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Synopsis

Robots are going to coexist and interact with humans, shahi@ same unstructured environ-
ment and cooperating with them in many daily tasks. Evenghdndustrial robots can achieve
impressive performances in terms of precision, relyingdadlg on joint position controllers
and classical control theory, there is now a wide consertgisstich controls are not adequate
for the next generation of robots. More specifically, motimmtrol must be improved, with a
twofold aim:

* imitating humans to produce more natural and possiblyiefftdehaviors;
* guaranteeing motion safety.

My research stems from these considerations. In particulavestigated motion control for
the upper limbs of a humanoid robot, focusing on the most napd primitive for any ma-
nipulation skill, i.e. reaching, taking inspiration fronufnans. Indeed, computational motor
control provides different models describing human matjdhat can be used in the attempt
of transferring such criteria on robotic platforms. | comicated on a theoretical framework
which allows describing the reaching problem as the regwdhptimization process, where
the success in reaching the target is not the only importargrpeter (i.e. bringing the end-
effector of a manipulator on the target configuration) babdlow the limb moves in effecting
such actions, i.e. the criteria which can be used to desasbection. If we see this as an
optimization problem, then a stochastic functional optaion problem, with a suitable cost
function, state equation and constraints must be desigdedause the solution of functional
optimization problems is almost impossitdepriori in real-time, an approximation technique
combined with model predictive control has been addressbdre the solution to such prob-
lems is explicitly precomputed via numerical techniqueatidus simulations and experiments
on a humanoid platform confirmed the feasibility of the pregm approach. Subsequently,
| focused on the implementation of a theoretical framewbi &llows estimating joint tor-
ques and external wrenches, under suitable hypotheses,viite class of robotic systems,
and in particular for humanoids robots. The purpose was dwige a robot a force/torque
control framework which, combined with the optimizatiorchaiques, would enable human-
like movements with active compliance. Experimental rsssiccessfully demonstrated the
possibility of controlling a complex humanoid robot in a qaant way. This lead to further in-
vestigations regarding how to transfer human strategigarnying stiffness and torques during
point-to-point movements, using stochastic optimal cdrdtrategies. Although some activi-
ties related to this topic are still work in progress, prétiary results favor the application of
such techniques, suggesting interesting developments.
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Chapter 1

Introduction

It is a common belief that the human body mowgdimally and that human movements are
grounded on feedback and feedforward control processe®{do and Jordan, 2002]. Human
limbs trajectories during goal-directed movements can bdeted by the optimization of a
properly defined cost functional, usually nonlinear and stomes non-differentiable, subject
to sets of linear and nonlinear constraints [Biess et abpZBerret et al., 2008].

In the literature different computational models can benthudescribing trajectories in
terms of minimization of variancé [Harris and Wolpert, 1B98rque change [Uno et al., 1989],
jerk [Flash and Hogan, 1985], energy of moto-neurons sgjtaliigon et al., 2008], etc.

In humanoid robotics, where reaching is the fundamentabmagirimitive, such models
are particularly of interest [Richardson and Flash, 2008¢ause they do not focus only on the
successful reach, but also on the trajectory performediilydj and the controls that cause these
actions. Through the implementation of such computatiomadiels on robotic platforms it is
possible to mimic human movements and achieve, within icegigproximations, human-like
behaviors. The crucial point is not to reproduce human belrgto make the robot appearing
more human-like or natural [Seki and Tadakuma, 2004] buthieze efficient control and to
understand which principles governing the human body catndmesferred on a robotic plat-
form, assuming that the human body is the optimal referae€imed by evolution and years of
constant learning and improvement [Atkeson et al., 200@d8tehr and Wise, 2005]. Analo-
gous reasons explain why optimal control is frequently adsed to solve complex problems
like robot stabilization and walking [Lockhart and Ting, @) |Atkeson and Stephens, 2007,
Schultz and Mombaur, 2010, Mombaur et al., 2010].

In this perspective, the robot must be provided with a toal ihable to plan “optimally”: if
the biological principles describing its motion are knowwmust be able to generate proper tra-
jectories and execute desired motions in real-time (pbsgilthout being too much resource-
demanding) with a suitable control scherne [Mitrovic et2010].

Unfortunately, implementations on humanoid platformsefaomputational limits, since
most optimal control problems incur in the Curse Of Dimenaliy (COD), and even the solu-
tion of simplified problems (e.g., after strong hypotheseiicing the complexity of the model)
cannot always guarantee the fulfillment of time constrajbBighl et al., 2009]. Rather than
searching for a generalized solution to the planning prabiehose computational limits make



it unsuitable for online real-time control, approacheshia literature usually focus on the opti-
mization of single point-to-point movements [Simmons areixis, 2005, Matsui et al., 2006,
Seki and Tadakuma, 2004, Tuan et al., 2008].

The corresponding optimal control problems are tackledhuiaerical methods and non-
linear programming algorithms, but the optimization psgceequires heavy computations and
often prevents the application in real-time. Since clogeth solutions are utterly hard to find
(impossible in many cases) approximate solutions have tmbsidered.

Among the possible options, in this thesis an off-line agpnation of the global con-
trol law is preferred: the complete precomputation of a akapproximation of an explicit
Finite/Receding Horizon (FH/RH) optimal control law (supied by an intermediate control
loop to compensate modeling errors) allows finding the ads@imost instantly, leaving the
machine free for other tasks during on-line execution (eantact detection, learning, etc.)
[Ivaldi et al., 2009b]. The proposed solution is globallyyosuboptimal, and locally optimal.

More specifically, the technique consists of two steps. @fitst, off-line, a suitable se-
guence of approximating functions is trained, so that thery @pproximate the sequence of
optimal control functions of a stochastic Finite Horizomlplem. The ERIM is chosen as a
functional approximation technique, while the use of féamvard neural networks guarantees
that the optimal solutions can be approximated at any diedegree of accuracy [Barron, 1993,
Zoppoli et al., 2002, Kurkova and Sanguineti, 2005]. In dmeline phase, a single forward
computation of a neural network (consisting of few elemgntgerations) yields the proper
control at each time instant.

Note that conventional Nonlinear Model Predictive Contexthniques such as FH/RH
usually solve single instances of optimization problems, ieach trajectory is the result of
an optimization problem (typically varying its boundarynditions); conversely, in the pro-
posed approach a generalized solution is found, for all desiple initial/desired conditions.
The generalization is possible by combining functionalragjnation with stochastic optimal
control. Thus, in the on-line phase no further processingasired; the computation of the
on-line controls is very fast, consisting only in the evéilba of a functional approximator;
real-time performances can be guaranteed; furthermarentithine controlling the robot does
not require an external optimization routine (usually tese consuming), or licensed software,
nor specific hardware.

The feasibility of this approach has been empirically destiated for the control of dif-
ferent linear and nonlinear systems, such as a nonholonoiidle robot[[Ivaldi et al., 2008c¢]
and planar manipulator; numerical results showing itsosiffeness for different cost functions
have been presented in [Ivaldi et al., 2008a].

For humanoids, planning can be carried out either in the daskrectly in the robot joint
space. In the former case, the optimal trajectories can beeced into suitable —joint level—
motor commands, exploiting suitable kinematics or dynaroantrol layers. If Cartesian space
is used, for example, and joint velocity or position commgade used to control the robot
motion, one can use a classical closed-loop inverse kinesnagorithm (CLIK) for make the
“task to space conversion”, taking into account the maaifpulphysical limitations. By tuning
the CLIK parameters (regulator, regularized Jacobian giséwerse, etc.) it is possible to
achieve great precision and stability in tracking the d@ektrajectory.




1. Introduction

But, if robots are going to coexist with humans, sharing irae unstructured environment
and interact with them and their objects, the capabilityadgrm precisely a task must not sub-
ordinate to the primary requirement of motion safety. Qieauitable force control schemes
are necessary to address the tasks with compliance reariterand to guarantee the global
safety during motion. An interesting analysis of the effeaft uncontrolled impacts of robotic
manipulators on humans can be found in [Haddadin et al.,&(88ddadin et al., 2003b].

Classically, and especially in industrial environmengagreffort has been focused on po-
sition control rather than compliance and force controkawmse the application domain re-
quired precise performances (which are normally achiewedtiff, high gain joint position
feedback control). The lack of compliance has been trawitlp compensated by collision
avoidance solutions, where commonly the end-effectoedtajy or the manipulator configu-
ration is changed during motion so as to avoid collisiongwit surrounding (or the self). The
literature in this topic is vast, and outside the scope otltlesis, but the interested reader can
refer to [Minguez et al., 2008, Kulic and Croft, 2007, Sisbbal., 2010].

Recent developments in actuator technology have driveratiieation towards systems
capable of intrinsic joint-torque control and more in gegrassive compliancevariable
impedance/variable stiffness actuatdrs [Eiberger eP@l(),| Albu-Schaffer et al., 20110], se-
ries elastic actuator$ [Pratt and Williamson, 1995], pnatite and hydraulics actuators, etc.
Though being intrinsically compliant and thus safer witspect to DC motors, elastic ele-
ments combined with actuators do not guarantee safety,egscin store great amounts of
potential energy, which once released can have greaterctspa both robot and environ-
ment, as recently shown ih [Haddadin et al., 2010a]. Moreahese solution often require
consistent mechanical re-design [Tsagarakis et al.,|2808]the adoption of different forms
of power sources [Amundson et al., 2005].

An alternative approach iactive complianceor active force, consisting in the regula-
tion of the interaction forces at each instant of time by nseafrclosed-loop force controllers
[Sciavicco and Siciliano, 2005]. The principle being thiaexternal forces can be detected
or measured with suitable sensors, they can be controlleaisgo regulate the interaction
forces to the desired value: thus, active force controtexgias can be build [Mistry et al., 2010,
Calinon et al., 2010, Fumagalli et al., 20110a]. The main athge of the active regulation over
the passive one is the possibility of regulating forces mithwider range of values. One dis-
advantage is the response delay of the regulator, whicleaipilimits the bandwidth of the
controlled system. This approach, given the model of thetr¢duch as rigid body dynamics
model), requires the hardware necessary to measure fimmcesgs (not only in joints, but at
the end-effectors and at any other possible contact poititeofobot). Traditionally, the most
adopted solution consists in modifying the motor/jointgrdn order to insert suitable tor-
gue sensors, as was done|in [Parmiggiani et al.,[2009] tgraite joint-torque sensing in the
fore-arm of the humanoid iCub, or redesign the robot to ideltorque sensing, as was done
in [Luh et al., 1983] for a Stanford manipulator. As an altgive to placing joint torque sen-
sors, an estimation of motor torques can be obtained frorsulrent absorbed by the motors
(feasible only when most of the motor torque is transmittethé joint — low friction).

Another approach consists in exploitifi@rce/Torque SensordTS): FTS are relatively
small and compact, and can be often inserted in the kinerolaséim easily when the available




space on the robotic platform is limited and passive elemeartinot be inserted without radical
changes. In industrial applications, robots are typicatjyipped with FTS mounted at the end-
effector, where the most interaction with the environmemaurs. The solution described in this
thesis is based instead on a sepafximal FTS, instead at the base of the kinematic chains and
far from the end-effectors: this configuration allows megmunot only interaction forces act-
ing at the end of the chains, but also forces acting in betweesensor and distal joints. A sim-
ilar solution has been adopted only once[in [Morel and DulbkgwE996, Morel et al., 2000]
where a single FTS was used to estimate the joint torqueseifirgt 3 Degrees Of Freedom
(DOF) of a PUMA manipulator. Here, we propose a method whigiiaits sets of FTS placed
proximally in a multi-branched chain to estimate joint toeg of complex kinematic chains. In
particular, given the FTS measurements, if a precise dycalmodel of the robot is known
(i.e. arigid body model), internal forces and torques carcdraputed easily by a classical
recursive Newton-Euler method, and if suitable assumptlanld, certain external forces can
be also estimated. As prove of the effectiveness of thiscambr, we successfully estimate 32
of the 53 DOF of a full-body humanoid robot.

The theoretical framework for computing simultaneouslirimsic torques and external

wrenches applied to single and multiple branches kinenwdi&ns, is based on two funda-
mentals:

 the Enhanced Oriented Graph (EO@G)e. a graph representation of kinematic chains,
enriched with symbols for representing unknowns and semsasurements;

 theRecursive Newton-Euler Algorithm (RNEAJ the computation of inverse dynamics
of fixed and floating base kinematics chains.

