(k), z(k)] , k = 0,1, . . . (4.14)

where the sequence{z(k)} is generated randomly according to the known probability distri-
bution ofz. α(k) is a suitably decreasing positive step-size. The convergence of thestochastic
gradientmethod is assured by a particular choice of the step sizeα(k), that must fulfill a set
of conditions [Kushner and Yang, 1995].

Remark 7. If J (w,z) is continuous and differentiable (see Assumption 10), under some reg-
ularity hypotheses alsoE

z
J (w,z) is, and:

∇wE
z
J (w,z) = E

z
∇w [J (w,z)] . (4.15)

In practical situations, this formula can be exploited to have a certain “rough” approximation
of the stochastic gradient to be used in place of the single realization∇wJ [w(k), z(k)], i.e.

E
z
∇w [J (w,z)] ≈ 1

Q

Q∑
q=1

∇w [J (w,z(q))] . (4.16)

By increasing suitably the number of realizationsQ to consider at each iteration stepk, it is
possible to obtain a better approximation of the original gradient. This approach has been

58

4. Optimal control by means of functional approximators

used, for example, in [Ivaldi et al., 2008b], and similarly in [Ivaldi et al., 2009a] for the eva-
luation of a stochastic constraint. Of course the additional computational burden of such ap-
proximation with respect to the “single” stochastic approximation approach must be balanced
with the improvement in the descent accuracy. This solutionmust be also balanced with the
strategy for the adaptive step-sizeα(k), which is often “perturbed” as being the main object
of heuristics like simulated annealing: since the gradientis already “perturbed” (even if aver-
aged onQ realizations as in Eq. 4.16), sometimes it is difficult to assess if the gradient or the
step-size are determinant for the convergence of the algorithm (4.13).

Eq. 4.14 is the simplest stochastic approximation method. Among the sufficient conditions
for its convergence, which can be found in [Kusher and Yin, 1997], some concern the “shape”
of the cost surfaceF(w) (but are very difficult to assess due to the characteristics of the surface
itself), some the decreasing behavior ofα(k). [Baglietto, 1998] the convergence requisites are
discussed. In particular, if functionF(w) andα verify the following assumptions:

• F(w) ≥ 0,∀w ∈ RW ;
• F(w) is continuous and differentiable, and a Lipschitz constantL exists such that∥∇F(w)
−∇F(w′)∥ ≤ L ∥w −w′∥ , ∀w,w′ ∈ RW ;

• ∃c ∈ R+ ∶ ∇F(w(k))⊺ E {[s(k)∣Is(k)]} ≥ c ∥∇F(w(k))∥2 , k = 0,1, . . ., wheres(k)
is a certain descent direction in (4.12) andIs(k) ≜ [s(k − 1), . . . , s(0),w(k − 1), . . . ,w(0)];

• ∃K1,K2 ∈ R+ ∶ E {[∥s(k)∥2 ∣Is(k)]} ≤K1 +K2 ∥∇F(ω(k))∥2 , k = 0,1, . . .;
• the sequence of step-sizesα(k) > 0 also satisfies:

∞∑
k=0

α(k) =∞ ,
∞∑
k=0

α2(k) <∞
then:

• the sequenceF(w(k)) converges;
• lim

k→∞
∇wF(w(k)) = 0;

• any limit pointw○ in sequence{w(k)} is stationary, and∇wF(w○(k)) = 0.

Of course, the properties ofF(w(k)) are related to the ones ofJ . With regard to the
step-size properties, it is requested thatα(k) decreases towards zero with the increase of the
iterationsk: this is necessary since at the convergence pointw○ it could happen thats(k) ≠ 0
(even if the exact gradient is null, as a consequence of the stochastic approximation). It is but
necessary that the stepsize does not become too “small” too soon, to avoid the risk that the
algorithm could be stucked in some local minima, and not be able to move out of it.

Example 1. If s(k) < b and
∞∑
k=0

α(k) ≤ B <∞, then∥w(k) −w(0)∥ ≤ ∑k−1
i=0 α(i) ∥s(i)∥ ≤

bB,k = 1,2, . . ., that isw(k) is confined into a ball of radiusbB and centerw(0): if the
optimal solution was outside that ball, the algorithm wouldnever reach that and eventually
stop in a local minima. This motivates why the step-size can be neither constant nor too small.

59

A step-size satisfying the aforementioned conditions (andwidely used because of its sim-
plicity) is:

α(k) = c1

c2 + k
, c1, c2 > 0. (4.17)

In literature different techniques have been suggested to accelerate the algorithm’s conver-
gence; in particular,ad hocmethods exists to optimize the neural networks’ parameters. It
is necessary to point out that heuristics frequently improve the optimization process, but their
convergence and performance cannot be generally proveda priori.

4.2.4 Team functional optimization problems

Whenever a plurality of unknown functions is considered, Problem 3 must be extended. Let us
consider a team withM agents orDecision Makers(DM), whose decisions are expressed by
the functionsγ0, . . . , γM−1. Assuming that each DM can measurexi and use it to compute its
decisionγi(xi), and that the decisions of the team must minimize a certain global costJ , the
following problem can be stated.

Problem 5. Find

inf
Γ∈SM

F(Γ) = inf
Γ∈SM

E
z
{J [γ0(x0), . . . , γM−1(xM−1), z]} (4.18)

whereΓ ≜ col (γ0, . . . , γM−1) is the set of functionsγi(xi) ∶ Bi ∈ Rni ↦ R
mi , each belonging

to an infinite-dimensional real normed linear spaceHi, i = 0, . . . ,M −1; SM ⊆H0×H1× . . .×

HM−1 is the subset of admissible functions; each functionγi has a specific argumentxi, which
may depend onz as well as on the other decision functionsγj, j ≠ i; z ∈ Z ⊆ Rp is a random
vector taking values from a known setZ with a known distribution; finallyF ∶ SM ↦ R is the
cost functional, andJ ∶ Rn0 ×Rn1 × . . .RnM−1 ×Z ↦ R.

Examples of Problem 5 are:

• team functional optimization problems, when several decision makers, each provided a
“personal” information vectorIi (whereIi = xi or genericallyIi = g(x0, . . . , xM−1)),
cooperate to minimize a common cost functional

• T -stage stochastic single-person optimal decision problems, whereM is the number of
control/decision instantsT , and random disturbancesz act on the controlled system

• Finite Horizon control problems, whereM is the number of control instants, random
disturbancesz represents the noise vector (e.g. the noise acting on the system), while
xi is the generici-th state vector of the system to be controlled: in this case the system
model is known and embedded in the problem formulation (transparently in (4.18))

The latter is of particular interest, since it would be the object of our further investigations.

Remark 8. It must be remarked that the argumentsxi may depend onz and other functions
γj , j ≠ i, through known mappings. In fact,xi is often written asIi and called “information
vector”, denoting the aggregation of all the possible information in input to the decision func-
tion γi, representing a so-calleddecision maker(DM), or decisional entity. In this cases, it is

60

4. Optimal control by means of functional approximators

useful to have a graphical representation of the information flux among the functionsγi, as a
fundamental role is played by the “partial nesting” or not ofthe information structure of each
DM [Baglietto et al., 2001b].

The theoretical properties holding true for Problem 3 can befully extended to Problem 5.

4.2.5 Some notes on the optimization phase

The proposed method enables NN to approximate the optimal feedback solutions, and is sup-
posed to overcome the COD of DP-based solutions. Certain aspects deserve some attention:

• The optimal solution are approximated numerically, and itis not possible to distinguish
a local from the (or a) global solution when running the optimization algorithms; for
the same reason, the stability of the weight update cannot beguaranteed, since a pre-
cise analytical condition is missing. The so called “training phase” requires consistent
computations and a large number of patterns for the training, depending on the problem
statement. Computations are so demanding (in terms of time), that they sometimes pre-
vent the use of the solution in real-time applications. In Section 4.5.4 a more detailed
discussion on such limits is reported.

• NNs have been chosen for their approximating properties. Barron proved that neural
networks are universal approximators for continuous functions, more efficient than tra-
ditional functional approximators (polynomials, splines, trigonometric expansions, etc.),
even though there exists a fundamental bound on the functional reconstruction error
[Barron, 1993], which is condensed in Maurey-Jones-Barrons bound. The mean inte-
grated squared error between the approximating neural network and the target function
f is bounded by

O
⎛
⎝
C2

f

ν

⎞
⎠ +O (

νn

L
lnL) (4.19)

whereν is the number of neural units,n is the input dimension of the function,L is
the number of training observations, andCf is the first absolute moment of the Fourier
magnitude distribution of the target functionf [Barron, 1994]. In particular, withν ≈
Cf(L/(n lnL))1/2 neural units, the order of the bound on the mean integrated squared
error is optimized to beO(Cf((n/L) lnL)1/2). In [Niyogi and Girosi, 1996], similar
results are shown for Gaussian radial basis functions (RBF)networks, in particular the
generalization error is bounded by

O (1
ν
) +O ⎛⎝[

νn ln(νL) − ln δ
L

]1/2⎞⎠ (4.20)

wheren is the number of inputs,ν the number of neural units,L is the set of training
observations, andδ is a positive real number, with0 < δ < 1. A frequent heuristic to
determine an approximation of the optimal number of neural units ν for a given number
of training observationsL is also given byν ∝ L1/3. This result takes into account the

61

compromise between the minimization of the generalizationerror (which would require
high numbers ofν) and of the estimation error (which would require a low number of
L). As a rule of thumb, in other works (for example [Barambonesand Etxebarria, 2002])
reasonably good results are usually obtained if the number of neural units is roughly two-
three times the order of the system. Since in our framework the functions to approximate
are the unknown, it is not possible to make any guess, in particular onCf (Eq. 4.19).
The underlying assumption is that an optimal set of parameters exists, given a desired
approximation error. In practical terms, multiple trainings are usually performed, and
the number of neurons is “manually” adjusted .

• A two-layer (or One-Hidden-Layer) neural network can be used to approximate any non-
linear function, with a suitable number of neural units. In [Nguyen and Widrow, 1990]
a method is proposed for the initialization of the weights inorder to reduce the training
time. The basic idea is that picking initial weights so that the hidden units are scattered
in the input space substantially improves learning speed ofnetworks with multiple in-
puts. In the following formulation, the elements of the input vector (xt for example) take
values from the range[−1,1] (the so calledinput normalization). Considering the output
y of a OHL neural networks with sigmoidal activation function, y = ∑ν−1

i=0 viσ(xwi + bi)
whereν is the number of neurons in the hidden layer, andN is the dimension of the in-
put vectorx (sox ∈ Rn), then callingrand(a, b) the operation which extracts a uniform
random number within a certain range[a, b], weights and biases are randomly initialized
in the following way:

∣wi∣ = ν 1

n , bi = rand(− ∣wi∣ , ∣wi∣)
The authors in [Nguyen and Widrow, 1990] also suggest that a certain overlap between
the intervals must be provided, by setting the magnitude ofwi to 0.7ν

1

n . Nguyen’s for-
mulation was proposed for neural networks approximating SISO (Single-Input-Single-
Output) and MISO (Multiple-Input-Single-Output) functions. In particular, the exact
formula is provided only for the first case, while the latter is “solved” by simply scaling
the range of admissible values with the magnitude. Extensions to the MIMO (Multiple-
Input-Multiple-Output) can be easily found. For example, apossible adaptation to the
multiple dimension case is to choose weightw and biasb as:

b = urand(0.7ν(1/n)) , w = urand((0.7/n)ν(1/n)) (4.21)

whereν,n are the number of neurons and the number of inputs of the NN, respectively,
andurand(a) is a function extracting a random value within the range[−a, a].

• The choice of the approximating functions is critical. Alternatively to NN, one could
use other functional approximators, like Gaussian MixtureModels (GMM) or Support
Vector Machines (SVM). However, there is no trivial way intoapplying SVM in our
current approach. Firstly, SVM is meant as a supervised learning method, i.e. it tries
to find a functionf(x,α) (with alpha being it’s parameters) that approximates best a
set of labeled samplesS, whereS = (x1, y1), . . . , (xn, yn), wherexi is the i-th input
vector andyi the i-th label (desired output). SVM basically tries to find a solution that

62

4. Optimal control by means of functional approximators

minimizes the error between the predictedŷ and the actualy, by means of a quadratic
optimization problem, which is convex (hence it yields a single optimal solution). This
is incompatible with our approach, where there is no such thing as a desired output and
therefore neither an error; there is only the cost functional F . Moreover, the canonical
SVM expects to be trained on a batch of labeled samples, whereas in our method samples
of the stochastic variables are fed into the ’learning’ algorithm one-by-one, after which
the parameters are updated. A possible setting in which SVM could easily be applied, is
if a set of optimal control commandsut would be known for a given set of input vectors
xt, so that a certain training set could be created, and the SVM could then be trained on
this set of labeled samples.

4.3 Finite and Receding Horizon control problems

4.3.1 Applying the ERIM to solve aT -stage stochastic optimal control problem

In the following the ERIM is applied to the solution of general T -stage stochastic optimal
control problem, i.e. a problem where a sequence ofT optimal control functions minimizing a
certain cost functional has to be found. Typical problems are the control of teams of cooperating
agents, decisional problems where multiple entities play arole, but more frequently to the Finite
Time or Finite Horizon control.

Here we state aT -stage stochastic optimal control problem, where the goal is to find the
T optimal control laws that steer the dynamic system from an initial known statex∗

0
to a final

desired onex∗T , by minimizing a suitable cost functionJ .6

Problem 6. Given known boundary conditions, i.e. fixed initial statex0 = x∗0 and final state
x∗T to reach inT stages, for the system:

xt+1 = ft (xt, ut, ηt) , t = 0,1, . . . , T − 1 (4.22)

wherext ∈ Xt ⊆ Rn, ηt is a stochastic variable with known distribution, and the controls are
subject to the following

u○t = γ○t (xt) ∈ Ut(xt) ⊆ Rm (4.23)

find a sequence of optimal control functionsγ○
0
(x0), . . . , γ○T−1(xT−1)minimizing the cost func-

tional

F = E
η0,...,ηT−1

{J } = E
η0,...,ηT−1

{T−1∑
t=0

ht(xt, γ○t (xt)) + hT (xT)} (4.24)

Eq. 4.22 is a set of equations describing a discrete-time stochastic dynamic system (in
general, nonlinear), where at the time instantt, xt is the state vector, which may be taking
values from a finite setXt ⊆ Rn, starting from a known initial statex0 = x∗0 ; ut is an admissible
control vector, constrained to take values from a finite setUt(xt) ⊆ R

m; ηt is an exogenous

6The following is a fundamental problem, addressing the mainaspects of a FH stochastic optimal control prob-
lem. The boundary conditions (i.e. fixed initial and desiredstate) but make it unsuitable for RH controls, as will be
explained later on.

63

variables vector.T is a known positive integer. It must be remarked that the constraints (4.23)
can be expressed by means of additional penalty functions tobe added to the main cost function,
that is turning a hard constraint into a soft one.η0, η1, . . . , ηT−1 are random disturbances,
and if Dynamic Programming (DP) was applied to solve the problem later on, the mutual
independence of each random vector would be required. If theERIM is applied, then this
assumption can be removed.

The state vectorxt, at time instantt, is perfectly known or measurable, thus it can be used to
design a feedback control lawut = γ(xt). We remark that a feedback control law is necessary
whenever noise and generally disturbances act on the system, or if we want to counteract to
unknown or unmodeled dynamics in the system itself, which could drive it into undesired states
or even compromise its stability. The cost functionJ is generally of the type:

J = T−1∑
t=0

ht(xt, ut) + hT (xT) (4.25)

where the final termhT (⋅) usually weights the disparity between the system state at the end of
the maneuver and the desired state; and a sum of termsht(⋅), which can weigh the disparity
between the desired and the system state during the maneuver, the trajectory shape, or the
effects of controls, their consumption etc. Note that because of (4.23),J is a “function of
functions”, and precisely:

J = J (γ0, . . . , γT−1) (4.26)

Eq. 4.25 has a stochastic nature, because the system is affected by noise, so the formulation
of the problem takes into account the minimization of the expected value ofJ , i.e. the cost
functionalF = E {J }.
Remark 9. It is important to point out that in Problem 6 the initial system statex0 is fixed to
x∗
0
, because the goal was to find a sequence of controls for specific boundary conditions. The

final statexT is not constrained to take on a desired value, but a desired valuex∗T is specified.
Typically, the desired state (i.e. the state to reach) is expressed by penalty functions in the cost
function to be minimized, such as:

hT (xT) = VT (xT − x∗T)2
whereVT ∈ Rn×n, VT = V ⊺T > 0 is a gain matrix weighting each component differently. In the
following, we will not explicitly state the dependency of system trajectories, cost function, etc.
to the desired final state, to keep all formulas lighter.

It is well known that Problem 6 can be solved “analytically” through the DP only if suitable
conditions hold, typically the known LQG hypotheses (linear system, quadratic cost function
and mutually independent Gaussian stochastic variables).In the general case, one has to look
for approximate solutions. This is usually done by discretizing or sampling properly the state
space and the controls, so that the functional equation thatdefined the DP procedure can be
solved only in correspondence of a finite number of state values: for each control stage, a
uniformly (or not) sampled state space is found (an example was shown in Figure 4.1).

64

4. Optimal control by means of functional approximators

Alternatively, the ERIM can be used to approximate the global control laws, exploiting the
recursive formulation of the problem. For a better comprehension of the procedure described
hereinafter, it is useful to refer to the graphical representation of the evolution of the trajectory
xt in time, making explicit the links between dynamic system and control laws (which will
be substituted with neural controllers, following the procedure described in Section 4.2). At
time instantt, the combination of Eq. 4.22 and 4.23 can be represented by the system and
control blocks shown in Figure 4.6. If we unfold system and controls in time, and replicate
the basic couple of blocks for each time instantt = 0, . . . , T , a “chain” is obtained, as shown
in Figure 4.7. Note that the first control functionu0 = γ0(x0) can be simply denoted byu0,
since the initial state is fixed in Problem 6,x0 = x∗0 : thus,u0 can be determined exactly, and
the problem actually concerns onlyγ1, . . . , γT−1.7

xt

xt+1
utγt

ft

ηt

Figure 4.6: Thet-th elements couple, when the control task is “unfolded” in time. The system and
the control blocks ,ft andγt respectively, refer to Eq. 4.22 and 4.23.

x0 = x∗0 η0

u0

x1 η1

u1γ1

x2 // xN−1
ηN−1

uN−1γN−1

xN
fff

Figure 4.7: The “chain” of state and control blocks, unfolded in time, for Problem 6. Note that
γ0 is not indicated, sincex0 is fixed,x0 = x∗0 . Thus,u0 = γ0(x0) is not effectively a control law
spanned overX0, but a simple fixed vectoru0 ∈ Rm, beingu0 = γ0(x∗0) .

Applying the ERIM to solve Problem 6 consists basically in constraining the admissible
control functionsγ0(x0), . . . , γT−1(xT−1) to take on the fixed parameterized structure of OHL-
NN (see Eq. 4.6):γ̂ν0(x0,w0), . . . , γ̂νT−1(xT−1,wT−1). Since the OHL-NN have the same
structure at each control staget, and each one is completely specified by the vector of parame-
terswt. It must be noted thatdim(wt) is related to the cardinality numberνt; the dependence
of νt on t is due to the fact that the regularity properties of the function νt to be approximated
may be time-varying. So it can be possible thatνj ≠ νi, j ≠ i, but generally the contrary holds

7In the following we will still useγ0 to keep the formulation universal: in a general context,x0 can be uncon-
strained, or taking values from a variable set.

65

xt

xt+1

utγ̂
ft

ηt

wt

Figure 4.8: Thet-th elements couple of Figure 4.6, after the application of the ERIM. Note thatγt
is being approximated bŷγ(xt,wt). The structure of̂γ is fixed, while the control law is completely
specified bywt.

true, so it is possible to drop the subscriptνt from γ̂ and letwt specify thet-th control function:

ut = γ̂(xt,wt), t = 0, . . . , T − 1 (4.27)

as shown in Figure 4.8 for thet-th element of the chain. Note again that the first control
functionu0 = γ0(x0) does not need to be replaced with the OHL-NN, since the initial state,
in this context, is a fixed vectorx0 = x∗0 , but we will still mention it to keep a more general
formulation. Indeed, this is valid only if the initial stateis fixed: if x0 is a stochastic variable
with its own probability density, thenγ0(x0)must be replaced withu0 = γ̂(x0,w0) as the other
functions (becauseu0 obviously depends onx0). This case will be object of interest later on.

By substituting (4.27) in (4.24), the general cost functionJ (the “function of functions” as
in (4.26)) is turned into a function which is only dependent on a finite number of real variables:

J (w̃) = J (u0,w1, . . . ,wT−1) (4.28)

wherew̃ contains all the parameters to be optimized:

w̃ ≜ [u0,w1, . . . ,wT−1] ∈ RW , (4.29)

with W =m +∑T−1
i=1 Wi (beingu0 ∈ Rm andwi ∈ RWi).

The solution of Problem 6 by means of the ERIM can be then summarized by these three
main steps:

• write the cost functionalJ (u0, γ1, . . . , γT−1)
• substitute the control functions with the OHL-NN:J (u0, γ̂(⋅,w1), . . . , γ̂(⋅,wT−1))
• write the cost functionJ (u0,w1, . . . ,wT−1)

If the assumption on the known initial statex0 = x∗0 does not hold, the general formulation is:

66

4. Optimal control by means of functional approximators

J (γ0, γ1, . . . , γT−1)

J (γ̂(⋅,w0), γ̂(⋅,w1), . . . , γ̂(⋅,wT−1))

J (w0,w1, . . . ,wT−1)
Problem 6 is then turned into the following:

Problem 7. Given known boundary conditions, i.e. fixed initial statex0 = x∗0 and final state
x∗T to reach inT stages, for the system (4.22), where the controls are subject to (4.27) find the
vectors of optimal parametersw○0, . . . ,w

○
T−1, i.e. w̃○ (see Eq. 4.29), which minimize the cost

function

F = E
η0,...,ηT−1

{J (w̃)} = E
η0,...,ηT−1

{T−1∑
t=0

ht(xt, γ̂(xt,wt)) + hT (xT)} (4.30)

under the constraints given by the state equation.

Gradient algorithms and stochastic approximation

As done for Problem 3- 4, it is possible to approximate progressively better Problem 6, by suit-
ably increasing the cardinality number in theT OHL-NNs, with a sequence of unconstrained
nonlinear programming problems. In analogy to the solutionproposed for Problem 4, the opti-
mal parameters of Problem 7 can be found through a nonlinear programming algorithm and a
stochastic approximation technique:

w̃(k + 1) = w̃(k) −α(k)∇w̃ E
η̃
J (w̃), k = 0,1, . . . (4.31)

whereη̃ ≜ col(η0, . . . , ηT−1). As already discussed in Section 4.2.3, it is impossible to calcu-
late exactly all the gradient components, because of the stochastic nature of̃η. A stochastic
approximation technique is then applied and the update equation becomes:

w̃(k + 1) = w̃(k) − α(k)∇w̃(k)J (w̃, η̃(k)) k = 0,1, . . . (4.32)

where the sequence{η̃(0), . . . , η̃(k), η̃(k + 1), . . .} is generated randomly according to the
known probability density function of eachηi,∀i. Of course, it must be assumed that function
J(w̃, η̃(k)) isC1 with respect tow̃ for all η0(k), . . . , ηT−1(k).

In order to update the value of each parameterwi
t(k) (the i-th parameter of the vectorwt

at the iteration stepk), the partial derivatives ofJ with respect tow̃(k)must be computed, i.e.

∂J
∂u0(k) ,

∂J
∂wt(k) = col(

∂J
∂wi

t(k)) , t = 1, . . . , T − 1; i = 1, . . . ,Wt (4.33)

67

wherewi
t(k) is thei-th component of vectorwt(k) ∈ RWt, andWt = dim(wt(k)) (e.g.Wt =(n + 1)ν + (ν + 1)m if the OHL-NN hasν “neurons”, and each perceptron unit has the bias).

The update equation for a single parameterwi
t(k) is:

wi
t(k + 1) = wi

t(k) −α(k) ∂J
∂wi

t(k) , i = 1, . . . ,Wt ; t = 1, . . . , T − 1 ; k = 0,1, . . . (4.34)

More frequently, when using NN with the ERIM, the following update equation is preferred:

wi
t(k + 1) = wi

t(k) −α(k) ∂J
∂wi

t(k) + η(w
i
t(k) −wi

t(k − 1)) (4.35)

where a regularization term is added, weighted byη ∈ [0,1], as it is usually done when training
neural networks.

Given (4.27), it is quite straightforward to compute the partial derivatives in (4.33):

∂J
∂wi

t(k) =
∂J
∂ut

∂γ̂(xt,wt(k))
∂wi

t(k) , i = 1, . . . ,Wt ; t = 1, . . . , T − 1 (4.36)

since
∂γ̂(xt,wt(k))

∂wi
t(k) can be easily retrieved from the known structure of the OHL-NN.

The tough part is computing
∂J
∂ut

: the procedure consists in a two-steps algorithm, with a

forward and abackwardphase. The pseudo-code is shown in Algorithm 1.
In detail, the “chain rule” is applied again, so that system and control blocks are unfolded

in time, as previously done for Figure 4.7. The generic control functionsγt are then substituted
with their OHL-NN counterpart̂γ(⋅,wt(k)): thus each control element as in Figure 4.8 is
replaced with the one of Figure 4.8. Starting fromx0 = x∗0 and following the connections
between the blocks, one can easily compute all the trajectories of statext and controlsut(k),
given a realizatioñη(k) of the stochastic variables. These computations make theforward
phase. In detail, the feedback between system and neural controllers is made explicit through
unfolding in time their blocks. Given the initial statex0 the trajectory of system state and
controls is:

u0, ut = µ̂(xt,wt(k)) , x0, xt+1 = f(xt, γ̂(xt,wt(k)), ηt(k)) , t = 1, . . . , T − 1
Then all the partial costsht(xt, ut), hT (xT) and the cost functionJ (k) are computed.

A backward phasefollows, where the gradient components needed for the update algorithm
(4.32) are computed. A graphical representation is shown inFigure 4.9.

To compute the gradient, the following cost-to-go functionis defined, fort = 1, . . . , T − 1:

Jt(xTt ,wT−1
t (k), ηT−1t (k)) = ht(xt, γ̂(xt,wt(k))) + T−1∑

i=t+1

hi(xi, γ̂(xi,wi(k))) + hT (xT)
(4.37)

where

xTt = col(xt, xt+1, . . . , xT)
wT−1
t (k) = col(wt(k),wt+1(k), . . . ,wT−1(k))

ηT−1t (k) = col(ηt(k), ηt+1(k), . . . , ηT−1(k))

68

4. Optimal control by means of functional approximators

x0
η0

u0

x1 η1

u1γ̂1

x2 // xN−1
ηN−1

uN−1γ̂N−1

xN

fff

∂J
∂u0

∂J
∂w1

∂J
∂wN−1

J

Figure 4.9: Backward phase: the partial derivatives of the cost function with respect to the outputs
are back-propagated through the OHL-NNs. Inside each blockγ̂, the partial derivatives with re-
spect to the parameters to be optimized are computed and usedfor the gradient descent. Note that
to simplify the notation and the scheme,γ̂t = γ̂(⋅,wt).

The partial derivatives with respect to the parameters are then, fort = 1, . . . , T − 1:

∂Jt
∂wt(k) =

∂ht(xt, ut)
∂ut

∂γ̂(xt,wt(k))
∂wt(k) +

+
∂Jt+1(xTt+1, uT−1t+1 , ηT−1t+1 (k))

∂xt+1

∂ft(xt, ut, ηt(k))
∂ut

∂γ̂(xt,wt(k))
∂wt(k) (4.38)

whereas for the first control, fixed, beingu0 = γ(x∗0):
∂J0
∂u0

= ∂h0(x0, u0)
∂u0

+
∂J1(xT1 , uT−11 , ηT−11 (k))

∂x1

∂f0(x0, u0, η0(k))
∂u0

(4.39)

Exploiting the chain rule, it is possible to compute the partial derivatives needed by the al-
gorithm, by following the trajectories ofut, xt across the chain backward, i.e.t = T,T −

1, . . . ,1,0; this operation leads to the following recursive equations:

∂Jt
∂xt
= ∂ht(xt, ut)

∂xt
+
∂Jt+1
∂xt+1

∂ft(xt, ut, ηt(k))
∂xt

+
∂Jt
∂ut

∂γ̂(xt,wt(k))
∂xt

(4.40)

∂Jt
∂ut
= ∂ht(xt, ut)

∂ut
+
∂Jt+1
∂xt+1

∂ft(xt, ut, ηt(k))
∂ut

(4.41)

initialized by
∂JT
∂xT

= ∂hT (xT)
∂xT

(4.42)

It must be pointed out that in the equations above, the dependency onk has been made
explicit only for the stochastic variables̃η(k), which are randomly generated according to
their distribution, and the parameters̃w(k) = col(u0(k),w1(k), . . . ,wT−1(k)) because the
latter are the ones iteratively changed at each stepk. The initial statex0 is fixed tox∗

0
, and

so is the desired final statex∗T . However, the state trajectoryxt, t = 0,1, . . . , T changes at
each iteration stepk, as a consequence of the change in the parameters and consequently of
the control laws generating the sequence of controlsut, t = 0,1, . . . , T − 1, and so does the
cost-to-go. Therefore, it would have been more correct to write xt(k) andJt(k): in fact, the
dependence onk has been dropped to keep the equations clearer.

69

Algorithm 1 Find w̃○ = [u○
0
,w○

1
, . . . ,w○T−1]minimizing (4.30) in Problem 7.

Require: T

Ensure: w̃○ = u○0,w○1, . . . ,w○T−1
1: k = 0
2: Initialize u0(k),w1(k), . . . ,wT−1(k) randomly or according to some specific technique
3: repeat
4: Generateη0(k), . . . , ηT−1(k) according to their probability density

Forward
5: x1(k) = f0[x∗0 , u0(k), η0(k)] according to (4.22)
6: for t = 1 ∶ T − 1 do
7: Computeut(k) = γ̂(xt(k),wt(k))
8: Computext+1(k) = ft(xt(k), ut(k), ηt(k)) according to (4.22)

9: Compute
∂ht

∂xt(k) ,
∂ht

∂ut(k) ,
∂ft

∂xt(k) ,
∂ft

∂ut(k)
10: end for

Backward

11: Compute
∂J

∂xT (k) according to (4.42)

12: for t = T − 1 ∶ 0 do

13: Compute
∂J

∂ut(k) according to (4.41)

14: Compute
∂J

∂xt(k) according to (4.40)

15: for i = 1 ∶Wt do

16: Compute
∂J

∂wi
t(k) according to (4.36)

17: Update weightwi
t(k) according to (4.34)

18: end for
19: end for
20: until Convergence condition is met
21: return w̃○ = w̃(k)

70

4. Optimal control by means of functional approximators

Remark 10. The forward-backward technique is naturally decentralized, since each neural
control block can “autonomously” be updated, if the proper signal connections between con-
sequent blocks are set up. It is interesting to observe that they provide a time-varying parame-
terized feedback control law.

In Algorithm 1, the convergence conditions are not specified, since it is possible to design
different stopping rules, and the convergence condition could change according to the specific
instance of Problem 6- 7. In general, it is difficult to guarantee convergence of the algorithm to a
global minimum. The particular choice of OHL-NN also affects the multi-dimensional surfaceJ (w̃), which is also stochastic with respect toη̃’: so, even if the theoretical convergence of the
method is assured by a suitable choice of the step sizeα(k) (e.g. monotonically decreasing -
the strictness is not required), in practice it is frequent to find hard to “descent” the cost function
because of local minima and “flat” region where the cost is practically constant.

The same procedure described to solve Problem 6 by turning itinto Problem 7 can be
generalized to the case of team control problems, where multiple cooperating Decision Makers
act for the accomplishment of a common goal, if a certain “order” is defined among the team
agents. In aT -stage control problem, the order is naturally induced by the timing relationship
among the blocks, that comes after the feedback is made explicit. In general team control
problems a causality order can be induced by the flux of information from one agent to another,
e.g. if decisionu1 taken byDM1 influencesDM2 in generatingu2 and so on. An example can
be found in [Ivaldi et al., 2009a].

4.3.2 Variations in Finite Horizon problems

Hereinafter variations to Problem 6 are discussed, when different conditions occur.

• If the initial statex0 is not fixed tox∗
0
, but can take values from a certain set

x0 ∈X0 ⊆ Rn (4.43)

thenx0 is a stochastic variable (whose probability density properties are assumed to be
known) which must be taken into account in the expectation ofthe functional cost to be
minimized, such that (4.24) becomes

F = E
x0,η0,...,ηT−1

{J } = E
x0,η0,...,ηT−1

{T−1∑
t=0

ht(xt, γt(xt)) + hT (xT)} (4.44)

Moreover, (4.43) is a new constraint. The solution to the problem is practically the same
as previously described. The first controlu0 is not anymore determined straightforward:
in Problem 7u0 = γ̂(x∗0 ,w0) collapses inu0 simply, i.e. does not require a NN, whereas
if x0 is stochastic, thenu0 = γ̂(x0,w0) and the NN is necessary. The corresponding
forward and backward phases are shown in Figure 4.10(a) and 4.10(b).