A systematic procedure for computing + 1 external wrenches fronV internal wrenches
(i.e. measurements from FTS) is also given, under certannagtions. Remarkably, under
these conditions all joint torques can be theoretically potad. In order to compute external
wrenches, the main requirement is that their applicatiantpoust be known: this information
can be fixeda priori for particular robot tasks, but in general must be updatetherfly. On
the platform used in this work — the iCub — it is provided by xd¢actile sensors, constituting
a sort of “artificial skin” [Cannata et al., 2008, Maggialiadt, 2008].

Experiments have been performed in a variety of floating lsaselitions (e.g. standing,
crawling) and with different interactions with the enviroant. Experimental observations
also proved that controlling joint impedance in the robofuisdamental to obtain compliant
interaction with the environment and make the robot move mose safe and natural way.
Interestingly, the neural optimal controller has beencatffe in computing adaptive strategies
for controlling stiffness and torque of elastic actuatousiry point to point movements. Al-
though some experiments on the iCub are work in progreskmomary results show that it is
possible to apply computational motor control models useidvestigate human movements
onto robots, up to a certain extent, given the physical difiees between the two systems.




1. Introduction

Contribution of this thesis

In this thesis two theoretical frameworks are proposed. firheis a mathematical tool to im-
plement stochastic optimal motion control on humanoid tebwhich in a sense seeks inspira-
tion from computational motor control models. The proposexthod consists of a stochastic
approximation technique combined with a model predictimetiol scheme; intermediate con-
trols, at joint level, are introduced to comply with the rblbequirements. The second is a
theoretical framework for computing the dynamics of a huaidmobot and estimate joint
torgues and external wrenches. Notably, this tool enaloledeate different interfaces for con-
trolling the robot in a compliant way, particularly jointrtpue control and impedance control.
For each of the above, C++ software libraries have been peatjihe NeuBot and iDyn library
respectively. The latter has been released under GPL &cena part of the iCub Project, while
the first is available upon request from the author.

The content of this thesis has been partially published sesareh papers. Their detailed
references are reported in the bibliography section.

The thesis is organized as follows.

In Chaptei 2, the humanoid robots which have been used asirgpeal platforms are
described: James, a humanoid torso, and iCub, a fully bodhahoid.

In Chaptei B, the optimality principles used to describeanobntrol are presented. Start-
ing from a brief discussion on the experimental observatmerformed on humans, we overview
the main computational motor control models which have oy heve or might influence mo-
tor control models in humanoids. Some successful exampliesegration of optimal control
in robotics are presented, along with a discussion of the mhiffierences between the two sys-
tems, which sometimes prevent a straightforward apptinadif neuro-computational models
into robots.

In Chapter4, the reaching and tracking problem are intredua the optimal control
framework, and the approximate solution via the ERIM, cambiwith NMPC is discussed.
Some numerical results are discussed, pointing out thentatyas and disadvantages of the
method, and particularly of the ERIM. However, its applicatto different problems, high-
lights its ability to adapt to different contexts: determstit, stochastic, with linear and nonlin-
ear systemsgtc

In Chaptei b, the closed loop lower level controllers areulsed: first, the Inverse Kine-
matics, secondly the force/torque control layer. SinceGub is not provided with joint torque
sensing, in Sectidn 5.4 a framework for computing interaajues and external wrenches from
a set of proximal FTS (available in the iCub) is presentedhaly, Sectiori 5.5 reports some
experiments with the humanoid platforms.

Chaptef 6 draws the conclusions and suggests future works.







Chapter 2

The robotic platforms

Two humanoid robotics platforms have been used to validetdheoretical results discussed
in this thesis, and to assess the proposed methods withimgreal results: the 22 DOF upper-
torso James, and the 53 DOF full-body iCub. Experiments baesm performed at the Italian
Institute of Technology, where both robotics platforms arailable.

Figure 2.1: The humanoid robots Janf@sl{ajand iCulZ-1(b}

2.1 The humanoid robot James

James[[Jamone et al., 2006] is a 22 DOF torso (see Higurg)R M/t the overall size of a 10
years old boy and a total weight of about 8 kg. It has a heath, mviving eyes and neck, a left
arm with a highly anthropomorphic hand.

The robot is actuated by 23 rotary DC motors (Faulhaber fiadr, www]). Torque is
transmitted to the joints by rubber toothed belts, pulleyd stainless-steel tendons. Cables
pulling solutions have been particularly useful in designihe hand, since most of the hand




actuation have been located in the wrist and forearm ralfzar in the hand itself, where size
and weight constraints would have limited the proliferataf DOF. Furthermore, tendon ac-
tuation naturally provides certain compliance to the systExtra compliance has been intro-
duced by means of springs in series with tendons, for examgdiagers. The drawbacks of
elastic transmission are the nonlinear effects which led@ng rough movements (i.e. when
controlling joints with high velocities).

Mechatronics of James

The head has two eyes (i.e. CCD digital cameras, Dragonflyjghadan pan and tilt indepen-
dently, for a total of 4 DOF. A 3-axis orientation trackertéirsense iCube?2) is mounted on the
top of the head, to emulate the vestibular system. The trabhsically a gyroscope, provides
an absolute measure of acceleration, velocity and posititin respect to the Cartesian axes
of a reference frame, thus it is also called inertial sen§be head is mounted on a two DOF
neck, consisting of a tendon driven rigid spring, whichwaldending forward (pitch) and lat-
erally (roll) [Nori et al., 2007a]. The actuation is obtatheith a peculiar structure, recalling
the design of a tendon-driven parallel manipulator: inipafar, three steel tendons, separated
by 120 degrees, are used to achieve the two motions. On thaf thp neck, a custom-made
force sensor with a cantilever beam structure is positipeeds to provide force feedback to
the three motors actuating the neck [Fumagalli et al., R009]

The arm has seven DOF: three in the shoulder, one for the edbdvthree in the wrist. In
particular, the shoulder consists of three rotative jQiatsuated through tendons and pulleys by
three DC motors located in the torso: two joints (the oneklirig abduction) are mechanically
coupled, as shown in Figufe 2.3(a), so as to gather the shoaldvider range of motion.
Notably, thanks to this solution, James can perform widgeamovements, for example it
can reach its torso, its right shoulder and drive its left #hind the head: these cannot be
performed by even more recent humanoid robots, like iCulhémmiddle of the upper arm, a
single ATI mini45 FTS[[ATT, www] is located, as shown in FiglP.2(0). When FT sensors
are added to a kinematic chain, they are usually placed oerntesffector, i.e. where most
interaction occurs. In James the proximal locdlibas been chosen as the remainder of the
free space in the upper and fore-arm was entirely occupidtidynotors actuating the wrist,
elbow and fingers, and DSP boards used to control them. Thefibeh this configuration
is that the FTS is able to detect interactions with the emvirent occurring not only on the
end-effector (e.g. a grasp) but on the whole arm (e.g. thewelinlliding with an object).
This means also that there is not a predetermined contauat, poithe whole arm surface is a
possible contact point.

A highly anthropomorphic hand, designed for grasping psego is the end-effector of
the manipulator. The hand has five fingers, actuated by eightns) and a total of 17 DOF:
each of the five fingers has three joints (extension of thaldistiddle and proximal pha-
lanxes), and two additional DOF account for the thumb ogmwsiand by the coordinated
abduction/adduction of the other four fingers. Tactile infation is provided by custom-made
sensors, placed along the fingers and the hand palm. Thesaseconstituted by a two part

Iproximal means far from the end-effector.




2. The robotic platforms

Yaw rotation

) Pitch rotation

Roll rotation

Figure 2.2: James shoulder (3 DOF). The picture shows the three DOFeddttbulder.
Notice in particular how the yaw rotation is obtained by aldleuotation around two parallel axes
(image from [Jamone, 2010]j2.2(b] Detail of the upper-arm. The ATl Mini45 FT sensor (red
square) is placed below the shoulder group.

silicone elastomer, a miniature Hall Effect sensor and regdrave been designed specifically
for James. More details on their design and application eafobnd in [Jamone et al., 2006,

Jamone, 2010].

Hardware architecture for control

Motor control is distributed on eight Digital Signal Prosig) (DSP) boards (Freescale DSP-
56F807, 80MHz, fixed point 16 bits [Freescale DSP, viww]), chhperform a fast low-level
control loop (1KHz rate). A CAN-bus line allows the commuation between the boards
and a remote PC, where an ESD CAN-USB is provided. The middievand the inter-
process communication is grounded on YARP [Metta et al.6RO®lagnetic and incremental
encoders are used for the feedback position control loopeimgnted on the boards. Most
of the motors are directly controlled by standard PID cdidrs, except for the shoulder,
neck and eyes motors which require different control sfiateto handle various mechani-
cal constraints. The available DSP boards have limited mgrmiod computation capability
and cannot support but simple operations, namely low lex@brcontrol (basically PID po-
sition control), signal acquisition and pre-filtering frdive optical encoders. For this reasons,
implementing an on-line controller directly on the DSP hisars impossible in the current
setup. Reference position and velocity commands can beys#iebuser through a stan-
dard YARP port, communicating in the local network to thecatled “James Interface”: a
collection of YARP threads and modules, which acts as a briulgfween the device drivers
running on the boards and the remote PC. More accurate ptsos of the control archi-
tecture and the different low level as well as high-level tooinstrategies, can be found in

[Jamone et al., 2006, Fumagalli et al., 2009, Nori et al.,7200




Figure 2.3: Some pictures of James’s arm moving in the space. Only shoaltd elbow joints
are controlled.

2.2 The humanoid robot iCub

The aim of the RobotCub consortium [RobotCub Project, wwag heen the development of
an open-source infant-like robotic platform, aimed atoelpicing the same motor and cognitive
abilities of a two years old child [Tsagarakis et al., 200&ttd et al., 2010]. The iCub not only
has the shape of a human baby, but also a complex cognitihdeanitre reflecting the many
processes involved in the functional developmént [Saretial., 2007| Vernon et al., 2007a,
Vernon, 2010].

iCub is a 53 DOF full body humanoid robot, of the same size asaathree years old
child. It was designed to crawl on all fours, and sit up witkefarms. The most of its DOFs
are located in the upper-body, especially in the highly mgbmorphic hands, which allow
dexterous and fine manipulation. It has comprehensivelprigoeptive, visual, vestibular,
auditory and haptic sensory capabilities.

Certain features of the iCub are unique. The peculiar aspdicat it is a completely open
system platform: both hardware and software are licenseruthe GNU General Public
License (GPL), and the middleware used for intra-processneonication, YARP, is an open-
system too, released under GNU Lesser General Public ladgi3PL) [Metta et al., 2006].

Mechatronics of the iCub

The iCub is aboul04cm tall and weigh22kg, with a total of 53 DOF: six in the head (yaw,
pitch, and roll in the neck, pan, tilt and vergence in the gytbsee in the torso (yaw, pitch, and
roll), seven in each arm (three in shoulder, one in the elbwsivtiaree in the wrist), six for each
leg (three in hip, one in the knee and two in the ankle), thearader in the hands.

Actuation is provided by electric motors. The major jointe actuated by brushless DC
motors, coupled with harmonic drive gears, so that highuesqup tol0 Nm) are guaranteed
for the critical joints, such as hips, spine and shouldeeadand hands are actuated by smaller
DC motors. Most of the joints (e.g. in hands, shoulder, Wyaist tendon-driven: this reduces
the size of the robot and also introduces a certain elasfigitich can be a drawback if precise
controls with high velocities are addressed, an advantagisfintrinsic compliance if safety
is addressed).

The neck and the eyes are fully articulated (three DOF e&alsypport tracking and ver-
gence behaviors.

Each hand (see Figure 2.6) has 5 fingers and 19 joints, antlisted by 9 motors (since
several joints are coupled). The first three fingers (thumtex and middle finger) are in-
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2. The robotic platforms

Figure 2.4: The humanoid iCub, fully covered by plastic shells, stagdin a metallic mainstay
over a mobile platform in the RBCS laboratory at IIT.

dependent and constitute eight DOF; while the fourth anld &ifies, used only for additional
support to grasping, are coupled and constitute one sinQle. Dhe hands allow a considerable
dexterity though being very small: the palm length is 50m&m#h thick; the total width of the
hand range from 34 to 60 mm at wrist and fingers respectivdigse features are quite unique
in humanoid robots with similar dimensions as iCub. Thisigoh is possible because most
of the actuation is located in the forearm, and tendons aredao the hand joints via a wrist
mechanism. Each joint is indeed tendon driven. The flexirtb@fingers is directly controlled
by the tendons, while the extension is based on a springratechanism (basically this saves
one cable per finger).