• The final state specified in the statement of Problem 6, but asalready explained in Re-
mark 9 its dependence was not made explicit in the cost functionJ . To specify a desired
final statex∗T , two possible approaches are possible: first, the use of a so-called soft

71

x0
η0

u0γ̂0

x1 η1

u1γ̂1

x2 // xN−1
ηN−1

uN−1γ̂N−1

xN
fff

(a)

x0
η0

u0γ̂0

x1 η1

u1γ̂1

x2 // xN−1
ηN−1

uN−1γ̂N−1

xN

fff

∂J0

∂w0

∂J1

∂w1

∂JN−1

∂wN−1

J
(b)

Figure 4.10: The “chain” of states and controls, unfolded in time, when (4.43) holds. Note that̂γt
in the control blocks meanŝγ(⋅,wt). 4.10(a)and4.10(b)show the forward and backward phase
respectively.

constraint, i.e. a penalty function to be added to the cost functionJ , usually convex
with a single minimum inx∗T , which behaves like an attractor for the system statexT to
x∗T ; second, ahard-constraint, requiring thatxT = x∗T , which but may not be satisfied
if reachability inT stages is weak. As a consequence of the stochastic vector acting on
the system, but also on the nature of the cost and state functions themselves, it might not
be possible to satisfy the constraint exactly. The interesting, here, is the first approach
(also because satisfying hard constraints in our context could require notable efforts). In
(4.24) a term accounting for the final state is already considered: hT (xT), where, for
example,hT (xT , x∗T) = ∥xT − x∗T ∥2.
In general, if the desired final statex∗T is made explicit, the functional cost (4.24) must
be written as:

F = E
η0,...,ηT−1

{T−1∑
t=0

ht(xt, γt(xt)) + hT (xT , x∗T)} (4.45)

and if the desired state is not fixed a priori, but is time-varying (i.e. there existsx∗t , t =
0, . . . , T) the cost function becomes:

F = E
η0,...,ηT−1

{T−1∑
t=0

ht(xt, γt(xt), x∗t) + hT (xT , x∗T)}

• With a little complication with respect to the previous case, if x∗T is not fixed, but again
can take values from a finite set

x∗T ∈ X∗T ⊆ Rn (4.46)

72

4. Optimal control by means of functional approximators

then (4.24) becomes

F = E
x∗
T
,η0,...,ηT−1

{T−1∑
t=0

ht(xt, γt(xt)) + hT (xT , x∗T)} (4.47)

and (4.46) is again a new constraint. In this case, the control functionsγt must also take
into account the desired final state, as they could “change” depending on the desired final
state. Then it is correct to write:

ut = γ(xt, x∗T), t = 0, . . . , T − 1 (4.48)

to make the feed termx∗T explicit. Of course the “chain” and the equations used for the
forward-backward algorithm must be modified to accomplish to the new cost and control
function.

One could also definex∗T as the initial state of a constant system, i.e.

ζt+1 = gt(ζt) = ζt, t = 0, . . . , T − 1
whereζ0 = x∗T (with the same probability properties). Then an aggregate system could
be designed, whereξt = col(xt, ζt) ∈ R2n would be the new state vector,F = col(ft, gt)
the new system of equations,ut = γ(ξt) the new control function.

• If both x0 andx∗T are not fixed, then

F = E
x0,x

∗
T
,η0,...,ηT−1

{T−1∑
t=0

ht(xt, γt(xt), ξt) + hT (xT , x∗T)} (4.49)

and Problem 6 becomes a finite horizon problem with stochastic boundary value con-
straints.

• A desired trajectory might also be specified for the system state, thus outlining atracking
problem(see Figure 4.11). The goal is to find the set of optimal controls that minimizeF while making the system statext track a desiredx∗t . The target state can be treated
differently if some information about the target system is known or not. If the target can
be modeled, i.e. a differential equation can be written as

x∗t+1 = f∗t (x∗t , u∗t , η∗t) (4.50)

where the simplest equation is
x∗t+1 = x∗t (4.51)

with a suitable initialization vector with known probability properties, then it is possible
to gather both systems (4.22) and (4.50) into an aggregated system.

Then an augmented system vector is designed,ξt = col(xt, x∗t) ∈ R2n, andF = col(ft, f∗t)
andut = γ(ξt) will be the new system of equations and control functions.

The latter example raises a practical point. Notwithstanding the polynomial complexity
properties of the ERIM, in practical situations one wants tokeep the input space to the

73

Target Controller System
ut xtx∗tu∗t

η∗t ηt

Figure 4.11: A tracking problem.

OHL-NN as small as possible. To this purpose, one can exploitthe linearity of the
system equation to state the tracking problem as a differential regulation problem, where
the system state isξt = xt − x

∗
t , ξt ∈ Rn and the goal is to bring the new system state

to zero. The corresponding control functionut = γ(ξt) halves the input space, being
µ ∶ Rn

↦ R
m. The impact on the complexity of the problem once the ERIM is applied

is notable: if using OHL-NN, the total number of parameters fromW = N[(2n + 1)ν +(ν + 1)m] reduces toW = N[(n+ 1)ν + (ν + 1)m] (Nnν parameters less). A graphical
representation of the effect of both solutions on the basic couple of blocks is shown in
Figure 4.12.

−

+

xt

xt

xt+1

xt+1

x∗t

x∗t

ut

ut

γt

γt

f

f

Figure 4.12: The t-th element couple, when the control task is “unfolded” in time and a desired
valuex∗t is considered. In the first case,x∗t is another input to the neural controller. In order
to reduce the computational complexity by halving the inputs to the neural controller, the second
solution is proposed, where the input is the difference between the desired and the current state.
The two solutions are “identical” only iff is linear.

• The stochastic vectorηt acting on the system has been considered to address the most
general problem, where noise and disturbances may act on thesystem. Under suitable
assumptions one can neglect the contribution ofηt, or a problem can be stated without

74

4. Optimal control by means of functional approximators

x0

u0γ0

x1

u1γ1

x2 // xN−1

uN−1γN−1

xN
fff

Figure 4.13:Forward phase, when the system is (4.52).

anyηt since the beginning.8 In that case, the system equation is

xt+1 = ft(xt, ut), t = 0,1, . . . , T − 1 ; (4.52)

the control functionut = γt(xt) does not change, while the cost function does, according
to the statement of the problem. If, for example,x0 is stochastic, then the cost function
to minimize is

F = E
x0

{T−1∑
t=0

ht(xt, γt(xt)) + hT (xT)} . (4.53)

A graphical representation of the chain of system and control blocks, unfolded in time,
is shown in Figure 4.13.

4.3.3 A Receding Horizon technique

There are two main limitations to FH control. First, the horizonT must be known and fixed
a priori, but often, feedback control systems must run for sufficiently long periods, and the
control horizon can be hardly “predicted”. This is the case of a robotic motion controller in
particular tasks, such as when a the target to reach is time-varying. In these ongoing processes,
FH optimal control cannot be adopted: this issue is usually solved by seeking for Infinite Hori-
zon (IH) controls (for example, optimal LQG regulators haveboth FH and IH formulations).

Second, variable or stochastic final states can be taken intoaccount if the ERIM is used,
but in the general statement of aT -stage problem the final state is fixed, and the sequence
of optimal controls is open-loop. In other words, in Problem6 no changes are admitted,
and if something in the problem statement changes, for example the target state, the con-
trol sequence is no longer optimal. In addition, Receding Horizon (RH) control can be used
[Kwon and Han, 2005]. The main advantage of RH control is thatit naturally yields closed-
loop controls due to the repeated computation and implementation of only the first control of
an optimal sequence: this is substantially different from FH control, where the initial and finite
state to reach are fixed. The basic concept of RH is as follows.

At the current timet a sequence ofT optimal controls, minimizing aT -stage cost function,
are derived, basically solving a FH problem like Problem 6. Precisely, the finite fixed horizon
taken into account is[t, t + T], and controls are denoted by

uFH
0∣t , u

FH

1∣t , . . . , u
FH

T−1∣t (4.54)

8Sometimes it is difficult to assess the effect of exogenous variables on the system, because these terms are not
identifiable or modeling is hard. Then either one includes inthe problem a generic random vectorηt or neglect the
noise.

75

where the suffixi∣t refers to thei-th control in the FH sequence generated at timet. Among
the sequence of optimal controls computed on the fixed horizon [t, t + T], only the first one is
adopted as the current control law, hence

ut = uRH

t (xt) = uFH0∣t (4.55)

T defines the so called “Finite Horizon Sliding Window”. At staget+1, the same procedure is
repeated: the time interval[t+1, t+1+T] is considered, and a sequence ofT optimal controls
is computed

uFH
0∣t+1, u

FH

1∣t+1, . . . , u
FH

T−1∣t+1

and then only the first is applied to the system. The procedureis repeated up to infinity, for
t = t+2, t+3, . . ., where the corresponding time intervals are[t+2, T+2+T], [t+3, T+3+T],
A graphical representation of the concept of RH is shown in Figure 4.15: notice that the term
“receding” is indeed introduced since the horizon recedes as time proceeds. We point out
that the above receding horizon procedure implicitly defines a time-invariant control policy
ut ∶ Xt ↦ Ut of the formuRH

t (xt), as in Eq. 4.55, which is intrinsically closed-loop, as shown
in Figure 4.14.

Target Controller System

FH
Optimization

Solver
xt

x∗t

x∗t
uRH
t

ηt

xt

J uFH
0∣t , . . . , u

FH

T−1∣t

uFH
0∣t

Figure 4.14:Using RH for closed loop control. The mechanism for selecting the first of a sequence
of FH optimal controls is reported with more clarity in Figure 4.15.

Stabilizing properties of RH control have been establishedfor different problem statements,
for example under LQ assumptions [Kwon and Paearson, 1978, Kwon et al., 1983] and for
nonlinear systems [Mayne and Michalska, 1990]. The solution was first provided using the ter-
minal equality constraints,xt+T = 0, [Keerthi and Gilbert, 1988, Mayne and Michalska, 1990];
such hard constraint was relaxed in [Michalska and Mayne, 1993], where the regulator was
simply required to drive the system to a neighborhood of the origin, where the control switched

76

4. Optimal control by means of functional approximators

uFH
0∣t

uFH
1∣t

uFH
T−1∣t

uFH
0∣t+1

uFH
1∣t+1 uFH

T−1∣t+1

uFH
0∣t+2

uFH
1∣t+2

uFH
T−1∣t+2

uRH
t uRH

t+1

uRH
t+2

t

t

t

t

Figure 4.15: The concept of a Receding Horizon controller. At time instant t = 0, the target value
x∗
0

is measured, and a sequence of optimal controlsuFH

0∣0 , . . . , u
FH

T−1∣0 is computed, consequently

with a FH trajectoryxFH

0∣0 , . . . , x
FH

T−1∣0. Then only the first control is retained,u○
0
= uFH

0∣0 . At time
t = 1,2, . . ., the same procedure is repeated. Three consecutive “instants” are shown, forT = 4.

to a linear regulator designed to stabilize the nonlinear system, steering the state to its origin. In
[Parisini and Zoppoli, 1995] the attractiveness of the origin was imposed by means of a penalty
function in the cost function.

A general RH control problem can be stated in the following way:

Problem 8. Given the fixed initial statex0 = x∗0 and a desired statex∗
t̄

to reach, for the system:

xt+1 = ft (xt, ut, ηt) , t = 0,1, . . . ,∞
wherext ∈ Xt ⊆ R

n, ηt is a stochastic variable with known distribution; find the optimal
controls u○t ∈ Ut whereu○t is the first of a sequence ofT optimal controlsu○

0∣t, . . . , u
○
T−1∣t,

having the form

u○
0∣t = γ○0(xt) ∈ Ut(xt) ⊆ Rm

77

which minimize at each time instantt the cost functional

F = E
η0∣t,...,ηT−1∣t

{J } = E
η0∣t,...,ηT−1∣t

{T−1∑
i=0

hi(xi∣t, γ○i (xi∣t)) + hT (xT ∣t)} (4.56)

wherex∗
0∣t = xt andx∗

T ∣t = x∗t̄ .

Notice that the control functionsγi, i = 0, . . . , T − 1 are time-invariant, i.e.γi∣t = γi,∀t. As
previously pointed out for Problem 6, in (4.56) there is not an explicit reference of the desired
state in the cost functionJ . It is straightforward to notice the relationship between Problem 6
and Problem 8: the RH controlu○t is the first of the optimal controls which are effectively
computed once a specific instance of Problem 6, where the initial statex∗0 of the FH problem is
the current statext in the RH problem (x∗

0∣t = xt) while the desired statex∗T is set to the same
of the RH problem (x∗

T ∣t = x∗t̄).
Incidentally, one may notice that if both initial and desired state to reachx∗

t̄
are known

a priori, exploiting the reachability properties one may think of directly implementing a FH
control. However, due to the stochastic noise, the reachability in T stages may not be satisfied
or guaranteed, thus a RH control law would be more indicated.

However, the main motivation for using a RH controller is that it can easily deal with a
time-varyingx∗t to reach. In particular, in this case a certain principle must be assumed.

Certainty Equivalence

Whenever the controlled system has to track a desired target, or its decisions depend upon the
evolution of a certain system, the RH can be easily applied ifcombined with the so called
Certainty EquivalencePrinciple (CE/CEP).

The CE is fundamental when the target is time-varying,x∗t , and its dynamics and statistical
properties are unknown or unpredictable, but it is perfectly measurable at time instantt. In
this case, everyt the RH controller is designed as if the stochastic quantityx∗t would remain
unchanged in the future, fort, t + 1, . . . ,∞. For example, if the target at instantt̄ is in the state
x∗
t̄
, the controller would assumex∗t = x∗t̄ ,∀t > t̄. At time t+1, a new measurex∗

t̄+1 of the target
is provided, so the controller would assumex∗t = x∗t̄+1,∀t > t̄ + 1. The procedure is repeated
iteratively. The corresponding RH control problem is:

Problem 9. Given the fixed initial statex0 = x∗0 and a time-varying desired statex∗t to reach,
for the system:

xt+1 = ft (xt, ut, ηt) , t = 0,1, . . . , t̄ <∞
wherext ∈ Xt ⊆ R

n, ηt is a stochastic variable with known distribution; find the optimal
controlsu○t ∈ Ut ⊆ Rm whereu○t is the first of a sequence ofT optimal controlsu○

0∣t, . . . , u
○
T−1∣t,

having the form
u○i∣t = γ○i (xt) ∈ Ut(xt) ⊆ Rm , i = 0, . . . , T − 1

which minimize at each time instantt the cost functional

F = E
η0∣t,...,ηT−1∣t

{J } = E
η0∣t,...,ηT−1∣t

{T−1∑
i=0

hi(xi∣t, γi(xi∣t)) + hT (xT ∣t)}

78

4. Optimal control by means of functional approximators

wherex∗
0∣t = xt andx∗

T ∣t = x∗t .

0 1 2 4 53 6 7 8

x∗t x○t

xFH
i∣0

x

t

Figure 4.16: An example of tracking when a RH controller is used. A time-varying targetx∗

is tracked by a system, where a RH controller is used to find theoptimal controlsu○ and the
corresponding “optimal” state trajectoryx○. At each time instant, the CEP is applied, and aT

stages - FH problem is solved. Here, the finite horizon isT = 6. At time instantt = 0, the target
valuex∗0 is measured, a sequence of optimal controlsuFH

0∣0 , . . . , u
FH

5∣0 is computed, consequently

with a FH trajectoryxFH

0∣0 , . . . , x
FH

5∣0 . Then only the first control is retained,u○
0
= uFH

0∣0 , and the

system statex○
1
= xFH

1∣0 is found. The procedure is repeated iteratively fort = 1,2, In figure, the

FH trajectoriesxFH

i∣t , i = 0, . . . ,5, ∀t are shown, as well as the final RH trajectoryx○t .

We remark that in Problem 9 there are no assumptions or modelsof the target behavior.
This means that the RH controlsu○t are “locally” optimal, with respect to the current measure
of the target. Combining the RH framework with the CEP, meansthat at each staget, theT
optimal controls are derived, with the stochastic quantityremaining constant: that is, in the
case of tracking, considering the target trajectory to hold, as shown in Figure 4.16.

It is now evident that the main advantage of RH control is thatit yields closed-loop controls
which can counteract to disturbances and time-varying parameters, due to the repeated com-
putation and implementation of only the first control of a sequence which is “optimal” given
the current problem statement: so at each time instantt, the initial and desired state of a new
instance of FH problem are set, after measuring the current system and target state. This is
substantially different from FH control, where the initialand finite state to reach are fixeda
priori . In particular, as already observed for Problem 6, variableor stochastic final states can
be taken into account if the ERIM is used, but in the general statement of aT -stage problem
the final state is fixed, and the sequence of optimal controls is computed in “open-loop” (and is
a sequence of numerical values, not functions).

79

ERIM and RH control

The classical RH technique assumes that a FH optimization routine computes at each con-
trol instantt a sequence of optimal controls: basically the control vectors are generated after
the solution of a nonlinear programming problem at each timeinstantt. This procedure can
be implemented in real applications only if the process dynamics is sufficiently “slow”, i.e.
the time between two consequent controls is enough to solve aFH control problem. This as-
sumption is unrealistic in the case of humanoid robotics, asthe robot (and sometimes also
the target) dynamics is fast and the complexity of the problem generally increases with the
number of DOF to control. In order to solve the optimization problem on-line, with the guar-
antee of satisfying the temporal constraint, a proper hardware and software are required: at
least, one should be provided with a real-time processing unit supporting fast and highly pre-
cise computations, directly connected to the robot sensingand actuation devices (to avoid de-
lays). Unfortunately, different multi-level control architectures often do not support this control
scheme. Both iCub and James, for example, cannot support it,as shown in Figure 4.14, be-
cause the PC104 “controlling” the robot is not more than an interface to the cluster (where
demanding computations are performed), and cannot bear such computations. This fact moti-
vates the use of the ERIM in this problem: since it allows concentrating in an off-line phase
all the computational burden required to approximate the optimal control functions, in the on-
line phase the control actions can be promptly generated with a small computational effort
[Ivaldi et al., 2008a, Ivaldi et al., 2008b].

Remark 11. The ERIM can be generalized also for Infinite Horizon (IH) control. In practi-
cal applications, the impossibility of applying the ERIM tothe IH case is basically due to the
necessity of using a chain containing an infinite number of neural networks, which leads to a
controversy in the initialization of the backward phase when finding the optimal parameters of
the functional approximators [Pianosi and Soncini-Sessa,2008]. A workaround is to approx-
imate and “truncate” the cost, for example assuming that at staget the IH for the backward
phase “starts” at t̄, wheret ≪ t̄ < t∞. However, the complexity of the solution in this case is
considerably high, and justified only for offline precomputation of the optimal control laws, or
in applications where the dynamics of the controlled systemis particularly “slow”, such as in
management of water reservoirs [Pianosi, 2008].

Applying the ERIM to a RH control problem is very easy. Following the same procedure
described for turning Problem 6 into Problem 7, applying theERIM consists in constraining the
finite sequence of control functions, generated at each timeinstantt, to take on a fixed structure
with a certain number of parameters to be optimized. More precisely, Problem 9 becomes:

Problem 10. Given the fixed initial statex0 = x∗0 and a time-varying desired statex∗t to reach,
for the system:

xt+1 = ft (xt, ut, ηt) , t = 0,1, . . . ,∞
wherext ∈ Xt ⊆ R

n, ηt is a stochastic variable with known distribution; find the vectors
of optimal parametersw○t ,∀t corresponding to the optimal controlsu○t ∈ Ut ⊆ R

m with the
following structure:

u○t = γ̂(xt,w○)

80

4. Optimal control by means of functional approximators

wherew○ is the first of a sequence ofT vectors of optimal parameters9 w○
0∣t, . . . ,w

○
T−1∣t, corre-

sponding to the optimal controlsu○
0∣t, . . . , u

○
T−1∣t, having the form

u○i∣t = γ̂(xi∣t,w○i∣t) ∈ Ut(xi∣t) ⊆ Rm , i = 0, . . . , T − 1
which minimize at each time instantt the cost functional

F = E
η0∣t,...,ηT−1∣t

{J } = E
η0∣t,...,ηT−1∣t

{T−1∑
i=0

hi(xi∣t, γ̂(xi∣t,wi∣t)) + hT (xT ∣t)}
wherex∗

0∣t = xt andx∗
T ∣t = x∗t .

If γ̂ are OHL-NNs, the approximating properties of neural RH controller can be found
in [Parisini and Zoppoli, 1995]. The same arguments hold, concerning the existence of a suf-
ficient number of neural units and of the corresponding optimal vector of parameters given a
desired accuracy in approximation [Hornik et al., 1989], aspreviously discussed in Section 4.2.
In particular, if the first control functionγ○(xt) = γ○0∣t(xt) is unique, and is a continuous func-
tionC(Xt,R

n), for everyε > 0 there exists an integerν, a weight vectorw○t and a corresponding
neural RH control̂γ○ν(xt,w○t), such that∥γ○(xt) − γ̂○ν(xt,w○t)∥ < ε, ∀xt ∈Xt.

Problem 10 outlines an iterative procedure for finding the optimal parameters. At time
instantt, a FH optimal control problem as Problem 7 is stated, for the time interval[t, t + T],
where the initial and desired state to reach are set as previously discussed, measuring the current
system and target state, and applying the CEP. The solution of the FH problem with ERIM,
yields a sequence of optimal parameters

w○
0∣t, . . . ,w

○
T−1∣t .

Only the first is retained for the RH control, such that

w○t = w○0∣t , u○t = γ̂(xt,w○t) .
At the next timet + 1 another FH neural problem is stated, for the time interval[t + 1, t + 1 +
T], with different initial and target state, a new sequence of controls is computedw○

0∣t+1, . . .,
w○
T−1∣t+1, then the first is used to compute thet + 1-th control lawu○t+1 = γ̂(xt+1,w○t+1). For

t + 2, t + 3, . . . the procedure is repeated iteratively.
Within this formulation, at each time a new FH problem must besolved. However, we can

exploit the time invariance of the problem and the functional approximating properties of the
NN, and solve a “general” FH problem only once for all (under suitable assumptions).

Indeed, we can state a FH control problem like Problem 7, where the initial and final state,
x∗0 , x

∗
T are not fixed, but can take values from a certain set:

x∗0 ∈ X∗0 ⊆ Rn , x∗T ∈ X∗T ⊆ Rn

9With a slight abuse of notation, we specify the control functions and their parameters with the suffixi∣t, meaning
thei-th control computed by solving the optimization problem attime instantt. In fact, it is not necessary to uset,
since the controls are time-invariant, thuswi∣t = wi,∀t, meaning that a unique control function (precisely, a unique
vector of parameters) must be computed. However, to enhancethe advantage of the complete precomputation of
the control laws, we will keep both indexes.

81

in that case, the cost functional must include them in the expectation ofJ , i.e.

F = E
x∗
0
,x∗

T
,η0,...,ηT−1

{J }

and the same for the control laws, whose outputs necessarilydepend on the boundary values,
in the most general form:u○t = γ̂(xt, x∗0 , x∗T ,w○),∀xt ∈ Xt ⊆ R

n, where the approximated
optimal controls are generated for any possible instance ofa FH control problem, given the
known stochastic boundary conditions. In that case, Problem 10 becomes:

Problem 11. Given the fixed initial statex0 = x∗0 and a time-varying desired statex∗t to reach,
for the system:

xt+1 = ft (xt, ut, ηt) , t = 0,1, . . . ,∞
wherext ∈ Xt ⊆ R

n, ηt is a stochastic variable with known distribution; find the vector of
optimal parametersw○ corresponding to the optimal controlsu○t ∈ Ut ⊆ Rm with the following
structure:

u○t = γ̂(xt, x∗t ,w○)
wherew○ is the first of a sequence ofT vectors of optimal parametersw0, . . . ,wT−1, corre-
sponding to the optimal control functions having the form

ui = γ○i (xi, x∗0 , x∗T ,wi) ∈ Ui(xi) ⊆ Rm , i = 0, . . . , T − 1
wherex∗0 = xt, x∗T = x∗t , which minimize at each time instantt the cost functional

F = E
x∗
0
,x∗

T
,η0,...,ηT−1

{J } = E
x∗
0
,x∗

T
,η0,...,ηT−1

{T−1∑
i=0

hi(xi, γ̂(xi,wi)) + hT (xT)}

wherex∗
0
∈ X∗

0
⊆ Rn andx∗T ∈ X∗T ⊆ Rn.

The fundamental difference between Problem 10 and Problem 11 is that while the first
requires the execution of the optimization procedure at each time instantt (i.e. the solution
of a specific FH problem), the latter requires the solution ofa more generalized (yet more
complex) FH control problem only once. The main advantage ofthis approach, is that it is
possible to pre-compute explicitly, upon a desired approximation accuracy, the optimal RH
control law, completely in an off-line phase. The information of the optimal RH control law
lies on the vector of optimal parameters,w○, that is on a finite number of real values. Thus, once
the control law is computed, it can be easily implemented andembedded in real-time control
loops: at any time instantt, given the target and system measurementsx∗t , xt, the computation
of the associated optimal controlu○ is almost instantaneous, being a simple forward of a NN (a
finite number of sums and products). A scheme illustrating the benefits of this solution when
applied to closed loop control is shown in Figure 4.17.

The pseudo-code for the solution of Problem 11 is shown in Algorithm 2.

82

4. Optimal control by means of functional approximators

Algorithm 2 Receding-Horizon procedure combined with ERIM, for the solution of Prob-
lem 11.

“Online” RH
Ensure: u○t , ∀t

1: Pre-computew○ = Offline FH(T,X∗
0
,X∗T)

2: loop
3: Measurex∗t , xt
4: Apply u○t = γ̂(xt, x∗t ,w○)
5: end loop

“Offline” FH
Require: T ,X∗0 ,X∗T
Ensure: w̃○ = w○0, . . . ,w○T−1

1: k = 0
2: Initialize w̃(k) randomly or according to some specific technique
3: repeat
4: Generateη0(k), . . . , ηT−1(k) according to their probability density
5: Generatex∗

0
(k), x∗T (k) according to their distribution overX∗

0
,X∗T

6: Initialize x0(k) = x∗0(k)
Forward

7: for t = 0 ∶ T − 1 do
8: Computeut(k) = γ̂(xt(k), x∗T ,wt(k))
9: Computext+1(k) = ft(xt(k), ut(k), ηt(k))

10: Compute
∂ht

∂xt(k) ,
∂ht

∂ut(k) ,
∂ft

∂xt(k) ,
∂ft

∂ut(k)
11: end for

Backward

12: Compute
∂J

∂xT (k)
13: for t = T − 1 ∶ 0 do

14: Compute
∂J

∂ut(k)
15: Compute

∂J
∂xt(k)

16: for i = 0 ∶Wt do

17: Compute
∂J

∂wi
t(k)

18: Update weightwi
t(k)

19: end for
20: end for
21: until Convergence condition is met
22: return w̃○ = w̃(k)

83

Target Controller System

xt

x∗t

x∗t
uRH
t

ηt

xt

γ̂(xt, x∗t ,w○)

Figure 4.17: Using a neural approximation of a RH control law, as described by Problem 11. In
contrast to Figure 4.14, in the online phase the optimization procedure required to find the controls
is no longer needed, since the NN can be pre-trained offline. Thus,u○t = uRH

t = γ̂(xt, x
∗
t ,w

○). The
OHL-NN represented in the box is the same as in Figure 4.4.

4.4 Neural Finite and Receding Horizon regulators for reaching
and tracking

In the following we will state two fundamental motion control problems, which must be im-
plemented in a robot in order to provide reaching and tracking skills.

Let us consider the following robotic scenarios:

1. A humanoid robot is sitting in front of a desk, and looking at some objects: the task
is to choose some objects, pick up them and put them in a box. When it recognizes an
interesting item (for example, because its attentive system labels this item as interesting),
it moves quickly its hand towards the object, thus performing a point-to-point, goal-
directed movement; grasps the object, and with another point-to-point fast movement
put the object inside the box, finally releasing the hand.

2. A humanoid robot is playing in a interaction scenario witha child: the baby wants the
robot to catch his object, so he moves the hand almost randomly in the space, to catch
the robot’s attention. The robot, once recognized the target, moves its hand towards the
moving target, until it catches the target.

The first scenario addresses areachingproblem: the initial position of the end-effector
and the desired target position of the object to reach are known. If the target is in the reachable

84

4. Optimal control by means of functional approximators

space of the robot’s workspace, and a certain movement duration can be estimated, it is possible
to state the reaching problem as a FH optimal control problem.

The second scenario addresses instead atracking problem: the initial position of the end-
effector is known, however the target position is known onlyinstantly (at each measurement),
since it changes rather unpredictably (although smoothly). Moreover, it is hard to cast a pre-
diction on the movement duration: in this case, it is possible to state the tracking problem as
an IH or RH optimal control problem.

In the previous Sections, it was shown how the ERIM can approximate numerically the
optimal solution to such problems. Another advantage of this approach, is that once the struc-
ture of the control functions is fixed (i.e. OHL-NN withν “neurons”), it is possible to switch
from one solution to the other by simply loading a new set of parameters, which is merely a
vector of real numbers. Thus, one can build a “neutral” NN control function on the main board
connected to the robot (i.e. the PC104 for iCub), and then simply load the right set of parame-
ters for any desired control task. Furthermore, not only it is possible to switch from FH to RH
controllers, but also among different FH controllers, where the cost function to minimizeJ has
been chosen to implement different computational motor control models, as the ones described
in Chapter 3. That is one can switch from reaching with the MJM(Section 3.2.1), to reach-
ing with the MTCM (Section 3.2.2), to tracking minimizing a simple quadratic cost function.
Switching can be done online, because the optimal control functions are pre-computed in an of-
fline phase, where the NNs are “trained” with iterative procedures like the ones in Algorithm 1
and Algorithm 2.

Let us now state the problems more specifically.
Let us denote byxr the Cartesian coordinates of the end-effector of the robot,with respect

to a fixed reference frame, byq, τ the corresponding vectors of the manipulator joints coordi-
nates and torques, respectively. Then the forward kinematics isxr = farm(q) ∶ Rnq ↦ R

nx ,
and can be easily retrieved by means of the Denavit-Hartenberg description of the robot kine-
matics [Sciavicco and Siciliano, 2005]. The forward dynamics can be instead described by the
rigid-body dynamics model. We remark that:

• q ∈ Rnq is the vector of joints coordinates, and can be different (conceptually) from the
vector of controlled joints;

• xr ∈ Rnx is usually a vector withdim(xr) = 3,6,7 depending on what is controlled
among the Cartesian coordinates: position only, or position and orientation

The generic Cartesian coordinates of the target are denotedby xg ∈ Rnx. At time instantt, the
robot and target state vectors arexrt , x

g
t .

It is assumed that the following compact model can be used to describe the evolution of the
end-effector with respect to the target, if the controlut acts on the robot:

ξt+1 = f (ξt, ut) , t = 0,1, . . . (4.57)

where at time instantt, ξt is the big state vector, taking values from a finite setΞ ⊆ Rn, andut
is the control vector, constrained to take values from a finite setU ⊆ Rm.

85

γ̂t γ̂t+1

x
g
t x

g
t+1

xrt xrt+1
u○t u○t+1

TT

RR

Figure 4.18: A conceptual scheme, representing the interaction among robot, target, and neural
controls, unfolded in time.T accounts for the “target”, whileR for the “robot”. γ̂t can be either a
FH control law,γ̂(⋅,w○t), wherew○t = wFH

t , or a RH control laŵγ(⋅,w○), wherew○ = wRH.

Remark 12. Here, we keep the problems statement as generic as possible:indeed, we do
not specify neither the nature ofut nor the one ofξt. For example, the control vectorut
can be a velocity joint command, or a joint torque command;ξt can be generically a vector
describing the difference between the current end-effector coordinates and the target ones,
ξt ≜ [xgt − xrt], or a more detailed vector containing position, velocities, acceleration errors,
etc. (e.g.ξt ≜ [xgt −xrt , ẋgt − ẋrt]). Consequently, we do not specify the structure off , that could
be a pure kinematics or dynamics model, or a combination of both.

Assumption 11. The robot kinematics and dynamics model is perfectly known.

Thanks to Assumption 11, it is possible to write Eq. 4.57, where f is perfectly known.
Moreover, thanks to the time invariance of the systemf (and of the cost function),t = 0 can
be considered as a generic time instant. The goal of the reaching control problem is to find,
at time instantt, a sequence ofN optimal controlsu○

0
, . . . , u○N−1 that minimize a suitable cost

functionJ , which is chosen so as to characterize the trajectory of the system stateξi, which is
steered from an initial stateξ0 towards a desiredξ∗.J takes generally the following form

J = N−1∑
i=0

hi(ξi, ξ∗, ui) + hN(ξN) (4.58)

wherehN , hi are partial cost terms. A typical cost structure in automatic controls is:

J = N−1∑
i=0

Pi ∥ui∥2 + Vi ∥ξi∥2 + VN ∥ξN∥2 (4.59)

wherePi, Vi, VN are suitable positive definite weight matrices. Ifξi ≜ xg(t) − xr(t) then
(4.59) penalizes generically the error between the Cartesian coordinates of end-effector and of
the target to reach, at the end and during the whole trajectory (seeVN andVi), along with a
penalty on the amount of “energy” spent for the controls. Some examples of cost functions for
computational motor control models have been presented in Chapter 3.

Then, the neural reaching problem can be stated as follows, as a FH optimization problem:

Problem 12 (Neural Reaching). Given the system of Eq. 4.57, find the vectors of optimal
parametersw○0, . . . ,w

○
N−1 that minimize the cost function

F = E
ξ0∈Ξ,ξ∗∈Ξ∗

{N−1∑
i=0

hi(ξi, ξ∗, γ̂(ξi, ξ∗,wi)) + hN(ξN , ξ∗)}

86

4. Optimal control by means of functional approximators

under the constraints given by the state equation, where controls take on the structureui =
γ̂(ξi, ξ∗,wi) ∈ U ⊆ Rm.

It is remarked that the problem is generalized for any possible initial stateξ0 ∈ Ξ and desired
stateξ∗ ∈ Ξ∗ (i.e. for every possible robot and target’s coordinates), in virtue of the expectation
operatorE. The solution of Problem 12 follows the aforementioned iterative procedure for the
solution ofT -stage FH problems. It is important to point out that once theproblem is solved,
the set of vectorsw○0, . . . ,w

○
N−1 explicitly carry the information about the optimal controllaws.

Incidentally, the solution of Problem 12 allow solving without effort the corresponding
RH problem. Indeed, by making the assumption that at time instant t the target stateξ∗t = 0

will hold for N stages, thus applying a CEP, it is possible to exploit the first FH control law
and apply it as a RH control law, as previously discussed. This method particularly fits to
the tracking unknown/unpredictable targets: the robot assumes the target to retain the current
position whenever a new measurement is available, and movestoward it as if the planned
trajectory would assume it fixed forN stages. A change in the target’s position does not affect
the tracking policy, since at each time instant the target’scoordinates are measured and the
proper control corresponding to a newer trajectory is performed.

Then, the neural tracking problem can be stated as follows, as a RH optimization problem:

Problem 13 (Neural Tracking). Given the system of Eq. 4.57, find the vector of optimal para-
metersw○, being the first among the setw○0, . . . ,w

○
N−1 that minimize the cost function

F = E
ξ0∈Ξ,ξ∗∈Ξ∗

{N−1∑
i=0

hi(ξi, ξ∗, γ̂(ξi, ξ∗,wi)) + hN(ξN , ξ∗)}
under the constraints given by the state equation, where controls take on the structureui =
γ̂(ξi, ξ∗,wi) ∈ U ⊆ Rm.