The 7 DOF arm does not allow the same motion range as in Janges i(@ub cannot
touch its back) and additional physical constraints sudh@$®ody covers prevent a complete
exploitation of the robot workspace. To provide better fiiy for manipulation, a 3 DOF
waist has been incorporated, to increase the range of mofitime upper body, resulting in
a larger workspace for manipulation. Finally, legs havenbdesigned to support crawling
and sitting, but are also adequate for standing and walKiing ankle has two DOF, namely
flexion/extension and abduction/adduction (foot twisatioin was not implemented).

Additional sensing capabilities

Proprioception is provided at each joint by positional sessgenerally absolute position en-
coders. Joints positions are then retrieved directly frownders measurements, while joints
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velocities and accelerations are derived from positionsuesaments through a least-squares al-
gorithm based on an adaptive window filter [Janabi-Shar#il.e2000, Fumagalli et al., 2010b].

Many other different devices enrich the sensory capadslitf the iCub: digital cameras
(for the eyes), gyroscopes, microphones, acceleromédetde and force sensors.

The latter three set of sensors are fundamental for the iCtiveacompliance, as will be
discussed in Chaptel 5. As shown in Figure 2]7(bYand 2.iGah is equipped with one inertial
sensor (Xsens MTx-28A33G25 [Xsens, wivw]) located on thedhpeoviding measurements
of linear acceleration and angular velocity and accelem@tiFour custom-made six-axes FTS
(see Figuré 218), one per leg and arm, are placed proximatly respect to the end-effectors
(hands and feet).

Sets of distributed capacitive tactile sensing elememsraegrated on most of the plastic
shells covering the robot limbs [Cannata et al., 2008], andige a tactile feedback for pos-
sible contacts with the environment. This sort of “artific&in” is constituted by a layer of
capacitive pressure sensors included on a flexible Priniredi€Board (PCB), with embedded
electronics, covered by a silicone foam to protect eacH {are tactile element) and make the
skin also more compliant. An example of the device for thedom is shown in Figuie 2.9.

Moreover, a set of fingertips, one per each finger, providegiadal tactile information,
for fine manipulation. The first prototype consisted of ragidar sensitive zones, made of
conductive ink painted on an inner support and connectedritfichPCB. The final device is
made of a capacitive pressure sensor, a flexible PCB laykrowiular taxels, wrapped around
the inner support, and covered by layers of silicone foamcamdluctive rubber connected to
the ground|[Schmitz et al., 2010].

Hardware architecture for control

A set of DSP-based control cards, custom designed to fit thigelil space available in the
iCub, takes care of the low-level control loop. Each contr@érd runs atl kHz, and is con-
nected to the main relay CPU (a PC104, located in the robat)hga CAN bus (four lines
in whole), which retrieves all motor-sensory informatitindles synchronization and refor-
matting of the various data streams. More demanding comipntaan be performed on a
PC cluster connected to the PC104 via a Gigabit Ethernet.itidddl electronics have been
designed to sample and digitalizes the numerous sensscsinahis case, all the signals con-
verge to the PC104 by means of additional connections (efal sfirewire). Moreover, the
robot is equipped with an umbilical cord containing both dheenet cable and power supply
line: with this solution, it can move freely in the space witih being constrained to a specific
position. A simple scheme describing the hardware/sotveachitecture for control is shown
in Figure[2.10.

Software architecture

The core of the iCub software architecture is a set of moddé&&loped on top of YARP
[Metta et al., 2006|, Fitzpatrick et al., 2008]. YARP is a séttmss-platform C++ libraries,

%precisely, angular acceleration is found using an adaptindow filter.
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2. The robotic platforms

which supports modularity, and provides universal ineefawith hardware and device mod-
ules. The philosophy is code reuse, which is to wrap eachendtvice API, and provide a

simple generic interface for any hardware device, so thangés in the hardware do not imply
rewriting all modules, but only changing the API calls. Maver, YARP is independent from

both operating system and development environment, themke&CE and CMake: the first

is an OS-independent library for inter-process commuinatthe second a cross-platform
make-like tool to generate platform and IDE specific profées.

In the YARP framework, a suitable real-time layer is in cleagj the low-level control of
the robot, namely a set of processes running on the boaraetbthrough the robot body, inter-
facing sensors and actuators with the PC104. A pool of YARBules defines a soft real-time
communication layer, when multiple processes can coerdtexchange data through a se-
ries of universal ports, following the observer pattern bgalipling producers and consumers.
This architecture is evidently suited for cluster compatat each module can be called or
observed remotely from within the network. One evident dragk is that this architecture nat-
urally excludes direct real-time control (i.e. a moduledity sending commands to the joints),
because of the many layers interposed in between the centrobdule (typically a module
running on a cluster PC) and the robot hardware. Issuegddateal-time performances must
be addressed elsewhere.
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Figure 2.5: Top (2.5(a): some snapshots of the “Yoga” demo, where iCub performopérally a

set of pre-programmed movements in the space. The base igdixed, being iCub supported by

a metallic mainstayBottom (Z.5(b)): some snapshots of iCub crawling on a carpet. Black straps
are used to protect knees and wrists and simultaneoushpiraghe friction of the plastic covers
with the floor. Limbs motion is orchestrated by a controllaséd on central pattern generators
[Degallier et al., 2008]. Self-body collision is prevengegriori. Interaction with the environment
occurs on knees and wrists. The base frame is floating.

Figure 2.6: The iCub hand: in evidence, the embedded electronics (a MA&I&d on the
top), the tactile skin covering the palm and the tactile fitips. More details can be found in

[Schmitz et al., 2010].
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2. The robotic platforms

@)

Figure 2.7: Right (2.7(a): the force/torque and inertial sensors used in iCubft (2.7(b): a
mechanical scheme of the humanoid robot iCub: in evidehegour proximal six-axes FTS (legs
and arms) and the inertial sensor (head).

Figure 2.8: The custom FTS developed for iCub. Left: the sensing elentgmter: the embedded
electronics. Right: the assembled sensor. Notice the CA& fjoing out from the sensor, which
transmit sampled digital measureslats rate (image from [Fumagalli et al., 2010b]).
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Figure 2.9: Distributed tactile elements constitute a sort of artifitskin”. The plastic cover, the
elements and the final device for the fore-arm are shown.iBethout skin fabrication and how
iCub has been covered with it can be found in [Roboskin Ptoyeaw].
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Figure 2.10: A scheme showing the networked control infrastructure. P04 collects

joints measurements from the DSP boards, inertial meadtoes a specific COM port, and
FTS measures via CAN bus. Each FTS is equipped with embeddetiamics, with A/D con-

verters. Through the iCublinterface, all measurements epécated in the YARP local net-
work, where a PC cluster is available, and multiple processexist. Among these, one is
dedicated to the computation of “virtual” joint torques (@dsscribed in Sectioh 3.4), one to
the selection of the control modality (e.g. joint positiorglocity or torque control). The

estimated torques are sent back via the PC104 to the DSP shéardnable torque feed-
back. More details on this scheme can be found in the onlireumdentation of the iCub:

http://eris.liralab.it/wki/ForceControl.
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Chapter 3

Optimality: from humans to
humanoids

Novel trends in computational neuroscience suggest th@hapcontrol theory is crucial to
understand the motor commands and the motor control thatuhen exerts during a task.
Many researchers support the theory that the motions wenabge humans and animals are
“optimal”, because the sensorimotor system is the produiatitions of years of evolution,
but also because it constantly “evolves” being subject tdinaous process such as learning,
adaptation and training, which improve behavioral perfamge in terms of stability, accuracy
and efficiency/[Shadmehr and Wise, 2005, Franklin et al.8R@ven if the physical structure
of the human body precludes certain motions, among a widetyasf possibilities, the CNS
chooses to implement a selected set of planning stratéglesvill consider these movements
(that we can observe everyday) as “optimal”, with the megutinat optimal control is a good
modeling tool for human motor control. The idea that a motontwller is not only adaptive,
but also optimal, suggests statitige motor problem as a stochastic optimal control problem

It is a common assumption that the motions we observe in haraad animals are “opti-
mal”, because the sensorimotor system is the product abmdllof years of evolution, but also
because it constantly “evolves” being subject to contirsuprocess such as learning, adapta-
tion and training, which improve behavioral performanceerms of stability, accuracy and
efficiency [Shadmehr and Wise, 2005, Franklin et al., 20@8jen if the physical structure of
the human body precludes certain motions, among a widetyasfepossibilities, the CNS
chooses to implement a selected set of planning stratégaeiing to the “optimal” arm move-
ments that we can observe every day.

Stochastic optimal control theory might provide the impattlink across the three lev-
els of motor system: motor behavior, limb mechanics and atecowntrol [Todorov, 2005,
Todorov and Jordan, 2002, Todorov, 2004]. It naturally pfes a mathematical framework
to explain which are the controls generating the observéd\wber, by providing or exploiting
a cost function to describe the motion criteria.

Moreover [Scott, 2004], it might help to unravel how the paintyi motor cortex and other
regions of the brain plan and control movement, providinigiale insights into the adaptive
task-dependent control of movements. For this reasonpeeigntists and engineers cooperate
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Figure 3.1: Optimal feedback control as the neural basis for motor ebnifhe basic principle
is that feedback gains are optimized on the basis of some imidegerformance. Such controllers
correct variations (errors) if they influence the goal oftéek; otherwise, they are ignored. Optimal
state estimation is created by combining feedback sigmals#erent copy of motor commands.
The latter uses a forward internal model to convert motorroamds to state variables (image from
[Scott, 2004]).

for identifying the possible one-to-one corresponden&t®&déen CNS and control schemes.

In general, all models agree on a certain control schemerenthe body (limbs, muscles,
etc.) is the plant to control, the optimal controller prasdreedback, sometimes feedforward
terms, relying on an internal model of body and environmartile delayed signals are fed
to a state estimator. The corresponding conceptual schiareag possible representation, is
shown in Figuré_3J1. A more detailed scheme is shown in Figuie

Concerning the optimal controller, two principal approagican be used to select or iden-
tify a motion criteria. The first is to exploitiverse optimal control theorfpbupree et al., 2009,
Krstic, 2009]: after recording experimental data, tryingrtfer the cost function to which the
observed behaviors are optimal. The second, which is &thal most used, is to choose a pri-
ori a sound cost function and a mathematical model, and tyvey effectiveness in capturing
the motion principles by comparing model predictions witperimental observations.

However, it is still uncertain how the CNS determines suctinagl control policies. Mo-
tor control and learning explain the exceptional dexteaitd rapid adaption to changes, which
characterize human motor control, but do not provide anusanswer to the questions regard-
ing the criteria which are at the basis of such plasticity degterity. So far, many different
computational models have been proposed.

Existing optimization principles can be divided into twagps:

1. Deterministic approaches, where the cost is typicallyressed as the integral of some
deterministic function over the movement time. The probisrstated as the minimiza-
tion of the cost subject to a set of dynamic constraints anshtdary conditions.

* Minimum jerk model|[Flash and Hogan, 1985]
* Minimum torque change model [Nakano et al., 1999]

2. Stochastic approaches, where random disturbancescéuded in the description of the
model, thus the expected value of the cost function, sulbjedynamic constraints and
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3. Optimality: from humans to humanoids

Expected costs and
rewards of the task

A

23

Costtogo

jotor
o State change
mmaT Body + e g
Feedback control policy 71 environment i

Belief about state of body A

and environment ‘

State - Forward model
f | Time dela!
estimation [ predicted !

sensory
"k consequences

Measured sensory
et ol ) Sensory system |.g

Figure 3.2: A schematic model for generating goal directed movemenigh $pecific reference
to the model proposed by Shadmehr and Krakauer, the coatldunction refers to basal ganglia,
the state estimation is performed by the parietal cortexigwthe forward model can be put down
to the cerebellum. The feedback controller is actually almioation of different modules which
can be referred to the premotor and motor cortex (image fi@magimehr and Wise, 2005]).

boundary conditions, can be minimized.