Oncew○ = w○0 is found, the generic tracking control law is:

u○t = γ̂(ξt, ξ∗t ,w○)
that is a generic, time-invariant closed loop control function.

Since the RH problem exploits the solution of the corresponding FH problem, only the
latter must be solved. The solution of the aforementioned problems is based on the forward-
backward algorithm: Figure 4.18 shows a simple scheme with the “chain” of NN, target and
system blocks, unfolded in time, which are used for computing the optimal parameters (see
also [Ivaldi et al., 2010]).

4.5 Numerical results

In the following, we will discuss some numerical results, where two peculiar systems have
been tested in a variety of problems settings, both in reaching and tracking mode: a 2DOF
robotic manipulator and a 3DOF nonholonomic mobile robot. The aim was to analyze the
performances of the proposed methods on relatively simple nonlinear systems with respect to

87

the growing complexity of the problem. In particular, the idea to use a simple nonlinear system
was inspired by the desire to apply the method directly at joint level control, thus combining
the optimal planning with the low-level task to joint space conversion modules.

Numerical simulations show interesting results: however,even if the proposed methods
show some evident advantages, there are many practical issues which have to be taken into
account, and which we believe could set limitations on the application domain of the methods.
First, the method can manage only theoretically a significant number of parameters without
incurring in the COD, i.e. the exponential growth of the number of parameters with the com-
plexity of the problem, because their growth is actually polynomial [Zoppoli et al., 2001]. But
the number of parameters is still very high, due to the fact that the number of controlsN must
be large enough to provide a plausible sequence of controls,and similarly each NN can pro-
vide sufficient approximation capability for wide class of functions only with large number of
parameters. The second issue is the training complexity, which is a combination of the effects
of the number of parameters, the back-propagation algorithm, and the stochastic gradient. The
third issue is related to the stochastic formulation and theconsequent amount of training data,
and the time required to train the chain. Finally, the initialization of the OHL-NN can play a
role, as a randomized initialization is correct from a theoretical point of view, and is the only
plausible way to initialize the neural network if there is noa priori hypotheses on the structure
of the control laws. If any information on their “shape” is available, it could be useful to ini-
tialize the networks differently, for example with a classical least-squares algorithm. A more
detailed analysis of these defects is reported in Section 4.5.4.

4.5.1 A two DOF manipulator in a planar space

In the following preliminary numerical results concerningthe control of an anthropomorphic
arm are presented. For the sake of simplicity, a two DOF arm isused: the main reason is the
possibility to easily compute both Cartesian and joint coordinates easily, as the forward and
inverse kinematics are known, and asn =m = 2 the manipulator is not redundant. The forward
kinematics of the planar arm is:

xr = l1 cos q1 + l2 cos(q1 + q2)
yr = l1 sin q1 + l2 sin(q1 + q2) .

whereq1, q2 are the joints angles, whilexr, yr the Cartesian coordinates of the end-effector in
theX − Y planar space. A representation is shown in Figure 4.19.

Point-to-point movement with the MJM

With the following numerical example, we want to verify the capability of a chain of neural
networks to approximate a desired control function minimizing a certain cost, upon a desired
accuracy. Here, the “neural controllers” must drive the end-effector from an initial to a desired
position in the robot’s workspace, with initial and final null velocities.

The “neural controllers” must drive the end-effector of a manipulator from any initial po-
sition ξ0 = [x0, y0] ∈ X ⊆ R2 to a final desiredξ∗ = [x∗, y∗] ∈ X ⊆ R2. The initial and final

88

4. Optimal control by means of functional approximators

Y

X
q1

q2

l1

l2

(xr, yr)

Figure 4.19:A simple model of a two DOF planar arm.

velocity must be equal to zero. The MJM has been chosen as a computational model describing
the motion trajectory, and the followingminimum jerkis the cost criterion:

J = ∫ T

0

⎡⎢⎢⎢⎢⎣
(d3xr
dt3
)2 + (d3yr

dt3
)2
⎤⎥⎥⎥⎥⎦
dt (4.60)

As shown in Figure 4.20, the MJM produces bell-shaped, smooth trajectories in the joint space,
while the planar trajectory is almost straight. The known analytical solution has been compared
with the “neural” trajectory: withN = 60, OHL-NN with sigmoidal activation function and
linear output layer, andν = 40, the accuracy in the approximation was very high.

Tracking a point moving unpredictably

An instance of Problem 13 has been stated with the following cost function:

J = N−1∑
i=0

c(ui) + ξTi+1Vi+1ξi+1 (4.61)

whereξi = [xri − xgi , yri − ygi] ∈ X ⊆ R
2, ξ∗ = 0, N = 30, ν = 40, OHL-NNs with sigmoidal

activation function. f was basically a double integrator. Approximately109 samples were
used for the off-line training of the NNs, considering any possible position of both target and
end-effector in the reachable space. The criterion for the task accomplishment in (4.61) is
a tradeoff between the minimization of the energy consumption and the “best” end-effector
proximity to the target during and at the end of the maneuver (it could not be able to reach it
perfectly, as a consequence of the unpredictable behavior of the target or the robot’s intrinsic
physical limits). Weight matricesVi were chosen such as to obtain a reasonable compromise
between the attractiveness of the target and the energy consumption, whereasc(uj,t), j = x, y
is a nonlinear but convex function [Ivaldi et al., 2008c]:

c(uj,t) = α [1
β
ln(2 + eβuj,t + e−βuj,t) − 1

β
ln(4)] , j = x, y (4.62)

which, for large values ofβ approximates the ideal but non differentiable costα ∣uj,t∣, as shown
in Figure 4.22. Of course,uj,t indicates thej-th component of the control at time instantt, i.e.

89

 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x [m]

y [m]

t=0

t=N

0 6030
0

0.1

0.2

0.3

0.4
Cartesian position of the end−effector

time instants

[m
]

0 30 60
−1

−0.5

0

0.5
Cartesian velocity of the end−effector

time instants

[m
/s

]

0 30 60
−0.5

0

0.5

1

1.5

2
Arm joints angle position

time instants

[r
ad

]

0 6030
−2

0

2

4
Arm joints angular velocity

time instants

[r
ad

/s
]

x
y q

1

q
2

x
y

q
1

q
2

Figure 4.20: A minimum jerk planar movement of a two DOF arm: Cartesian andjoints position
and velocity are shown, as well as samples of the planar trajectory. The neural approximation and
the analytical solution [Flash and Hogan, 1985] are almost coincident (MSE≅ 10−7).

90

4. Optimal control by means of functional approximators

 0.25 0.2 0.15 0.1 0.05 0

0

0.05

0.1

0.15

0.2

0.25

x [m]

Robot trajectory in the x−y plane.

y [m]

end-e!ector

target

(t=0)

t=N

 (t=0)

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25
Cartesian position of the end−effector

time instants

[m
]

x
y

0 20 40 60
−0.04

−0.02

0

0.02

0.04
Cartesian velocity of the end−effector

time instants

[m
/s

]

x
y

0 20 40 60
0

0.5

1

1.5

2

2.5
Arm joints angle position

time instants

[r
ad

]

q
1

q
2

0 20 40 60
−0.15

−0.1

−0.05

0

0.05
Arm joints angular velocity

time instants

[r
ad

/s
]

q
1

q
2

Figure 4.21:The end-effector of a two DOF arm, tracking a point moving in an unpredictable way
on a planar space.

91

ut. Moreover,Vi = diag(1.0,80.0,5.0, 10.0), i = 0, . . . ,N − 1, VN = 40I (beingI the identity
or unit matrix), whileα = 0.01 andβ = 50. In Figure 4.21 the end-effector, starting still in
a certain position, tracks a target moving unpredictably inthe space. Cartesian coordinates as
well as joints coordinates (for the two DOF) during the movement are shown. It is worth noting
that although the target dynamics is quite fast, and the end-effector was initially “far” from the
target, the arm follows the moving point with reasonable performances.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

c(u
j i
)

u
j
i

Figure 4.22: The cost function (4.62), withK = 0.01 andβ = 50.

F

x

y

Tθ

u1

u2

d

Figure 4.23:The mobile robot described by Eq. 4.63.

4.5.2 A three DOF nonholonomic mobile robot in a planar space

A nonholonomic mobile robot moves on a planar space. The robot position with respect to the
coordinate system is described by the Cartesian coordinates in the spacex,y and by the angle
θ of its axis of symmetry with respect to thex axis (see Figure 4.5.1). On the robot sides two
couples of thrusters, aligned with the axis of symmetry, aremounted at constant distanced,
and can be modulated so as to obtain the desired intensity of the forceF and the desired torque

92

4. Optimal control by means of functional approximators

C by which to control the robot motion. The thrusts identify the two controlsu1 andu2:

F = (u1 + u2)e =mẍ

C = (u1 − u2)d = Jθ̇ (4.63)

Massm and moment of inertiaJ are assumed to be constant during the maneuver. The system
stateξ is then composed of six variables,ξ = col(x, ẋ, y, ẏ, θ, θ̇), and the nonlinear differential
dynamic of the robot is:

ξ̇1 = ξ2, ξ̇3 = x4, ξ̇5 = ξ6 ,
ξ̇2 = 1

m
(u1 + u2) cos ξ5 , ξ̇4 = 1

m
(u1 + u2) sin ξ5 , ξ̇6 = d

J
(u1 − u2)

subject to constraints to the maximum allowed thrust values: ∣ui∣ ≤ U, i = 1,2.
Let us now denoteξt ≜ ξ(t∆t), ut ≜ u(t∆t), where∆t is the sampling period, obtained

by dividing the durationT of the maneuver intoN discrete stages. As done before, thej-th
component of vectorsξt, ut is denoted byξj,t, uj,t. Then a discrete-time version of the system
can be obtained by using a first-order Euler’s approximation:

ξ1,t+1 =ξ1,t +∆t ξ2,t

ξ2,t+1 =ξ2,t +∆t
1

m
(u1,t + u2,t) cos(ξ5,t)

ξ3,t+1 =ξ3,t +∆t ξ4,t

ξ4,t+1 =ξ4,t +∆t
1

m
(u1,t + u2,t) sin(ξ5,t)

ξ5,t+1 =ξ5,t +∆t ξ6,t

ξ6,t+1 =ξ6,t +∆t
d

J
(u1,t − u2,t)

which can be written in a more general and compact form as

ξt+1 = f(ξt, ut) , t = 0,1, . . . ,N − 1
whereξt may take values from a finite setXt ⊆ R

n, while ut is constrained to take values
from a finite setUt(ξt) ⊆ Rm (related to the physical limits of the thrusters). The desired robot
configuration at instantt is denoted byξ∗t : a desired trajectory to track can be described by the
sequence of vectorsξ∗

0
, . . . , ξ∗N .

It is important to remark that the linearized models of such nonholonomic systems are not
controllable. So far a number of control strategies have been proposed. In [Aicardi et al., 1995]
a Lyapunov stabilizing control law was proposed, while in [Gu and Hu, 2005] a switching con-
troller was presented, based on a Lyapunov-like function, gathering stability over a receding
horizon. In [Parisini and Zoppoli, 1995] a receding horizoncontrol strategy was introduced,
which was based on the use of neural approximators: in particular, the generalized control law
was found as the best interpolation of a set of optimal deterministic controls, within a specific
training set.

93

A reaching problem over a Finite Horizon

We address the problem of regulating the planar robot in Figure 4.5.1, that is to steer the robot
towards a target positionξ∗ from any initial one, by minimizing a certain cost function,which
generally takes into account the fuel consumption and the maneuver accuracy. The criterion for
the task accomplishment is a tradeoff between the minimization of the fuel consumption, taken
into account by a general nonlinear convex functionc(ui,t), (i = 1,2), and the “best” robot
proximity to the target at the end of the maneuver (it could not be able to reach it perfectly, as
a consequence of the robot’s intrinsic physical limits):

J = N−1∑
t=0

c(u1,t) + c(u2,t) + ∥ξ∗t+1 − ξt+1∥2Vt+1
(4.64)

As previously done for the manipulator example, the weight matricesVt are chosen so as to
obtain a reasonable compromise between the attractivenessof the target and the fuel consump-
tion. More specifically, we usedN = 10 control stages inT = 10 (so∆t = 1.0); moreover
Vt = diag[1,0.1,40.0,0.1, 40.0,0.1], for t = 1, . . . , T − 1, andVN = diag(40.0). c(ui,t) has
been indeed designed to be realistically proportional to the thrust, and approximate at the same
time the ideal but non differentiable costK ∣ui,t∣: again, we used Eq. 4.62, withK = 0.01 and
β = 50. The control functions were implemented by OHL-NN, using12 inputs variables (6
from ξt and6 from ξ∗t) andν = 80 neural units in the hidden layer.

A tracking problem over a Receding Horizon

There are many applications of mobile robots following a target: for example, when they must
follow a human as their leader. To this purpose, a RH regulation problem can be stated. As done
for the 2 DOF, an instance of Problem 13 has been stated. Again, the general RH control law
can be easily found after the solution of the equivalent FH regulation problem, which is stated
for any possible robot and target configuration. In detail, aset ofL admissible configurations
of both robot and target,xr andxg were generated, then fed to the iterative algorithm for the
computation of the optimal parameters of the approximatingNNs. Note that formulating the
problem as a regulation one, the system state (i.e. the difference between robot and target) is
steered to the origin of the state space: this brings the advantage to halve the number of inputs
to the NN, as already discussed in Figure 4.12. In the following numerical examples, the cost
is the same as in (4.64),N = 30, ∆t = 1s and the OHL-NNs haveν = 80 neurons.

Figure 4.25 shows some FH trajectories, after≈ 106 training steps, which have been used
to provide the solution to the RH problem. It must be remarkedthat the entire workspace was
sampled to get a suitable set of configurations for both robotand target, but in the regulation
problem the goal is to bring the difference between the robotand the target configuration to
zero, that is why the trajectories are directed towards the origin of the Cartesian space. The
starting points are found after computing the difference between the robot and the target’s con-
figuration (both position and velocities). To keep the plotsas clear as possible, each trajectory
is shown in the planar space, and corresponding positions and velocities are shown. It is evident
from Figure 4.25 that the training phase was not sufficient toapproximate the global optimal
solution: some trajectories in fact are not perfect as expected in the proximity of the origin

94

4. Optimal control by means of functional approximators

0 5 10 15 20

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

Robot trajectory in the x−y plane.

1 2 3 4 5 6 7 8 9 10 11
−5

0

5

10

15

20

25

time
x−

y
co

or
di

na
te

s

Robot trajectory and target− x−y coordinates.

x(t): robot
x*(t): target
y(t): robot
y*(t): target

(a)

0 5 10 15 20

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

Robot trajectory in the x−y plane.

1 2 3 4 5 6 7 8 9 10 11
−5

0

5

10

15

20

time

x−
y

co
or

di
na

te
s

Robot trajectory and target− x−y coordinates.

x(t): robot
x*(t): target
y(t): robot
y*(t): target

(b)

Figure 4.24: Optimal trajectories fromξ0 ∈ Ξ0 to x∗ ∈ Ξ∗. In particular,Ξ0,Ξ
∗ accounts for

any possible configuration of the robot (in terms of position, velocity and orientation) on the two
platforms.4.24(a), (x0, y0) = (0.0,2.0) and(x∗, y∗) = (20.0,−2.0), orientation and velocities are
null. 4.24(b)(x0, y0, θ0) = (1.3,2.0,0.523596) and(x∗, y∗, θ∗) = (20.0,−2.0,−0.087266), but
the robot starts with a velocity which is in opposite direction with respect to the target,ẋ0 = −1.0,
and arrives with a non-null velocitẏx∗T = −2.0.

95

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x [m]

y
[m

]

0 10 20 30
−2

−1

0

1

2
Cartesian x

P
os

it
io

n
[m

]

0 10 20 30
−2

−1

0

1

2
Cartesian y

0 10 20 30
−0.4

−0.2

0

0.2

0.4

time instants

V
el

oc
it

y
[m

/
s]

0 10 20 30
−1

−0.5

0

0.5

1

time instants

Figure 4.25: FH neural trajectories, where the difference between the robot and the target’s con-
figuration is driven to zero inN steps. Each trajectory is found using the outcome of a sequence
of N neural control functions, after106 training steps and as many robot and target samples. The
red circles are the starting points in the Cartesian space. Some examples of FH trajectories in the
planar space are shown.

96

4. Optimal control by means of functional approximators

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x [m]

y
[m

]

0 20 40 60 80
−2

−1

0

1

2
Cartesian x

P
os

it
io

n
[m

]

0 20 40 60 80
−2

−1

0

1

2
Cartesian y

0 20 40 60 80
−0.4

−0.2

0

0.2

0.4

time instants

V
el

oc
it

y
[m

/
s]

0 20 40 60 80
−1

−0.5

0

0.5

1

time instants

Figure 4.26: RH neural trajectories, using the first neural control function of the FH set in Fig-
ure 4.25. The same starting points for the trajectories are shown. Here, only the first neural con-
troller of the ones used in Figure 4.25 is used to generate theRH control at each time instants.
The numerical simulation shows the effect of the RH control law for a longer time with respect to
the fixed horizon used to compute the control functions. Remarkably, the RH controllers are still
“active”, though generating null controls, when the targetis reached by the robot.

97

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y
Robot trajectory in the x−y plane.

1

2

3

0 50 100
−2

−1

0

1

2
RH position x

0 50 100

−2

−1

0

1

RH position y

0 50 100
−0.2

−0.1

0

0.1

0.2

0.3
RH velocity x

0 50 100
−0.5

0

0.5

1
RH velocity y

Figure 4.27:The RH controller applied to a mixed tracking/reaching task: the robot moves toward
a target which arbitrarily and suddenly changes its position in the state space in an unpredictable
way. This case is representative, for example, of the following situation: the mobile robot exploring
its workspace (i.e. a room) and while its attentive systems continuously looks for interesting objects
that the robot must pick up and take somewhere else.

98

4. Optimal control by means of functional approximators

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Robot trajectory in the x−y plane.

0 50 100
−1

−0.5

0

0.5

1
RH position x

0 50 100 150
−1

−0.5

0

0.5

1
RH position y

0 50 100
−0.05

0

0.05

0.1

0.15
RH velocity x

0 50 100
−0.05

0

0.05

0.1

0.15
RH velocity y

Figure 4.28: The RH controller applied to a tracking task: the mobile robot follows a target, as-
suming a totally unpredictable motion. (even if here, for the sake of simplicity, the target trajectory
here is a simple circle. This case is representative, for example, of a mobile robot following a
moving target, according to a predator-prey paradigm.

99

(as optimality suggests). This is a common problem when training the chain of neural net-
works (see hereinafter the discussion in Section 4.5.4): possible causes can be the insufficient
number of training iteration, or simply the fact the stochastic gradient algorithm stopped at a
local minima and both gradient and descent step cannot make the cost lower any further, and
consequently enhancing the performance of the neural controls. However, dealing with RH,
only the first control law is used and the solution of the FH is only preparatory (i.e. we need
to solve the complete chain of neural networks, but once found we retain the first and discard
the remaining) so it is possible that even if some control laws are not “optimal” the one needed
for the RH is already “trained”. This is also a consequence ofthe learning algorithm, which
makes the first neural networks in the chain train faster withrespect to the last ones. In fact
Figure 4.26 shows the trajectories produced with the RH technique, using the first neural con-
troller of the ones used for the FH trajectories in Figure 4.25. It must be noticed that the time
to reach the origin of the planar space is approximately the same of the FH case, and the shape
of the control function is similar also. However, it is important to put in evidence that the RH
controller remains “active” even when the target is reached: thus, if the robot has reached the
target, it keeps controlling even if the difference betweenthe two vectors is zero. The latter is
an important property, since it shows (in this regulation example) thatγ○(0) = 0.

Finally, Figures 4.27 and 4.28 show the RH controller applied in two different tracking
tasks: a multiple reaching case and a pure tracking task, where the target is moving unpre-
dictably.

4.5.3 A two DOF arm actuated by elastic joints

We consider the following system, describing an arm actuated byn flexible/elastic joints:

{ M(q)q̈ +N(q, q̇) +K(q − θ) + J⊺(q)f = 0
Bθ̈ +K(θ − q) = τ (4.65)

where for then elastic joints,q ∈ R
n and θ ∈ R

n are the generalized coordinates of the
driven links and actuators. A simplified model is assumed, whereB = diag(b1, . . . , bn) is
the inertia matrix of the actuators,τ ∈ Rn are the motor torques.M(q) is the inertia ma-
trix of the manipulator links, whileN(q, q̇) contains the centrifugal, Coriolis and gravity
forces. f is a generic external force field, e.g. a divergent force field, perceived by the end-
effector.K is the stiffness matrix, generally symmetric and definite positive: here, we assume
K = diag(k1, . . . , kn), ki > 0∀i. Given the invertibility of the mass matricesM,B, Eq. 4.65
can be written as:

{ q̈ = −M−1(q)N(q, q̇) −M−1(q)K(q − θ) −M−1(q)J⊺(q)f
θ̈ = B−1τ +B−1K(q − θ) (4.66)

which is a control-affine system of the form

ẋ = a(x) + b(x)u + c(x)f (4.67)

where the system state vectorx and the control vectoru arex = col(q, q̇, θ, θ̇) andu = col(k, τ)
respectively. Of course, (4.67) is in continuous form, and it is straightforward to find its

100

4. Optimal control by means of functional approximators

discrete-time form, for example by applying an Euler’s discretization algorithm. The discrete-
time state vector is thenξi = col(qt, q̇t, q̈t, θt, θ̇t, θ̈t), t = 0,1, . . . ,N −1, while the control vector
is ut = col(kt, τt), t = 0,1, . . . ,N − 1, and the generic state equation is

ξt+1 = ã(ξt) + b̃(ξt)ut + c̃(ξt)ft , t = 0,1, . . . ,N − 1
Here, the following situation is considered: a two DOF arm (n = 2), performing point-to-

point movements with fixed and known initial and final positions. In this example, all joints
have variable stiffness, thusK is not constant, but in general is a function of timeK = K(t).
Indeed, joint stiffness can change in response to differentcommands from the robot control
system, as a function of the system configuration or of some motion criteria. The goal is to find
the optimal torque and stiffness profiles that drive the arm from a known initial poseξ∗0 to a
desiredξ∗N in N stages, while minimizing a given cost functionJ :

J = N−1∑
i=0

Ru2i +Q ξ2i +QN ξ2N

whereR,Q,QN are suitable weight matrices.
This motor control problem is formulated as a FH neural reaching problem, described by

Problem 12. The OHL-NN approximating the control laws have6n = 12 inputs and2n = 4

outputs. The following parameters were used to describe thearm dynamics:

• mass:m1 = 1.4, m2 = 1.1
• link length: a1 = 0.3, a2 = 0.33
• link COM: l1 = 0.11, l2 = 0.16
• link inertia: I1 = 0.025, I2 = 0.045

MoreoverB = I, while friction has been neglected (or considered null).
Figure 4.29 shows a suboptimal solution, for the caseN = 15, with ∆t = 0.1s. Controls

were generated byN OHL-NN with ν = 5. The cost weights areQ = diag[1,1,0.0001,0.0001, 0, 0],
QN = Q, R = diag[0.001]. The stiffness profile is highlighted: notably, its variation during the
movement recalls co-contraction, that is the human abilityto change intrinsic musculo-skeletal
compliance. This feature is crucial when dealing with uncertainties and unpredictability in the
model.

4.5.4 Discussion of methods and results

The proposed method is effective and has several advantages, in particular in the capability
of providing approximating optimal control functions which can be used to implement closed
loop control in limited processing and resource machines. The ERIM is potentially capa-
ble of managing difficult problems, and the only requirements, preventing its application to
FH and RH problems, are the differentiability of all the items involved in the optimization
problem (state and cost functions, controls, constraints)and the sufficient smoothness of the
control functions to be found. However, its effectiveness is evident only if the complexity
of the problem is “small”. It is true that other nonlinear optimization methods show simi-
lar limitations when dealing with NMPC schemes. However, two are the main drawbacks.

101

−0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

start

end

tt

x

y

0 5 10 15
0

10

20

30

time instants

jo
in

t
st

i!
n

e
ss

 [
N

m
/r

a
d

]

k1

k2

0 5 10 15
−20

−10

0

10

20

time instants

jo
in

t
to

rq
u

e
s

[N
m

]

τ1

τ2

Figure 4.29: A point-to-point neural suboptimal trajectory, for a 2DOF arm actuated by elastic
joints. The graphs show the control trajectories of variable joint stiffness and torque.

102

4. Optimal control by means of functional approximators

First the optimal solutions are approximated: local as wellas global optima are possible,
and it is not possible to distinguish a local from the (or a) global solution during and after
the training phase. Second, the stability of the weight update cannot be guaranteed, since
a precise analytical condition is missing. It is possible topartially overcome these two is-
sues in practice by re-training the chain of neural networksmultiple times, with different
values of its update parameters, i.e. changing the learningstepsize, the initialization rule
of weights and biases, etc. This approach has been adopted also for Neural Dynamic Opti-
mization [Seong and Widrow, 2001a, Seong and Widrow, 2001b,Seong and Widrow, 2001c],
which face the same issues (the two methods are similar). In practical terms, many issues oc-
cur, and cannot be neglected since the method has been presented as a universal one and one of
the most convenient in solving such optimization problems.

The “curse of dimensionality”

The ERIM is preferred over DP because it can manage a significant number of parameters
without incurring in the COD, i.e. the exponential growth ofthe number of parameters with
the complexity of the problem. In Section 4.2, the polynomial growth with respect to the
number of parameters was discussed.

The number of parameters to handle is but considerable, and is due to the following facts.

• A plausible sequence of controls must be provided. The numberN of neural networks
constituting the “chain” and providing controls at each time instant (t, t+1, . . . , t+N −1)
must be chosen considering a finite-time movement (i.e. steering the robot from a starting
configuration to a final one) and the controls frequency. Two issues arise. If the frequency
is high, i.e. ∆t is in the order ofms, hundreds or thousands of time instants must be
considered, each corresponding to a “neural” element in thechain.

Example 2. The end-effector must perform a movement inT seconds, and controls are
sent each∆t ms. For ∆t = 5ms andT = 1,5,10,20s the number of “neural” elements
in the chain is200,1000,2000, 4000 respectively.

The second problem is the fact that the duration of the longest movement should be
considered in order to set the FH problem properly: unfortunately, the maximum duration
cannot be predicted a priori, because it can be context or task dependent (e.g. if you want
to catch a moving object, the movement is fast and can last fewseconds; conversely a
precise pre-grasp movement can last many seconds). In particular, for a FH controller it
is fundamental since a too small number of controlsN could lead to control sequences
which are not able to drive the end-effector to the desired position correctly.

• The NN must have a sufficient number of parameters to approximate correctly the de-
sired optimal control function. In our framework, the function γ to be approximated
is the unknown. With the ERIM, we constrain the function to take on a parameterized
structure, such that the NN can approximate any possible desired function, but there is
no indication on the nature nor on the “shape” of the admissible control function. The
underlying assumption is that the control function is continuous and differentiable, so

103

that it can be approximated by the NN: in general, the smoother the function, the easiest
the approximation (i.e. less parameter are necessary to approximate it).

Example 3. Suppose a polynomialy(t) = ∑N
i=0 cit

i is used to interpolate a functionf(t)
from noiseless data. If the function is a line, theoretically then only two parameters are
necessary, as it can be described by the equationy(t) = c0 + c1t. If the function is a
cubic, then more are necessary, beingy(t) = c0 + c1t + c2t2 + c3t3. The more complex
the function, the more parameters are necessary.

Remark 13. Some functions are “hard” to approximate with few parameters, e.g. Heav-
iside’s step function, Dirac delta-like splines. In general, rough derivatives require more
parameters, or more basis functions.

A specific theorem assessing the number of parameters of an OHL-NN necessary to
approximate a certain function does not exist. However, bounds exist and are mainly
related to the smoothness properties of the function to be approximated.. If there are no
a priori hypothesis on the “shape” of the control functions, and onlydifferentiability is
assumed, then the number of “neurons” for each OHL-NN must bechosen according
to some practical heuristics. For example, one can solve multiple instances of the same
problem, augmenting the number of parameters progressively until certain performances
are met.

In general, given an OHL-NN withν neurons,n inputs,m outputs, the total number of
parameters isNν = (n + 1)ν + (ν + 1)m. The “chain” used to solve a FH problem contains
T /∆t neural elements. In this configuration the total number of parameters is:

Ntot = TNν

∆t
= T (n + 1)ν + T (ν + 1)m

∆t
(4.68)

which grows linearly withν. Still, its growth is not negligible with the problem complexity,
and even for a simple problem (like the control of a two or three DOF robot) it is enough large
to invoke a COD issue. A graphical representation of the growth of the number of parameters
Ntot with respect to the problem complexity is shown in Figure 4.30: it can be clearly seen that
in a practical situation where∆t = 5ms,T = 10s andν = 200, the total number of parameters
is about 4 millions!

Training a chain of neural networks is “hard”

Another drawback is the training complexity, which is a combination of the effects of the
number of parameters, the back-propagation algorithm, andstochastic gradient. For the sake
of simplicity, the stochastic element will be discussed later on, and here the focus is only on
the back-propagation algorithm. Denoting asoF , oB the number of operations required for a
single forward and backward phase (on a single NN) respectively, T /∆t the number of neural
elements in a chain, andK the number of iterations of the algorithm to compute the optimal
parameters, the total number of operations for the trainingphase is:

otrain = T K

∆t
(oF + oB)

104

4. Optimal control by means of functional approximators

which encounters the same problem mentioned for the growth of Ntot. Moreover, since the
algorithm autonomously stops only if the global optimum is reached, or a local one has been
reached and a certain stop condition is verified, the number of iterationsK is practically un-
known, but usually very large. In addition, there is not the guarantee that a single instance of
the learning algorithm (one “shoot”, i.e. one instance given the random initialization of the
parameters and a specific data set) can lead to the solution: actually it is common practice to
“re-train” the chain multiple times, changing the learningparameters, e.g. changing the descent
rule, the regularization terms, etc., or launching in parallel multiple shoots of the optimization
algorithm. Sometimes the neural networks are “stuck”, immovable in flat regions where the
cost function has a very smooth gradient, so that even considerable changes in the stepsize do
not lower the cost. This is a known problem in literature [Gori and Tesi, 1992] and so far a
number of heuristics have been suggested, like simulated annealing techniques which basically
perturb the descent. However, in a stochastic context the gradient is already “perturbed” and
sometimes these techniques are not of any use, like discussed in [Spall, 2003].

Training a chain of neural networks in a stochastic context is “harder”

If training a chain of neural networks and system blocks is hard in a deterministic context, it is
even harder to do it in a stochastic context. Difficulties areevident in the simplest case when
only the initial state is stochastic, i.e. the initial statetakes values from a finite set,ξ0 ∈ Ξ0,
according to a certain known distribution:

• Because of stochastic steepest descent, it is not guaranteed that the expected costF
always decreases during training. Recalling the stochastic gradient technique from Sec-
tion 4.2.3, since∇F cannot be computed exactly, the gradient coming from a single
realization of the stochastic variables is used. This meansthat at each iteration step a
“perturbed” gradient is used, instead of the correct one. Itis possible to use a better
approximation of the gradient, computing its expected value over a certain numberM of
realizations of the stochastic variable, i.e.

∇J̄ ≈ 1

M

M∑
h=1

∇J (η̃(h),w(k))
where at iteration stepk, for the current weightsw(k), M realizations of the stochastic
variables vector̃η are computed, and forward and backward phases are performedon the
chain of neural networks with fixed parametersw(k), so that it is possible to compute
an average of all the partial derivatives. Obviously,M must be set balancing the benefits
of a better gradient with the computational burden which is introduced by makingM
additional forward-backward phases. Additional ways to address the problem of global
minima of stochastic functions can be found in [Spall, 2003].

• A large number of training, test and validation data is required. The cost functional
depends on a set of stochastic variables, whose probabilistic distributions are known.
Thus, a significant amount of data is required, because we need to sample properly the
whole space of stochastic parameters. If, as frequently happens, the stochastic variable is

105

the initial (or desired) system state (or both), then a suitable sampling of the state space is
required, taking into account the dimension of the space as well as the resolution (i.e. the
minimum distance for which two samples are considered as “different”) and the samples
distribution.

Example 4. Consider a state space of unitary dimension (n = 1) where the state variable
θ is an angle, e.g. defining the orientation of a mobile robot with respect to a fixed frame.
The variable range is[0,2π]. Calling θs the sampling resolution, the number of samples
(if the sampling is uniform) isNsamples = 2π

θs
. If the dimension of the state space is

n, supposing all the variables are of the same type, then the total number of uniform

samples isNsamples= [2πθs]n. A graphical representation is shown in Figure 4.31: note

that in a practical situation where for examplen = 6 andθs = π/180, Nsamplesis in the
order of1015!

In general, if the dimension of the state space isn andM the number of samples in a
single dimension (supposing the same number of samples for each state variable), the
total number of samples is at leastNsamples= Mn. The quality of the data set may
also influence the learning phase. Not only a significant number of data is required,
but the sampling type may also affect the training process. In [Fumagalli et al., 2010a]
a dissertation on the difference between uniform sampling and random sampling for
different machine learning methods was presented. In particular, a random sampling
method was compared to a selective one, where a certain “sparsity” of the training set
was guaranteed taking a subset, such that the inter-sample distance (computed as the
Euclidean distance between the two samples in the standardized input space) was at
least bigger than a certain threshold. Experimental results showed that the two methods
perform identically for large training sets: the difference between the two was evident
only for small amounts of data (very small, considering the problem dimension). A plot
about such performances is shown in Figure 4.32.

Initialization of the NN affects the optimization algorith m

Finally, the initialization of the networks certainly plays a role. A randomized initialization is
“correct” from a theoretical point of view, since it provides an unbiased starting point for the
steepest descent algorithm: having multiple shootings (i.e. multiple instances of the learning
algorithm, for different randomized initial conditions) enhances the chance to lead to the global
minima avoiding the local ones. However, if there exist hypotheses on the “shape” of the con-
trol laws, it is possible to exploit such information to “pre-shape” the approximating networks,
e.g. to initialize with a suboptimal solution. In this case,a classical Least Squares algorithm
can be used to train the NN [Hagan and Menhaj, 1994], which consists of the following steps:

1. Generate (or measure)L different stochastic variables, such as desired stateξ∗ ∈ Ξ∗:
ξ∗(0), . . . , ξ∗(L − 1).

2. For each realizationξ∗(`), solve the corresponding T-stage optimal control problem
(which is deterministic, if the stochastic variables are fixed) and find the deterministic
sequence of optimal controlsu0(`), u1(`), . . . , uT−1(`)

106

4. Optimal control by means of functional approximators

3. Train theT neural networks with a least-square based method: that is, train thet-th
neural network with the training set{(ξt(0), ut(0), . . . , (ξt(L − 1), ut(L − 1))}

At the end of the aforementioned procedure, each NN is initialized so as to minimize the least-
square error between its prediction and the output from the training set. Basically, this method
simply initialize the network with a suboptimal solution found with a supervised learning tech-
nique.