* Minimum variance mode] [Harris and Wolpert, 1998]
* Minimum intervention model [Todorov and Jordan, 2002]

In the following we will overview the main basic principle§fmuman motor control which
can be considered as “optimal”, and focus on some compuotdtimodels which have been
developed to model goal directed movements. However, thstiun “which is the cost func-
tion?” will remain unanswered. We will then discuss our \éem trying to transfer the concept
of optimality from humans to humanoids, trying to identihetchallenges and introducing the
method we propose in this work, which will be object of the nehapter.

3.1 Optimality principles in human motor control

Human movements in adults show several prominent featiaki-joint arm trajectories for
discrete point-to-point planar movements, for example/ehgome spatiotemporal invariant
features: roughly straight hand paths, bell-shaped vglqgoofiles and smooth acceleration
[Morasso, 1983, Flash and Hogan, 1885, Kelso, 1982].

These invariant features can be seen as the result of anltihagdtimization process: one
coming from the CNS, evolved in time since the origin of oue@ps, one from the personal
ontogenesis process, where movements are refined. Evea lifitter should yield in each
person a certain variability to the motor trajectories, exkpental results bring evidence that
behaviors in human motor control are basically stereotyped

Despite the huge number of possible combinations of agorasid antagonistic muscle
tensions that can generate the same torque, and the iotriosie of the motor system, ob-
served hand trajectories are stereotyped, and the EMGIsiginaw a typical triphasic pattern
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activation. Clearly, the motor control system solves sutdhite-dimensional problems ac-
cording to some principles.

In the following, we will briefly describe the CNS, i.e. theohlmgical structure in charge
for motor control, and some insights on the learning and t&diap mechanisms which make
the primate rough infant movements evolve to adult onesn;Taeeview of the main computa-
tional motor control models, which can be of interest foratdbapplications, is presented and
discussed.

3.1.1 CNS and motor control

The CNS we study nowadays is the product of millions yearsvofugion, it is worth an
analysis since it can provide some insights for a humanredpnotor controller .

The CNS is a complex system which allows us to move, acquitks,sind adapt those
skills to a variety of contexts. Each time we reach for an chjthe CNS must solve a com-
plex physical problem, to control and coordinate our limbsmy interaction with a changing
environment, subject to gravity [Shadmehr and Wise, 2005].

It consists of two major parts: the spinal cord and the braimposed by the brainstem,
divided into forebrain, midbrain and hindbrain (in its tudivided into medulla and pons). All
levels of the CNS participate in motor control and motor hrdg, and in primates they all
contribute to visually grounded reaching and pointing.

The forebrain, consisting of diencephalon and telencephatontains several structures
that play a role in motor control. The hypothalamus, whicthnesmain controller for the body
functionalities, including homeostasis, reproductiod defense. The basal ganglia, receiving
an efference copy of the motor commands, and providing @nriat model of the bod} The
thalamus, integrating the distributed brain systems fedhem, cerebral cortex, basal ganglia,
globally named “loops”) into sub-cortical motor systems.

The spinal cord contains numerous types of neurons. Amaam,timotor neurons send
command signals to muscles via motor nerves, while sengokea transmit sensory feedback
to the CNS, i.e. information from skin, muscles and gengralll body parts. Sensory nerve
fibers terminate in the spinal cord, directly connected ® lihain; special sets of neurons,
called central pattern generators (CPG) in the spinal cavdyze motor commands underly-
ing rhythmic behaviors. The brainstem also has motor neuamil sensory nerves, and with
additional neural networks can modulate the CPG activitgrédver, it contains reticular for-
mations regulating reflexes, and cerebellum, which is thecypal region devoted to motor
control.

The cerebellum is the largest component of the brainstenomsystem: its main activity
is the control of posture, gait, tone and ongoing activityrinscles, reaching and pointing
movements; it also accounts for limb coordination, contels to motor skills by reducing
variability in the timing of movements and in force of musclntractions. The connections
between premotor cortex and cerebellum allows planniriggmating and executing smoothly

10f course, the description of the functionalities of theibia simplified, it is meant to provide a rough idea of
the CNS structure. The interested reader can refér to [Seladamd Wise, 2005] for a more complete dissertation
of the CNS particularly for motor control.
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3. Optimality: from humans to humanoids

complex movements. Moreover, the cerebellum is involvethexmotor learning and in the
continuous process of re-learning, adjusting and refirgfigx respons%.

The functional organization of the CNS inspired controlesules based on optimal feed-
back control. The parietal cortex integrates proprioseptnd visual outcomes, as well as
sensory feedback, playing a role of state estimator. Pi@nuoirtex and motor cortex trans-
form predictions into sets of moto-neuronal dischargespdimg for force and direction of
movement. The global control strategy takes into accounirtternal models built by the cere-
bellum to correct motor commands, while optimal controliedg/ by basal ganglia, facilitating
the integration of different modules.

3.1.2 Learning, adaptation and re-optimization

Invariance, information, feedback and optimality play ko the selection and adaptation of
any movement through evolution and development.

Children show a constant developmental refinement of theitromcontrol capabilities:
starting from simple motor reflexes, the motor control systevolves, until motions becomes
stereotypic, typically in adult age, and a certain degreldr@dmatics and dynamics invariance
is observable.

Recent findings indicate that these stereotyped arm kinesnpatterns are not prewired
or inborn, but the result of constant learning during onieges: infants dramatically improve
their kinematic performance during their first months, I developmental process towards
stereotypic joint kinematics continues. It is not known witieis learning process finally leads
to adult-like motor responses and what proximal joint camidjons underlie the manifestation
of stable endpoint kinematics [Konczak and Dichgans, 198vFigure[3.8, the development
of reaching trajectories in infants is shown. Trajectog&aightens in time, although the uni-
modal velocity profiles and the inertial variability suggésat producing straight hand path
may not be the first priority of the system during motion plagnand definitely not the most
important criteria of the learning process.

During goal-directed movements such as reaching or pgintime CNS overcomes the
joint-level redundancy of the human motor system by applyioordinative constraints, lead-
ing to unigue movement solution, e.g. straight hand pathis kell-shaped velocity profiles
[Morasso, 1983].

Stochastic optimal control and optimal feedback contrehaeen successful in modeling
human reaching movements, as a minimization of motor cordmduaring the movements and
position error at the end of the movement.

What happens to the optimization process when learning adgeamic environment?

Traditionally, adaptation (i.e. the mechanism which iggdred when facing a new dy-
namic environment) has been viewed as the process of cag¢bé effects of novel environ-
ment, on a noise rejection basis, so as to make the moveneémts to near baseline conditions
(i.e. trajectory in unperturbed situation). For exampl@iflpert et al., 1995], perceived kine-
matic error played a role during adaptation, and subjecidete to maintain a visually straight

2Indeed, cerebellar lesions in particular cases can hameiénat effects as the system re-organizes and learns
new ways to control motor activity [Konczak et al., 2010].
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Figure 3.3: Evolution of reaching trajectories in infants. The pictsh®ws sagittal hand paths of
an infant at different developmental times, showing thegpeesion toward the smoothing of the
endpoint motion (image from [Konczak and Dichgans, 1997]).
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Figure 3.4: Re-optimization of reaching trajectories when adapting dhm to a new dynamic
environment. The pictures show a comparison between thalibadrajectory (when the force
field is null), and the ones learned when the external forde edeterministic (green line, signed
0p) and stochastic (red line, signed), with clockwise and counterclockwise orientation (image
from [Izawa et al., 2008]).

22



3. Optimality: from humans to humanoids

path in front of perturbations. However, in [Scheidt et 2000] it was later shown that kine-
matic errors are not necessary for adaptation, i.e. thenat&inematic and dynamic model is
continuously adapted even in absence of visual kinemagidghiack.

In [Mistry et al., 2008] it is shown that humans learn the nencé field “dynamically”
as opposed to solely rejecting the disturbances via ineceasffness and co-contraction. In
detail, the authors suggested that when facing a novel digremaironment, the CNS attempts
to return to the baseline trajectory as a methodologicategly to learning an unknown dy-
namics. Subsequently, once the internal model is propedynkd, the CNS can turn its ef-
forts into re-optimizing the motor cost, altering the basekrajectory if necessary. Similarly,
[lzawa et al., 2008] suggested that adaptation entailsracg@nd motor cost, and not the kine-
matic error from a desired baseline trajectory: thus, aptévazation process computes a new
optimal motor control trajectory whenever the externatéofield changes, as shown in Fig-
ure[3.4.

Goal-directed movements originate to acquire a rewardiatg sat a minimum cost, in
a stochastic optimal control framework, then it is likelyglausible that the brain computes a
desired movement trajectory and that trajectory remawexiant with respect to environmental
dynamics. Instead, when the environment changes, theelepenforms at least two different
computations: update the internal models (i.e. the magpétgeen the consequences of motor
commands in terms of changes in the sensory states) andtekploefined model to find re-
optimize the trajectory planning strategy. As discussefiizawva et al., 2008], the cerebellum
is the key structure for computing such models, since ceglilamages produce impairments
in the ability to adapt reaching to environmental changeswéVer, the mechanisms for the
brain use this models to re-optimize movements are stilettam.

In conclusion, motor adaptation entails both learning icomtusly accurate forward mod-
els, compensating environmental changes, and finding ttiealpcontrollers that maximize
rewards / minimize costs of planned movements. When faaipgedictable tasks, like pick-
ing a box without knowing its load, the CNS initially genarsthighly variable behaviors, but
eventually converges to stereotyped patterns of adamsmonses, which can be explained by
simple optimality principles [Braun et al., 2009].

3.1.3 Feedback and feedforward

Many theories of motor function are based on the concept firflity”: they quantify task
goals as cost functions, and apply the tools from optimalrobitheory to obtain detailed
behavioral predictions, or to explain empirical phenomemathe need of anticipating or re-
sponding optimally to trajectory perturbations, humanstmembine feedback and feedfor-
ward signals.

Fast and coordinated limb movements cannot be executed pnde feedback control,
because biological feedback loops are too slow (i.e. theydalthe sensory feedback cannot
be neglected - it is about 60ms) and have small gains. Hepnberently with recent theories
in neuroscience [Diedrichsen et al., 2010], we believettiatCNS solves this and many other
problems by combining multiple identification and contrebgesses: precisely, exploiting
integrated state estimators, internal models, and feedfor and feedback commands.

The most remarkable property of human movements is thatadheyaccomplish complex
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Figure 3.6: Reaching around an obstacle affects the subsequent tral thiere is no obstacle. Left
column shows the trajectories from the control group, rertvith or without an obstacle. The
middle and right columns show data for a group where two arurtse movements were randomly
with (+) or without (-) an obstacle (image from [Diedrichsaral., 2010]).

high-level tasks in presence of disturbances, noise, dekyd unpredictable changes in the
environment. Internal models support such plastic behayimviding a fast prediction of
the current system state to the motor controller (anticigathe feedback signals, which for
structural and physical properties come with a certainydetzh in humans and robots). But
even with a quasi-perfect model of the body, open-loop aagres can only yield suboptimal
performances in unstructured stochastic environmentsdibaek is then necessary to explain
the performance achieved by the system when adapting #fegtes to tasks, environments,
physical constraints, since it allows solving a controllgdeon repeatedly rather than repeating
its solution, thus affording remarkable efficiency and ftéty. Figure[3.6 reports the evidence
of the continuous optimization process, which takes intiant changes in the environment:
when an obstacle impairs unconstrained reaching movepntdetaormally straight trajectory
is modified to avoid the obstacle. If the obstacle is remotled,CNS does not “switch” to
the control law found without obstacles, but rather adaptpieviously found law to the new
optimal one.