107

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

15
x 10

6

ν

N
to

t

T = 1s T = 5s T = 10s T = 20s

Figure 4.30: The growth of the total number of parameters to be optimized,Ntot, with respect to
the FH problem complexity: the number of neuronsν, the duration of motion (in seconds)T . Here,
∆t = 5ms,n = 6,m = 2.

0 1 2 3 4 5 6 7 8 9 10
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

10
50

θs [degrees]

N
sa

m
p
le

s

n = 1 n = 4 n = 6 n = 8 n = 14

Figure 4.31: The growth of the number of data samples, when the variable isan angle, and its
range[0,2π] is uniformly sampled. The number grows exponentially with the dimension of the
data spacen. Note that they axis has a logarithmic scale.

108

4. Optimal control by means of functional approximators

100 100060 5000500 2000200

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Training set dimension

N
M

S
E

Random
Euclidean PVA
Euclidean P

Figure 4.32: Comparison of random and selective subsampling based on standardized Euclidean
distance. This image is taken from [Fumagalli et al., 2010a], where the input space of a simple
mapping problem (mapping joints position, velocities and accelerations with forces and torques
measured by a proximal sensor) was randomly or uniformly sampled. EuclideanP and Euclidean
PV A denote subsampling based on Euclidean distance in the standardized input space (using
only position or using position-velocity-acceleration).The performance index was the Normal-
ized Mean Squared Error (NMSE) computed on a common validation set. The evidence is that the
two different subsampling strategies are equivalent for large training sets. The Euclidean-based
sampling outperforms for small data-sets, while the two methods perform nearly identically with
the increase of the data-set.

109

110

Chapter 5

Motion control on humanoids

5.1 A closed loop control scheme

In Section 4.4 a general approach foroptimal neural motor controlwas presented. More pre-
cisely, it was shown that a neural approximation of FH and RH control laws can be exploited
for optimal planning in a tracking/reaching control scheme, satisfying some performance cri-
terion. It was shown that it is possible to concentrate all the resource demanding computations
in an offline phase, and to retrieve almost instantly the controls online, taking into account the
feedback on the current status of the system.

In Section 4.5 several examples for different robots were presented. Trajectories were con-
veniently planned in the task space (e.g. the Cartesian space), and the optimization procedure
provided the optimal control laŵγ○ (and consequently controlsu○(t)), either found using a
FH or RH paradigm, and the optimal system state trajectory. An example of planning in joint
space was also discussed, where the dynamics of the robot wasfundamental to the task.

In this chapter we will discuss how to combine the neural optimal motion planning with a
humanoid robotics control scheme. As anticipated in Chapter 2, most humanoids robots can
be controlled through a series of control layers, where different control loops are integrated.
In particular, two are the principal methods to control the robot from a “high” level: sending
joint velocity commands, or joint torques commands. At lower level (i.e. on the boards) each
control type is converted into suitable commands for the actuators, but let us just consider
the aforementioned controls as the ones “supported” by the platforms and their architecture
without entering into the details of the low level control.

In the above control problems, it was assumed that the desired trajectory was expressed in
the joint space or in the task space, and in the latter case that an equivalent description in terms
of joint positions, velocities and acceleration was implicitly available. In humanoids robotics,
if the desired trajectory for the end-effector is specified in the operational space, it is necessary
to interpose some Inverse Kinematics (IK) module to transform operational space references
into the corresponding joint space references. If torque control is enabled, a Forward Dynamics
(FD) module can further translate them into suitable joint torque commands.

In Figure 5.1, a conceptual scheme combining the neural planning module with IK and
FD is shown (where iKin and fDyn represent the IK and FD modulerespectively). Both IK

111

and FD can be learned from experimental data, or estimated ifan accurate model of the robot
kinematics and dynamics is available. Before entering intothe detail of these modules, let us
briefly overview the main operation they perform.

Let us denote byx ∈ Rm the position and orientation of the end-effector and withq ∈ Rn the
joint angles of the robotic manipulator. The forward kinematics can be generically indicated
by x = K(q), while its inverse relation isq = K−1(x). The Jacobian of the manipulator is
J ∈ R6×n, such thatẋ = J(q)q̇.

The IK module “translates” the desired Cartesian velocities of the end-effector into proper
joint velocity commands This can be easily done by either Jacobian inverse control or Jacobian
transpose control, as discussed in [Sciavicco and Siciliano, 2005]. Here we adopt a Closed
Loop Inverse Kinematics Controller (CLIK), in the form:

q̇∗ = J†v + (I − J†J)q̇a
whereJ† is a regularized damped Least Squares pseudo-inverse of theJacobianJ ; q̇a an ar-
bitrary joint velocity vector projected in the null-space of the Jacobian matrix by the operator(I − J†J) (I is the identity matrix). The use of the regularized pseudo-inverse rather than the
inverse of the Jacobian is motivated by the singularity of some configurations of the manipula-
tor and its redundancy properties. For redundant manipulators, wheren > m, the solutions to
the latter equation are not unique (if they exist), that is there can exist multiple joint configura-
tions corresponding to the same end-effector position (andorientation) in the space. Secondary
tasks projected in the null-space of the Jacobian are usually exploited to choose among the
possible admissible configuration, solving the redundancyproblem. A scheme illustrating how
the neural network copes with the CLIK controller is shown inFigure 5.2.

The FD module generally estimates the joint torque commandsfrom the desired joint confi-
gurations, including position, velocity and acceleration. If the manipulator dynamics is known,
the dynamic equation describing an-link robot manipulator (according to the standard rigid
body model) is:

B(q)q̈ +C(q, q̇)q̇ + Fv q̇ + Fs sgn(q̇) + g(q) = τ − J⊺(q)h (5.1)

where:

• q ∈ Rn are the variable joint angles, andq̇, q̈ ∈ Rn respectively denote the joint velocities
and accelerations

• B(q) ∈ Rn×n is the inertia or mass matrix
• C(q, q̇) ∈ Rn×n is the Coriolis matrix
• Fv ∈ Rn×n is the diagonal matrix of viscous friction coefficients
• Fs ∈ Rn×n is the diagonal matrix of static friction coefficients (Fs sgn(q̇) is a simple

model of Coulomb friction torques)
• g(q) ∈ Rn the gravitational forces
• τ ∈ Rn the control torques to each joint
• J(q) is the Jacobian matrix
• h is the vector of forces and moments exerted by the end-effector on the environment (if

there is no interaction, it is simply null)

112

5. Motion control on humanoids

The computation of joint torques per se is not an issue, if a precise dynamics model (e.g. a
rigid body model) of the manipulator is known (which can be found for example from the
CAD model of the robot). The key point is whether a joint torque feedback is available on the
robot in order to implement joint force or torque control: ifthis feedback is not available, it is
possible to “cancel” the FD module and command exclusively in the joint velocity space.

The remainder of the chapter is organized as follows. In Section 5.2, the IK module is in-
troduced, along with a detailed description of the CLIK method. In Section 5.4, the FD module
will be discussed. In particular, since iCub is not yet provided with joint torque sensing capa-
bilities, Section 5.4 will also illustrate a method to estimate joint torques from a set of inertial
and force/torque sensors, which has been used to enable suchcontrols. Finally, Section 5.5 will
show some experimental results.

Planning
Task

Optimal iKin fDyn ROBOT
J x∗, ẋ∗ q̇∗, q̈∗ τ∗

Figure 5.1: A conceptual scheme of a classic layered/hierarchical control scheme for robotics. The
task parameters, such as the control function to be minimized, the current status of the robot, the
task goal etc. are fed to the optimal planner, which computesthe optimal trajectory, typically in
the operational space (e.g. Cartesian space). Desired velocity in the operational space is converted
into desired velocity in the joint space, by means of an Inverse Kinematic layer. Joint velocity
commands can be converted into joint torque commands (if therobot architecture support torque
control) by a Forward Dynamics layer. In this scheme, feedback loops are not voluntarily depicted.

5.2 Closed Loop Inverse Kinematics

Given a desired trajectory for the end-effector, computed by the optimal neural controller and
denoted byx∗(t), with its velocity profileẋ∗(t), Cartesian and joint space velocity commands,
v(t) andq∗(t) respectively, are computed with a Closed Loop Inverse Kinematic (CLIK) algo-
rithm, as shown in Figure 5.2, which allows avoiding the “drift” effect due to the discretization
of the joints positions [Sciavicco and Siciliano, 2000].

Among the possible ways to invert the kinematics the following is used:

q̇∗ = J†v + (I − J†J)q̇a
= J⊺(JJ⊺ + k2I)−1v + (I − J†J)q̇a (5.2)

whereJ† is a damped least-squares pseudo-inverse of the JacobianJ ; q̇a represents an arbi-
trary joint velocity vector which is projected in the null-space of the Jacobian matrix by the
operator(I − J†J) (I is the identity matrix).q̇a is usually chosen such that joints positions are
maintained far from their mechanical physical limits, precisely:

q̇a = −knull
∂H
∂q

113

ROBOT

−

et
R(s) vt

ẋ∗t

q̇∗t
J†

farm

qt

xrt

x∗t

Figure 5.2: A simple CLIK scheme. The blockJ† refers to (5.2). The retrieving of the target’s
cartesian coordinates is not modeled, as it would require todiscuss the robotic visual system, the
target identification module etc. For the sake of simplicity, many details about the closed loop
control are voluntarily neglected, to keep the scheme clear, e.g. the computation of the feed-
forward command is not detailed.

which minimize the cost function

H(q) = 1

2

N∑
i=1

(qi − q̄i

qmax
i − qmin

i

)
where[qmin

i , qmax
i] is the range for thei-th joint, andq̄i its midpoint. In such manner it is possi-

ble to cope with singularities and to exploit the intrinsic redundancy of the manipulator. The pa-
rameterk2 in (5.2) can be determined adaptively in different ways, forexample using the con-
dition number of the Jacobian matrix or the manipulability measure [Chiaverini et al., 2008].
In [Sugihara, 2009] a pseudo-inverse Jacobian based on the Levenberg-Marquardt formula was
proposed, where the damping factor was found considering the position/orientation error and
the singular value decomposition of a suitable weighted Jacobian. The algebraic operation
yielded smallest joint deviations in the proximity of the singular configuration of the redundant
arm, however the author himself pointed out that the method could lead to physically unfeasi-
ble motions, as the continuity of the solution was not preserved. Here1, we prefer the method
proposed in [Chiaverini et al., 1991], wherek depends on the smallest singular valueσmin of
the Jacobian matrix:

k2 = ⎧⎪⎪⎨⎪⎪⎩
0 σmin > σ̄
[1 − (σmin

σ̄
)2]k̄ σmin < σ̄ . (5.3)

For example, in James we setσ̄ = 0.20 andk̄ = 0.10, after manually driving the arm to singular
configurations and studying the singular values, and setting a safety threshold. In fact, it must
be pointed out that the smallest singular value can be lower than the threshold̄σ even in non-
singular configurations of the arm.

Note that the singularity is solved by acting on the singularvalues, which are configuration-
dependent, while redundancy is resolved by selecting the solution which stays furthest away
from the joints bounds. A point-wise approach like this may not lead to the best solution for
the overall trajectory. It is reasonable to solve the IK thisway, since “globally” the control
functions are already an approximation of the global ones, and the smoothing properties of the
neural networks should prevent rough behaviors.

1All cited method were evaluated: best results were found using (5.3).

114

5. Motion control on humanoids

ROBOT

−

et
R(s)

µ̂○

vt

ẋ∗t

q̇∗t

J†

farm

qt

xrt

x∗t

x
g
t

J

Figure 5.3: James’s arm CLIK controller, with the contribution, in evidence, of the neural con-
troller.

The generation of the commanded Cartesian velocitiesv(t) in (5.2) is shown in Figure 5.2.
With an abuse of notation2, v(t) = ẋ∗(t) +R(s) ∗ e(t), wheree(t) = x∗(t) − x(t) andR(s)
a regulator which will be discussed hereinafter. The classical CLIK scheme relies on a purely
proportional regulator, i.e.R(s) = Ke, whereKe is a diagonal positive defined matrix. In an
ideal situation, the correction termKee(t), wheree(t) = x∗(t)−x(t), guarantees convergence
to zero of the Cartesian error and the error dynamicė +Kee = 0 is asymptotically stable. The
convergence velocity of such system depends on the eigenvalues of the gain matrixKe > 0

[Chiaverini et al., 2008, Sciavicco and Siciliano, 2000].
When the robot is performing tracking tasks, the discrete-time system must respond to

rapid variations of the target trajectory: hence, the gainKe should be raised until some rea-
sonable performances are met. Unfortunately,Ke cannot be raisedad libitum: its upper-limit
is determined by the physics of the problem, and high-frequency terms, delays and unmod-
eled dynamics also prevent to increaseKe to a desired value. For these reasons the simple
proportional gainKe is substituted with the following:

R(s) =Ke
1 + sτe

s
(5.4)

whereKe is still a positive diagonal matrix,τe a time constant. Incidentally, (5.4) corresponds
to a PI controller, where the proportional gain isKeτe and the integral one isKe. The sampling
time ∆t is then fundamental for the proper tuning of the digital integral gain. The time con-
stantτe (corresponding to the zero−1/τe) can be then manually adjusted (e.g. looking at step
and ramp response, and their transient trajectories), so asto raise the proportional gain while
preserving the system safety.

In general, regulator (5.4) can guarantee asymptotic stability with faster response of the
system with respect to the purely proportional regulator. The commanded Cartesian velocities
are then:

v(t) = ẋ∗(t) +Keτee(t) +Ke ∫ e(t)dt. (5.5)

Also in this case, it is possible to guarantee stability and convergence, forτe > 0,Ke > 0 and
the trend of convergence depends on the two eigenvalues resulting from s2 + keτes + ke = 0

(Ke = keI).
The semi-global stability of the regulatorR(s) by means of a Lyapunov function can be

also proved. Given a desired trajectoryx∗ ∈ C1, wherex∗(t), ẋ∗ are bounded, define with

2R(s) denotes a Laplace transform of the regulatorR.

115

e(t) ≜ x∗(t)−x(t) the trajectory error, such thatė = ẋ∗ − ẋ = ẋ∗ −Jq̇. Consider the following
candidate Lyapunov functionV (e) = 1

2
e⊺e > 0 (“globally” definite positive, sinceV (0) = 0),

with V̇ = e⊺ė = e⊺(ẋ∗ − Jq̇). Take the following velocity

q̇ = J†(ẋ∗ +Keτee +Ke∫ e(t)dt) ,

then substitute it intȯV :

V̇ = e⊺[ẋ∗ − JJ†(ẋ∗ + keτee + ke∫ e(t)dt)]
= −e⊺Keτee − e

⊺Ke∫ e(t)dt
≤ −keτe ∥e∥2 − keα ∥e∥

whereα ≜ ∫ e(t)dt. Assume that∃α ∶ ∫ e(t)dt ≤ α ∥e∥. If V is a Lyapunov function,
i.e. V̇ ≤ 0, thene = 0 is a globally stable equilibrium state. Sinceke, τe > 0, the sign ofα
determines the stability property. Ifα > 0, then∀ ∥e∥ , V̇ ≤ 0, sinceV̇ is a quadratic function,
with V̇ (0) = 0. If α < 0, thenV̇ is still a quadratic function, witḣV (0) = 0, but V̇ (e) > 0 for
0 < ∥e∥ < α

τe
: in this region, there is no attractiveness, however it is possible to shorten that

region to a desired, by increasing suitablyτe. In this case,e = 0 is semi-globally stable.

5.3 Forward Dynamics

In Section 5.2 we presented a method for converting desired trajectories in the operational
space into desired trajectories in the joint velocity space. The latter can be either sent to the
robot, to a joint velocity control interface, or further translated into joint torques commands, if
there is a force/torque control interface is available. Furthermore, desired trajectories can be
planned directly in torque space, considering a nonlinear model of kinematics and dynamics of
the system. In each of the following cases, it is necessary tocompute the Forward Dynamics of
the robot, i.e. the mapping between its proprioceptive configuration (joint positions, velocities
and accelerations) and joint torques. Of course, a suitabledynamics model (e.g. a rigid body
dynamics model) must be known.

The classical dynamic equation describing an-link robot manipulator is described by
Eq. 5.1. A notable property is the linearity of the model withrespect to the dynamic parameters
which characterize the manipulator, particularly in the absence of external forces (h = 0) (5.1)
can be written as:

τ = Y (q, q̇, q̈)π (5.6)

whereY ∈ Rn×p is theregressorandπ ∈ Rp is the vector collecting the set of constant parame-
ters which describe the manipulator dynamics [Sciavicco and Siciliano, 2005].

Such parameters, including link mass, inertia, Center of Mass (COM) location, etc., can
be usually retrieved from the CAD model of the robot. Frequently, they are partially known,
or known with some uncertainties: in this case, supervised learning techniques such as Sup-
port Vector Machines (SVM) and NN can be used either to find thebest set of parameters or

116

5. Motion control on humanoids

to directly approximate the forward dynamics of the robot. An interesting analysis and com-
parison of model based versus supervised learning technique for this problem can be found in
[Fumagalli et al., 2010a], and will be shortly discussed in Section 5.3.1.

5.3.1 Robot dynamics: model or learning?

The robot dynamics, expressed byY (⋅) in equation Eq. 5.1, can be identified either deriving
it analytically, or approximating it using a set of experimental data and a machine learning
technique. In the latter case, the learning algorithm is agnostic to the underlying dynamics
model that is used to produce the examples, but the main advantage is that nonlinear effects
do not need to be explicitly modeled, as these are learned implicitly by the algorithm. In
this section3, we will report some significant results about a comparison of the model-based
approach and two machine learning algorithms, applied to the identification of a robotic arm
dynamic model:

1. Model-Based Approach

Eq. 5.1 defines torques as a linear product of matrixY (q, q̇, q̈) and vectorπ: the first
depends solely on the joint positions, velocities and accelerations, whereasπ contains
the dynamical parameters that we must estimate to describe the manipulator dynamics
[Kozlowski, 1998]. In particular,π is the minimum set of identifiable parameters, i.e. a
linear combination of a multitude of elements, containing products among each link mass
mi ∈ R, inertial parametersIi ∈ R6 (the inertia matrix can be defined by six parameters
because of its symmetric properties), Center Of MassCi ∈ R3 (COM - in form of a
distance vector between the COM frame and the reference frame of the link, eventually
a roto-translational matrix if frames have also different orientations), length, and so on4.
The system dynamical parametersπ can be often retrieved from an accurate model of
the robot (e.g. CAD drawings), but they are not generally accurate, hence a weighted
linear Least Squares technique can be used to improve their estimate. GivenL samples,
consisting of measurements(τ`, q`, q̇`, q̈`), the set of optimal parameters can be found
as:

π○ = argmin
π

L∑̀
=1

(τ` − Y (q`, q̇`, q̈`) π)⊺ω(τ` − Y (q`, q̇`, q̈`) π) .

whereω is a suitable weighting diagonal matrix. The explicit solution is given by:

π○ =∆†
Ω
τ̃ = [∆⊺Ω∆]−1∆⊺Ωτ̃ ,

whereΩ = diag(ω),∆ = col(Y (q1, q̇1, q̈1), . . . , Y (qL, q̇L, q̈L)), andτ̃ = col(τ1, . . . , τL).
2. Least Squares Support Vector Machines for Regression

3The detailed description of the methods can be found in [Fumagalli et al., 2010a].
4Each kinematic chain link has an associated reference frame, defined by the Denavit-Hartenberg convention

[Denavit and Hartenberg, 1955, Lagarde et al., 2009]. All the dynamic and kinematic quantities of each link (COM,
inertia, length, etc.) refer to the associated reference frame.

117

Least Squares Support Vector Machines (LS-SVMs) belong to the class of kernel me-
thods which use a positive definite kernel function to estimate a linear approximator
in a (usually) high-dimensional feature space [Suykens et al., 2002]. Let us define the
data setS = {x`, y`}L`=1, where inputsx` ∈ Rn and corresponding outputsy` ∈ R for ` =
1, . . . ,L. LS-SVM estimates a linear decision function of the formf(x) = ⟨w,φ(x)⟩+b,
whereb is a bias term andφ(⋅) ∶ Rn

↦ R
f maps samples from the input space into a

(usually) high-dimensional feature space. The weight vector w and biasb are chosen
such that both the squared norm ofw and the sum of the squared errorsε` = y` − f(x`)
are minimized, which is found by solving a dual optimizationproblem in the form

maximize
1

2
∥w∥2 + 1

2
C

L∑̀
=1

ε2` −
L∑̀
=1

α` (⟨x`,w⟩ + b + ε` − y`) ,

whereα` ∈ R are the Lagrange multipliers associated with each sample. The decision
function can be rewritten asf(x) = ∑L

`=1α` ⟨φ(x`), φ(x)⟩ + b. Hence, a kernel function
k(xi, xj) = ⟨φ(xi), φ(xj)⟩ can be used to implicitly map the data into the feature space.
Given a kernel matrixK = {k(xi, xj)}Li,j=1, the solution to the optimization problem in
(2) is given by a system of linear equations:

[α
b
] = [K +C−1I 1

1T 0
]−1 [y

0
] .

which is reduced to a(L + 1) × (L + 1) matrix inversion, solved efficiently by state of
the art algorithms such as Cholesky decomposition [Cawley,2006].

3. Neural Networks Lastly, a multiple input - multiple output OHL-NN can be used, for
its generalization and approximation capabilities [Hornik et al., 1989], and de-noising
property when dealing with experimental data. Given a batchdata set, a typical training
algorithm for NN is based on the well known Levenberg-Marquardt (LM) algorithm
[Levenberg, 1944, Marquardt, 1963], where the criterion for training the network (that
is to find the optimal parametersw○) is to minimize the mean squared error between the
estimated and the measured data:

w○ = argminΦ(w) = argmin
1

2

L∑
i=1

ε⊺` (w)ε`(w) ,

whereε`(w) = τ` − µ̂(τ̃`,w) is the error between the measured and the predicted data,
estimated by a NN̂γ(⋅,w), with the same structure seen in Chapter 4. The iterative
algorithm consists in a back-propagation of the error function, to compute its partial
derivatives with respect tow, and a weight update equation

wk+1 = wk − [J⊺(wk)J(wk) + µI]−1J⊺(wk)ε(wk) ,

whereε(wk) = [ε1(wk), . . . , εL−1(wk)], andJ(wk) ∈ RL×W is the Jacobian matrix of
the errors with respect to the parameters of the NN. The parameterµ, adjusted iteratively,
balances the LM between a steepest descent and a Gauss-Newton algorithm.

118

5. Motion control on humanoids

Generally, learning algorithms outperform the rigid body dynamic model in terms of pre-
diction accuracy, given that a sufficient amount of trainingdata is available. The generalization
performance of these methods improves steadily as more training samples become available.
LS-SVM converges slightly faster than Neural Networks, buttheir final performance on large
data sets is nearly identical. The model-based method, on the other hand, requires very few
samples to achieve acceptable predictions.

In [Fumagalli et al., 2010a], the three methods have been evaluated experimentally on a
common data set that has been gathered during a sequence of random arm movements, per-
formed in joint space by the humanoid robot James. Without entering into the details of the
experiment and the full comparison among the methods, we report here some interesting re-
marks:

• Number of Training Samples: the two learning methods have a strong dependency on
the size of the training set. They consistently improve performance with the increase of
the training set, eventually outperforming the model-based approach by an order of mag-
nitude, as shown in Figure 5.4(a); whereas the model-based approach appears to perform
at a constant level, regardless of the number of samples. This means that the model-based
approach is the preferred approach when only very few samples are available.

• Contribution of Velocity and Acceleration on the Estimation: including joint veloc-
ities and accelerations does not always improve the generalization performance of the
learning methods when training is done on a small number of samples. This is probably
due to the fact that learning algorithms require an increasing amount of training samples
to make effective use of this additional information (i.e. the COD [Duda et al., 2001]).
Figure 5.4(b) shows that both LS-SVM and NN use joint velocities to improve their pre-
dictions only if given a sufficiently large training set. Joint accelerations do not seem
to contribute positively to the estimation, but this is probably caused by the experiment
itself, where motions were smooth, and by the fact that accelerations were not measured
directly but derived from positions (thus, very noisy).

• Selective subsampling: to avoid data oversampling in an abundance of training data, a
selective subsampling strategy was designed to remove samples that were nearly identi-
cal to each other, which particularly affects LS-SVM performance. A certain “sparsity”
of the training set was guaranteed by taking a subset, such that the inter-sample the Eu-
clidean distance in the standardized input space was at least a thresholdt. When this
distance is determined solely based on the joint positions,then Euclidean subsampling
results in a significant improvement for small data sets. Forlarge data sets, and thus a
small inter-sample threshold, the Euclidean and random subsets have very similar sam-
ple distributions and therefore similar performance. In contrast, random subsampling
performs better than Euclidean subsampling based on joint positions, velocities and ac-
celerations. Some results are shown in Figure 5.5.

119

100 100060 200 500 50002000
0

0.05

0.1

0.15

N
M

S
E

P − Model
P − LS−SVM
P − NN

10060 500 1000 50002000200
0

0.05

0.1

0.15

N
M

S
E

PV − Model
PV − LS−SVM
PV − NN

100 1000500200 5000200060
0

0.05

0.1

0.15

Training set dimension

N
M

S
E

PVA − Model
PVA − LS−SVM
PVA − NN

(a)

100 100060 5000500200 2000

0.05

0.06

0.07

N
M

S
E

P − Model
PV − Model
PVA − Model

100 100060 5000500 2000200

0.06

0.02

0.01

0.005

0.002

N
M

S
E

P − LS−SVM
PV − LS−SVM
PVA − LS−SVM

100 100060 5000500 2000200

0.01

0.1

0.02

0.005

0.05

Training set dimension

N
M

S
E

P − NN
PV − NN
PVA − NN

(b)

Figure 5.4: Comparison of the three methods on random training subsets of increasing dimension and three different input spaces. Four joints
of James’ arm were involved in the experiment.P denotes the input space containing only joint positions (q ∈ R4), PV contains both joint
positions and velocities (q, q̇ ∈ R8), andPVAcontains joint positions, velocities and accelerations (q, q̇, q̈ ∈ R12). Note that in5.4(b)both axes
are in logarithmic scale to accentuate differences in final performance.

12
0

5. Motion control on humanoids

100 100060 5000500 2000200

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Training set dimension

N
M

S
E

Random
Euclidean PVA
Euclidean P

Figure 5.5: Comparison of random and selective subsampling based on standardized Euclidean
distance. Euclidean Pand Euclidean PVAdenote subsampling based on Euclidean distance
thresholdst = {1.35,1.15,0.88,0.65,0.5,0.35,0.18} using position inputs and thresholdst ={6.0,5.3,4.5,3.7,3.1,2.5,1.8} using position-velocity-acceleration inputs, respectively.

5.4 Force/Torque feedback for control

Once the FD of the robot is known, it is possible to compute thedesired torque commands
for an optimal trajectory. In an ideal case, where the robot dynamics is perfectly known and
all possible interactions with the environment are perfectly measurable (i.e. we have a full
knowledge of the system) one could send torque commands in open-loop. In real situations, a
closed loop feedback control must be implemented.

When force or torque commands are applied to the robot, its behavior is grounded on the
sensory system: joint torque sensors rather than force sensors (the latter typically placed at the
end-effector), are required. Exploiting the sensors information, the robot not only can carry
out force regulation, but also react safely whenever unexpected contacts occur during task exe-
cution [Siciliano and Villani, 1996, De Luca, 2006, Haddadin et al., 2010b, Mistry et al., 2010,
Calinon et al., 2010, Fumagalli et al., 2010a].

Traditionally, torque feedback is provided by specific joint torque sensors, distributed over
the entire structure of the robot, measuring the momentum component which works along the
axis of rotation of the joints. However, retrieving such measurements using localized torque
sensors might not allow a full perceptual representation ofthe interaction scenario, in terms of
forces and torques which rise over the whole structure. Evenif torque sensors are distributed
over the entire structure of the robot and can measure the internal dynamic as well as the

121

interaction occurring on their link, they can measure a single component of momentum which
works along the axis of rotation of the joints. More specifically, since forces and torques are
linearly related by the transposed Jacobian, which might have a non-empty null-space, there
exist singular configurations where some interaction forces at sensory level cannot be fully
retrieved (e.g. pure forces working on a direction which is parallel to the joint torque sensor
axis arehidden).

A more robust and complete representation of the interaction forces can be retrieved by
Force/Torque Sensors (FTS). Classically, robots are equipped with six-axis FTS mounted in
their end-effectors, where the most interaction with the environment occurs during manip-
ulation [Sciavicco and Siciliano, 2005]. This solution is compact and less invasive with re-
spect to the design of joint torque sensors [Parmiggiani et al., 2009, Luh et al., 1983], allows
a complete representation of the interaction and thus the achievement of active compliance
[Caccavale et al., 2005, Chiaverini et al., 1999, Sicilianoand Villani, 2000]. However, this in-
formation is localized at the tool level. In other words, a FTS at the end-effector does not allow
retrieving neither the information about the manipulator dynamics, nor about the potential in-
teraction occurring on any link of the robotic system. In this situation, this information must
be retrieved with other sensors.

If a FTS is located proximally, for example in the middle of a kinematic chain, it is possible
to exploit its measurements in a different way, and basically “propagate” its measures through
the chain. A simple way consists in “projecting” its measurements on the joints through the
transposed Jacobian. A more complete representation can befound by applying recursively
Newton’s laws, and will be briefly introduced in Section 5.4.1. However, the analytical solution
for computing joint torques becomes quite complex for more complicated kinematic structures.

In Section 5.4.2, we describe instead a procedure which allows retrieving a more complete
and better representation of the interaction forces over the entire structure of single and multi-
branched kinematic chains, such as a humanoid robot. The proposed approach makes use of
three sets of sensors, distributed along the kinematic chain:

• force/torque, used to measure dynamical wrenches, i.e. the forces and moments that are
due to the dynamics of the structure;

• inertial, since their measurements can be propagated through the chain if the kinematic
model of the robot is known, thus allow retrieving a completedescription of the kine-
matics information of the links in the manipulator;

• finally, distributedtactile sensors provide the information about the location of contacts
occurring dynamically with the environment.

Under suitable assumptions, we will show that by exploitingthese sensors it is possible both
to detect external wrenches and to obtain complete information of the wrenches transmitted
along the structure (and thus also joint torques). Basically, if a precise dynamical model of
the robot is known (i.e. a rigid body model), internal forcesand torques can be computed
by means of recursive algorithms, such as the classicalRecursive Newton-Euler Algorithm
(RNEA) [Sciavicco and Siciliano, 2005]. To the best of our knowledge, a similar solution has
been adopted only once in [Morel and Dubowsky, 1996, Morel etal., 2000] where a single FTS
placed at the base of a 3 Degrees Of Freedom (DOF) PUMA manipulator was used to estimate

122

5. Motion control on humanoids

−µi+1

−fi+1

fi

µi

Ci

ri−1,Ci
ri,Ci

⟨i − 1⟩
⟨i⟩

Figure 5.6: Notation for thei-th link of a kinematic chain. A more complete description can be
found in [Sciavicco and Siciliano, 2005].

the joint torques. In Section 5.5.2, some experiments are shown, where the proposed method
has been applied to estimate forces and torques on 32 of the 53DOF of the iCub. Moreover, we
enrich the estimation by also computing external forces at any contact location. This informa-
tion can be fixeda priori for particular robot tasks, but in general must be updated on-the-fly:
in iCub it is provided by its “artificial skin”. In the remainder of this section we will introduce
the Enhanced Oriented Graph (EOG) method, which is used to perform the RNEA computa-
tions on both single and multiple branched open kinematic chains, when one or multiple FTS
are available. It must be pointed out that the RNEA is here proposed as a tool to compute kine-
matic and dynamic information recursively, but its adoption is not a must and other recursive
algorithms could be used. The proposed method is thus shown to be generic and applicable
to every open kinematic tree. Force sensors are used to improve the estimation of the internal
wrenches and for the computation of external interaction. The number of FTS to employ and
their placement along a manipulation structure is not defined. We only suggest spreading them
on different links of the system to increase the quality and reliability of the results. The method,
in fact, presents a systematic procedure for computingN + 1 external wrenches fromN inter-
nal wrenches (i.e. measurements from FTS). Remarkably, under some conditions that will be
presented in next sections, all link wrenches and joint torques can be theoretically computed.

It is necessary to introduce the notation of the variables required for computing the internal
and external forces and torques. Given a forcef ∈ R3 and a momentµ ∈ R3, a wrenchw ∈ R6

is the vectorw = col (f,µ). FTS, which actually measure a wrench, are named according to
the physics terminology, whereµ is called torque. To discriminate from the joint torqueτ , we
call µ moment accordingly to the mechanical terminology. The description of the kinematics
and the dynamics of a link (see Figure 5.6) adopts the Denavit-Hartenberg notation. We limit
the discussion to revolute joints for the sake of simplicity, but the method is generic for both
revolutionary and linear joints. Here is a list of the adopted symbols:

⟨⋅⟩ generic Cartesian reference frame
va givenv ∈ Rn a genericn-dimensional vector,va is v expressed in⟨a⟩
Rb

a theSO(3) rotation matrix from⟨a⟩ to ⟨b⟩
ra,b distance vectorr from ⟨a⟩ to ⟨b⟩

123

zi z-axis of⟨i⟩, aligned with the axis of rotation of jointi
θi the angle associated to thei-th joint
p̈i ∈ R3, denotes the linear acceleration of⟨i⟩

ωi, ω̇i ∈ R3, the angular velocity and acceleration of⟨i⟩
mi mass associated with thei-th link
Īii ∈ R3×3 represents the inertia tensor of thei-th link, defined with respect to the center of

mass oriented as the frame⟨i⟩
Ci ∈ R3 the coordinate vector of the center of mass of linki-th, with respect to⟨i⟩
fi ∈ R3, represents the forces applied on⟨i⟩, that link i + 1 exert on thei-th link
µi ∈ R3, represents the moment applied on⟨i⟩, that link i + 1 exert on thei-th link
τi ∈ R the joint torque, i.e. the component ofµi alongzi
wi ∈ R3 is the wrenchw = (fµ) applied on⟨i⟩, that link i + 1 exerts on linki

5.4.1 Wrench transformations and FTS measurements

Consider a kinematic chain, where a FTS is embedded in theiS-th link as shown in Fig-
ure 5.8(b). Name the sensor frame⟨s⟩ and number progressively the links frames⟨iS ⟩ , ⟨iS + 1⟩ , . . .
as⟨s + 1⟩ , ⟨s + 2⟩ and so on: interestingly, all links wrenchesws+k = [f s+k

s+k , µ
s+k
s+k] can be ex-

pressed as function of the FTS measurementsws = [f s
s , µ

s
s] by the compact formula:

ws+k = As+k ws + w̃s+k

τs+k = ws⊺ Cs+k z0 + τ̃s+k

whereAs+k andCs+k basically contain the rotations and distance vectors between frames to
transform wrenches between different coordinate frames, specifically:

As+k = [Rs
s+k
⊺ 0

−Rs
s+k
⊺(rs+k−1s−1,s+k−1)∧ Rs

s+k
⊺]

Cs+k = [(rs+k−1s+1,s+k−1)∧ Rs
s+k−1

Rs
s+k−1

]

w̃s+k = [f̃ s+k
s+k , µ̃

s+k
s+k] and τ̃s+k instead contain all the dynamic terms which are not taken into

account by simply applying a wrench transformation betweendifferent frames in a rigid-body.
Indeed, matrixAs+k is the Adjoint matrix defining a wrench transformation in a rigid body
[Murray et al., 1994].

As an example, in the “static” case (i.e. whenq̇i = q̈i = 0,∀k) we have:

f s+k
s+k = Rs

s+k
⊺
f s
s −

k−1∑
j=0

R
s+j
s+k ms+j p̈

s+j
Cs+j

124

5. Motion control on humanoids

µs+k
s+k = Rs

s+k
⊺
µs
s −R

s
s+k
⊺ (rs+k−1s−1,s+k−1)∧ f s

s

−

k−1∑
j=0

R
s+j
s+k

⊺
ms+j (rs+js+j,Cs+j

)∧ p̈s+j
Cs+j

+

k−2∑
j=0

R
s+j
s+k

⊺
ms+j (rs+k−1s+j,s+k−1)∧ p̈s+jCs+j

τs+k = [Rs
s+k−1

⊺
µs
s −R

s
s+k−1

⊺(rs+k−1s−1,s+k−1)∧ f s
s

−

k−1∑
j=0

R
s+j
s+k−1

⊺
ms+j (rs+js+j,Cs+j

)∧ p̈s+j
Cs+j

+

k−2∑
j=0

R
s+j
s+k−1

⊺
ms+j (rs+k−1s+j,s+k−1)∧ p̈s+jCs+j

⎤⎥⎥⎥⎥⎦
⊺

z0

which gives:

⎡⎢⎢⎢⎢⎢⎣
f̃ s+k
s+k

µ̃s+k
s+k

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Rs
s+kmsp̈

s
Cs

−Rs+1
s+kms+1p̈

s+1
Cs+1

⋯

−Rs
s+k
⊺(rss,Cs

)∧msp̈
s
Cs

−Rs+1
s+k
⊺(rs+1s+1,Cs+1

)∧ms+1p̈
s+1
Cs+1

⋯

−Rs
s+k
⊺(rs+k−1s,s+k−1)∧msp̈

s
Cs
−Rs+1

s+k
⊺(rs+k−1s+1,s+k−1)∧ms+1p̈

s+1
Cs+1

⋯ −Rs+k−2
s+k ms+k−2p̈

s+k−2
Cs+k−2

−Rs+k−1
s+k ms+k−1p̈

s+k−1
Cs+k−1

⋯ −Rs+k−2
s+k−1

⊺(rs+k−2s+k−2,Cs+k−2
)∧ms+k−2p̈

s+k−2
Cs+k−2

−Rs+k−1
s+k−1

⊺(rs+k−1s+k−1,Cs+k−1
)∧ms+k−1p̈

s+k−1
Cs+k−1

−Rs+k−1
s+k

⊺(rs+k−1s+k−2,s+k−1)∧ms+k−2p̈
s+k−2
Cs+k−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the following torques:

τ̃s+k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ms(p̈sCs
)⊺ (rss,Cs

)∧ −ms (p̈sCs
)⊺ (rs+k−1s,s+k−1)∧ Rs

s+k−1

⋮

ms+k−2(p̈s+k−2Cs+k−2
)⊺ (rs+k−2s+k−2,Cs+k−2

)∧ Rs+k−2
s+k−1+

−ms+k−2(p̈s+k−2Cs+k−2
)⊺ (rs+k−1s+k−2,s+k−1)∧ Rs+k−2

s+k−1

ms+k−1(p̈s+k−1Cs+k−1
)⊺ (rs+k−1s+k−1,s+k−1)∧ Rs+k−1

s+k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z0

The “dynamic” case (i.e. when joint velocities and accelerations are not zero, thus during
motion) is not explicitly reported for the sake of brevity and simplicity, because the equations
become much more complicated. However, even in that case thejoint torques can be retrieved
just applying the aforementioned formulas recursively.

125

v0 v1 vn

⟨0⟩ ⟨1⟩ ⟨n⟩

e0,1 en−1,ne1,2

Figure 5.7: An open chain represented as a graph.

5.4.2 Enhanced Oriented Graphs

Graph theory has been extensively used to represent mechanical systems [Wittenburg, 1994,
Featherstone and Orin, 2008] and kinematic chains, producing compact and clear models, in
matrix forms with beneficial properties (e.g. branch-induced sparsity [Featherstone, 2010])
when the connectivity among its elements is expressed. There is not a unique choice for a
graph representing a chain: for example, in [Featherstone,2007] graphs are undirected, nodes
and arcs represent bodies and joints respectively; the resulting graph is undirected (i.e. non-
oriented), but nodes are “labeled” according to a “regular numbering scheme”.

This section presents the theoretical framework of theEnhanced Oriented Graphs(EOG),
applied to the computation of both internal and external wrenches applied to single and multiple
branches, generally non-grounded, kinematic chains. The proposed method is an extension of
the classical RNEA [Featherstone and Orin, 2008, Sciaviccoand Siciliano, 2005]. Similarly to
the classical approach we represent a kinematic chain as a graph such that computations of
the system dynamics can be obtained performing a pre-order and a post-order traversal visit of
the graph itself. However, we enhance the graph with specificnodes representing both known
and unknown (kinematic or dynamic) variables. Remarkably,not all the unknowns will be
specified a-priori (e.g. contacts at arbitrary locations might appear and other contacts might
be removed) and therefore the graph structure will be adapted accordingly5. This dynamically
evolving graphical description of the chain modifies the waythe graph is visited during the
Newton-Euler recursion, thus changing in particular the direction along which the recursion
is propagated in the graph. In order to cope with this evolving representation we introduced
another difference with respect to previous RNEA graphicalrepresentations by representing
the kinematic chain as anorientedgraph: the direction along which edges are traversed will
determine either the use of the classical Newton-Euler recursion formula or a slightly modified
version of it.

The enhanced graph representation

We here consider an open (single or multiple branches) kinematic chain withn DOF composed
of n + 1 links.

Adopting the Denavit-Hartenberg notation [Sciavicco and Siciliano, 2005], we define a set
of reference frames⟨0⟩, ⟨1⟩, . . . , ⟨n⟩ attached at each link.

5Within this context, a crucial role is played by the distributed tactile sensor, primarily used to compute the
presence and the location of externally applied wrenches. Even if the tactile sensor would be capable of measuring
also the component of the force normal to the skin surface, this information is not used in this paper where we focus
computing both the applied force and torque (i.e. the whole externally applied wrench) exploiting the embedded
sensors.

126

5. Motion control on humanoids

The i-th link of the chain is described by a vertexvi (sometimes called node), usually
represented with the symboli©. A hinge joint between the linki and the linkj (i.e. a rotational
joint) is represented by an oriented edgeei,j connectingvi with vj: i©→ j©. In an DOF open
chain, each vertex (except for the initial and terminal,v0 andvn respectively) has two edge
connections. Therefore, the graph representation of then-links chain is an oriented sequence
of nodesvi, connected by edgesei−1,i.

The orientation of the edges can be either chosen arbitrarily (it will be clear later on that
the orientation simply induces a convention) or it can follow from the exploration of the kine-
matic tree according to the “regular numbering scheme” [Featherstone and Orin, 2008], which
induces a parent/child relationship such that each node hasa unique input edge and multiple
output edges. Following the classical RNEA and the classical Denavit-Hartenberg notation, we
assume that each joint has an associated reference frame with thez-axis aligned with the rota-
tion axis; this frame will be denoted⟨ei,j ⟩. In kinematics, an edgeei,j from vi to vj represents
the fact that⟨ei,j ⟩ is fixed in thei-th link. In dynamics,ei,j represents the fact that the dynamic
equations will compute (and make use of)wi,j , i.e. the wrench that thei-th link exerts on the
j-th link, and not the equal and opposite reaction−wi,j, i.e. the wrench that thej-th link exerts
on thei-th link (further details in Section 5.4.2). In order to simplify the computations of the
inverse dynamics on the graph (see Section 5.4.2), kinematic and dynamic measurements have
been explicitly represented. Specifically, the graph representation has been enhanced with a
new set of graphical symbols: a triangle to represent kinematic quantities (i.e. velocities and
acceleration of links –ω, ω̇, p̈), and a rhombus for wrenches (i.e. force sensors measurements
on a link –f , µ). Moreover these symbols have been further divided intoknownquantities to
represent sensors measurements, andunknownto indicate the quantities to be computed, as in
the following:

• ▽: unknown kinematic information
• ▼: known (e.g., measured) kinematic information
• ◊: unknown dynamic information
• ⧫: known (e.g., measured) dynamic information

Kinematic variables can in general be measured by means of gyroscopes, accelerometers,
or simply inertial sensors. When attached on linki-th, these sensors provide angular and linear
velocities and accelerations (ω, ω̇, ṗ andp̈) at the specific location where the sensor is located.
We can represent these measurement in the graph with ablack triangle(▼) and an additional
edge from the proper link where the sensor is attached to the triangle6. As usual, the edge has
an associated reference frame , in this case corresponding to the reference frame of the sensor.
Similarly, an unknown kinematic variable is represented with a white triangle (▽) with an
associated edge going from the link (where the unknown kinematic variable is attached) to the
triangle. The reference frame associated to the edge will determine the characteristics of the
retrieved unknown kinematic variables as it will be clear inSection 5.4.2.

Similarly, we introduce two new types of nodes with a rhomboidal shape:black rhombi
(⧫) to represent known (i.e. measured) wrenches,white rhombi(◊) to represent unknown

6According to our kinematic convention an edgeei,j is fixed on thei-th link. Therefore a sensor fixed in the
i-th link, will be represented byei,s, i.e. an edge from the link to the sensor.

127

link and sub-link

(a)

fiS
µiS

fs
µs

−fiS+1

−µiS+1
CB
s CF

s

⟨iS − 1⟩

⟨s⟩

⟨iS ⟩
(b)

Figure 5.8: 5.8(a): The notation introduced to represent node (vertex, link) and sub-node (sub-
link). 5.8(b): A representation of a FTS within theiS-th link. Note that the sensor divides the link
into two sub-links, each with its own dynamical properties.In particular, it is evident that the center
of mass (COM) of the original link,CiS , differs fromCF

s ,C
B
s , i.e. the COM of the two “sub-links”.

wrenches which need to be computed. The reference frame associated to the edge will be the
location of the applied or unknown wrench.

Remark 14. There is not a fixed rule to determine the orientation of the edge connecting the
rhombi to the graph: according to our convention for representing the wrenches, the edge can
be either directed from the rhombus to the link or vice versa depending on the variable we are
interested in representing (i.e. the wrench from the link tothe external environment or the equal
and opposite wrench from the environment to the link).

It is important to point out that, whereas the position of⧫ is static within the graph
(because sensors are fixed in the manipulator), the locationof◊instead can be dynamic (contact
point locations are dynamically detected by the distributed tactile sensor). If a contact moves
along a chain, the graph is accordingly modified. This rule shows a big benefit of the EOG,
which dynamically adapts in response to the location of the unknown external wrenches.

Within this representation, embedded FTS can be inserted by“cutting” the manipulator
chain where the FTS is located and creating two virtual “sub-links” from the link hosting phys-
ically the sensor. The EOG is then split into two sub-graphs,where black rhombi (⧫, i.e.
known wrenches representing the FTS measures, one per graph) are introduced and attached to
the sub-links. In practice, suppose that an FTS is placed in the iS-th link (see Figure 5.8(b)).
Let ⟨s⟩ be the frame associated to the sensor. The sensor virtually divides link iS into two
“sub-links” (hereafter denoted forward and the backward sub-links). The sensor therefore mea-
sures the wrench exchanged between the “forward” and the “backward” sub-links (this will be
represented by two rhomboidal nodes). Under these considerations, the FTS within a link is
represented by splitting the node associated to the link into two sub-nodes (with suitable dyna-
mical properties, see Figure 5.9). Two known wrenches in theform of black rhombi are then

128

5. Motion control on humanoids

v1

v1

v2

v3

v3

v2B

v2F

Figure 5.9: The graph shows how to insert an FTS in a graph representationof a kinematic chain.
The node on which the sensor is attached (highlighted), is practically divided into two sub-nodes.
The graph is divided into two sub-graphs and two black rhombi(known wrenches corresponding
to the sensor measurement) are connected to the sub-nodes.

vj

vj

vk

vk

flow

flow

ej,k

ej,k

unknown

unknown

known

known

Figure 5.10:The basic operation for propagating information across an EOG. Givenvj we assume
to knowωj , ω̇j, p̈j . This information can then be propagated to all the connected nodes. Ifvk is
connected tovj by ej,k (i.e. the edge is directed fromvj to vk) then we can computeωk, ω̇k, p̈k
using (5.7) (just replacei + 1 with k). If vk is connected tovj by ek,j (i.e. the edge is directed
from vk to vj) then we can computeωk, ω̇k, p̈k using (5.7) (just replacei − 1 with k). Similar
considerations can be done for dynamic variables.

129

attached to the sub-nodes, with suitable edges whose associated reference frame is⟨s⟩ for both
edges.

Exploiting the RNEA for EOG

The graphical representation proposed in the previous section can be used to compute the inter-
nal dynamics of a (floating) kinematic chain provided with sufficient tactile, haptic and inertial
sensors. In particular, in this section we describe how to compute both kinematic and dynamic
variables, associated to the edges of the graphical representation.

A first recursion on the graph (pre-order traversal) will compute the linear acceleration (p̈)
and the angular velocity and acceleration (ω, ω̇) for each of the reference frames associated to
the edges of the graph. This procedure practically propagates the information coming from a
single inertial sensor to the entire kinematic chain. At each step, the values of (̈p, ω, ω̇) for
a given link are propagated to neighbor links by exploiting the encoder measurements and a
kinematic model of the chain.

A second recursion (post-order traversal) will compute allthe (internal and external) wren-
ches acting on the chain at the reference frames associated with all the edges in the graph. In
this case, Newton-Euler equations are exploited to propagate force information along the chain.
At each step, all but one wrench acting on a link are assumed tobe known and the remaining
unknown wrench is computed exploiting a dynamic model of thelink and the output from the
kinematic recursion.

Kinematics

We here describe the basic equations for propagating the kinematic information within the
graph. The proposed notation might seem a little bit too general, especially if compared with
the classical computations where the major simplification is the assumption that kinematics are
propagated in the kinematic tree along a constant path. In our case instead, we are interested in a
formulation capable of exploiting multiple (dynamically inserted) inertia sensors to propagate
the kinematic information from the sensors to the surrounding links. Therefore the flow of
kinematics cannot be predefined but needs to be dynamically adapted to the current structure
of the EOG.

The basic step here described consists in propagating the kinematic information associated
to an edge connected to a nodev to all the other edges connected tov. As usual, for each edge
i we consider the associated reference frame⟨i⟩. Referring to Fig. 5.11(a)-5.11(c) we assume
that knowing the linear acceleration (p̈j) and the angular velocity and acceleration (ωj, ω̇j)
of the reference frame⟨j⟩ we want to compute the same quantities for the frame⟨i⟩ sharing
with ⟨j⟩ a common nodev. Fig. 5.11(a) represents the case where the edgei exits v but
the edgej entersv; recalling the kinematic meaning of the edge directions, the sketch in Fig.
5.11(a) represents a situation where⟨i⟩ is attached tov while ⟨j⟩ is rotated by the joint angleθj
aroundzj . The situation is exactly the one we have in the classical Denavit-Hartenberg forward

130

5. Motion control on humanoids

kinematic description and therefore we have [Sciavicco andSiciliano, 2005]7:

ωi = ωj + θ̇jzj ,

ω̇i = ω̇j + θ̈jzj + θ̇jωj × zj ,

p̈i = p̈j + ω̇i × rj,i + ωi × (ωi × rj,i),
(5.7)

wherezj andθj indicate the rotational axis and the angular position of thejoint associated to
the edgej. Similarly, Fig. 5.11(b) represents the case where the edgei entersv but the edgej
exits the node; therefore Fig. 5.11(b) represents a situation where⟨j⟩ is attached tov while ⟨i⟩
is rotated by the joint angleθi. The situation is exactly the opposite encountered in classical
Denavit-Hartenberg so that we have:

ωi = ωj − θ̇izi,

ω̇i = ω̇j − θ̈izi − θ̇iωj × zi,

p̈i = p̈j − ω̇j × ri,j − ωj × (ωj × ri,j).
(5.8)

Finally, Fig. 5.11(c) represents the case where both⟨i⟩ and⟨j⟩ are attached to the link repre-
sented byv. In this case, continuity formulas are obtained puttingθ̇i = 0 andθ̈i = 0 in Eq. 5.7
(or equivalently Eq. 5.8):

ωi = ωj,

ω̇i = ω̇j,

p̈i = p̈j + ω̇i × rj,i + ωi × (ωi × rj,i).
(5.9)

These rules can be used to propagate kinematic information across different edges connected
to the same node. The only situation which cannot be solved isthe one where all edges enter
the nodev, i.e. none of the associated reference frames is fixed to the link v. We can handle
these casesa posterioriby defining a new arbitrary reference frame⟨v⟩ attached to the link.
In our formalism, this is achieved by adding a kinematic unknown (▽) and an edge fromv to
▽with associated frame⟨v⟩.
Remark 15. If the edge directions are chosen according to a “regular numbering scheme” as
proposed in Section 5.4.2, each edge will have a unique ingoing edge and multiple outgoing
edges.

The only nodes with no outgoing edges will be the ones corresponding to the leaves of the
kinematic tree (typically the end-effectors). For these nodes, we will add a kinematic unknown
(▽) and an edge fromv to▽with associated frame⟨v⟩ (typically the end-effector reference
frame of the classical Denavit-Hartenberg notation).

7In the classical recursive kinematic computation [Sciavicco and Siciliano, 2005] there is a one-to-one corre-
spondence between links and joints (see Figure 5.6) thus resulting in a kinematic equations slightly different from
Eq. 5.7. Classically, thei-th link has two joints and associated reference frames⟨i⟩ and ⟨i − 1⟩, respectively.
Only ⟨i⟩ is attached to thei-th link while ⟨i − 1⟩ is attached to the linki − 1. The rotation between these two
links is around thez-axis of ⟨i − 1⟩ by an angle which is denotedθi and therefore the analogous of Eq. 5.7 in
[Sciavicco and Siciliano, 2005] refer tȯθi in place ofθ̇j andzi−1 in place ofzi. In our notation, we get rid of
this common labeling for joints and links by explicitly distinguishing the link represented with the nodev and the
attached joints represented with the edgesi, j, . . . and associated frames⟨i⟩, ⟨j⟩, . . . whose axes are thereforezi,
zj , . . . with associated anglesθi, θj .

131

⟨i⟩

⟨j⟩
v

(a)

⟨i⟩

⟨j⟩
v

(b)

⟨i⟩

⟨j⟩
v

(c)

⟨i⟩v

CI(v) ∖ {i}

CO

(d)

⟨i⟩v

CI(v)

CO ∖ {i}

(e)

Figure 5.11: 5.11(a)-5.11(c): the three cases accounting for the exchange of kinematic informa-
tion. 5.11(d)-5.11(e): the two cases accounting for the exchange of dynamic information.

132

5. Motion control on humanoids

Dynamics

We here describe the basic equations for propagating the dynamic information within the graph.
Also in this case, the flow of dynamical information cannot bepredefined because the graph
structure continuously changes according to the position of the applied external wrenches (as
detected by the distributed tactile sensor). The basic stepproposed in this section assumes that
all but one wrench acting on a link are known and the remainingunknown wrench is computed
by using the Newton-Euler equations. Using the graph representation, a nodev with all its
edges represents a link with all its joints. As proposed in Section 5.4.2, at each edgeeu,v,
we can associate the wrenchweu,v thatu exerts onv. At each edgeev,u we can associate the
wrenchwev,u that v exerts onu. The Newton-Euler equations for the linkv can therefore be
written as follows [Sciavicco and Siciliano, 2005]:

∑
eI∈ CI(v)

feI − ∑
eO∈ CO(v)

feO =mvp̈Cv ,

∑
eI∈ CI(v)

(µeI + feI × reI ,Cv)
− ∑

eO∈ CO(v)

(µeO + feO × reO,Cv) = Īiω̇i + ωi × (Īiωi),
(5.10)

where8:

p̈Cv = p̈i + ω̇i × ri,Cv + ωi × (ωi × ri,Cv), (5.11)

and whereCI(v) is the set of ingoing edges,CO(v) is the set of outgoing edges and where
the indexi refers to any edge inCO(v) (necessarily non-empty in consideration of what we
discussed in Section 5.4.2). In other terms, recalling the kinematic meaning of outgoing edges,
i is an edge associated with any of the arbitrary reference frames⟨i⟩ fixed with respect to the
link v. As anticipated, Eq. 5.10 can be used to propagate the dynamic information across the
graph. Assuming that all but one wrench acting on a link are known, the remaining unknown
wrench can be computed with Eq. 5.10. Let us denote withi the edge associated with the
unknown wrench. Ifi ∈ CI(v), then the situation is the one represented in Fig. 5.11(d) and we
have:

fi = − ∑
eI ∈ CI(v)

eI≠i

feI + ∑
eO∈ CO(v)

feO +mvp̈Cv ,

µi = −fi × ri,Cv − ∑
eI ∈ CI(v)

eI≠i

(µeI + feI × reI ,Cv)

+ ∑
eO∈ CO(v)

(µeO + feO × reO,Cv) + Īiω̇i + ωi × (Īiωi).
(5.12)

8With slight abuse of notation we indicated withr⋆,Cv
the vector connecting the generic frame⟨⋆⟩ to the one

placed on the center of massCv of thev-th link.

133

If i ∈ CO(v), then the situation is the one represented in Fig. 5.11(e) and we have:

fi = ∑
eI∈ CI(v)

feI − ∑
eO∈ CO(v)

eO≠i

feO −mvp̈Cv ,

µi = −fi × ri,Cv + ∑
eI∈ CI(v)

(µeI + feI × reI ,Cv)
− ∑

eO∈ CO(v)

eO≠i

(µeO + feO × reO,Cv) − Īiω̇i − ωi × (Īiωi).
(5.13)

Remark 16. With reference to Eq. 5.12-5.13, it must be noted that if onlyone edge is connected
to the generic nodev, thenCI(v) ∪ CO(v) = {i}. Hence, the sums∑fk, ∑(µk + fk × rk,Cv

)
(beingk is the generic index for the edge) are null and the equations are basically simpler.
This case is peculiar, and its significance will be clear later on when the solution of the EOG
is discussed in detail.

Building EOG for Computing Dynamics and External Wrenches

In Section 5.4.2 and 5.4.2 we presented the basic steps for propagating kinematic and dynamic
information across a graph representing a kinematic tree. In this section we describe how to
use these basic steps to compute the whole-body dynamics, with specific attention at getting
estimates for the externally applied wrenches (denoted with ◊). During these computations
the graph structure is assumed static but it might change from one computation to the next.
Initially, the graph structure needs to be defined.

1. Create the graph representing the kinematic tree; define anode for each link and an edge
for each joint connecting two links. The edge orientation isarbitrary and in particular it
can be defined according to a “regular numbering scheme”.

2. For each inertial sensor (measuring the linear acceleration and the angular velocity and
acceleration) insert ablack triangle(▼) and an edge from the nodev to the triangle,
wherev represents the link to which the sensor is attached. Associate to the edge the
reference frame⟨s⟩ corresponding to the sensor frame.9

3. For any nodev with only ingoing edges, add awhite triangle(▽) and an edge fromv to
the triangle. Associate to the edge an arbitrary reference frame⟨v⟩10.

These steps define the kinematic EOG which can be used to compute the kinematics of
the entire chain. Specifically, if this graph contains a single inertial sensor (represented by a
▼node), the associated measurements can be used to compute the linear acceleration and an-
gular acceleration and velocity for all the edges of the graph. Computations can be performed
following the procedure in Algorithm 3, that is apre-order11 traversal of the tree with elemen-

9Kinematic chains are often grounded and therefore there exists a base link with null angular kinematics,ω =

[0,0,0]⊺ , ω̇ = [0,0,0]⊺ and gravitational linear acceleration̈p = g, beingg the vector representing the gravity
force. This situation is mathematically equivalent to an inertial sensor attached to the base link and measuring
constantlyω = 0, ω̇ = 0 andp̈ = g.

10See also Remark 15.
11pre- andpost-orderrefer to different classical graph visiting algorithms [Cormen et al., 2002].

134

5. Motion control on humanoids

tary operations defined by Eq. 5.7, Eq. 5.8 or Eq. 5.9. If multiple▼nodes (i.e. inertial sensors)
are present in the graph, each path between two of these nodescorresponds to a set of three
equations containing the measurements: one for the linear accelerations, one for the angular
velocity and one for the angular accelerations. These equations can be used to refine the sen-
sor measurements or to give better estimates of the joint velocities and accelerations (typically
derived numerically from the encoders and therefore often noisy).

Remark 17. In this respect, a possible algorithm for computing the better estimate of the
kinematics, given the multiple sources, is briefly reportedin Algorithm 4. Basically, given a
set ofK kinematics sources▼, which for brevity we nameκ1, . . . , κK , Algorithm 3 is solved
K times. At each timek, κk is the only kinematic source which is not being removed from
the EOG, and then the only▼in the graph. The solution of the EOGK times yields a set of
conditional estimatesωj∣κ1

, . . . , ωj∣κK
, ∀j (analogous considerations hold forω̇ and p̈), which

can be used by classical filters to provide the better estimate (e.g. maximum likelihood filters,
Kalman filters etc).

A clarifying example is shown in Figure 5.12(a): notice thatthe visit order is not related
to the edge direction, since the latter only affects the recursive equations that must be used to
propagate the variables, as shown in Figure 5.10. Once velocities and accelerations have been
computed for all edges, a new series of steps needs to be performed on the EOG to obtain the
dynamic enhanced subgraphs.

4. For each FTS embedded in the linkv cut the graph into two subgraphs according to the
procedure Figure 5.9. Dividev into two nodesvB andvF representing the sub-links
(with suitable dynamic properties); define twoblack rhombi(⧫) and add two edges
from the rhombi to the nodes. Associate to both the edges the same reference frame⟨s⟩
corresponding to the sensor frame.

5. If there are other known wrenches acting on a link (e.g. sensors attached at the end-
effector), insert ablack rhombus(⧫) and an edge from the rhombus tov, wherev repre-
sents the link to which the wrench is applied. Associate to the edge the reference frame⟨s⟩ corresponding point where the external wrench is applied.

6. If the distributed tactile sensor is detecting externally applied wrenches, insert awhite
rhombus(◊) for each externally applied unknown wrench. Add an edge connecting the
rhombus withv, wherev represents the link to which the wrench is applied. The edge
orientation is arbitrary depending on the wrench to be computed (i.e. the wrench from the
link to the external environment or the equal and opposite wrench from the environment
to the link). Associate to the edge the reference frame⟨c⟩ corresponding to the location
where the external wrench is applied.

After these steps have been performed, we basically obtained the dynamic enhanced sub-
graphs, each of which can be considered independently. Wrenches can be propagated to the
unknown nodes (◊) if and only if a unique unknown for each sub-graph exists. Ifthis is the
case, then for each unknown we can define a tree with the node◊as root. Wrenches can be

135

(a) (b)

Figure 5.12: 5.12(a):An example of kinematic EOG with multiple branches. Starting from the root
▼, the propagation of kinematics information follows the pre-order traversal of the tree. Thus, the
order of “visiting” nodes is: a, b, c, d, g, e, f.5.12(b): an example of dynamic EOG with multiple
branches. The propagation of dynamics information followsthe post-order traversal of the tree:
starting from leaves, information is propagated from children to parents, until the root◊. Thus,
the order of “visiting” nodes is: d, g, c, e, f, b, a. It must be noted that leaves are not necessarily
⧫, as explained in Remark 16.

propagated from the leaves to the root following the procedure in Algorithm 5, which is basi-
cally apost-ordertraversal of a tree [Cormen et al., 2002] with elementary operations defined
by Eq. 5.12 or Eq. 5.13. If there is no◊node in a subgraph (i.e. no external forces are acting
on the subgraph), then thepost-ordertraversal of this graph produces two equations (one for
forces and the other for wrenches) with no unknowns12. These equations can be used to esti-
mate on-line the dynamical parameters of the correspondingkinematic sub-tree exploiting the
linearity of these parameters in the equations [Sciavicco and Siciliano, 2005].

Remarkably, in the considered cases (one◊per subgraph at maximum) each edge in the
subgraph is visited during thepost-ordertraversal. As a result, all internal wrenches are com-
puted and therefore a complete characterization of the whole-body dynamics is retrieved.

As a consequence of what has been shown, givenN FTS distributed on a chain,N +1 sub-
graphs are produced and therefore a maximum ofN + 1 external wrenches can be estimated
(one for each sub-graph).

Case Studies

In order to clarify how to exploit computation of wrenches onan EOG, different situation are
hereafter reported.

Once again, the reader should note that the employment of theDenavit-Hartenberg notation

12Practically, these equations can be obtained by defining an arbitrary◊connected to an arbitrary node. Apost-

order traversal of the graph with◊as root determines the equations by simply assuming that thewrench associated
to the edge connected to◊is null.

136

5. Motion control on humanoids

Algorithm 3 Solution of kinematic EOG exploiting a tree

Require: EOG,ω0, ω̇0, p̈0
Ensure: ωi, ω̇i, p̈i, ∀vi

1: Attach a node▼for every kinematic source (e.g. inertial sensor)
2: Setω0, ω̇0, p̈0 in▼
3: Re-arrange the graph with a▼as the root of a tree
4: KinVisit(EOG,vroot)

KinVisit(EOG,vi)

1: Computeωi, ω̇i, p̈i with Eq. 5.7 or 5.8 or 5.9 according to direction of the edgesi, j con-
nected tov

2: for each child vk of vi do
3: KinVisit(EOG,vk)
4: end for

Algorithm 4 Fusion of multiple kinematic sources

Require: EOG,κk = [ωk, ω̇k, p̈k], k = 1, . . . ,K
Ensure: ω̂i, ˆ̇iω, ˆ̈ip, ∀i

1: for eachk = 1 ∶K do
2: Attach a node▼for κk
3: Computeωi∣κk

,∀i

4: end for
5: Computeω̂i = filter* (ωi∣κ1

, . . . , ωi∣κK
)

* filter is a generic filter for data fusion from multiple sensors

v0

v0

v1

v1

vn

vn

⟨0⟩

⟨0⟩

⟨1⟩

⟨1⟩

⟨n⟩

⟨n⟩

e0,1

e0,1

en−1,n

en−1,n

e1,2

e1,2

f0 =?
µ0 =?

ω0 = 0
ω̇0 = 0
p̈0

fn+1
µn+1

ωn+1 =?
ω̇n+1 =?
p̈n+1 =?

Figure 5.13: A representation of classical Newton-Euler computations for the graph in Fig. 5.7.
Kinematics is assumed known at the base (▼). Wrenches are assumed known at the end-effector
(⧫, e.g. if an external FTS is used) and propagated to the base.

137

vi

vj

vk

vh

win

win

win
wout

6-Axis FTSs

(a)

st
ep

1
st

ep
2

st
ep

3
st

ep
4

vi

vi

vjvj

vk

vk

vh

vh
ej,i

ej,i

eh,j

eh,j

ej,k

ej,k

⋅

⋅

win

win win

win

winwin

wout

wout

(b)

Figure 5.14: 5.14(a): an example of link with multiple connections, which represents a typical
case of multi-branched tree. At the extremity of the links, except for one, FTS are located. The
situation can be represented with an EOG.5.14(b): an EOG representing a situation similar to the
one of 5.14(a). On the left side, the sketch of the graph; on the right side, the figure shows the order
in which the graph will be visited for computation.

138

5. Motion control on humanoids

Algorithm 5 Solution of dynamic EOG exploiting a tree

Require: EOG,ws∀ FTS
Ensure: wi, ∀vi

1: For every FTS, attach a node⧫to the corresponding link
2: Setws in each⧫
3: For each⧫, split the graph and create two sub-graphs (see text for details)
4: Attach a node◊to each link where a contact is detected: if there is no contact in a subgraph,

choose an arbitrary position and attach a fictitious◊13

5: Re-arrange each sub-graph with a◊as the root of a tree
6: for each subgraphdo
7: DynVisit(EOG,vroot)
8: end for

DynVisit(EOG,v)

1: if v has childrenthen
2: for each child ev,h ∈ C(v), ev,h ≠ i do
3: wev,h = DynVisit(EOG,h)
4: end for
5: end if
6: Computewi with Eq. 5.12 or Eq. 5.13 according to the direction of the edges

for the definition of the kinematic structure of the links, and the RNEA for the definition of the
dynamics of the system, are not mandatory. Custom choices can be adopted.

When passing from one vertex to the other, Eq. 5.12 or Eq. 5.13is used. This equation
provides the computation of both internal and external forces, depending on the definition of
known and unknown variables on the graph. With reference to Figure 5.10, when the flow of
the information is along the same direction of the edge,fi of Eq. 5.12 or Eq. 5.13 is to be
computed. One of the forces among the∑fk otherwise, depending on which of thek links the
unknown is located.