Another interesting feature of optimal feedback contrslie that desired trajectories do not
need to be planned explicitly but simply fallout from thedback control laws. This explains
the trial-to-trial variability of trajectories performeay humans during repetitive tasks, like
hand motion when subjects perform a goal-directed tasksvériability cannot be explained
by an optimal controller which purely executes trajectoagking (i.e. if it tracks a pre-defined
desired trajectory), but is captured by an optimal feedamiroller that each time tries to
minimize global task error$ [Scott, 2004].
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3.1.4 Internal models

Motor control must necessarily incorporate a constant tm@amechanism in order to cope
with a changing environment [Shadmehr et al., 2010b]. Sgnfeedback is noisy and de-
layed, which can make movements unstable or inaccurats, iths plausible that, together
with feedback control relying on sensory measures, feadiam commands are employed to
pre-compensate and internal models are used to predicifféwt ef actions on a changing
body and its surrounding. Such models are usually calledvdod models”, as they build
prediction of sensory consequences based on motor commasidbiown in Figure_3.6, they
receive a copy of the motor commands, called “efferent copyéntually access to the cur-
rent state of system (even if a connection is not explicitlgweh) and produce a prediction
of the sensory consequences of the action, which can be imetktiately” to refine control
strategies, that is largely before the measured sensodpdek which is inevitably affected
by delays. Predictions from internal models can be used tto ¢talibrate continuously move-
ments, and to improve the ability of the sensory system tmest the state of the body and
the environment. In particular, internal models have anliegr dynamics such that prediction
of the consequences of adopted controls is learned befeyele¢arn to control their actions
in response to task or environmental changes [Flanagan 208B3]. Forward models remain
calibrated through motor adaptation: that is, learningisgeth by sensory prediction errors.

It is not yet perfectly clear whether the cerebellum corgain explicit representation of
both forward and inverse models. While forward models seecessary to compensate for the
biological delays in the sensory apparatus, it is not eguadident if an inverse model (i.e. a
model providing the neural commands necessary to achieesieed trajectory) exists for all
body parts and corresponding movements.

3.1.5 Optimality and movement duration

Optimal control theory has been recently proposed to exple mechanisms for movement
duration [Shadmehr et al., 2010a]. Human movements shoeraeprominent features, the
principal being described by [Viviani and Flash, 1995]:

* isochrony principle movement duration is nearly independent of movement size
* two-thirds power lawinstantaneous speed depends on movement curvature
* movement compositionalitgomplex movements are composed of simpler elements

Isochrony is strongly connected to the decomposition ofdernmovements into units of mo-
tor action. In [Viviani, 1986] it was suggested that the ortof trajectories with constant
velocity gain factor may correspond to autonomous “churdfshotion planning, i.e. elemen-
tary pieces of trajectories. The isochrony principle aggpboth globally to the entire trajectory
(from the initial to the endpoint) and locally to the small tmoactions units. An adequate
theory capable of successfully accounting for all thesegpies, and explaining motor control
features by means of motor primitives, is still under debate

In particular, the mechanism underlying the selection of@meent duration in the brain
is still under investigation. During reaching, curvatulpand angular velocity are closely
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3. Optimality: from humans to humanoids

related, by the so called “two-thirds power law”:
V=K = K(%)Q/3 (3.1

whereV is the angular velocityK a velocity gain factor(' the curvature andr® the radius
of curvature. This model, proposed by [Lacquaniti et al83]9 was later extended and re-
fined by [Viviani and Stucchi, 1992], and led to many furth@restigations on its relationship
with the motion segmentation [Richardson and Flash, 2002¢ry, based on the movement
compositionality principle.

The average velocity of point-to-point movements increasith the amplitude of motion,
while its duration is weakly dependent on the motion ext#tas been shown that the average
velocity increase is due both by the velocity gain (depegdain the amplitude of motion) and
by the distribution of curvatures along the trajectory. Sdewvo factors contribute to the relative
invariance of movement duration, and particularly thergjrdependence of velocity gain to the
amplitude of motion suggested thadchronycould best describe this experimental cue.

Most studies in movement duration are grounded on Fitts ahdh&it’ laws [Fitts, 1954,
Schmidt et al., 1979], which relates the average movemeatida with the amplitude of mo-
tion and the error tolerance when reaching the target, obdbkes of either a logarithmic or a
linear relationship of their ratio. According to Fitts’ pgyomotor model, the time required to
accomplish a movemefit is a logarithmic function of the following type:

T=a+blog2(% +c) (3.2)

wherea, b, ¢ are empirical constants [Beamish et al., 2008]is the amplitude of movement
(i.e., the distance between the initial and the endpointtipa3, and W is the target ampli-
tude. ParameteD represents the Euclidean distance between the initialaagdttpoints in the
Cartesian 3D space. The idea is that a certain amount of Smexjuired to perform a move-
ment, but the more the movement has to be precise (i.e. wetavgich a pin instead of a big
ball) the more time is required to “adjust” the final posittorthe desired. Several analysis and
extensions to this law have been done [MacKenzie, 1992]aitiqular for 2D tasks. These
and other models, such as the minimum time principle [Tamdled, 2006], predict movement
duration correctly, but only for point-to-point movements

More recently, in[[Bennequin et al., 2009], a theory of moeefrtiming was proposed, and
it was suggested that movement time is continuously seldntehe brain based on the combi-
nation of different geometrical measures along curvess fifjpothesis does not contravene the
description of the whole trajectory by optimization crigeron the contrary, invariance is com-
patible with different optimization principles such as thmimum-jerk [Flash and Hogan, 1985]
or the minimum variance principles [Harris and Wolpert, 8R%nd with optimal feedback
control [Todorov and Jordan, 2002], and in general can be usgether with optimization
principles to solve redundancy problems at the task levet oontrol the optimal selection of
the relevant parameters which could enhance a trajectagrigéon.
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Figure 3.7: Schematics of the CNS controller proposed in [Kuo, 2005ghRi A general feed-
back control model produces motor commands driving the lalyeiamics; sensory processing is
used to compute the estimate of the body state. Left: ddt#ileostate estimation, exploiting an
internal model of the body and sensor dynamics, and thesgitercopy (i.e. the copy of the motor
command). The integration of multiple sensors is compufsadally, in the sense that feedback
gains are iteratively adjusted to minimize prediction efrmage from|[Kuo, 2005]).

3.1.6 Optimality and locomotion

Many researchers support the theory that optimizatiorcries also explain the generation of
gait and locomotors trajectories [Mombaur et al., 2008 chAevaleta et al., 2008]. In humans
the control of posture and goal oriented movement duringramtion is possible through a
number of neural mechanisms, whose controls range to thiedtehilization (creating a mo-
bile reference frame) [Pozzo et al., 1990], to the explaiabf the vestibular system, to the
generation of trajectories. Again, different models hagerbproposed.

In [Kuo, 2005] an optimal model for estimation and controlhaiman postural balance is
proposed. Assuming that the CNS estimates the posturae*stéth a certain delay, and that
this estimate is used to produce a feedback control to #talihe system, as shown in Fig-
ure[3.7, the author propose a computation model based dmestixoptimal control. In detail,
a linear quadratic controller is addressed, where the oostibn is the sum of quadratic terms
weighting the joints displacement from the equilibrium figaration and the neural effort, i.e.
the amount of muscle activation used to stabilize the systensory noise is taken into account
in the model, both as body model and transducer noise. Sipmila[Lockhart and Ting, 2007]
it is argued that an optimal control model with delayed fesstdtrule is at the basis of the neu-
ral effort produced by mammalians to keep the balance.d@éatly, a feedback control law (a
combination of the errors of position, velocity and accatien of the COM of the body with
respect the stable steady configuration) was optimizedrditgpto a quadratic cost function,
weighting COM kinematic deviations and muscle effort (fr&G measurements).

3.2 Which is the correct “cost function”?

Stochastic optimal control theory provides an elegant grattical framework for describing
movements: by the notion of “motion criteria” transposetn fftost function” or “reward func-
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3. Optimality: from humans to humanoids

tion” we can explain why a limb performs a certain trajectanyong all possible options, while
the solution of the optimal control problem yields the lavemgrating the observed behaviors.

The crucial point in this approach is the choice of the costfion to be minimized (or the
reward function to maximize). Computational neurosciethoes not provide a unique answer
to this issue.

To tackle this problem, two are the main approaches whictbeadentified in literature.

The first is to try to identify the cost function by meansmferse optimal contrglbut the
solution of such class of problems is very difficult to find ilmshsituations, almost impossible
when the search for a criteria is combined to systems withimear dynamics. Closed form
solutions exist, but in particular conditions such as inviledl-known LQG formulation, where
the system is linear, the cost is quadratic and the stocheatiables have Gaussian distribu-
tions. Recently, it was proposed as a promising approactatsfer biological motions into
robots [Mombaur et al., 2014d].

The second approach consists in making some hypotheses etrubture of the cost, and
trying to validate the model by comparing the predictedetrtyries with experimental data.
This is the most adopted choice, because the leading adsasgin the cost function are
mainly inspired by cues emerging from human observed betavior example, bell-shaped
velocity profiles during point-to-point movements can béieeed by minimizing the jerk
[Flash and Hogan, 1985] or high-order derivatives of thatmss muscular inactivation can
be explained by an absolute-like term in the cost functidmetaninimized|[Berret et al., 2008].
However, it often happens that different models are sugddstexplain certain behaviors, and
that despite the variety of principles proposed in the nm&deis difficult to confute the sound-
ness of one model against the others: they usually provikit @guments, and sometimes the
model itself is so obvious that one may find it more appealivgr the others just because of
its implementation.

A clarifying example of the aforementioned arguments i®giby the numerous models
attempting to unveil point-to-point movements.

3.2.1 Minimum jerk

The experimental evidence is that goal-directed movenseris as reaching or pointing result
in straight hand paths with bell-shaped velocity profiles.

On this basis, in 1985 Flash and Hogan proposedMiremum Jerk Mode(MJMﬂ to
describe the planar trajectories of the human arm whileopmihg unconstrained point-to-
point movements. The cost to be minimized is:

1 T (a3z\° (&)
== — — | |dt 3.3
J 2]0 ((dt3) +(dt3) 33
whereT is the fixed duration of movement, while(t),y(t) define the time-varying hand
position with respect to a fixed Cartesian coordinate sy§kéash and Hogan, 1985]. In some

3In [Mombaur et al., 2010], all computations have been pertat offline, without considering the physical
robotics platform. However, the authors point out that fhreetto compute the optimal trajectory is lower than a
standard delay of a humanoid before it starts walking. Mpez#ic details in this regard are not given.

“The jerk is the third derivative of the position, or the dative of the acceleration.
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peculiar conditions, closed-form solutions foft), y(¢) can be found. For example, given the
boundary conditionsg(0) = xo,4(0) = yo, with zero velocity and acceleration at the beginning
and end of the trajectory;(0) = ¢(0) = £(0) = 4(0) =0, &(T) = 9(T) = &(T) = 4(T) = 0,
the explicit solution is:

x(t) =z + (z9 - a:f)(157'4 - 67° —1073)
4_ga5 3 (3.4)

y(t) =yo+ (yo —ys)(1567° - 67° - 107°%)

wherer = t/T € [0,1]. Extensions to non-null boundary velocities, path segatent through

multiple “via points” easily follow.

It must be noted that trajectories are purely kinematics amedcompletely independent
of the dynamics of the arm. However, the trajectories ptediby the MJIM are straight-line
Cartesian paths with bell-shaped velocity profiles, whkansistent with the experimental
data for rapid human movements in absence of accuracy aoristr

The MJM is defined in an extrinsic-kinematic space (i.e. €aan space). An analogous
model, defined in the arm joint space, was proposed in 1995dsgfbaum et al., where the

function
f ( — ) dt (3.5)

whered; is thei-th joint angle. The model was called Minimum Angle Jerk Mio@¢AJM),
always predicted straight paths in the joint space but irtraghto the MJM it allowed to
represent trajectory curvatures.

3.2.2 Minimum torgue change

The main defect of the MJIM is that it always predict straigathg, so it does not fit to wide
range movements and curved trajectories which occur fompladuring transverse move-
ments, regardless of the influence of arm dynamics, arm pstuternal forces, and move-
ment duration.

Overcoming this issue, in 1989 Uno et al. proposedMiiiremum Torque Change Model
(MTCM), where trajectories were selected so as to minimieerate of changes in torques,

precisely:
f (d”) (3.6)

wherer; is the torque at thé-th joint of the chain[[Uno et al., 1989]. The MTCM takes into
account the arm dynamics, and is able to reproduce gradoatiyed trajectories. One con-
troversial point in the MTCM is whether the CNS actually mmize torques, which seem to
be difficult to estimate and integrate over a real trajec{@sing dependent on the muscles
dynamics). Computing an optimal trajectory with the MTCMaually demanding.