• Single-Branched Open Chain

In the case presented in Figure 5.13 for a single open chain, there exists, for the links in
between the base link and the final link, one singlefk, since the maximum value ofk
depends on the number of links attached to thei-th. When the flow of the information
is along the same direction of the edge,fi of Eq. 5.12 or Eq. 5.13 is to be computed;fk
otherwise. Next sections show some cases which demonstratethe generality of the EOG
method also for open, multi-branched kinematic chains. With respect to Figure 5.13, we
point out that the unknown◊attached to the base is used if a contact is detected on that
link (e.g. if the artificial tactile skin reveals a contact atthe base). In absence of contact,
the node◊is no longer needed. In this case, it is possible to write the recursive equations
as a compact set, where all the dynamic variables are known: this formulation can be
exploited to obtain, for example, a better estimate of the rigid-body model parameters,

139

e.g. links mass.

• Multiple-Branched Nodes and External Forces

External forces may be acting in other locations different from the end-effector (e.g. on
an internal link in between the base and the end-effector), as a consequence of contacts
with the environment. In such cases, the application point (or the centroid of the contact
region) must be known. Also in this case, Eq. 5.12 or Eq. 5.13 holds. Note that one
external force can be determined if, and only if, all the other wrenches flowing through
the edges connected to the link can be determined.

Consider the general example of one link connected toN other links,N ≥ 2. The
situation is represented in Figure 5.14(b). The graph associated to a similar situation
instead is shown in Figure 5.14(a), left side. The right sideof Figure 5.14(a) shows the
steps the algorithm performs to determine the unknown wrench wout acting on linki,
when a direct measurement of that wrench is missing.

The first step consists in setting the unknown wrenches giventhe quantities that have
flown from the known leaves. These quantities can in general be measured by FTS within
a link, or seta priori (e.g. with the assumption that linkk is moving without interaction,
this wrench can be set equal to zero). In the second step, eachof the links connected tovj
performs the calculation (using Eq. 5.12 or Eq. 5.13) necessary to define the information
passing through the edge which connects to linkj, according to the direction of the edge.
Moreover, vertexj preforms again the evaluation of the force transmitted toi, again from
Eq. 5.12 or Eq. 5.13, according with the direction of the edgeej,i. Finally, vi evaluates
wout. Note that in this example, the assumption thatwout is the only unknown must hold.

• Virtual Joint Torque Sensors In case the Denavit-Hartenberg notation has been em-
ployed for the definition of the kinematic of the structure, an estimation of the joint
torque can be performed, once thei-th wrench is known:

τi = µ⊺i zi−1 (5.14)

wherezi−1 is thez-axis of the reference frame⟨i − 1⟩ as in Fig. 5.6. The method shows
that it is possible to have an estimation of joint torques, which can be used, successively,
for joint torque control. Moreover, this is not the only information that it is possible to
extract from the method. Joint torques are here found as one component of the wrenches
flowing through the edges. These wrenches allow having a better representation of the
possible contact situation, which can be used as a virtual measurement, to perform every
kind of tasks involving force detection and control. It is necessary to note that the more
6-axis FTS are employed, the more accurate will be the estimation.

5.5 Experimental results

In this following experimental results on the humanoid robotic platforms are illustrated.

140

5. Motion control on humanoids

q0[○] q1[○] q2[○] q3[○]
-10 -140 -115 0 max

150 100 15 100 min

Table 5.1: Value ranges of the James’ arm joint positions.

5.5.1 Closed loop motion planning with joint velocity control in James

In Section 4.4 a method to find the neural controls that make a robot move optimally with
respect to a specific criterion was presented. Numerical results were shown in Section 4.5 for a
two DOF arm and a three DOF mobile robot, where theoretical and practical issues were also
discussed.

Here, the method is applied to the control of James’ arm, focusing on the first four joints,
i.e. three joints of the shoulder and one of the elbow. The range of the four joints is reported in
Table 5.1. James hand is considered as the end effector of themanipulator. At this stage, the
orientation of the hand is neglected.

Denoting withxr = [x, y, z] the Cartesian coordinates of the end effector with respect to a
fixed reference frame, and withq = [q0, q1, q2, q3] the vector of the joint position variables of
the arm (see Table 5.1), then the forward kinematicsxr(t) = farm(q(t)), farm ∶ R

4
→ R

3 is
found using the Denavit-Hartenberg convention [Sciaviccoand Siciliano, 2005]. The target’s
Cartesian coordinates are denoted byxg(t). The orientation of the end effector is neglected.
Within this context, the four DOFs manipulator is redundant.

Different tasks are shown: the focus is both on the response of the CLIK regulator when
tracking a time varying desired trajectory, and on the performance of both FH and RH neural
controllers, used to plan Cartesian trajectories for reaching and tracking tasks. In this specific
case, the regularizing parameters of the Jacobian matrix inEq. 5.3 were set tōσ = 0.20 and
k̄ = 0.10: these values were chosen by driving the arm to singular positions, so as to set a
safety threshold. The variable delay in the communication process (from PC to DSP boards via
PC104 and back) affects the global performance of the control loop. Delay is actually variable
and depends on multiple terms: delay on the CAN bus (ranging from 2 to 4ms, approximately),
the delay of the DSP in elaborating the commands from the PC, computing the low-level con-
trol trajectories, sending the commands to the motors (≈ 1ms), and the delay in the backward
communication (i.e. retrieval of joint positions and velocities from the DSP, from 2 to 5 ms, ap-
proximately). To avoid a stochastic modeling of delays, they were treated as a high frequency
pole. At first, the simple proportional regulatorR(s) = Ke was tested. Unfortunately, high-
frequency dynamics prevented to raiseKe to a desired value: in the experiments,Ke = 20I was
already revealing elastic effects (a step-response was used to investigate the system); higher,
e.g.Ke = 40I, was compromising the safety of the robot (high oscillatingvelocities exalt the
elasticity effect of tendons transmission). For these reasons the simple proportional gainKe

was substituted with Eq. 5.4, so as to have a high proportional gain while not incurring in insta-
bility of the system. Different settings concerning sampling time, time constant and gain were
investigated (in particular varying∆t = 5÷50ms), and reasonable performances were obtained
with ∆t = 20ms, τe = 30,Ke = 0.5 It must be remarked that the commanded velocitiesv(t)

141

Figure 5.15: Recording a human handwriting trajectory with the Vicon system. A marker has
been placed on the subject finger: cameras recorded the kinematics of the marker while the subject
performed the motion.

are checked by a further lower level control: to prevent the robot to make fast movements, joint
velocitiesq∗(t) are saturated in the range[−25,+25](○/s). This rough solution is necessary to
avoid the stress of the elastic parts of the robot (mainly tendons) and their consequent damage.

Hand-writing: human vs. robot

In Figure 5.16 a hand-writing task is presented, where the end-effector (located in the wrist)
performs a time varying 3D movement, precisely James’s signature. The signature consists of a
sequence of Cartesian coordinates which were measured witha VICON motion capture system
[Vicon, www] during a human writing task. Therefore, the time of the global trajectory and
its dimensions correspond to a smooth human movement. Only position references can be re-
trieved from the Vicon, thus feed-forward commandsẋ∗ were not used in the CLIK algorithm.
Cartesian position and velocities of the end-effector are shown in Figure 5.17(a), while the
corresponding arm’s joints position and velocities are shown in Figure 5.17(b). The purpose
of this experiment was mainly to tune the performances of theregulator of Eq. 5.4, since the
transient response was fundamental in order to have a fluid tracking of the desired trajectory.
It must be noted that joint velocities are noisy, because encoders can measure only the motor
positions (though accurately), so the joint velocities arecomputed via numerical differentiation
on the DSP boards, which cause a noisy estimation as shown in Figure 5.17(b).

“Human-like” motions

In [Ivaldi et al., 2008a] a bell-shaped motion on a planar surface was planned for a 2DOF arm,
where the cost function was aminimum jerkone, and the movement timeT was fixed. Here,
a 4DOF manipulator performs multiple reaching movements, where the desired point to reach
changes at each time, unpredictably, and the motion criteria follows the same principle. Thus,
a MJM is implemented (see Section 3.2.1). The time to accomplish a movement is roughly
determined at each trial by Fitts’ law: with reference to Eq.3.2 in the experiment, the following
parameters were used:a = 1.5, b = 0.7, c = 0.5,W = 0.0025 (the latter meaning that the target is
2.5mm wide). ParameterD was computed at each trial, being the Euclidean distance between
the initial position of the end effector and target positionin the Cartesian space. In Figure 5.18

142

5. Motion control on humanoids

0.24

0.26

0.28

0.3

0.32

0.34

0.1

0.15

0.2

0.25
−0.16

−0.14

−0.12

−0.1

y
z

x

human robot

Figure 5.16:The human (blue) and James’s signature (red).

multiple subsequent reaching trajectories are shown, where the duration of each was chosen
according to (3.2). Figure 5.19(a) focuses on two among the aforementioned movements:
the Cartesian position and velocities are actually shaped as minimum jerk trajectories. In the
second movement, an “error” is evident: looking at the jointlevel, in Figure 5.19(b), it must be
noted that the desired velocity in Joint 3 exceeds the safetythreshold (here15 deg/s, then the
real, executed trajectory is slightly different from the desired minimum-jerk one.

Tracking a target moving unpredictably

In this experiment, a RH neural controller as described by Problem 13 is used to plan Cartesian
trajectories for reaching. The desired trajectory is characterized by the following convex cost
function:

J = N−1∑
i=0

c(ui) + ξ⊺i+1Vi+1ξi+1

whereξ = [∆x,∆ẋ,∆y,∆ẏ,∆z,∆ż], i.e. the difference between the target and the end-
effector Cartesian positions and velocities,u = [ẍ, ÿ, z̈] ≜ [ux, uy, uz]. Note thatJ again
represents a tradeoff between the minimization of the energy consumption (acceleration and
velocity can be considered as proportional to the power consumption) and the “best” end-
effector proximity to the target during and at the end of the maneuver. The second term is
indeed related to the distance to the target during the maneuver, which results in high velocity
desired trajectories. Conversely, the first term acts as a damping quantity, which is necessary

143

0 10 20 30 40

0.145

0.15

0.155

0.16

x

Cartesian position [m]

desired actual

0 10 20 30 40
−0.06

−0.04

−0.02

0

0.02
Cartesian velocity [m/s]

0 10 20 30 40
−0.34

−0.32

−0.3

−0.28

−0.26

−0.24

y

0 10 20 30 40
−0.1

0

0.1

0.2

0.3

0 10 20 30 40
0.1

0.15

0.2

0.25

Time [s]

z

0 10 20 30 40
−0.05

0

0.05

0.1

0.15

Time [s]

(a)

0 10 20 30 40
10

20

30

40
Joint position [deg]

J
o
in

t
0

0 10 20 30 40
−10

0

10
Joint velocity [deg/s]

desired actual

0 10 20 30 40
−50

−40

−30

−20

J
o
in

t
1

0 10 20 30 40
−5

0

5

10

0 10 20 30 40
20

25

30

35

J
o
in

t
2

0 10 20 30 40
−10

0

10

0 10 20 30 40
60

70

80

90

Time [s]

J
o
in

t
3

0 10 20 30 40
−10

0

10

20

Time [s]

(b)

Figure 5.17: Comparison
between human and robot
handwriting. 5.17(a)
Cartesian position and ve-
locity of the end-effector
during the signature task.
Red dashed lines are the
desired reference (i.e. the
human recorded trajec-
tory), while black lines
are the measured trajec-
tories of the robot hand.
5.17(b) Joint positions
and velocities of the robot
arm during the signature
task. Red dashed lines
are the desired velocities,
while black lines are the
effective joint measured
values.

144

5. Motion control on humanoids

0 5 10 15 20 25 30 35 40 45 50

−0.1

0

0.1

0.2

Cartesian Position [m]

x

desired actual

0 5 10 15 20 25 30 35 40 45 50
−0.4

−0.3

−0.2

−0.1

0

0.1

y

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

z

T ime [s]

Figure 5.18: Cartesian positions of the end-effector during multiple reaching tasks. The duration
of each single point-to-point movement is determined by Eq.3.2, while the trajectories have a
minimum jerk shape. Failures in reaching (i.e. inability toreach the target perfectly) are due to
joint velocities limitations (for safety reasons) which obviously compromise the perfect execution
of the trajectories.

145

10 15 20

0.15

0.16

0.17

0.18

0.19

0.2

x

Cartesian Position [m]

desired actual

10 15 20
−4

−2

0

2

4
Cartesian V elocities [m/s]

10 15 20

−0.3

−0.25

−0.2

−0.15

y

10 15 20
−2

−1

0

1

2

10 15 20
0.15

0.2

0.25

0.3

0.35

z

Time [s]
10 15 20

−2

−1

0

1

2

Time [s]

(a)

10 15 20

−10

0

10

Joint velocity [deg/s]

desired actual

10 15 20
30

35

40
Joint position [deg]

J
oi

n
t

0

10 15 20

−10

0

10

10 15 20

−40

−20

0

J
oi

n
t

1

10 15 20

−10

0

10

10 15 20
10

20

30

J
oi

n
t

2

10 15 20

−10

0

10

20

30

Time [s]
10 15 20

60

80

100

120

J
oi

n
t

3

Time [s]

(b)

Figure 5.19: A trial
among the multiple reach-
ing tasks. 5.19(a)Carte-
sian positions and veloc-
ities of the end-effector
during a single reaching
movement. The trajec-
tories are correctly bell-
shaped. 5.19(b) Joint
positions and velocities.
Note that the joint veloc-
ities are saturated within
the range[−15,15].

146

5. Motion control on humanoids

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

D

T

Time to perform a reaching movement - a = 1.5, b = 0.7, c = 0.5

W=0.0005

W=0.001

W=0.002

W=0.0025

W=0.005

Figure 5.20:Fitts’ law: the time to accomplish a movementT function of the amplitude of move-
mentD.

to reduce the risk of damage of the platform.

Remark 18. c(ui) reminds the absolute work term [Berret et al., 2008], measuring the energy
expenditure of a movement. In this case the goal is not to minimize an absolute work term
(which would require the torques and thus a more complex dynamic model), however it is inte-
resting to show that the proposed method can be applied to theimplementation of “complex”
nonlinear costs, which are usually superseded due to their mathematical difficulty (e.g. induced
by the absolute value).

Weight matrices were set toVi = diag(1.0,80.0,1.0,80.0,5.0,10.0), i = 1, . . . ,N − 1,
VN = 40I. c(ui) is a numerical approximation of∥ui∥2. Output velocities were bounded within
a safe range. The state functionf (4.57) describing the system is a double time integrator of the
controlled accelerationsui. The double integrator approximates ideally the robot and the CLIK
controller; the latter takes entirely account of singularities and redundancies, and is properly
tuned to achieve the desired behaviors. Thus, the overall system performances do not degrade.

The training of the neural networks chain was performed off-line with the following pa-
rameters:N = 60, ν = 40 (whereN represents is the number of control steps, andν is the
number of total neurons of the net),ϕ = tanh. More than107 random samples were used to
feed the networks, considering the whole reachable Cartesian space for the robot, and an aug-
mented space for the target (to consider also unreachable targets); velocities and position were
uniformly sampled.

Remark 19. The considerable amount of training data is required as the control problem is
stated in a stochastic framework: each possible configuration (in terms of position, velocity
and acceleration) of the four joints of the robot, producinga certain end-effector position
and velocity in the Cartesian space, as well as the target’s coordinates in the space, must
be considered. It is remarked that the control problem does not take into account any prior

147

knowledge of the target behavior: there’s no prediction on its evolution, based neither on the
past nor on some a priori information.

Remark 20. The flops count for the on-line computation of the approximated optimal controls
is about4633, which in a Pentium IV 3GHz are approximately10µs. More specifically, the
operations to make a forward “step” of a NN areν(n+m) products,ν(n+m+1)+m+2(ν+m)
sums,2(ν +m) exponentials andν +m divisions.

In Figure 5.22 the task is presented: the target is “fixed” (i.e. still), but changes unpre-
dictably its position after a variable unknown period of time. This situation is representative
of the case where the attentive system of the robot selects a target to be reached in the space
(e.g. when the robot recognizes a known object of interest).Whenever a new interesting
object is presented to the robot, it is selected as the new target14. Cartesian trajectories of
the end-effector and target position (named “desired”) areshown in Figure 5.21(a), while the
corresponding arm’s joint position and velocities, computed by the CLIK, are shown in Fig-
ure 5.21(b). The saturation of velocities is evident in the joint velocity profiles.

In Figure 5.23 instead, a target moving in the 3D space along acircle path is followed
by the end-effector. This situation is comparable to the case when the robot wants to catch
a moving object (e.g. the human engage the robot in a “catch itif you can” game, where he
moves the object randomly in the space so as not to make the robot reach for the object). Even
if the robot does not have any information on the target’s kinematics or dynamics, and does
not model or attempt to predict the behavior of the target andsomeway anticipate it, the robot
is able to track almost perfectly the desired trajectory. Figure 5.24(a) and 5.24(b) show the
Cartesian coordinates of the wrist and the joint position and velocities of the arm during the
movement.

5.5.2 Estimation of intrinsic and extrinsic wrenches in iCub

Theoretical results discussed in Section 5.4.2 have been implemented in iDyn, a library for dy-
namics of single and multiple-branched serial-links kinematic chains [Ivaldi et al., www]. iDyn
is built on top of iKin [Pattacini, www, Pattacini et al., 2010], a library for forward-inverse
kinematics of serial-links chains of revolute joints with standard Denavit-Hartenberg nota-
tion. Both libraries are part of an open source software project, released under a GPL license.
Though being tailored for the iCub, remarkably iKin and iDynare generic, cross-platform
and portable C++ libraries (relying on CMake and YARP middleware [Fitzpatrick et al., 2008,
Fitzpatrick et al., 2010]) that can be used to study kinematics and dynamics of potentially any
robotic device.

Figure 5.25 illustrates a scheme of the global control system. Sensor measures, acquired
through local boards, are sent through CAN bus or COM port to the PC104, being the local
CPU on the robot (located on its head). An interface module running on the PC104 repli-
cates collected measures to a local Gigabit Ethernet network, exploiting YARP middleware
[Fitzpatrick et al., 2008]. In one PC of the iCub cluster, theso called “whole body dynamics”

14This situation must not be underestimated, because the evolution of the reference variableξ∗ has sudden
changes, steps in the position and impulses in the velocity level.

148

5. Motion control on humanoids

0 5 10 15 20
0.19

0.195

0.2

0.205

0.21

x

Cartesian position [m]

desired actual

0 5 10 15 20
−0.02

−0.01

0

0.01

0.02
Cartesian velocity [m/s]

0 5 10 15 20
−0.4

−0.3

−0.2

−0.1

0

y

0 5 10 15 20
−1

−0.5

0

0.5

1

0 5 10 15 20
0.2

0.25

0.3

0.35

0.4

Time [s]

z

0 5 10 15 20
−0.5

0

0.5

1

Time [s]

(a)

0 5 10 15 20
20

40

60
Joint position [deg]

J
o
in

t
0

0 5 10 15 20
−50

0

50

100
Joint velocity [deg/s]

desired actual

0 5 10 15 20
−100

−50

0

50

J
o
in

t
1

0 5 10 15 20
−50

0

50

100

0 5 10 15 20
10

15

20

J
o
in

t
2

0 5 10 15 20
−40

−20

0

20

0 5 10 15 20
0

50

100

Time [s]

J
o
in

t
3

0 5 10 15 20
−40

−20

0

20

Time [s]

(b)

Figure 5.21: Multiple
reaching with a RH neural
controller. 5.21(a)Carte-
sian positions and veloc-
ities of the end-effector
during the movements. It
is worth noting the differ-
ent velocity profiles (e.g.
ẏ, ż) due to the differ-
ent parameters of the cost
function.5.21(b)Position
and velocity of the arm’s
joints during the move-
ments.

149

−1

0

1

2

−0.35
−0.3

−0.25
−0.2

−0.15
−0.1
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

x

target 3

target 2

start

y

target 1

z
neural trajectory targets

Figure 5.22: “Neural” trajectory (blue) of the end-effector, reaching atarget (red) which changes
unpredictably. The shape of each trajectory is determined by the cost functionJ and its parameters.

0.18
0.2

0.22
0.24

0.26
0.28

0.3
0.32

0.34

−0.32

−0.3

−0.28

−0.26

−0.24

−0.22

−0.2

−0.18

−0.16

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

y

z

x

desired actual

start

Figure 5.23: Trajectory of the end-effector (blue) when tracking a target (red) moving along a
circle. The starting position of the end-effector is represented by the green sphere.

150

5. Motion control on humanoids

0 10 20 30 40

0.145

0.15

0.155

0.16
x

Cartesian position [m]

desired actual

0 10 20 30 40
−0.15

−0.1

−0.05

0

0.05
Cartesian velocity [m/s]

0 10 20 30 40
−0.35

−0.3

−0.25

−0.2

−0.15

y

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

0.3

0 10 20 30 40

0.2

0.25

0.3

0.35

Time [s]

z

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

Time [s]

(a)

0 10 20 30 40
20

40

60
Joint position [deg]

J
o
in

t
0

0 10 20 30 40

−20

0

20

Joint velocity [deg/s]

desired actual

0 10 20 30 40
−60

−40

−20

0

J
o
in

t
1

0 10 20 30 40

−20

0

20

0 10 20 30 40
20

25

30

35

J
o
in

t
2

0 10 20 30 40

−20

0

20

0 10 20 30 40
50

100

150

Time [s]

J
o
in

t
3

0 10 20 30 40

−20

0

20

Time [s]

(b)

Figure 5.24: Tracking a
point moving along a cir-
cle path. 5.24(a) Carte-
sian positions and veloc-
ities of the end-effector.
5.24(b) Position and ve-
locity of the arm’s joints
during the movement.

151

Whole Body
Torques

ROBOT
Task

Control

User

Input

ws

ω0, ω̇0, p̈0

q

τ̂

τ∗

q̇

q̈

Figure 5.25: A schematic structure of the control system. From the robot,it is possible to retrieve

the joints positionsq, the inertial measurementsω0, ω̇0, p̈0 (▼) and the FTS measuresws (⧫).
Joints velocities and accelerations are estimated throughspecific filters (black rectangles on the
top). Dashed arrows indicates information sent through YARP ports on the local network, thus
subject to delays. More details on this scheme can be found inthe online documentation of the
iCub: http://eris.liralab.it/wiki/Force Control.

is computed, i.e. the whole body joints torques are computedthrough iDyn. Joint torques es-
timated by the latter process are then sent back to the boardson the robot via PC104, where
local force/torque control strategies can be finally applied. It must be noticed that while the
computation of the torques (i.e. the time required by iDyn tocompute the whole body torques,
precisely to solve the kinematic and dynamic EOG) takes on average3.2ms, the time elapsed
between the received measurements and the outcome of the computation is about5.3ms. To
this time, a variable delay must be added, due to the stochastic behavior of the network, which
is necessary to carry information among different PCs.

Remark 21. The weak point of the global process is the round-trip-time of a sensor measure:
practically, a delay is introduced whenever information issent through the local network, thus
between the sensor measure and the application of a suitablecontrol strategy exploiting that
measure a certain time elapses. This delay, which is varyingbetween4 and10ms on average,
is the weak point of the active control strategy as it is implemented on the platform, since
it constrains the control bandwidth. We are currently investigating the possibility to modify
the platform, in particular the embedded electronics, in order to support direct joint torque
control, but in a totally different way, to improve control performances for certain critical
joints. However, for the current configuration of the robot,the proposed approach is apparently
the only possibility to provide force/torque control.

Given the sensors position and the description of the robot kinematics, it is quite easy to
build the kinematic and dynamic EOG.

The structure of the EOG needed for the computation of the robot kinematic variables for
all joints is shown in Figure 5.26(a)15: the inertial sensor is the unique absolute source of kine-

15Each vertex is named asX − k, whereX = {H , LA, RA, RL,LL, T} is a code for the limb (head, torso,

152

5. Motion control on humanoids

matic information (▼) (encoders are relative sources, and their information is considered as a
property of the links); unknowns (▽) have been placed at the end-effectors, so that kinematics
variables are propagated through all the graph nodes.

Since the complete knowledge of the kinematic information is a prerequisite for the com-
putation of the dynamics, the kinematic EOG shown in Figure 5.26(a) is adequate for all appli-
cations. The dynamics EOG is instead task-dependent.

As the iCub is provided with a set of four FTS, the dynamic EOG is divided in five sub-
graphs, each containing a wrench measure (⧫). The head terminal wrench is usually set to
zero, so it is treated as a known variable (again⧫).

The choice of the nodes where unknown wrenches (◊) are applied is instead totally arbi-
trary and depends on the application point of an interactionforce.

For example, if the robot is moving unconstrained in the space, without incurring into con-
tacts with itself or the surrounding as in Figure 2.5(a), unknown wrenches (◊) can be statically
attached to the end-effectors of the main limbs, hands and feet. Whereas in an interaction
scenario, such as the robot crawling on the floor (see Figure 2.5(b)), external wrenches are
clearly assumed on wrists and knees. This application also highlights the importance of the
inertial sensor, which allows performing the Newton-Eulercomputations with a floating base
frame. Indeed, linear and angular velocity and acceleration of the head, measured by the sen-
sor, change continuously as an effect of the progression of the robot on the floor, combined
with the head movements.

In general, unknown wrenches due to any sort of contact cannot be statically attached to a
specific link, since the application point of the external force (i.e. the centroid of the contact)
is unknown and generally difficult to predict (unless visualfeedback is exploited to predict
possible contact situations, but it is not always reliable). However, thanks to the artificial
tactile skin it is possible to retrieve such information dynamically: therefore the EOG structure
can be defined on the fly based on the contact position at each time instant. In such cases, as a
consequence of the fact that only one unknown is allowed per each sub-graph, the external force
due to contact is the unknown (◊) while wrenches located at the end-effectors are assumed to
be known and null (⧫).

Examples of sub-graphs are reported in Figure 5.32, which correspond to the contacts
shown in Figure 5.31, where three different contact locations in the left arm are presented.

Model Validation

A rigid-body dynamics model has been used to describe the whole robot. Kinematics and
dynamics parameters were retrieved from the CAD description of the robot. Two experiments
prove the reliability of the approach:

1. both arms and legs FTS measurements were compared with their model-based predic-
tion, during unconstrained movements (i.e. null external wrenches);

2. measurements from an external FTS, applied at a given position on the end-effectors,
were compared with their estimation.

right/left arm/leg) andk means that the corresponding link is thek-th for that specific limb.

153

(a) (b) (c)

Figure 5.26: Representation of iCub’s kinematic and dynamic EOG.5.26(a): iCub’s kinematic EOG. It is noticeable that the inertial sensor
measure (▼) is the unique source of kinematic information for the wholebranched system.5.26(b): iCub’s dynamic EOG, when iCub is
standing on the mainstay and moving freely in the space, as shown in Figure 2.5(a). Given the four FTS, the main graph is cutby the four links
hosting the sensors, and a total of five sub-graphs are finallygenerated. The unknowns are the external wrenches at the end-effector: if the robot
does not collide with environment, they must be zero, whereas if a collision happens, an external wrench must arise. The displacement between
the expected and the estimated wrenches allows detecting contacts with the environment. Of course, the hypothesis holds that interactions can
only occur at the end-effectors. The external wrench on top of the head is assumed to be null. Notice that the mainstay is represented with
a unknown wrench◊. 5.26(c): iCub’s dynamic EOG, when the iCub is crawling like a baby, asshown in Figure 2.5(b). As in the previous
case, five sub-graphs have been generated after the insertion of the four FTS measurements, but unlike the free-standingcase, here the mainstay
wrench is missing, being the iCub floating (unfixed) on the floor. Specific locations for the contacts with the environment are specified as being
part of the task: thus, the unknown external wrenches (◊) are placed at wrists and knees, while wrenches at the feet and palms are assumed
known and null (⧫). Interestingly, while moving on the floor the contact with the upper part could be varying (e.g. wrists, palms, elbows),so
the unknown wrench could be placed in different locations than the ones shown in the graph.

15
4

5. Motion control on humanoids

Figure 5.27: Enhanced graphs for predicting the four FTS measurements,ŵs, when the external
wrench acting at the end-effectors (hands and feet) is known, typically null.

FTS Predictions

During unconstrained, contact-free motion, as shown in Figure 2.5(a), the measurementsws

from the four six-axes FTS embedded in the limbs have been compared with the analogous
quantitiesŵs predicted by the dynamical model. Sensor measurementsws can be predicted
assuming known wrenches at the limbs extremities (hands or feet) and then propagating forces
up to the sensors. In this case, null wrenches were assumed, because of absence of contact
with the environment. It must be noticed that in Figure 2.5(a) all limbs are moving freely in
the space without colliding with the robot own body or the environment. Though having a
fixed base (the robot is supported by a metallic mainstay mechanically inserted into its hip),
remarkably also the head is moving: thus, the presence of theinertial sensor is crucial for
the computation of joint torques. The EOG in this case is shown in Figure 5.27. Table 5.2
summarizes the statistics of the errorsws−ŵs for each limb during the sequence of movements
in Figure 2.5(a). In particular, the table shows the mean andthe standard deviation of the errors
between measured and predicted sensor wrench during the movements. Figure 5.28 plots the
error betweenws andŵs for the right arm during the same sequence of movements (onlyone
limb out of four is shown without loss of generality).

External Wrench Estimation

When solving the dynamic EOG in Figure 5.26(b), it is possible to retrieve one external wrench
per sub-graph. Thus, we compared the estimation of an external wrench applied at the end-
effector with a direct measure of it, through a free-standing six-axes FTS which was “pushed”
on the terminal link. In particular, a wrenchwE was exerted on the left hand and measured
with the external FTS. Its value was then compared withŵE , the estimation of the external
wrench obtained by propagating the embedded FTS measure in the sub-graph until the frame
wherewE was applied. A plot ofwE andŵE is reported in Figure 5.29.

As a counter evidence of the reliability of the method we compared the torqueŝτ , deter-
mined with (5.14) with the ones corresponding to the projection on joints of an external wrench
applied at the end-effectorτE = J⊺

E
wE , whereJE ∈ R6×n is the Jacobian (here referred to the

frame of the node connecting torso, head and arms).

155

right arm:ε ≜ ŵs,RA −ws,RA

εf0 εf1 εf2 εµ0
εµ1

εµ2

ε̄ -0.3157 -0.5209 0.7723 -0.0252 0.0582 0.0197
σε 0.5845 0.7156 0.7550 0.0882 0.0688 0.0364

left arm: ε ≜ ŵs,LA −ws,LA

εf0 εf1 εf2 εµ0
εµ1

εµ2

ε̄ -0.0908 -0.4811 0.8699 0.0436 0.0382 0.0030
σε 0.5742 0.6677 0.7920 0.1048 0.0702 0.0332

right leg: ε ≜ ŵs,RL −ws,RL

εf0 εf1 εf2 εµ0
εµ1

εµ2

ε̄ -1.6678 3.4476 -1.5505 0.4050 -0.7340 0.0171
σε 3.3146 2.7039 1.7996 0.3423 0.7141 0.0771

left leg: ε ≜ ŵs,LL −ws,LL

εf0 εf1 εf2 εµ0
εµ1

εµ2

ε̄ 0.2941 -5.1476 -1.9459 -0.3084 -0.8399 0.0270
σε 1.8031 1.8327 2.3490 0.3365 0.8348 0.0498

*: ε ≜ ŵ −w = [εf0 , εf1 , εf2 , εµ0
, εµ1

, εµ2
]

*: SI Unit: f ∶ [N], µ ∶ [Nm].
Table 5.2: Errors in predicting FTS measures (see text for details)

156

5. Motion control on humanoids

0 10 20 30
−3

−2

−1

0

1

2

εf0
[N]

0 0.5 1 1.5 2 2.5 3 3.5
−3

−2

−1

0

1

2

εf1
[N]

0 10 20 30
−2

−1

0

1

2

3

εf2
[N]

time [s]

0 10 20 30
−0.6

−0.4

−0.2

0

0.2

0.4

εµ0
[Nm]

0 10 20 30
−0.4

−0.2

0

0.2

0.4

εµ1
[Nm]

0 10 20 30

−0.2

−0.1

0

0.1

0.2

εµ2
[Nm]

time [s]

Figure 5.28: Right arm: error between the wrenches measured by the FT sensor ws,RA and the
one predicted with the model̂ws,RA, during the “Yoga” demo.

During this experiment the arm is not moving, while the external force is applied on the
hand. Joint torques measured with thevirtual torque sensorsare τ̂ = τ̂ I + τ̂E , beingτ I the
internal joint torque, i.e. the torque which is due to the intrinsic dynamic of the system.τE ,
i.e. the external force projected on joints, instead is not affected by the internal dynamics
(e.g. the gravitational component in this specific static case). Figure 5.30 shows a comparison
of the variation of torque, due to an external wrench application. In particular, we show the
comparison betweenτE andτ̂E = τ̂ − τ̂ I .

Exploiting the tactile feedback

As anticipated, the iCub artificial “skin” [Cannata et al., 2008, Roboskin Project, www] allows
retrieving information about the location of possible contact points (i.e. location of externally
applied wrenches) practically on the most of the robot body.Figure 5.32 shows how the dy-
namism of the EOG method can be fully exploited when the link where the contact occurs is
known through tactile measurements.

We remark again that Figure 2.5(a)-2.5(b) are only possibleinstances of the EOG, and that
the graph is continuously re-created along with the update of the sensory information coming
from the tactile skin, indicating the contact locations.

157

0 2 4
−4

−2

0

2
f0 [N]

0 2 4
−2

−1

0

1
f1 [N]

0 2 4
−10

−5

0

5
f2 [N]

time [s]

0 2 4
−0.5

0

0.5
µ0 [Nm]

0 2 4
−0.5

0

0.5

1
µ1 [Nm]

0 2 4
−0.5

0

0.5
µ2 [Nm]

time [s]

wE ŵE

Figure 5.29: Left arm: comparison between the external wrench estimatedafter the FT sensor
measurements and the one measured by an external FT sensor, placed on the palm of the left hand.

158

5. Motion control on humanoids

0 1 2 3
−1

0

1
τ0 [Nm]

0 1 2 3
−1

0

1
τ1 [Nm]

0 1 2 3
−0.5

0

0.5
τ2 [Nm]

0 1 2 3
−1

0

1
τ3 [Nm]

0 1 2 3
−0.5

0

0.5
τ4 [Nm]

0 1 2 3
−0.5

0

0.5

time [s]

τ5 [Nm]

τE τ̂E

0 1 2 3
−0.5

0

0.5

time [s]

τ6 [Nm]

Figure 5.30: Left arm: comparison between the torques computed exploiting the embedded FTS
and the ones obtained by projecting the external FTS on the joints through the Jacobian (see text).

Figure 5.31: Some possible application points (marked with a frame) for external forces (arrows)
arising during contact of the iCub arm with the environment.Upper, fore-arm and palm are covered
with plastic shells, providing the base for the tactile elements.

159

Figure 5.32:A sketch of the different situations in case of contacts occurring at different locations

in the left arm, as shown in Figure 5.31. The external wrench to estimate (◊) is attached to different
nodes. In the first and second sub-graphs, the wrench at the end-effector is assumed to be known
(⧫), typically null, since only one unknown per graph is allowed (see text for details).

5.5.3 Joint impedance control of the iCub elbow

Robots with rigid joint, like iCub, can be controlled in torque by simply commanding a feed-
forward torque, i.e.τff = τ . If robots are actuated by flexible joints, joint stiffness can be also
controlled. In iCub, actuation is provided by rigid electric motors, however a joint impedance
control interface is available, which can be exploited to emulate a compliant joint: in parti-
cular, it is possible to control the equilibrium position ofa virtual spring and its stiffness and
damping. Precisely, the joint impedance control law is:

τ∗ = −kS (q − q∗) − kD q̇ + τoffset (5.15)

wherekS , kD > 0 are the stiffness and damping constants, emulating a virtual spring at the joint,
andτff a feed-forward offset torque. The desired computed torqueτ∗ is tracked at lower level
by a simple PID algorithm. Playing with stiffness and damping, it is possible to make the robot
joint behave like a soft or hard spring, while maintaining control on the desired joint position.
Notably,kS andkD are physically related, as shown in Figure 5.33: the dampingconstant must
increase with the stiffness, to prevent unstable behaviors. In the following experiment, we aim
at demonstrating that by controlling a manipulator by suitably adapting stiffness and torque, in
a feedforward manner, it is possible to cope with uncertainties and time delays in the system.

For sake of simplicity, we consider a single joint arm, moving in the vertical plane, de-
scribed, as in Eq. 4.65, by the generic dynamic equation, which in the case of a single DOF can
be simply written as:

τ =m lC cos(q) g + (m l2 + I)q̈ = G(q) +Bq̈ (5.16)

whereτ is the joint torque,m, lC , I the link mass, length of the COM, and inertia respectively.

160

5. Motion control on humanoids

0 0.05 0.1 0.15 0.2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

stiffness [Nm/deg]

d
am

p
in

g
[N

m
/d

eg
/s

]

instability

softer

sti er

Figure 5.33: An experimental evaluation of the stiffness-damping relationship when controlling
the elbow joint of the iCub. The lower region highlighted in red causes unstable behaviors of the
arm when reaching its equilibrium point after an external force is applied. Boundary values were
detected by overshoot of a step response. The light blue region shows feasible values, which make
the joint behave like a softer or stiffer spring. The boundary region between the two can be ideally
described by the following relationship:kD = 0.075kS − 0.0015.

We assume the following model of “human-like”16 actuator holds:

τ = τff − kS(q − q∗) − kD(q̇ − q̇∗) (5.17)

where againkS , kD are positive constants representing the stiffness and damping of the elastic
actuator. To simplify the problem statement, since the damping value is closely related to
the stiffness value, the following relationship is assumed: kD = λkS , for someλ > 0 (e.g.,
λ = 0.2). A stochastic optimal control problem is stated, which takes into account the time
delay of the controlled system, and an additive noisee affecting the joint torque, which is
generically due to uncertainties and modeling errors. The goal is to find the optimal stiffness
and torque controls which make the arm perform an upward point-to-point movement while
minimizing the following cost function:

J = E {wp∣∣q(T) − q∗(T)∣∣2 +wv ∣∣q̇(T)∣∣2 + ∫ T

0

∣∣u∣∣2W +wp∣∣q − q∗∣∣2 +wv ∣∣q̇ − q̇∗∣∣2dt}
with suitable weightswp,wv (e.g.wp = 106,wv = 0.1wp). In this case, a suboptimal solution

16This actuator model emulates the main properties of the antagonist muscle structure in humans.

161

0 50 100 150 200
20

30

40

50

60

q
[d

eg
]

0 50 100 150 200
−20

0

20

40

q̇
[d

eg
/
s]

time instants

(a)

0 50 100 150 200
0

0.02

0.04

0.06

0.08

k
s

[N
m

/
d
eg

]

0 50 100 150 200
0

0.2

0.4

0.6

0.8

τ
[N

m
]

time instants

(b)

Figure 5.34: An experiment consisting of multiple trials, the iCub elbowfollows desired profiles
(red) for stiffness and torque. Desired trajectories have been precomputed by the iLQG solving a
stochastic optimal control problem.5.34(a)joint position and velocity.5.34(b)joint stiffness and
torque.

has been found by means of the iLQG algorithm [Todorov and Li,2005].17 The following pa-
rameters, compatible with the forearm of the iCub, were usedto describe the system dynamics:

• mass:m = 0.812kg
• link length: a = 0.2735m
• link COM: lC = 0.1033m
• link inertia: I = 5.0826 × 10−3kg m2

The desired movement was set fromq∗
0
= −60 to q∗T = −30 degrees, which were remapped in

the iCub elbow joint range. The movement durationT was set to1.5s, while the control rate
was set to10ms. The additive noisee was modeled by:

e = (α + βq̇)η (5.18)

whereη has a normal distribution (η ≈ N(0,1)). Interestingly, the analysis has been performed
on a further model, where the error is also proportional to the control torque:

e = (α + βq̇ + γτ)η (5.19)

which accounts for a control-dependent noise. In order to set reasonable values of the pa-
rameters, the modeling error has been identified: precisely, estimated joint torque has been

17The description of the iLQG method and its implementation isnot reported here, for not being completely
relevant to the experiment discussion.

162

5. Motion control on humanoids

10 20 30 40 50
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

joint velocity [deg/s]

e
[N

m
]

joint torque error

std
mean

Figure 5.35: Mean ē and standard deviationσe of the joint torque error from the elbow joint
of iCub’s right arm. The standard deviation is evidently bilinear with the increase of velocity,
while the error mean is linearly proportional to the velocity. Polynomial fitting models areσe =
1.254q̇2 − 0.351q̇ + 0.057 andē = 0.213q̇ − 0.049 respectively.

compared with the one computed by (5.16), so thate = τmeasured − τmodel. A sequence of up-
ward movements with a minimum jerk profile was performed withthe right arm of iCub, with
increasing average velocity (from0 to 55 deg/s): mean and standard deviations of the errors
are reported in Figure 5.35. Then, a normality test onη was performed, exploring within rea-
sonable accuracy the parameter spaceα−β over a discrete grid in the range[0.0 ∶ 0.001 ∶ 1.0].
Precisely, the Jarque-Bera test [Jarque and Bera, 1987] available in Matlab, was used. The best
sets of parameters found after the exploration were(α○, β○) = (0.15,0.37) for the model (5.18)
and(α○, β○, γ○) = (0.04,0.41,0.21) for (5.19): their fitting is shown in Figure 5.36.

Once the stochastic optimal control problem has been solved, the desired trajectories have
been used to control the iCub elbow stiffness and torque, in afeedforward manner. To adapt
the computational control (5.17) to the robot available interface (5.15), the following has been
defined:τoffset = τff + kD q̇∗.

Preliminary results are shown in Figure 5.34. Some observations must be made. The damp-
ing effect is evident, introducing a small but noticeable delay in the trajectory. The stiffness
trajectory features extremely low values: however, the point of this experiment is to show that
the feed-forward termτff is sufficient to achieve a desired behavior and that stiffness during
trajectory must be increased only to counterbalance the uncertainties and noise in the problem.
Thus, it is also correct to expect some misalignments between the desired and real trajectories.
Moreover, there’s a known problem with the stiffness values: the resolution of the stiffness val-

163

ues in the DSP is0.01 Nm/deg, which is quite high for the trajectories we are aiming to: this
means that the desired stiffness trajectory is practically“truncated” and actually is quantized.
Another flaw in the experiments is that torques are estimatedby the EOG on the basis of the
measurements from the FTS, which have a certain drift duringthe use. This drift can be com-
pensated, however it is not yet fully predictable. So it happens that a certain offset between the
model and the real measurements is affecting our results pertrial (for example, in the figures it
is approximately0.1Nm): this explains the differences between the desired torque and the one
estimated (with a certain delay, again) by the robot dynamics module.

To overcome these issues, we are currently performing the same experiments on a prototype
of the new arm of the iCub, which is equipped with a joint torque sensor at the elbow.

164

5. Motion control on humanoids

0 200 400 600 800 1000 1200
−3

−2

−1

0

1

2

3

time [ms]

to
rq

u
e

er
ro

r
[N

m
]

e = (α + βq̇)η , α = 0.15, β = 0.37

e
η

−4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

(a)

0 100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3
e = (α + βq̇ + γτ)η , α = 0.04, β = 0.41, γ = 0.21

time [ms]

to
rq

u
e

er
ro

r
[N

m
]

−4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

η
N(0,1)

(b)

Figure 5.36:An experimental evaluation of the elbow joint torque error due to uncertainties in the
dynamic model of the iCub arm. Examples ofη (histogram) fitting a normal Gaussian (red line)
are presented.5.36(a)shows the torque errore modeled by Eq. 5.18, while5.36(b)by Eq. 5.19.

165

166

Chapter 6

Conclusions

Optimal control theory has recently become of great interest for neuroscience, since it provides
a framework and a rich set of tools for describing and modeling computational motor control in
a convenient way. The existence of “optimality” principlesin sensori-motor control in the brain
and in the CNS has been demonstrated in different experiments, focusing on the precomputa-
tion of motor commands, trajectories, feedback and feed-forward commands. However, there
is not a unique answer to what mechanisms are really at the basis of our motions: a variety of
optimal control models has been proposed, and since different models are apparently equally
effective in explaining movements in the same or a similar context, it is difficult to assess which
is the most representative of human movements, and why.

Notably, by investigating human motor control it is not infrequent to address similar prob-
lems as the ones engineers usually face in robotics, and especially in humanoid robotics. By
implementing what we believe the optimality principles underlying the human CNS, it is pos-
sible not only to provide an experimental verification of theproposed models, but also achieve
behaviors which may outperform traditional classical controls. The point being that while clas-
sical control theory has been mainly focused on minimizing tracking errors, reject disturbances,
minimize the motion duration, guarantee stability, etc., the study of human motor control may
unveil other criteria as the fundamentals for achieving peculiar performances and characteris-
tics which make our motor control so efficient and “optimal”,in a sense.

But, when trying to transfer human models on a robot, one faces several limits: in terms
of physical and structural impairments in the architecture, in the technology for actuation and
sensing, and in the theoretical tools which can be exploitedto generate controls. It is then
crucial to catch the biological principles of human motor controls and understand to which
extent these principles can be implemented in a robotic platform, and evaluate what is the
revenue of that process. This thesis actually followed thispoint.

The first part of this thesis addressed the solution of stochastic optimal control problems,
which can be used to state control problems to study both humans and humanoids, according
to recent theories in computational motor control. The availability of powerful mathematical
tools for generating suitable controls is particularly crucial: indeed, classical control theory
is built on top of strong assumptions, as the known LQG conditions, which are hard to be
verified in experimental platforms such as robots. With thisthesis, we propose a theoretical

167

tool which can be used to generate optimal controls for a wider class of problems, since it
does not require particular features (neither in the systemnor in the cost functions) but the
continuity and differentiability of their actors. Thus, itcan be applied to complex systems such
as humanoid without restricting assumptions. The applicability of the proposed approach has
been empirically demonstrated by several numerical and experimental examples, with linear
and nonlinear systems.

However, there are several issues which still need to be addressed and remain open for
further research. First, the convergence for the stochastic approximation algorithm cannot be
guaranteed, and in general does not always occur. A certain practical experience with the
offline optimization is required. A possible solution to cutdrastically the time required to train
the neural approximators would be to parallelize the computations and run the optimization
over a high-performance cluster grid of GPUs. This is not enough to guarantee to find the
global optima of the control problem, however a considerable search in the parameter space can
be performed, even if not exhaustively, and to a certain extent it can help excluding unfeasible
control laws. The time constraint is the main limitation of the proposed technique, since finding
a solution (global or local) requires a considerable amountof training time and samples, thus
limiting the application domain of the technique to offline optimization. However, once the
approximating functions are trained, even in a rough manner, the algorithm is also suited for
an incremental training which can be perfectly integrated on a modular robot architecture.

Despite its flaws, results obtained applying the method in different case studies are promis-
ing: in particular, for the application in real-time domains such as robotics, since pre-computing
the control laws allows saving time during online execution. The performances of the RH neu-
ral controller combined with the CLIK were impressive on James, and given the elasticity of the
platform were particularly positive. It is also worth noting that the experiments performed on
James were also the first (to the best of our knowledge) where the ERIM has been successfully
applied for the control a real physical system.

Another interesting advantage of the proposed approach is that the formulation of the motor
control problem in the stochastic optimal control framework is particularly suited for finding
control laws in a modular architecture, where multiple agents coexist and in a sense cooperate
to achieve the same goal. A brief hint of these future developments has been discussed in
Section 3.3.4, where the main concepts of Team Theory have been introduced. Since the CA
of the robot is basically a pool of modular controllers, interacting with each other regularly,
it would be more than interesting to investigate a parallel between CNS and CA, and model
interconnections between different controllers acting onthe robot: each may have its own goal,
but they all cooperate for the same task accomplishment.

The second part of the thesis has been dedicated to the development of a theoretical frame-
work which allows integrating dynamics in motor control models, providing both an estimate
of the joint torques and a detection of external forces due tocontacts.

The estimation of the latter on the iCub has been particularly significant: it is clear that the
proposed method is fundamental for enabling force/torque control in a platform where a direct
joint torque feedback is missing. The main disadvantage of the FTS-based method is indeed the
delay caused by the software estimation of the torques, which cannot be done directly on the
DSP but is performed on a remote machine. In this regard, we are currently investigating the

168

6. Conclusions

performances of the torque estimation via EOG on the prototype of the new iCub arm, which
will be equipped with direct joint torque sensing.

However, numerous experiments in iCub involving active force control showed the effec-
tiveness of the proposed approach, which has been already integrated in other modules of the
iCub software library. The current implementation of the robot dynamics paves the way for
numerous developments: e.g., the integration of the dynamics computations with the tactile
feedback of the artificial skin, for accurate detection of external forces; the explicit computa-
tion of the forward and inverse dynamics of the iCub limbs, toallow more advanced control
schemes; the accurate estimation of the dynamical parameters of the robot (since only CAD
parameters have been used so far).

The message emerging from the experimental results discussed in this thesis is that there
is more than a rationale in using the formalism of stochasticoptimal control to model human
movements. The main benefit of such an abstract mathematicalframework is that the key
concepts and motion criteria can be “ported” from humans to humanoids and vice versa in
a relatively easy way, i.e. a parallel between the two systems can be done. Within certain
limitations, it is also possible to integrate successfullythe computational motor control models
provided by neuroscience into controllers for humanoid robots, which is particularly convenient
since the proposed optimal control framework is also suitedfor continuous adaptation and
incremental learning, i.e. it can be combined with a developmental approach to humanoid
robotics.

169

170

Publications

Submitted / in preparation

1. S. Ivaldi, M. Fumagalli, M. Randazzo, F. Nori, G. Metta, G.Sandini. “Computing robot
internal/external wrenches by means of F/T sensors: theoryand implementation on the
iCub humanoid.”

2. M. Fumagalli, S. Ivaldi, M. Randazzo, F. Nori, G. Metta, G.Sandini. “Force feedback
exploiting tactile and proximal force/torque sensing: theory and implementation on the
humanoid robot iCub”.

3. L. Natale, F. Nori, G. Metta, M. Fumagalli, S. Ivaldi, U. Pattacini, M. Randazzo, A.
Schmitz and G. Sandini. “Studying developmental robotics on the iCub platform”.

4. B. Berret, S. Ivaldi, F. Nori, G. Sandini. “On the role of muscle co-contraction in plan-
ning movements: implications on novel robotic actuators”.

≈≈≈
Book chapters

1. M. Fumagalli, A. Gijsberts, S. Ivaldi, L. Jamone, G. Metta, L. Natale, F. Nori and G.
Sandini. “Learning how to exploit proximal force sensing: acomparison approach”.
O. Sigaud & J. Peters (eds.),From Motor Learning to Interaction Learning in Robots,
Studies in Computational Intelligence, vol. 264, Springer-Verlag pp.159-177, 2010.

2. S. Ivaldi, M. Baglietto, G. Metta and R. Zoppoli. “An application of receding-horizon
neural control in humanoid robotics”.Assessment and Future Directions of Nonlinear
Model Predictive Control, in L. Magni et al. (Eds.): Nonlinear Model Predictive Control,
LNCIS 384, Springer-Verlag Berlin Heidelberg, pp. 541-550, 2009.

International Conference papers

1. S. Ivaldi, M. Fumagalli, F. Nori, M. Baglietto, G. Metta and G. Sandini. “Approximate
optimal control for reaching and trajectory planning in a humanoid robot”.Proc. of the
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS ’10.
October 18-22 2010, Taipei, Taiwan.

171

2. S. Ivaldi, M. Baglietto, F. Davoli and R. Zoppoli. “Optimal control of communication
in energy constrained sensor networks through team theory and Extended RItz Method”.
Proc. of the 2009 Int. Joint Conference on Neural Networks - IJCNN ’09, pp. 1372-1379.
June 2009, Atlanta, GA, USA.

3. S. Ivaldi, M. Baglietto, G. Metta and R. Zoppoli. “An application of receding-horizon
neural control in humanoid robotics”.Proc. Int. Workshop on current research and
future directions of Nonlinear Model Predictive Control - NMPC ’08, pp. 1-8. September
2008, Pavia, Italy.

4. S. Ivaldi, M. Baglietto and R. Zoppoli. “Finite and Receding Horizon Regulation of a
Space Robot”.Proc. Int. Conf. on Mathematical Problems in Engineering , Aerospace
and sciences - ICNPAA ’08, pp. 608-616. June 2008, Genoa, Italy.

Refereed short papers and presentations at International conferences

1. S. Ivaldi, A. Sciutti. “Aquabot”. “Affordable robots” idea context of the 2009 Int.
Conf. on Advanced Robotics - ICAR ’09.June 2009, Munich, Germany. Third rank.
(Project/presentation)

2. S. Ivaldi, A. Sciutti. “Night garbage collectobot”.“Affordable robots” idea context of
the 2009 Int. Conf. on Advanced Robotics - ICAR ’09.June 2009, Munich, Germany.
Accepted, but not selected for the final context. (Project/presentation)

3. S. Ivaldi, M. Baglietto, G. Metta, R. Zoppoli and G. Sandini. “A finite and receding hori-
zon neural controller in humanoid robotics”.IEEE/RAS Int. Conference on Intelligent
Robots and Systems - Workshop: Robotics challenges for machine learning II - IROS
’08. September 2008, Nice, France. (Short paper and poster)

Refereed abstracts at National conferences

1. S. Ivaldi, M. Baglietto, F. Davoli and R. Zoppoli. “Extended Ritz Method for optimal
control of communication in energy constrained mixed (analog/digital) transmissions”.
SIDRA annual conference ’09. September 2009, Siracusa, Italy. (Abstract and poster)

2. S. Ivaldi, M. Baglietto, G. Metta and R. Zoppoli. “An application of receding horizon
neural control in humanoid robotics”.SIDRA annual conference ’08. September 2008,
Vicenza, Italy. (Abstract and talk)

3. S. Ivaldi, M. Baglietto, R. Zoppoli. “Extended Ritz Method for optimal control in com-
munication problems”.SIDRA Annual Conference ’07. September 2007, Genoa, Italy.
(Abstract and poster)

172

Bibliography

[Aicardi et al., 1995] Aicardi, M., Casalino, G., Bicchi, A., and Balestrino, A. (1995). Closed
loop steering of unicycle like vehicles via lyapunov techniques.IEEE Robotics Automation
Magazine, 2(1):27–35.

[Albers, 2002] Albers, A. (2002). Conceptual design of humanoid robots. InThe Third IARP
International Workshop on Humanoid and Human Friendly Robotics, Tsukuba Research
Center, AIST, Tsukuba, Ibaraki, Japan.

[Albu-Schaffer et al., 2010] Albu-Schaffer, A., Wolf, S., Eiberger, O., Haddadin, S., Petit, F.,
and Chalon, M. (2010). Dynamic modelling and control of variable stiffness actuators. In
IEEE Int. Conf. on Robotics and Automation, pages 2155–2162, Anchorage, Alaska, USA.

[Amundson et al., 2005] Amundson, K., Raade, J., Harding, N., and Kazerooni, H. (2005).
Hybrid hydraulic-electric power unit for field and service robots. InIEEE/RSJ Int Conf. on
Intelligent Robots and Systems.

[Arechavaleta et al., 2008] Arechavaleta, G., Laumond, J.,Hicheur, H., and Berthoz, A.
(2008). An optimality principle governing human walking.IEEE Transactions on Robotics,
24:5–14.

[ATI, www] ATI (www). http://www.ati-ia.com/products/ft/ft models.aspx?id=mini45.

[Atkenson and Whitman, 2009] Atkenson, C. and Whitman, E. (2009). Dynamic program-
ming approaches to humanoid behavior optimization. InIEEE-RAS Humanoids 09 - Work-
shop: Modeling, Simulation and Optimization of Bipedal Walking, Paris, France.

[Atkeson and Stephens, 2007] Atkeson, C. and Stephens, B. (2007). Multiple balance strate-
gies from one optimization criterion. InIEEE Int. Conf. on Humanoid Robots.

[Atkeson et al., 2000] Atkeson, C. G., Hale, J. G., Pollick, F., Riley, M., Kotosaka, S., Schaul,
S., Shibata, T., Tevatia, G., Ude, A., Vijayakumar, S., Kawato, E., and Kawato, M. (2000).
Using humanoid robots to study human behavior.IEEE Intelligent Systems and Their Ap-
plications, 15(4):46–56.

[Baglietto, 1998] Baglietto, M. (1998).Nonlinear Approximators for Team Optimal Control
Problems. PhD thesis, University of Genova.

173

[Baglietto et al., 2001a] Baglietto, M., Parisini, T., and Zoppoli, R. (2001a). The case of dy-
namic routing in traffic networks.IEEE Transactions on Neural Networks, 12:485–502.
2004 IEEE Transactions on Neural Networks Outstanding Paper Award.

[Baglietto et al., 2001b] Baglietto, M., Parisini, T., and Zoppoli, R. (2001b). Numerical solu-
tions to the witsenhausen counterexample by approximatingnetworks. IEEE Transactions
on Automatic Control, 46(9):1471–1477.

[Barambones and Etxebarria, 2002] Barambones, O. and Etxebarria, V. (2002). Robust neural
control for robotic manipulators.Automatica, 38:235 – 242.

[Barron, 1993] Barron, A. R. (1993). Universal approximation bounds for superpositions of a
sigmoidal function.IEEE Transactions on Information Theory, 39(3):930 – 945.

[Barron, 1994] Barron, A. R. (1994). Approximation and estimation bounds for artificial neu-
ral networks.Machine Learning, 14:115 – 133.

[Bauml et al., 2010] Bauml, B., Wimbock, T., and Hirzinger, G. (2010). Kinematically opti-
mal catching a flying ball with a hand-arm-system. InIEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pages 2592–2599, Taipei, Taiwan.

[Beamish et al., 2006] Beamish, D., Bhatti, S. A., MacKenzie, I. S., and Wu, J. (2006). Fifty
years later: A neurodynamic explanation of fitts’ law.J R Soc Interface, 3(10):649–654.

[Bellman, 1957] Bellman, R. (1957).Dynamic Programming. Princeton Univeristy Press,
Princeton, NJ.

[Ben-Itzhak and Karniel, 2008] Ben-Itzhak, S. and Karniel,A. (2008). Minimum acceleration
criterion with constraints implies bang-bang control as anunderlying principle for optimal
trajectories of arm reaching movements.Neural Computation, 20(3):779–812.

[Bennequin et al., 2009] Bennequin, D., Fuchs, R., Berthoz,A., and Flash, T. (2009). Move-
ment timing and invariance arise from several geometries.PLoS Computational Biology,
5(7):e1000426.

[Berret et al., 2008] Berret, B., Darlot, C., Jean, F., Pozzo, T., Papaxanthis, C., and Gauthier,
J. (2008). The inactivation principle: mathematical solutions minimizing the absolute work
and biological implications for the planning of arm movements. PLoS Computational Biol-
ogy, 4(10):e1000194.

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. and Tsitsiklis, J. (1996). Neuro-dynamic pro-
gramming. Athena.

[Bertsekas, 1995] Bertsekas, D. P. (1995).Dynamic Programming and Optimal Control.
Athena Scientific.

[Biess et al., 2007] Biess, A., Liebermann, D. G., and Flash,T. (2007). A computational model
for redundant human three-dimensional pointing movements: integration of independent

174

BIBLIOGRAPHY

spatial and temporal motor plans simplifies movement dynamics. The Journal of Neuro-
science, 27(48):13045–13064.

[Biess et al., 2006] Biess, A., Nagurka, M., and Flash, T. (2006). Simulating discrete and
rhythmic multi-joint human arm movements by optimization of nonlinear performance in-
dices.Biological Cybernetics, 95(1):31–53.

[Blair and Iwasaki, 2011] Blair, J. and Iwasaki, T. (2011). Optimal gaits for mechanical recti-
fier systems.Automatic Control, IEEE Transactions on, 56(1):59–71.

[Braganza et al., 2005] Braganza, D., W.E.Dixon, Dawson, D., and Xian, B. (2005). Tracking
control for robot manipulators with kinematic and dynamic uncertainty. InProc. of the 44th
IEEE Conference on Decision and Control, and the European Control Conference 2005.

[Braun et al., 2009] Braun, D., Aertsen, A., Wolpert, D., andMehring, C. (2009). Learning
optimal adaptation strategies in unpredictable motor tasks. The Journal of Neuroscience,
29(20):6472–6478.

[Brock et al., 2008] Brock, O., Kuffner, J., and Xiao, J. (2008). Springer Handbook of
Robotics, chapter Motion for manipulation tasks, pages 615–645. Siciliano, Khatib (Eds.),
Springer.

[Caccavale et al., 2005] Caccavale, F., Natale, C., Siciliano, B., and Villani, L. (2005). Integra-
tion for the next generation: embedding force control into industrial robots.IEEE Robotics
Automation Magazine, 12(3):53–64.

[Calinon et al., 2010] Calinon, S., Sardellitti, I., and Caldwell, D. (2010). Learning-based
control strategy for safe human-robot interaction exploiting task and robot redundancies. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taipei, Taiwan.

[Cannata et al., 2008] Cannata, G., Maggiali, M., Metta, G.,and Sandini, G. (2008). An em-
bedded artificial skin for humanoid robots. InIEEE Int. Conf. on Multisensor Fusion and
Integration, Seoul, Korea.

[Cawley, 2006] Cawley, G. C. (2006). Leave-one-out cross-validation based model selection
criteria for weighted ls-svms. InIJCNN-2006: Proceedings of the International Joint Con-
ference on Neural Networks, pages 1661–1668, Vancouver, BC, Canada.

[Chevallereau and Aoustin, 2001] Chevallereau, C. and Aoustin, Y. (2001). Optimal reference
trajectories for walking and running of a biped robot.Robotica, 19:557–569.

[Chiaverini et al., 1991] Chiaverini, S., Egeland, O., and Kanestrom, R. K. (1991). Achieving
user-defined accuracy with damped least-squares inverse kinematics. InProc. Fifth Interna-
tional Conference on Advanced Robotics ’Robots in Unstructured Environments’, 91 ICAR,
pages 672–677.

[Chiaverini et al., 2008] Chiaverini, S., Oriolo, G., and Walker, I. (2008). Springer Hand-
book of Robotics, chapter Kinematically redundant manipulators, pages 245–268. Siciliano,
Khatib (Eds.), Springer.

175

[Chiaverini et al., 1999] Chiaverini, S., Siciliano, B., and Villani, L. (1999). A survey of robot
interaction control schemes with experimental comparison. Mechatronics, IEEE/ASME
Transactions on, 4(3):273 –285.

[Cormen et al., 2002] Cormen, T., Leiserson, C., Rivest, R.,and Stein, C. (2002).Introduction
to Algorithms. McGraw-Hill Higher Education, 2 edition.

[De Luca, 2006] De Luca, A. (2006). Collision detection and safe reaction with the dlr-iii
lightweight manipulator arm. InIEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pages 1623–1630.

[Degallier et al., 2008] Degallier, S., Righetti, L., Natale, L., Nori, F., Metta, G., and Ijspeert,
A. (2008). A modular bio-inspired architecture for movement generation for the infant-like
robot icub. InIEEE RAS / EMBS Int. Conf. on Biomedical Robotics and Biomechatronics,
Scottsdale, Arizona.

[Denavit and Hartenberg, 1955] Denavit, J. and Hartenberg,R. S. (1955). A kinematic nota-
tion for lower-pair mechanisms based on matrices.Journal of Applied Mechanics, 23:215–
221.

[Diedrichsen et al., 2010] Diedrichsen, J., Shadmehr, R., and Ivry, R. (2010). The coordination
of movement: optimal feedback control and beyond.Trends in Cognitive Science, 14:1.

[Diehl et al., 2006] Diehl, M., Bock, H., Diedam, H., and Wieber, P. (2006).Fast Motions in
Biomechanics and Robotics, chapter Fast Direct Multiple Shooting algorithms for optimal
robot control, pages 65–93. LNCIS 340, Springer Berlin / Heidelberg.

[Diehl et al., 2009] Diehl, M., Ferreau, H., and Haverbeke, N. (2009). L. Magni et al. (Eds.):
Nonlinear Model Predictive Control, chapter Efficient numerical methods for nonlinear
MPC and Moving Horizon estimation, pages 541–550. LNCIS 384, Springer-Verlag Berlin
Heidelberg.

[Duda et al., 2001] Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification.
Wiley-Interscience.

[Dupree et al., 2009] Dupree, K., Patre, P., Johnson, M., andDixon, W. (2009). Inverse opti-
mal adaptive control of a nonlinear euler-lagrange system,part i: Full state feedback. In48th
IEEE Conf. on Decision and Control, held jointly with 28th Chinese Control Conference.
CDC/CCC 2009, pages 321–326.

[Eiberger et al., 2010] Eiberger, O., Haddadin, S., Weis, M., Albu-Schäffer, A., and Hirzinger,
G. (2010). On joint design with intrinsic variable compliance: derivation of the DLR QA-
joint. In IEEE Int. Conf. on Robotics and Automation, pages 1687–1694.

[Faulhaber, www] Faulhaber (www). www.faulhaber.com.

[Featherstone, 2007] Featherstone, R. (2007).Rigid Body Dynamics Algorithms. Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

176

BIBLIOGRAPHY

[Featherstone, 2010] Featherstone, R. (2010). Exploitingsparsity in operational-space dynam-
ics. International Journal of Robotics Research, 29:1353–1368.

[Featherstone and Orin, 2008] Featherstone, R. and Orin, D.E. (2008).Handbook of Robotics,
chapter Dynamics, pages 35–65. Springer.

[Fitts, 1954] Fitts, P. (1954). The information capacity ofthe human motor system in control-
ling the amplitude of movement.J. Exp. Psychol., 47(6):381–391.

[Fitzpatrick et al., 2008] Fitzpatrick, P., Metta, G., and Natale, L. (2008). Towards long-lived
robot genes.Robotics and Autonomous Systems, 56:29–45.

[Fitzpatrick et al., 2010] Fitzpatrick, P., Natale, L., andMetta, G. (2010). The Cmaking of a
humanoid.The Kitware Source: Software Developer’s Quarterly, 13:7–9.

[Flanagan et al., 2003] Flanagan, J., Vetter, P., Johansson, R., and Wolpert, D. (2003). Predic-
tion precedes control in motor learning.Current Biology, 13:146–150.

[Flash and Hogan, 1985] Flash, T. and Hogan, N. (1985). The coordination of arm move-
ments: an experimentally confirmed mathematical model.The Journal of Neuroscience,
5(7):1688–1703.

[Franklin et al., 2008] Franklin, D., Burdet, E., Tee, K., Osu, R., Chew, C.-M., Milner, T., and
Kawato, M. (2008). Cns learns stable, accurate, and efficient movements using a simple
algorithm.The Journal of Neuroscience, 28(44):11165–11173.

[Freescale DSP, www] Freescale DSP (www). http://www.freescale.com/.

[Fumagalli et al., 2010a] Fumagalli, M., Gijsberts, A., Ivaldi, S., Jamone, L., Metta, G., Na-
tale, L., Nori, F., and Sandini, G. (2010a).O. Sigaud et al. (Eds.): From Motor Learning
to Interaction Learning in Robots, chapter Learning to Exploit Proximal Force Sensing: a
Comparison Approach. Springer-Verlag.

[Fumagalli et al., 2009] Fumagalli, M., Jamone, L., Metta, G., Natale, L., Nori, F.,
Parmiggiani, A., Randazzo, M., and Sandini, G. (2009). A force sensor for the control
of a human-like tendon driven neck. InIEEE-RAS International Conference on Humanoid
Robots.

[Fumagalli et al., 2010b] Fumagalli, M., Randazzo, M., Nori, F., Natale, L., Metta, G., and
Sandini, G. (2010b). Exploiting proximal F/T measurementsfor the iCub active compliance.
In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taipei, Taiwan.

[Gori and Tesi, 1992] Gori, M. and Tesi, A. (1992). On the problem of local minima in back-
propagation.Pattern Analysis and Machine Intelligence, IEEE Transactions on, 14(1):76
–86.

[Gu and Hu, 2005] Gu, D. and Hu, H. (2005). A stabilizing receding horizon regulator for
nonholonomic mobile robots.IEEE Transactions on Robotics, 21:1022–1028.

177

[Guigon et al., 2008] Guigon, E., Baraduc, P., and Desmurget, M. (2008). Optimality, stochas-
ticity and variability in motor behavior.Journ. Computational Neuroscience, 24(1):57–68.