Ten years later, Nakano et al. proposed a variant of MTCMedalheMinimum Com-
manded Torque Change Mod®8CTCM) [Nakano et al., 1999], which provided a computable
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3. Optimality: from humans to humanoids
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Figure 3.8: A schematic representation of the main difference betwed@tM and MCTCM
(image from|[Nakano et al., 1999]).

approximation of the MTCM while taking into account bothkiand muscle dynamic@ A
schematic representation of the two models is shown in E[@8. The cost to be minimized is
identical in both MTCM and MCTCM: the main difference betwdée two is the dynamical
model of arm and muscles used to compute the torque commamgsMCTCM confirmed
experimental observation in humans (see Figurke 3.9), witber models such as MJM failed
to reproduce trajectory curvatures depending on movenoeatibn and direction represented
in intrinsic body coordinates. Their results indicated t6&IS may plan optimally in intrinsic
coordinates considering the arm muscles dynamics and ositgy commands representations
which include muscle tension.

3.2.3 Minimum variance

In 1998 Harris and Wolpert observed that both eyes and arnemenits were generated by
neural controls corrupted by a signal-dependent noisewhese variance was proportional to
the amount of control signal itself. Thus, rapid motionsgjuieing larger control signals, would

deviate from the desired trajectory as an effect of the disil control, resulting at the end in
unsuccessful or imprecise final positions [Harris and Wa]d£98]. Thus, they proposed the
Minimum Variance TheorfMVT) which states that the accuracy in goal-directed mossts

is maximized by minimizing the variance of the final configion. The MVT speed-accuracy

tradeoff agrees with Fitts’ law; moreover explains why e movements generally improve
limb motion, as optimal trajectories can be learned durkey@se.

3.2.4 The Inactivation Principle

In 2008 Berret et al. proposed a cost including a term calbdzb6lute work of forces”, re-
flecting the mechanical energy effort of a motion. In corittagrevious models, this term is
non-smooth and non-differentiable, being based on an atiestinction, however it is reason-
able since it is grounded on the Inactivation Principle [Beet al., 2008]. According to this

5The MTCM assumes null viscosity in the arm model, while MCTQigEes a non-null viscosity matrix in
calculating the joints torques, thus considering both dgkamics and muscles as controlled object in the model.
For more detail, seé [Nakano et al., 1999].
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Figure 3.9: A comparison among different motor control mod¢s9(a) Observed and predicted
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3. Optimality: from humans to humanoids

stick diagram stick diagram
> N T - < |
ks
e k J \
0 Q.2 04 0] 2 0.4
=
Time (s) Time (s)

Figure 3.10: Velocity profiles of a pointing finger, and EMG recordings bétmuscles during 1
DOF arm upward and downward movements. The speed profiles stuscular inactivations in
proximity of velocity peaks (DA/DP=Deltoid Anterior/Pa&stor, Bl=Biceps, TR=Triceps - image
from [Berret et al., 2008]).

principle, supported by experimental observations fromdsignals (see Figuie 3]10), mini-
mizing absolute terms implies simultaneous inactivatibagonistic and antagonistic muscles
acting on a single joint, near the time of peak velocity. Itaidethe proposed cost is of the
following type:

7= [ Yl + id? (3.7)
i=1

Notably, [3.7) accounts for a hybrid model, where both kiagas and dynamics variables are
taken into account.

3.2.5 Which cost function?

Table[3.1 reports a summary of the aforementioned costiims;tand of many others, and still
it is not fully comprehensive of all the models that have bseggested in literature. From the
point of view of an engineer, it is difficult to choose which @mg the proposed models should
be implemented on a robotic manipulator or sustained faréuimplementations.

One possible criteria to choose a model could be its ex@atittion, for only those mod-
els with closed form solution could be implemented easillisTcriteria rules out all models
except the MJIM, but explains why it is frequent to find compams between its predictions
and experimental data from observed behaviors in humangra®yvthis model is quite ap-
pealing for roboticists too: since the analytical solutieprovided (and it is also very simple),
its implementation is straightforward. Furthermore, jerinimization is beneficial if control
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Criterion Cost functions References
Hand jerk [ A2+ e [Flash and Hogan, 1985]
Angle jerk I b2+ 05 dt [Wada et al., 2001]
Angle acceleration [, 6,° +6,°dt | [Ben-ltzhak and Karniel, 2008]
Torque change JF 2+t [Uno et al., 1989]
Torque [l T2+ rdt [Nelson, 1988]
Geodesic [ 16T M(0)6] 2t [Biess et al., 2007]
Energy 1 6im] + |Bars| dt [Berret et al., 2008]
Effort [ i3+ pddt [Guigon et al., 2008]

Table 3.1: Different cost functions (and related computational matantrol models) for point-to-
point movements.

strategies must be implemented on real devices: since tbeityeand acceleration profiles are
very smooth, the system is less “stressed”.

From a robotics perspectives, one desirable feature isadupe controls which do not
stress the mechanical structure of the manipulator or temdinimize energy efforts. In this
sense, MCTM or MCTC support this motivation, even if the bgital counterpart seems a bit
unclear.

It must be also pointed out that in humanoids robots motiajettories can be controlled
either with kinematics or dynamics loops, e.g. with jointdogity or joint torques. Thus,
control variables must be taken into account as decisiderizi

The conclusion of this argument is twofold: first, in compigtaal neuroscience there are
many sounds models that can be used to study and describenhuoiens; second, many
models are eligible for implementation in robotics, andc¢heice is basically application and
robot dependent.

As if all this was not enough, recently some researcherstdélthe structure of this costs
[Nagengast et al., 201L1]. In particular, they suggestethiimans not only optimize the aver-
age cost associated to a movement, but being risk-sensithite optimizing the mean payoff
they also take into account the variability of the payo#ltsin other words, they minimize the
average cost together with its mean variance. Accordinbaatthors, early experimental re-
sults suggested that the CNS acts like a risk-sensitivesidecnaker, which trades off the mean
and the variance of movement effort. These claims suggasthih stochastic optimal control
framework alone may not be sufficient to address the optiioizgroblem behind motor con-
trol, and that other mathematical tools like decision tlgeemd multi-objective optimization
should be inevitably taken into account.

3.3 Optimality: from humans to humanoids

In the previous section an overview of the main features ofdoumotor control was presented.
Despite the incredible number of research studies and iexpets, we still do not known pre-
cisely which are the correct mechanisms underlying the Gialling and learning complex
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3. Optimality: from humans to humanoids

motor skills, except that most models assume optimal feddbantrol as a framework for mo-
tor control. All models are sound and could be advantagemusobotics, but require different
implementations.

Nowadays, in robotics great attention is devoted to repredbe behavior and the learn-
ing mechanisms of living creatures, developing systemiseiaibit and replicate the control
and learning abilities observed in animals or human beigkile modern mechatronics has
reached great results (even within technology limitafipasd humanoid robots exhibit shapes
and structures which closely imitate humans, the greatesige is still to reproduce the learn-
ing processes and the interactions between the brain arsgtisery and nervous system, that
generate controls, emotions etc. and that could provideotiat with a real intelligent control:
the challenge is cognitive control [Metta et al., 1999, Sainet al., 2004].

Computational motor control models can provide useful go@ in the design of ad-
vanced control solutions for robots. Actually the two areésesearch benefit from mutual
achievements [Schaal and Schweighofer, 2005], becausg pnalbblems faced by the primate
brain in the control of movement have parallels in roboticton@ontrol, while models and
algorithms from automatic control and robotics researchlmang useful inspiration, baseline
performance, and sometimes direct analogs for neuroszienc

Indeed, it is our belief that only with the study of the humais ipossible to build better
controls for humanoid robots.

As engineers, we aim to a control polieyt) = v(z(t),w), whereu is a control vector,
~ a control function or policyx the system state vector and a set of parameters which
determine the policy. A policy can resort into direct cohftice. direct generation of motor
commands) or indirect control, that is the most common casehotics, where for example
desired planned trajectories are converted into motor canais (in this case, decoupling the
system can notably simplify the control architecture).

The policy itself or its parameters (or both) can be fixed apdide. In the latter case, if
the control problem is stated as an optimal control probEmgptimization routine can be set
so that policy and parameters can be found, e.g.

7%, w® = argmin J (x(t), u(t))
s.t. u(t) =v(x(t),w)

where7 is the cost function defining the motion criteria.

In automatic controls there is a vivid research in the desifgsptimal control laws and the
solution of such optimization problems, which sometimeas @lso have explicit solution (e.g.
thanks to Riccati's equations, under the well-known LQGuag#ions) [Vidyasagar, 1987,
Bertsekas and Tsitsiklis, 1996, Sastry and Bodson, |19944nyVapplication of optimal con-
trols to robotics refer to classical approaches: for exanp|Kim et al., 2000], where a robust
control is found combining a stabilizing control (based eocdati and Lyapunov equations) and
a neural network accounting for unknown dynamicsj in [Bavanes and Etxebarria, 2002] a
robust neural sliding mode controller is presented, whideking controllers are discussed in
[Sun et al., 2002, Braganza et al., 2005]. However, the hagghptexity and the desire to de-
sign an adaptive plastic system, as close as possible stmithe human, impose limitations
on the use of classical controls, even if they provide a witkd @sessed theory for stability,
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convergence and optimality. The main limitation of suctssieal control schemes is that they
are not suitable for cognitive functionalities. The bidtma inspiration we seek, force us to
overcome the limits of traditional automatic controls, @hdose new schemes to emulate the
adaptation and learning capabilities of humans, combindutive optimality principles which
have been observed experimentally.

Thus, we need more specific tools. In this perspective, we desgn a suitable control
scheme, which can guarantee all the good properties (sustalaitity, robustness, etc.) that
traditional automatic control have; which can possiblydférirom decoupling and simplifying
the systems and the control architecture, exploiting mamityl which is naturally arranged to
be integrated with one or multiple learning mechanisms. édweer, we need a mathematical
tool which is able to compute trajectories and controls ifaptly”: it must be able to solve
a general optimal control problem given the problem staténtee computational model and
the cost function to be minimized.

In the following, we will briefly present the state of the artplementations of biologically
inspired optimal control in robotics, particularly in hunmad robotics. Finally, we will intro-
duce the key aspects of our proposed framework, to motikatentathematical tool described
in this work. Some insights of future developments will bgoagiven.

3.3.1 Some implementations of optimal control models in rotts
Reaching

Among the computational models presented in Se€tidn 312 few have been actually imple-
mented on real robotic platforms. An analytical solutioisex(and can be easily implemented)
for the MJM and the MAJM. An interesting implementation of @Ml based controller for
the iCub robot can be found in [Pattacini et al., 2010]. An lenpentation of the MVT for
a 2DOF arm was done in [Simmons and Demiris, 2005]. Modelshing torques, such as
the MCTCM, require the arm dynamics, thus a constrainedimes optimization problem
must be solved, minimizing the cost function under sometcaims (the nonlinear dynamics)
and the boundary conditions (start and final configuratiothefarm, physical limits). The
solution of this class of problems is generally difficult,dasepending on the problem state-
ment there could be more than one method (or none) suitedsfepiution. For example, in
[Kaneko et al., 2005] a solution to the MCTCM is found by meaha numerical optimization
of the Euler-Poisson equation: though describing a gemecgedure, the authors admit the
impossibility to guarantee the convergence of the routines making the algorithm unsuit-
able for real-time planning or control in robotic applicets. In [Shiller and Dubowsky, 1991]
optimal control is used to compute time-optimal motions oflaotic manipulator, considering
nonlinear dynamics, actuator constraints, joint limitsj abstacles. In [Zhao and Chen, 1996]
an optimal motion planning is addressed to control a flexsplgce robot, in order to minimize
the maneuvering time along with control and vibration epetg [Mettin et al., 2010] an op-
timal control problem is used to find controls for ball pitegiwith an under-actuated 2DOF
human-like arm, where in particular only the shoulder isiat#d while the elbow is a pas-
sive spring with adaptive stiffness: the criteria is to nmaizie the ball velocity along a certain
elevation angle. In [Matsui, 2008, Matsui et al., 2009] théhars propose an experimentally-
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3. Optimality: from humans to humanoids

validated 3DOF model of the human arm during constraineduacdnstrained reaching move-
ments, where the criterion (i.e. the cost to be minimizepised on energy and torque change,
constrained by the hand-joint’s freezing mechanism, eéxjplg the experimental fact that the
hand joint hardly changes its angle during reaching movésnégain optimal control theory
is used to find the optimal trajectories of the hand duringd-doacted motions.

Locomotion

The use of optimal control for humanoids has become recgathular to solve the gait and
locomotion problems, and particularly both for stabilgithe robot and to plan optimally walk-
ing trajectories/[Chevallereau and Aoustin, 2001, Kandwal.e2009]. In[Tlalolini et al., 201/1]
the authors suggest that human walking analysis could wepitee current humanoid robots
walks, an particularly to reduce the energy consumed duvadging. In detail, they prove that
a foot rotation subphase (specific during human fast wajkimgoduced in the gait contributes
to the minimization of a torques-based cost, thus yieldipigneal motions.

In [Arechavaleta et al., 2008] the authors investigate hug@al-directed walking, with the
underlying assumption that locomotors trajectories a@seh according to some optimiza-
tion principle. With the attempt to identify the criteria igh are optimized (duration, length,
etc.), they found that the time derivative of the curvatwsaminimized, and that trajecto-
ries are well-approximated by the geodesics minimizing ihenorm of the control, shaped
as clothoid€. In [Whitman and Atkeson, 2009] dynamic programming is useeptimize
body motion, foot placement and step timing for a two linkéred pendulum model. In
[Schultz and Mombaur, 2010] running is modeled as a mul§phgeriodic motion with dis-
continuities, based on multibody system models of the laxons system with actuators and
spring-damper elements at each joint; thus, running metare generated as the solution of
a an optimal control problem, based on energy criteria,esbly an efficient direct multiple
shooting algorithm. In[[Blair and Iwasaki, 2011] the authsuggest that the basic principle
underlying animal locomotion is a mechanical rectificatibat converts periodic body move-
ments to thrust force through interactions with the enviment: thus, an optimal gait problem
is formulated, where a quadratic cost function is minimipsdr a set of periodic functions
subject to a velocity constraint, and the system is reptedey a bilinear dynamic model,
assuming small oscillations with respect to a nominal pestin [He and Geng, 2007] optimal
control is used for stable jumping of a one-legged hoppirgptowith the goal to maximize
energy efficiency of the motion. I [Lengagne et al., 2009roplity is again exploited to
make kicking motions more accurate, exploiting a combamatf an off-line planning aimed
basically at minimizing torques, with a fast re-planninggess, which adapts the controls de
pending on the current target configuration. In detail, thst éunction they try to minimize
in the planning step is the sum of squared joints torqueschvborresponds to the goal of
improving the robot autonomy. As an optimization tool, theh@rs use IPOPT. The authors
point out the limitations of their method, by admitting tlthé optimization of an instance of
the problem takes about two hours CPU time (without moreiBpetetails).

5The clothoid or Cornu spiral is a curve, whose curvature grawih the distance from the origin.
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3.3.2 Computational limits

Implementations of the aforementioned biologically imegimodels on humanoid platforms
face notable computational limits, since most optimal s@mroblems incur into the COD, and
even the solution of simplified problems (e.g. after stroggdtheses cutting the complexity

of the model) cannot always guarantee the fulfillment of tooestraints[[Diehl et al., 2009].
Rather than searching for a generalized solution to thenpigrproblem, whose computational
limits make it unsuitable for online real-time control, iygeroposed approaches in literature
usually focus on the optimization of single point-to-paimbvements [Simmons and Demiris, 2005,
Matsui et al., 2006, Seki and Tadakuma, 2004, Tuan et al§]200

The corresponding optimal control problems are usuallgléatvia numerical methods and
nonlinear programming algorithms, but the optimizationgess requires heavy computations
and often prevents the application in real-time.

As an example, in[Tuan et al., 2008] a single movement génaré reported to take
from 1 to 4 minutes, even with a fast optimizer as IPOPT [Wechnd Biegler, 2006]. In
[Bauml et al., 2010], the optimization of a single trajegtéor a 7DOF arm is performed in
real-time, but under numerous assumptions regarding gtersydynamics and kinematics, and
most of all by a parallel computation on a cluster of 32 CPlespyielding 80% of success in
the desired task.

Since closed-form solutions are utterly hard to find (img@esn many cases) approximate
solutions can be addressed.

For example, Nonlinear Model Predictive Control (NMPC) huets can be used, but even
the explicit precomputation of NMPC laws is prohibitive ftate/parameters abo#e’. For
example, in[[Diehl et al., 2006] a NMPC with fast direct mplé shooting algorithm and sev-
eral approximations were made to reduce a 20 CPU secondautatiops on a 3GHz Pentium
IV to 200ms, for a 5 statel 50ms trajectory. The reader should sée [Diehl et al., 2009], wher
off-line precomputation, delay compensation and othenrggies were surveyed, discussing
reasonable compromises between computational time, @wvee of the method, approxima-
tion performances and real-time guarantee.

One remarkable point is that optimal control schemes appfieobotics must take into
account the platform constraints, and particularly thediare and software limitations. For
example, the generation of direct joint-level control memtnply with their control loop rate
(e.g. 1KHz in iCub and James); simultaneously, it requiresrsiderable amount of computa-
tions, both in term of time and resources. Thus, despitd tmraputations should be preferred
because they could fasten the control cycle, it may not b&lflsato perform such processing
on local boards (i.e. the boards directly connected to timsjpif they have limited processing
capabilities. This, which is the case of iCub and James,i@nphat most computations must
be performed by one or more PC in a cluster, which is remottyected to the robot; in this
configuration, real-time constraints cannot be a priorirgnteed, and in general the safety of
this controls can be solved only up to a certain level.
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3. Optimality: from humans to humanoids

3.3.3 Alayered control scheme

The implementation of cognitive control for a complex humidrobot is a challenge. Anintel-
ligent control system, modeled after biological systentfaman cognitive capabilities, must
possess learning, adaptation and classification capediliproviding improved performances
with respect to classical controls, but guaranteeing litalzind adaptation in the presence
of unknown disturbances, unmodeled dynamics (because dldelmg is too difficult or be-
cause these dynamics have been neglected), and unstduahgertainties [Metta et al., 1999,
Sandini et al., 2004].

The control architecture we propose is particularly teeddbr those systems where some
computations can be only performed remotely. In detail, wepsrt a layered architecture,
where the task planning level is decoupled from the gerwaraif low-level commands. The
transformation between the two spaces can be performed byemediate level, which is
basically constituted by an Inverse Kinematics (IK) modartel eventually by a Forward Dy-
namics (FD) module, as shown in Figlre 3.11.

Remark 1. The layered architecture proposed hereinafter, reflectsaditional pattern of
reaching, considered a two-stage process, where a plarptiage is followed by an execution
phase (and planner and controller can be two separate magjlul€his traditional view has
been challenged by the dynamical system approach to movemminol, claiming that there
is no explicit trajectory planning, but rather an impliciesof trajectories which are generated
by a dedicated dynamical system. An example is the VITE rflddedch and Billard, 2006].
Here, we do not support such schemes, even if our technigcapable of coping with the
dynamical systems theory.

Optimal Trorg*

. ROBOT
Planning

Task to Joint Space
Task

Figure 3.11: A conceptual scheme of a classic hierarchical control sehfanrobotics. The
task parameters, such as the control function to be minihibe current status of the robot, the
task goal etc. are fed to the optimal planner, which compiliie®ptimal trajectory, typically in
the operational space (e.g. Cartesian space). An inteatgeldiyer is in charge with converting
commands from operational to joint space. In this schemegfack loops are not voluntarily
depicted.

The planning module is the core of this work. To describe ttamming problem as an
optimal control, the modeler has to specify:

» afamily of admissible control laws
* a quantitative definition of task performance
» a compatible robot kinematics and dynamics model

The latter is usually known, since the kinematics and dyoammodel of the robot is in general
easy to find from the CAD specifications, thus the robot candseribed by means of a set of
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differential equations. In general, parameters are ndépily known, and many dynamics can-
not be fully modeled, so a supervised learning model coulgseel instead. The task is instead
specified by a cost function: this usually comes with the astajional motor control model
adopted to plan the movement. The family of admissible obhéws is difficult to choose,
a priori, because it is strongly connected both to the robadehand to the task. Planning
optimally a trajectory according to some principles, in@hkastic optimal control framework,
is generally a tough problem. Without a priori hypothesegherstructure of the problem (cost,
system model, constraints, etc.) it is impossible to stdiether a given algorithm is guaran-
teed to yield a solution within a certain time. In Chapter 4m#present a method to compute
optimal trajectories, which concentrates the computaitioan offline phase, but under suita-
ble assumptions allow retrieving almost instantly the sofuonline, taking into account the
feedback on the current status of the system. Moreoverndhwe particular structure of our
controller, we will show that not only it is possible to ledhe optimal solution online thorough
an intensive learning phase, but it is possible to updatsaheion incrementally, combining
control and adaptation, in case for example the system esang

The IK and FD can be both learned from experimental data, timated if an accurate
model of the robot kinematics and dynamics is available. hager’b we will discuss some
possible methods that can be used, along with their advesitagd disadvantages.

3.3.4 Orchestration in a control scheme: team theory

The optimal controllers inspired by the CNS and the many modotrol models must be ob-
viously integrated in the robot Cognitive Architecture (CAhat is the software system that
implements the processes of the CNS [Vernon et al., 200#btanstitute the effective “intel-
ligence” of the robot. The CA usually consists of a set of pefeent modules, interconnected
according to hierarchy, antagonism and cooperation, dmatuall the relevant aspects for the
modules across different application domiins

The primary requirement of a CA is to provide a complete patrea representation of the
robot state: the robot is a complex plant, subject to a contis excitation of its sensory sys-
tem, including all types of sensors, from proprioceptivg.(encoders) to visual (e.g. cameras)
and tactile (e.g. skin).

There are many technological challenges in dealing witleatgamount of sensor-collected
data [Albers, 2002], in generating new actions and contiraiteyies, and in the meantime
in learning through data and interaction with environmentself-organizing and adapting
sensor strategies. Our belief is that motor control modelsresented as stochastic optimal
controllers, could be integrated and enriched in signifteaim the context of a team theory
framework.

Team theory is an area of game theory (see [Radner,| 1962, ¢HGlaun 1972]) that pro-
vides a mathematical framework which can easily descrileectioperation among devices,
such as sensors and controllers, hereafter namBeeision MakergDM), in highly complex
systems. A team is a family of autonomous devices able tmpara task. It can often been

"Decision making, at any level; attentive system; predicéad internal models of self and environment; rea-
soning; autonomous exploration; memory and learning, etc.
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3. Optimality: from humans to humanoids

viewed as a network in which each team member controls, wbsemeasures, gets different
information, and decides to elaborate, share or transmiegeersonal information to the other
team members, trying to maximize some common benefit or nEeig common cost.

The CNS can be modeled by a dynamic systgémesulting from the aggregation ¥
dynamic subsystemS§y, 5., ..., Sy, connected among them, interacting, and evolving in a
synchronous way. We conjecture that human “controllerghee performing high-level ac-
tivities (e.g. learning, memory) or generating simple lmopan be represented as a family
of different DM, each having a different task, processinpgatalities and reacting to different
stimuli. Each decision makdp M; acts on one or more subsystems, as a controller or, when
behaving as intelligent sensor, it generates the signdle &ent to the other decision makers.
In all casesD M; influences the decisions and the behavior of the other teaiside makers.

Whenever a dynamic system is controlled by a plurality oiglen makers, a first problem
insists in identifying the goals pursued by the decision ensk Within the human organism,
it is reasonable to presume that controllers, sensors, igath®, though having different infor-
mation, cooperate to the accomplishment of a common godlbeieg, growth (learning) and
health of the living being. The existence of cooperation agnthe decision makers and the
fact they possess “individual” information lead us to st problem of their cooperation in
the framework of team theory.

More specifically, if NV decision maker® M;,i =1,..., N, cooperate to the minimization
of a common cost functional, the optimization problem can be stated as follows:

min E{j [’71(]1)7 s 7’7N(IN)7£]} )
Y15 YN
where¢ represents a set of exogenous random variabjes,D M;’s decision or control func-
tions, and/; is its information vector. The expectation is evaluatechwéspect tq.

The solution of a team optimal control problem is a hard tasid can be solved, in ge-
neral, only through approximation methods. However, tlageemany examples in literature
of solutions exploiting functional approximators [Zoppel al., 2011| Baglietto et al., 2001b,
Zoppoli et al., 2002, Baglietto et al., 2001a]. Even in thise these methods allow obtaining
approximate solutions to such functional optimizationighemns, that benefit by the fundamen-
tal property of not incurring the COD phenomenon,” i.e.,¢ékponential growth of the number
of parameters with the complexity (suitably measured) efgtoblem dealt with.