[Haddadin et al., 2008a] Haddadin, S., Albu-Schaffer, A., ,and Hirzinger, G. (2008a). The
role of the robot mass and velocity in physical human-robot interaction - part i: Non-
constrained blunt impacts. InIEEE Int. Conf. on Robotics and Automation, Pasadena, CA,
USA.

[Haddadin et al., 2010a] Haddadin, S., Albu-Schaffer, A., Eiberger, O., and Hirzinger, G.
(2010a). New insights concerning intrinsic joint elasticity for safety. InIEEE/RSJ Int.
Conf. on Intelligent Robots and Systems.

[Haddadin et al., 2008b] Haddadin, S., Albu-Schaffer, A., Frommberger, M., , and Hirzinger,
G. (2008b). The role of the robot mass and velocity in physical human-robot interaction
- part ii: Constrained blunt impacts. InIEEE Int. Conf. on Robotics and Automation,
Pasadena, CA, USA.

[Haddadin et al., 2010b] Haddadin, S., Urbanek, H., Parusel, S., Burschka, D., Rossmann, J.,
Albu-Schaffer, A., and Hirzinger, G. (2010b). Real-time reactive motion generation based
on variable attractor dynamics and shaped velocities. InIEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pages 3109 –3116.

[Hagan and Menhaj, 1994] Hagan, M. T. and Menhaj, M. B. (1994). Training feedforward
networks with the marquardt algorithm.IEEE Transactions on Neural Networks, 5(6):989–
993.

[Harris and Wolpert, 1998] Harris, C. M. and Wolpert, D. M. (1998). Signal-dependent noise
determines motor planning.Nature, 394(6695):780–784.

[He and Geng, 2007] He, G.-P. and Geng, Z.-Y. (2007). Optimalmotion planning of a one-
legged hopping robot. InIEEE Int.Conf. on Robotics and Biomimetics, pages 1178–1183,
Sanya, China.

[Hersch and Billard, 2006] Hersch, M. and Billard, A. (2006). A biologically-inspired con-
troller for reaching movements. InBiomedical Robotics and Biomechatronics, 2006. BioRob
2006. The First IEEE/RAS-EMBS International Conference on, pages 1067–1072.

[Ho and Chu, 1972] Ho, Y. and Chu, K. (1972). Team decision theory and information struc-
tures in optimal control problems - part i.IEEE Transactions on Automatic Control, 17:15–
28.

[Hornik et al., 1989] Hornik, K., Stinchombe, M., and White,H. (1989). Multilayer feedfor-
ward networks are universal approximators.Neural Networks, 2(5):359–366.

[Ivaldi et al., 2009a] Ivaldi, S., Baglietto, M., Davoli, F., and Zoppoli, R. (2009a). Optimal
control of communication in energy constrained sensor networks through team theory and
extended ritz method. InInt. Joint Conf. on Neural Networks, pages 1372–1379, Atlanta,
GA, USA.

178

BIBLIOGRAPHY

[Ivaldi et al., 2008a] Ivaldi, S., Baglietto, M., Metta, G.,and Zoppoli, R. (2008a). An ap-
plication of receding-horizon neural control in humanoid robotics. InInt. Workshop on
Assessment and future directions of Nonlinear Model Predictive Control, Pavia, Italy.

[Ivaldi et al., 2009b] Ivaldi, S., Baglietto, M., Metta, G.,and Zoppoli, R. (2009b).L. Magni
et al. (Eds.): Nonlinear Model Predictive Control. TowardsNew Challenging Applications,
chapter An application of receding-horizon neural controlin humanoid robotics, pages 541–
550. LNCIS 384, Springer-Verlag Berlin Heidelberg.

[Ivaldi et al., 2008b] Ivaldi, S., Baglietto, M., Metta, G.,Zoppoli, R., and Sandini, G. (2008b).
A finite and receding horizon neural controller in humanoid robotics. In Int. Conf. On
Intelligent Robots - IROS. Workshop: Robotics Challenges for Machine Learning II.

[Ivaldi et al., 2008c] Ivaldi, S., Baglietto, M., and Zoppoli, R. (2008c). Finite and receding
horizon regulation of a space robot. InInt. Conf. on Mathem. Probl. in Engin. Aerospace
and Sciences, pages 608–616. Cambridge Scientific Publishers, London.

[Ivaldi et al., 2010] Ivaldi, S., Fumagalli, M., Nori, F., Baglietto, M., and Metta, G. (2010).
Approximate optimal control for reaching and trajectory planning in a humanoid robot. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 1290–1296, Taipei, Taiwan.

[Ivaldi et al., www] Ivaldi, S., Fumagalli, M., and Pattacini,
U. (www). Doxygen documentation of the iDyn library.
http://eris.liralab.it/iCub/main/dox/html/group__iDyn.html.

[Izawa et al., 2008] Izawa, J., Rane, T., Donchin, O., and Shadmehr, R. (2008). Motor adapta-
tion as a process of reoptimization.The Journal of Neuroscience, 28(11):2883–2891.

[Jamone, 2010] Jamone, L. (2010).Autonomous sensori-motor learning in a humanoid robot.
PhD thesis, University of Genoa, Italy.

[Jamone et al., 2006] Jamone, L., Metta, G., Nori, F., and Sandini, G. (2006). James: A hu-
manoid robot acting over an unstructured world. InProc. 6th IEEE-RAS International Con-
ference on Humanoid Robots, pages 143–150.

[Janabi-Sharifi et al., 2000] Janabi-Sharifi, F., Hayward, V., and Chen, C.-S. J. (2000).
Discrete-time adaptive windowing for velocity estimation. IEEE Transactions on Control
Systems Technology, 8(6):1003–1009.

[Jarque and Bera, 1987] Jarque, C. and Bera, A. (1987). A testfor normality of observations
and regression residuals.International Statistical Review, 55(2):163–172.

[Kaneko et al., 2005] Kaneko, Y., Nakano, E., Osu, R., Wada, Y., and Kawato, M. (2005).
Trajectory formation based on the minimum commanded torquechange model using euler-
poisson equation.Systems and Computers in Japan, 36:92–103.

[Kanoun et al., 2009] Kanoun, O., Yoshida, E., and Laumond, J. (2009). An optimization
formulation for footsteps planning. InIEEE-RAS Int. Conf. on Humanoid Robots, pages
202–207, Paris, France.

179

http://eris.liralab.it/iCub/main/dox/html/group__iDyn.html

[Keerthi and Gilbert, 1988] Keerthi, S. and Gilbert, E. (1988). Optimal infinite-horizon feed-
back laws for a general class of constrained discrete-time systems: stability and moving-
horizon approximations.Journal of Optimization Theory and Applications, 57:265–293.

[Kelso, 1982] Kelso, J., editor (1982).Human motor behavior: an introduction. Lawrence
Erlbaum Associates Inc.

[Kim et al., 2000] Kim, Y. H., Lewis, F. L., and Dawson, D. M. (2000). Intelligent optimal
control of robotic manipulators using neural networks.Automatica, 36:1355 – 1364.

[Konczak and Dichgans, 1997] Konczak, J. and Dichgans, J. (1997). The development toward
stereotypic arm kinematics during reaching in the first 3 years of life. Experimental Brain
Research, 117:346–354.

[Konczak et al., 2010] Konczak, J., Pierscianek, D., Hirsiger, S., Bultmann, U., Schoch, B.,
Gizewski, E., Timmann, D., Maschke, M., and Frings, M. (2010). Recovery of upper limb
function after cerebellar stroke: Lesion symptom mapping.Stroke, 41:2191–2200.

[Kozlowski, 1998] Kozlowski, K. (1998).Modelling and Identification in Robotics. Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

[Krstic, 2009] Krstic, M. (2009). Inverse optimal adaptivecontrol : the interplay between
update laws, control laws, and lyapunov functions. InAmerican Control Conference, pages
1250–1255.

[Krurková, 1997] Krurková, V. (1997).Dimension-independent rates of approximation by
neural networks, pages 261–270. “Computer-intensive methods in control and signal pro-
cessing: curse of dimensionality”. Warwick and Karny Eds.,Boston.

[Kulic and Croft, 2007] Kulic, D. and Croft, E. (2007). Pre-collision safety strategies for
human-robot interaction.Autonomous Robots, 22:149–164.

[Kuo, 2005] Kuo, A. (2005). An optimal state estimation model of sensory integration in
human postural balance.Journal of Neural Engineering, 2:S235–S249.

[Kurková and Sanguineti, 2005] Kurková, V. and Sanguineti, M. (2005). Error estimates for
approximate optimization by the extended ritz method.SIAM J. on optimization, 15:461–
487.

[Kusher and Yin, 1997] Kusher, H. J. and Yin, G. G. (1997).Stochastic approximation algo-
rithms and applications. Springer-Verlag, New York.

[Kushner and Yang, 1995] Kushner, H. and Yang, J. (1995). Stochastic approximation with
averaging and feedback: rapidly convergent “on-line” algorithms. IEEE Transactions on
Automatic Control, 40:24–34.

[Kwon et al., 1983] Kwon, W., Bruckstein, A., and Kailath, T.(1983). Stabilizing state-
feedback design via the moving horizon method.International Journal of Control, 37:631–
643.

180

BIBLIOGRAPHY

[Kwon and Han, 2005] Kwon, W. and Han, S. (2005).Receding horizon control: Model Pre-
dictive Control for State Models. Springer-Verlag. Advanced Textbooks in Control and
Signal processing. London, UK.

[Kwon and Paearson, 1978] Kwon, W. and Paearson, A. (1978). On feedback stabilization of
time-varying discrete linear systems.IEEE Transactions on Automatic Control, 23(3):479–
481.

[Lacquaniti et al., 1983] Lacquaniti, F., Terzuolo, C., andViviani, P. (1983). The law relating
kinematic and figural aspects of drawing movements.Acta Psychologica, 54:115–130.

[Lagarde et al., 2009] Lagarde, M., Andry, P., Gaussier, P.,Boucenna, S., and Hafemeister, L.
(2009). Proprioception and imitation: on the road to agent individuation. InFrom Motor to
Interaction Learning in Robots. Springer.

[Lengagne et al., 2009] Lengagne, S., Ramdani, N., and Fraisse, P. (2009). Planning and fast
re-planning of safe motions for humanoid robots: Application to a kicking motion. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 441–446, St.
Louis, US.

[Levenberg, 1944] Levenberg, K. (1944). A method for the solution of certain problems in
least squares.Quarterly of Applied Mathematics, 2:164–168.

[Lockhart and Ting, 2007] Lockhart, D. and Ting, L. (2007). Optimal sensorimotor transfor-
mations for balance.Nature Neuroscience, 10(10):1329–1336.

[Luh et al., 1983] Luh, J., Fisher, W., and Paul, R. (1983). Joint torque control by a direct
feedback for industrial robots.IEEE Trans. on Automatic Control, 28(2):153–161.

[MacKenzie, 1992] MacKenzie, I. (1992). Fitts’ law as a research and design tool in human-
computer interaction.Human-Computer Interaction, 7:91–139.

[Maggiali et al., 2008] Maggiali, M., Cannata, G., Maiolino, P., Metta, G., Randazzo, M., and
Sandini, G. (2008). Embedded distributed capacitive tactile sensor. InMechatronics 2008,
Limerick, Ireland.

[Mandersloot et al., 2006] Mandersloot, T., Wisse, M., and Atkeson, C. (2006). Controlling
velocity in bipedal walking: A dynamic programming approach. In6th IEEE-RAS Int. Conf.
on Humanoid Robots, pages 124–130.

[Marquardt, 1963] Marquardt, D. (1963). An algorithm for least-squares estimation of nonlin-
ear parameters.SIAM Journal on Applied Mathematics, 11:431–441.

[Matsui, 2008] Matsui, T. (2008). A new optimal control model for reproducing two-point
reaching movements of human three-joint arm with wrist joint’s freezing mechanism. In
IEEE Int. Conf. on Robotics and Biomimetics, pages 383–388.

181

[Matsui et al., 2006] Matsui, T., Honda, M., and Nakazawa, N.(2006). A new optimal control
model for reproducing human arm’s two-point reaching movements: a modified minimum
torque change model. InIEEE Int. Conf. on Robotics and Biomimetics, pages 1541–1546.

[Matsui et al., 2009] Matsui, T., Takeshita, K., and Shibusawa, T. (2009). Effectiveness of hu-
man three-joint arm’s optimal control model characterizedby hand-joint’s freezing mech-
anism in reproducing constrained reaching movement characteristics. InICROS-SICE Int.
Joint Conf. (ICCAS-SICE), pages 1206 –1211.

[Mayne and Michalska, 1990] Mayne, D. and Michalska, H. (1990). Receding horizon control
of nonlinear systems.IEEE Transactions on Automatic Control, 38(11):1623–1633.

[Metta et al., 2006] Metta, G., Fitzpatrick, P., and Natale,L. (2006). Yarp: yet another robot
platform. International Journal on Advanced Robotics Systems. Special Issue on Software
Development and Integration in Robotics, 1(8/9):975–997.

[Metta et al., 2010] Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., von
Hofsten, C., Rosander, K., Santos-Victor, J., Bernardino,A., and Montesano, L. (2010).
The icub humanoid robot: An open-systems platform for research in cognitive development.
Neural Networks, special issue on Social Cognition: From Babies to Robots, 23:1125–1134.

[Metta et al., 1999] Metta, G., Sandini, G., and Konczak, J. (1999). A developmental approach
to visually-guided reaching in artificial systems.Neural Networks, 12(10):1413–1427.

[Mettin et al., 2010] Mettin, U., Shiriaev, A., Freidovich,L., and Sampei, M. (2010). Optimal
ball pitching with an underactuated model of a human arm. InIEEE Int. Conf. on Robotics
and Automation, Anchorage, Alaska, USA.

[Michalska and Mayne, 1993] Michalska, H. and Mayne, D. (1993). Robust receding horizon
control of constrained nonlinear systems.IEEE Trans. on Automatic Control, 38:1623–
1633.

[Minguez et al., 2008] Minguez, J., Lamiraux, F., and Laumond, J.-P. (2008).Handbook of
Robotics, chapter Motion planning and obstacle avoidance, pages 827–852. Springer.

[Mistry et al., 2008] Mistry, M., A.Theodorou, E., Liaw, G.,Yoshioka, T., Schaal, S., and
Kawato, M. (2008). Adaptation to a sub-optimal desired trajectory. InSociety for Neuro-
science - Symposium on Advances in Computational Motor Control, Washington DC, USA.

[Mistry et al., 2010] Mistry, M., Buchli, J., and Schaal, S. (2010). Inverse dynamics control of
floating base systems using orthogonal decomposition. InIEEE Int. Conf. on Robotics and
Automation.

[Mitrovic et al., 2010] Mitrovic, D., Klanke, S., and Vijayakumar, S. (2010).O. Sigaud, J.
Peters (Eds.): From Motor to Interaction Learning in Robotics, chapter Adaptive Optimal
Feedback Control with Learned Internal Dynamics Models, pages 65–84. SCI 264 Springer-
Verlag Berlin Heidelberg.

182

BIBLIOGRAPHY

[Mombaur et al., 2008] Mombaur, K., Laumond, J.-P., and Yoshida, E. (2008). An optimal
control model unifying holonomic and nonholonomic walking. In 8th IEEE-RAS Int. Conf.
on Humanoid Robots, Daejeon, Korea.

[Mombaur et al., 2010] Mombaur, K., Truong, A., and Laumond,J.-P. (2010). From human
to humanoid locomotionan inverse optimal control approach. Autonomous Robots, 28:369–
383.

[Morasso, 1983] Morasso, P. (1983). Three dimensional arm trajectories.Biological Cyber-
netics, 48:187–194.

[Morel and Dubowsky, 1996] Morel, G. and Dubowsky, S. (1996). The precise control of
manipulators with joint friction: A base force/torque sensor method. InIEEE Int. Conf. on
Robotics and Automation, pages 360–365.

[Morel et al., 2000] Morel, G., Iagnemma, K., and Dubowsky, S. (2000). The precise con-
trol of manipulators with high joint friction using base force/torque sensing.Automatica,
36(7):931–941.

[Murray et al., 1994] Murray, R. M., Sastry, S. S., and Zexiang, L. (1994). A Mathematical
Introduction to Robotic Manipulation. CRC Press, Inc., Boca Raton, FL, USA.

[Nagengast et al., 2011] Nagengast, A., Braun, D., and Wolpert, D. (2011). Risk-sensitivity
and the mean-variance trade-off: decision making in sensorimotor control. Proceedings of
The Royal Society B, doi: 10.1098/rspb.2010.2518:1–8.

[Nakano et al., 1999] Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., and
Kawato, M. (1999). Quantitative examinations of internal representations for arm trajec-
tory planning: Minimum commanded torque change model.Journal of Neurophysiology,
81:2140–2155.

[Nelson, 1983] Nelson, W. (1983). Physical principles for economies of skilled movements.
Biological Cybernetics, 46:135–147.

[Nguyen and Widrow, 1990] Nguyen, D. and Widrow, B. (1990). Improving the learning
speed of 2-layer neural networks by choosing initial valuesof the adaptive weights. In
IJCNN International Joint Conference on Neural Networks, volume 3, pages 21–26, San
Diego, CA, USA.

[Niyogi and Girosi, 1996] Niyogi, P. and Girosi, F. (1996). On the relationship between gen-
eralization error, hypothesis complexity, and sample complexity for radial basis functions.
Neural Computation, 8:819 – 842.

[Nori et al., 2007a] Nori, F., Jamone, L., Sandini, G., and Metta, G. (2007a). Accurate control
of a human-like tendon-driven neck. InProc. 7th IEEE-RAS International Conference on
Humanoid Robots, pages 371–378.

183

[Nori et al., 2007b] Nori, F., Natale, L., Sandini, G., and Metta, G. (2007b). Autonomous
learning of 3d reaching in a humanoid robot. InIEEE/RSJ International Conference of
Intelligent Robots and Systems.

[Parisini and Zoppoli, 1995] Parisini, T. and Zoppoli, R. (1995). A receding horizon regulator
for nonlinear systems and a neural approximation.Automatica, 31:1443–1451.

[Parmiggiani et al., 2009] Parmiggiani, A., Randazzo, M., Natale, L., Metta, G., and Sandini,
G. (2009). Joint torque sensing for the upper-body of the iCub humanoid robot. InInt. Conf.
on Humanoid Robotics, Paris, France.

[Pattacini, www] Pattacini, U. (www). Doxygen documentation of the iKyn library.
http://eris.liralab.it/iCub/main/dox/html/group__iKin.html.

[Pattacini et al., 2010] Pattacini, U., Nori, F., Natale, L., Metta, G., and Sandini, G. (2010). An
experimental evaluation of a novel minimum-jerk cartesiancontroller for humanoid robots.
In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taipei, Taiwan.

[Pianosi, 2008] Pianosi, F. (2008).Novel methods for water reservoir management. Advisor:
prof. Rodolfo Soncini-Sessa. PhD thesis, Politecnico di Milano.

[Pianosi and Soncini-Sessa, 2008] Pianosi, F. and Soncini-Sessa, R. (2008). Extended ritz
method for reservoir management over an infinite horizon. In17th IFAC World Congress.

[Pozzo et al., 1990] Pozzo, T., Berthoz, A., and Lefort, L. (1990). Head stabilisation during
various locomotor tasks in humans. i. normal subjects.Experimental Brain Research, 82:97–
106.

[Pratt and Williamson, 1995] Pratt, G. and Williamson, M. (1995). Series elastic actuators. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 399–406, Los Alamitos, CA,
USA.

[Radner, 1962] Radner, R. (1962). Team decision problems.Ann. Math. Statist., AC-17:15–
21.

[Richardson and Flash, 2000] Richardson, M. and Flash, T. (2000). On the emulation of natu-
ral movements by humanoid robots. InInt. Conf. on Humanoids Robots.

[Richardson and Flash, 2002] Richardson, M. and Flash, T. (2002). Comparing smooth arm
movements with the two-thirds power law and the related segmented-control hypothesis.J
Neurosci, 22(18):8201–8211.

[Ritz, 1909] Ritz, W. (1909).Über eine neue methode zur lösung gewisser variationsprobleme
der mathematischen physik.J. für die reine und angewandte mathematik, 135:1–61.

[Roboskin Project, www] Roboskin Project (www).http://www.roboskin.eu.

[RobotCub Project, www] RobotCub Project (www). http://www.robotcub.org.

184

http://eris.liralab.it/iCub/main/dox/html/group__iKin.html
http://www.roboskin.eu

BIBLIOGRAPHY

[Sandini et al., 2004] Sandini, G., Metta, G., and Vernon, D.(2004). Robotcub: an open
framework for research in embodied cognition. InProc. 4th IEEE/RAS International Con-
ference on Humanoid Robots, volume 1, pages 13–32.

[Sandini et al., 2007] Sandini, G., Metta, G., and Vernon, D.(2007). The iCub cognitive hu-
manoid robot: An open-system research platform for enactive cognition. 50 Years of AI,
LNAI 4850:359–370.

[Sastry and Bodson, 1994] Sastry, S. and Bodson, M. (1994).Adaptive Control: Stability,
Convergence, and Robustness. Advanced Reference Series (Engineering). Prentice-Hall.

[Schaal and Schweighofer, 2005] Schaal, S. and Schweighofer, N. (2005). Computational mo-
tor control in humans and robots.Current Opinion in Neurobiology, 15:675–682.

[Scheidt et al., 2000] Scheidt, R., Reinkensmeyer, D., Conditt, M., Rymer, W., and Mussa-
Ivaldi, F. (2000). Persistence of motor adaptation during constrained, multi-joint, arm move-
ments.Journal of Neurophysiology, 84(2):853–862.

[Schmidt et al., 1979] Schmidt, R., Zelaznik, H., Hawkins, B., Frank, J., and Quinn, J. (1979).
Motoroutput variability: a theory for the accuracy of rapidmotor acts.Psychol Rev, 47:415–
51.

[Schmitz et al., 2010] Schmitz, A., Maggiali, M., Natale, L., Bonino, B., and Metta, G. (2010).
A tactile sensor for the fingertips of the humanoid robot icub. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, Taipei, Taiwan, October 18-22, 2010.

[Schultz and Mombaur, 2010] Schultz, G. and Mombaur, K. (2010). Modeling and optimal
control of human-like running.IEEE/ASME Trans. on Mechatronics, 15(5):783–792.

[Sciavicco and Siciliano, 2000] Sciavicco, L. and Siciliano, B. (2000). Robotica industriale:
modellistica e controllo di manipolatori. McGraw-Hill.

[Sciavicco and Siciliano, 2005] Sciavicco, L. and Siciliano, B. (2005).Modelling and Control
of Robot Manipulators. Adv. textbooks in Control and Signal Processing. Springer, 2nd
edition.

[Scott, 2004] Scott, S. (2004). Optimal feedback control and the neural basis of volitional
motor control.Nature Reviews Neuroscience, 5:532–546.

[Seki and Tadakuma, 2004] Seki, H. and Tadakuma, S. (2004). Minimum jerk control of
power assisting robot based on human arm behavior characteristics. In IEEE Int. Conf.
on System, Man and Cybernetics, volume 1, pages 722–727.

[Seong and Widrow, 2001a] Seong, C.-Y. and Widrow, B. (2001a). Neural dynamic optimiza-
tion for control systems. i. background.IEEE Transactions on Systems, Man, and Cyber-
netics, Part B, 31(4):482–489.

185

[Seong and Widrow, 2001b] Seong, C.-Y. and Widrow, B. (2001b). Neural dynamic optimiza-
tion for control systems.ii. theory.IEEE Transactions on Systems, Man, and Cybernetics,
Part B, 31(4):490–501.

[Seong and Widrow, 2001c] Seong, C.-Y. and Widrow, B. (2001c). Neural dynamic optimiza-
tion for control systems.iii. applications.IEEE Transactions on Systems, Man, and Cyber-
netics, Part B, 31(4):502–513.

[Shadmehr et al., 2010a] Shadmehr, R., de Xivry, J., Xu-Wilson, M., and Shih, T.-Y. (2010a).
Temporal discounting of reward and the cost of time in motor control. The Journal of
Neuroscience, 30(31):10507–10516.

[Shadmehr et al., 2010b] Shadmehr, R., Smith, M., and Krakauer, J. (2010b). Error correction,
sensory prediction, and adaptation in motor control.Annual Review of Neuroscience, 33:89–
108.

[Shadmehr and Wise, 2005] Shadmehr, R. and Wise, S. (2005).The Computational Neurobi-
ology of Reaching and Pointing: a foundation for Motor Learning. MIT Press.

[Shiller and Dubowsky, 1991] Shiller, Z. and Dubowsky, S. (1991). On computing the global
time-optimal motions of robotic manipulators in the presence of obstacles.IEEE Transac-
tions on Robotics and Automation, 7(6):785–797.

[Siciliano and Villani, 1996] Siciliano, B. and Villani, L.(1996). A passivity-based approach
to force regulation and motion control of robot manipulators. Automatica, 32(3):443 – 447.

[Siciliano and Villani, 2000] Siciliano, B. and Villani, L.(2000).Robot Force Control. Kluwer
Academic Publishers, Norwell, MA, USA.

[Simmons and Demiris, 2005] Simmons, G. and Demiris, Y. (2005). Optimal robot arm con-
trol using the minimum variance model.Journal of Robotic Systems, 22(11):677–690.

[Sisbot et al., 2010] Sisbot, E., Marin-Urias, L., Broqure,X., Sidobre, D., and Alami, R.
(2010). Synthesizing robot motions adapted to human presence. Int. Journal of Social
Robotics, 2:329–343.

[Spall, 2003] Spall, J. (2003).Introduction to Stochastic Search and Optimization: Estimation,
Simulation, and Control. Wiley, Hoboken, NJ.

[Sugihara, 2009] Sugihara, T. (2009). Solvability-unconcerned inverse kinematics based on
levenberg-marquardt method with robust damping. InIEEE-RAS Int. Conf. on Humanoid
Robots, pages 555–560, Paris, France.

[Sun et al., 2002] Sun, F., Li, H., and Li, L. (2002). Robot discrete adaptive control based on
dynamic inversion using dynamical neural networks.Automatica, 38:1977 – 1983.

[Suykens et al., 2002] Suykens, J., Gestel, T. V., Brabanter, J. D., Moor, B. D., and Vande-
walle, J. (2002).Least Squares Support Vector Machines. World Scientific Publishing Co.
Pte Ltd., Singapore.

186

BIBLIOGRAPHY

[Tanaka et al., 2006] Tanaka, H., Krakauer, J., and Qian, N. (2006). An optimization principle
for determining movement duration.J Neurophysiol, 95:3875–3886.

[Tlalolini et al., 2011] Tlalolini, D., Chevallereau, C., and Aoustin, Y. (2011). Human-like
walking: Optimal motion of a bipedal robot with toe-rotation motion. IEEE/ASME Trans-
actions on Mechatronics, 16(2):310–320.

[Todorov, 2004] Todorov, E. (2004). Optimality principlesin sensorimotor control.Nature
Neuroscience, 7(9):907–915.

[Todorov, 2005] Todorov, E. (2005). Stochastic optimal control and estimationmethods
adapted to the noise characteristics of the sensorimotor system. Neural Computation,
17:1084–1108.

[Todorov and Jordan, 2002] Todorov, E. and Jordan, M. (2002). Optimal feedback control as
a theory of motor coordination.Nature Neuroscience, 5(11):1226–1235.

[Todorov and Li, 2005] Todorov, E. and Li, W. (2005). A generalized iterative lqg method for
locally-optimal feedback control of constrained nonlinear stochastic systems. InAmerical
Control Conference, pages 300–306.

[Tsagarakis et al., 2007] Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Santos-
Victor, J., Carrazzo, M., Becchi, F., and Caldwell, D. (2007). iCub - the design and real-
ization of an open humanoid platform for cognitive and neuroscience research.Journal of
Advanced Robotics, 21(10):1151–1175.

[Tsagarakis et al., 2009] Tsagarakis, N. G., Vanderborght,B., Laffranchi, M., and Caldwell,
D. G. (2009). The mechanical design of the new lower body for the child humanoid robot
’icub’. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 4962–4968, St.
Louis, MO, USA.

[Tuan et al., 2008] Tuan, T., Souères, P., Taı̈x, M., and Guigon, E. (2008). A principled ap-
proach to biological motor control for generating humanoidrobot reaching movements. In
IEEE Int. Conf. Biomedical Robotics and Biomechatronics, pages 783–788.

[Uno et al., 1989] Uno, Y., Kawato, M., and Suzuki, R. (1989).Formation and control of
optimal trajectory in human multijoint arm movement.Biological Cybernetics, 61:89–101.

[Vernon, 2010] Vernon, D. (2010). Enaction as a conceptual framework for developmental
cognitive robotics.Paladyn Journal of Behavioral Robotics, 1:89–98.

[Vernon et al., 2007a] Vernon, D., Metta, G., and Sandini, G.(2007a). The icub cognitive
architecture: Interactive development in a humanoid robot. In Proc. IEEE 6th International
Conference on Development and Learning ICDL 2007, pages 122–127.

[Vernon et al., 2007b] Vernon, D., Metta, G., and Sandini, G.(2007b). A survey of artificial
cognitive systems: Implications for the autonomous development of mental capabilities in
computational agents.IEEE Transactions on Evolutionary Computation, Special Issue on
Autonomous Mental Development, 11(2):151 – 180.

187

[Vicon, www] Vicon (www). http://www.vicon.com/.

[Vidyasagar, 1987] Vidyasagar, M. (1987).Control System Synthesis: A factorization ap-
proach. MIT Press.

[Viviani, 1986] Viviani, P. (1986). Generation and modulation of action patterns, H. Heuer
& C. Fromm (Eds.), chapter Do units of motor action really exist?, pages 201–216. Berlin:
Springer-Verlag.

[Viviani and Flash, 1995] Viviani, P. and Flash, T. (1995). Minimum-jerk, two-thirds power
law, and isochrony: converging approaches to movement planning. Journal of Experimental
Psychology: Human Perception and Performance, 21:32–53.

[Viviani and Stucchi, 1992] Viviani, P. and Stucchi, N. (1992). Biological movements look
constant: Evidence of motor perceptual interactions.Journal of Experimental Psychology:
Human Perception and Performance, 18:603–623.

[Wächter and Biegler, 2006] Wächter, A. and Biegler, L. (2006). On the implementation of a
primal-dual interior point filter line search algorithm forlarge-scale nonlinear programming.
Mathematical Programming, 106:25–57.

[Wada et al., 2001] Wada, Y., Kaneko, Y., Nakano, E., Osu, R.,and Kawato, M. (2001). Quan-
titative examinations for multi joint arm trajectory planning–using a robust calculation al-
gorithm of the minimum commanded torque change trajectory.Neural Networks, 14(4-
5):381–393.

[Whitman and Atkeson, 2009] Whitman, E. and Atkeson, C. (2009). Control of a walking
biped using a combination of simple policies. InIEEE-RAS Int. Conf. on Humanoid Robots,
pages 520–527, Paris, France.

[Wittenburg, 1994] Wittenburg, J. (1994). Topological description of articulated systems.
Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, pages 159–196.

[Wolpert et al., 1998] Wolpert, D., Miall, R., and Kawato, M.(1998). Internal models in the
cerebellum.Trends in Cognitive Sciences, 2(9):338–347.

[Wolpert et al., 1995] Wolpert, D. M., Ghahramani, Z., and Jordan, M. I. (1995). Are arm tra-
jectories planned in kinematic or dynamic coordinates? an adaptation study.Experimental
Brain Research, 103:460–470.

[Xsens, www] Xsens (www). The MTx orientation tracker.
http://www.xsens.com/en/general/mtx.

[Zhao and Chen, 1996] Zhao, H. and Chen, D. (1996). Optimal motion planning for flexible
space robots. InIEEE Int. Conf. on Robotics and Automation, pages 393–398, Minneapolis,
Minnesota, USA.

188

http://www.xsens.com/en/general/mtx

BIBLIOGRAPHY

[Zoppoli et al., 2001] Zoppoli, R., Sanguineti, M., and Parisini, T. (2001). Can we cope with
the curse of dimensionality in optimal control by using neural approximators? InProc. 40th
IEEE Conference on Decision and Control, volume 4, pages 3540–3545.

[Zoppoli et al., 2002] Zoppoli, R., Sanguineti, M., and Parisini, T. (2002). Approximating
networks and extended ritz method for the solution of functional optimization problems.
Journal of Optimization Theory and Applications, 112:403–439.

[Zoppoli et al., 2011] Zoppoli, R., Sanguineti, M., Parisini, T., and Baglietto, M. (2011).Neu-
ral Approximations for Optimal Control and Decision. Control and Communications Sys-
tems Series. Springer-Verlag.

189

	Glossary
	Synopsis
	Introduction
	The robotic platforms
	The humanoid robot James
	The humanoid robot iCub

	Optimality: from humans to humanoids
	Optimality principles in human motor control
	CNS and motor control
	Learning, adaptation and re-optimization
	Feedback and feedforward
	Internal models
	Optimality and movement duration
	Optimality and locomotion

	Which is the correct ``cost function''?
	Minimum jerk
	Minimum torque change
	Minimum variance
	The Inactivation Principle
	Which cost function?

	Optimality: from humans to humanoids
	Some implementations of optimal control models in robots
	Computational limits
	A layered control scheme
	Orchestration in a control scheme: team theory

	Optimal control by means of functional approximators
	Planning ``optimally'' goal-directed movements
	From functional optimization to nonlinear programming
	Stochastic functional optimization problems
	The Extended RItz Method (ERIM)
	A stochastic approximation technique
	Team functional optimization problems
	Some notes on the optimization phase

	Finite and Receding Horizon control problems
	Applying the ERIM to solve a T-stage stochastic optimal control problem
	Variations in Finite Horizon problems
	A Receding Horizon technique

	Neural Finite and Receding Horizon regulators for reaching and tracking
	Numerical results
	A two DOF manipulator in a planar space
	A three DOF nonholonomic mobile robot in a planar space
	A two DOF arm actuated by elastic joints
	Discussion of methods and results

	Motion control on humanoids
	A closed loop control scheme
	Closed Loop Inverse Kinematics
	Forward Dynamics
	Robot dynamics: model or learning?

	Force/Torque feedback for control
	Wrench transformations and FTS measurements
	Enhanced Oriented Graphs

	Experimental results
	Closed loop motion planning with joint velocity control in James
	Estimation of intrinsic and extrinsic wrenches in iCub
	Joint impedance control of the iCub elbow

	Conclusions
	Publications
	References