In this perspective, using ANN to approximate the optimalnping control functions
seems a promising approach, which could be integrated inra camplex scenario where
multiple controllers or more generally decision makerspsrate for the achieving of a com-
mon goal.
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Chapter 4

Optimal control by means of
functional approximators

4.1 Planning “optimally” goal-directed movements

In robotics, the task of positioning the end effectors ancetch a goal is fundamental: when-
ever a robot has to move its arm to grasp an object, track angaarget, avoid collision with
the environment or just explore, reaching is involved [Bretal., 2008, Nori et al., 2007b].
Given the desired position it is common practice to plan &abie trajectory in the Cartesian
space using parameterized functions (e.g. polynomialplares) and then to find the cor-
responding joint or torque commands analytically, expigittraditional robotics schemes to
perform the conversion from the operational space intd gpace.

In humanoid robotics, the focus is not only on reaching thgeta but on the way the target
is reached, that is the criterion which the limbs accomphiiie performing a movement. One
of the main goals of humanoid robotics is indeed to explaiurelancy and constraints of the
humanoid shape to achieve behaviors that are approximegadificient as human movements,
and to provide a testing platform for computational modslssh as the ones presented in
Chaptei B. In this perspective, a technique must be prowviméuk robot which allows finding
optimal control commands for any given cost function or tasiplementing different motion
criteria.

Design of optimal control laws for robots is not new. In theaof automatic controls,
there’s a tradition in using simple and robust controls Wwhield to optimal control laws (i.e.
solving a LQ problem by Riccati’'s equations). However, ti@dgical inspiration force us to
overcome the limits of traditional automatic controls, @rhare not sufficient to implement the
adaptability of the control laws to new tasks, criteria anédnown dynamics.

The goal of the planning module is to find the optimal trajectehich makes the end-
effector accomplish a certain task in an optimal fashiom, minimizing a given cost func-
tional. It must be quick, i.e. not computationally demaigdin terms of time and resources,
reactive to unpredictable target’s changes, able to coffeti@ manipulator’s physical limita-
tions (singularities, joint limits, etc.) and control aitelcture.

A planning policy can resort into direct control or indirecintrol:
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« direct control accounts for direct generation of motor cwands, joint-level, of the fol-

lowing type:
T =v(z) or ¢"=~(z)

wherer,¢ € R™ are the vector of joint torques and joint velocities, respety (thus
referring to joint torque or joint velocity control schemeandz the operational space
configuration of the end-effector

* indirect control, that is the most common case in robotigsere for example desired
planned trajectories are converted from the operatioratesinto motor commands in
the joint space, for example by means of Inverse KinemaliQsar Forward Dynamics
(FD) modules:

i*=~(z) then ¢*=IK(z*,4*),7" =FD(¢",q")

Sometimes it is better to segregate the trajectory planinamg the trajectory execution, so that
it is possible to tune both modules separately: in this dasi&ect control is preferred.

Among different possible approaches, we decided to statglémning problem as a Fi-
nite Horizon (FH) or Receding Horizon (RH) problem, and te fisnctional approximation
techniques in order to approximate numerically the glob&it®n to the optimization prob-
lem, to pre-compute the optimal control laws. The RH apgndsacomes necessary whenever
the duration of the movements cannot be predietgatiori. One argument is that the dura-
tion of motion can be found by computational models like thesodescribed in Sectign 3.11.5
(e.g. Fitts’ law ). Unfortunately, it is difficult to cast silar predictions for humanoid robots
and to generalize these models for different tasks suclaekimig or reaching. Nevertheless,
the RH solution comes for free since it is immediately addeonce the generalized FH so-
lution is found, for example by applying at each time instanly the first FH control law
[Parisini and Zoppoli, 1995], as will be explained later ddaving both solutions available,
we can tailor the solution depending on the task: e.g. a Filegly is more suited for pure
reaching movements, while a RH strategy for tracking targaiving indefinitely.

Trajectory planning finally consists in the computation tfize-invariant, feedback, stochas-
tic optimal control law. In detail, a suitable sequence aimaénetworks is trained off line, so
that they can approximate the optimal solutions of a stdith&$d control problem, which
is generalized for every possible state configuration (egery possible system and target
states belonging to an opportune set of admissible staths)Extended Rltz Method (ERIM)
[Zoppoli et al., 2002] is chosen as a functional approxioratechnique, while the use of feed-
forward neural networks (thanks to their well-known appmeation capabilities [Barron, 1993])
guarantees that the optimal solutions can be approximatadyadesired degree of accuracy
[Kurkova and Sanguineti, 2005] by using a parsimonious lmemof parameters to be opti-
mized.

In this way, the computation demand is concentrated in théinef phase, while in the
on-line phase only the computation of a single control lasrr@sponding to a neural network
forward) is performed et each time. Thus the control act®generated with a very small
computational effort. The feasibility of this approach leieady been tested on the control
of a thrusts-actuated nonholonomic robot [Ivaldi et alQ&€]. Numerical results showing its
effectiveness for different cost functions were preseirigbvaldi et al., 2009b], for the motion
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4. Optimal control by means of functional approximators

of a 2DOF manipulator. Experimental results were preseimtdti/aldi et al., 2010] for the
control of the 4DOF arm of James.

If planning is performed in the operational space, an inggliate control loop is in charge
with converting the desired trajectory into proper jointgiee or velocity commands, taking
into account the platform physical constraints. This naigelr will be discussed in Chapfer 5.
Conversely, if planning is performed directly at joint-dtvthe system state model embedded
in the problem formulation already takes into account tlfpim physical constraints.

While addressing the problem of finding the optimal contes$ for the motion of the
robot, many issues occur, in particular the problems of toigphe control laws to the time-
variant, nonlinear dynamic system (as the robot is), anthe@tstme time counteracting the
disturbances due to unmodeled dynamics (friction, babklaie., which are in general difficult
to model), delays, and the uncertainties in the model its&lf simplify the problem, some
reasonable assumptions can be made.

The following are assumed to hold:

Assumption 1. The robot’s joints position, velocities and accelerati@ms perfectly measur-
able, without noise or delay.

Assumption 2. The robot's kinematics and dynamics are perfectly knowg,(the Jacobian
is known without errors).

Assumptionl is not verified on a real platform, and partidylén robots like iCub or
James, where encoders provide a joint position measure dhly latter is very precise, and
up to a certain degree can be treated as noiseless. In dopdmtvelocity and acceleration,
which can be retrieved by double differentiation, are qoted by a significant quantization
noise, which must be filtered. Delay instead cannot be neggledHowever, in this chapter
we are going to address the method more formally, and thesesswill be discussed with
more detail in future sections. Assumptidn 2 holds if a japtecise model of kinematics and
dynamics exists. The kinematic model is relatively easiexiite, since it relies on a Denavit-
Hartenberg description of links and joints. The dynamidailsmore complicated, because of
the many parameters which are more difficult to estimatd) agénertias. For example, iCubis
described by a rigid-body dynamics model, whose parambgas been retrieved by the CAD
model of the robot: hence, its forward dynamics is known. sy, dynamics parameters are
not always “fixed”, but could be time-varying: e.g. mass @riima may vary depending on the
load which is applied to the manipulator.

If the robotic system is known, the following assumptiongtmngoal state that the target to
reach (in case of goal oriented movements) is unpredictaidainknown, but can be measured
at each time instarit

Assumption 3. The target Cartesian positions and velocities can be ptyfeceasured.
Assumption 4. The target kinematics or dynamics is unknown.

Now let us consider the following scenario, where the rolsoadtively engaged to its
environment: looks around trying to identify interestingjexts and eventually attempts to
reach them with the hands in order to grasp or manipulateigréze people and engage in

45



cooperative tasks, thus driving the hand towards a desir@ldia take it and deliver it to its
companion.

The aforementioned goal-directed movements can be farethéis optimization problems:
exploiting the models presented in Chajpter 3, the goal isitbtfie control laws which make
the robot move according to some “optimal” criteria i.e.vohg the end-effector to a target
position in a finite time while minimizing a certain cost fuioo.

The following definitions are necessary:

1, the state vector containing the Cartesian coordinates @odities of the end-effector,
at time instant;

 u; the control vector, containing velocity commands in thet€aan space;

» x* the state vector representing the target/desired Cantpsisitions and velocities in
the Cartesian space; it can be fixed or time-varying, andisnctise it is denoted hy;;

* ~ the optimal control function which steer the current statéo the desired.

Then the problems can be stated in the following way:

Problem 1 (Reaching. Find a sequence of optimal control lawsg,...,yy-1 which drive
the end-effector from the initial posg towards the target:*, supposed fixed, itV control
instants, while minimizing a certain cost functigh

Problem 2 (Tracking. Find the optimal control lawy which at each time instartdrives the
end-effector from the current posg towards a targetz; moving unpredictably in the space,
while minimizing a certain cost functioff.

The statement of this problems is very generic, and ther® imantion of models, dis-
turbances acting on the system, or of the unpredictablerecthat might change the current
status of the problem. Generally speaking, we can condigesytstem to be modeled as

T+l = f($taut7nt)

wherezx; € X; € R” is the state vecton,; € U; € R™ the control vectory; € N; € R™ a noise
vector acting on the system; the control function can beteriais

N-1
T = > he(xe,up) + hy(zy)
=0

whereh;, hy constitute the partial costs of the functighto be minimized.

Different approaches for the solution of such optimizagooblems have been presented in
literature. A classical method is the well-known Dynamiodgtamming (DP) [Bertsekas, 1995],
a generic global optimization procedure providing the ropti control lawsy°(z;), by repea-
tedly solving the Bellman'’s recursive equation

I () = Hiitﬂ[ht(ﬂfu ug) + Jpy (o) ]

at sampled states. One of the main advantages of DP is that there exists arcébqohialytical
solution to the control problem if it is stated under the kndvQG hypotheses (linear system,
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4. Optimal control by means of functional approximators
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Figure 4.1: An example of bidimensional state “grid”, used for Dynamiogtamming. The state
variablez; = col(a:gl), J:EQ)).

guadratic cost function and mutually independent Gaust@shastic variables). In the general
case, one has to look for numerical approximations of thbajlsolution.

This is usually done by sampling properly the state spacetladontrols, so that the
functional equation that defined the DP procedure can bedanly in correspondence of a
finite number of state values. Typically, states, contralg] value function are represented
on a regular grid, for each control stage, and some intetipalés used to approximate these
functions within each grid cell, as shown in Figlirel4.1: berature many methods can be
found, from statistical-based sampling to neural apprexioms of the cost-to-go functions.
The main drawback of DP is the computational complexity, tree exponential dependence
of space and computation resources needed on the dimelityiarighe state, which limits
its application in practice. If the sampling is uniform, afdsamples are retained for each
component of the state (e.dg) samples for each; € R™,i = 0,..., N, ), then the number
of samples grows witf{T" + 1)D": such growth of the number of parameters restricts the
application domain of DP to small dimensional problems, esjuire demanding resources.
For example, in[[Atkenson and Whitman, 2009] DP is used totfiedoptimal trajectories for
biped walking: the authors performed the computations doster of 100 nodes, each having
8 CPU cores, connected by a 16Gbit/s connection, where gatheil was performing local
optimization on a sub-sample of the state space. Also [Maiat# et al., 2006] used DP to
control velocity in bipedal walking: but despite the vagaimplifications introduced to avoid
the COD (as the simplified model of locomotion, the disregairdlynamic effects such as
swinging legs and footsteps), the authors could not go ogtata of dimensiom = 3.

Alternative solutions to DP range from the application offPgagin’s Maximum Principle
to the transformations of the functional optimization gewb into a nonlinear optimizing one.
Among the investigated solution, we can cite [Mitrovic ef 2010], where iLQG was applied
to compute optimal torques for the control of a planar arnal [¥iehl et al., 2006], where a
multiple shooting Sequential Quadratic Programming netthras used to find the minimum
time control for a 5DOF simulated robotic arm.

In the following section, we will describe the theoreticabls at the base of our proposed
method.
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4.2 From functional optimization to nonlinear programming

Functional optimization problems deal with the minimipatiof functionals with respect to ad-
missible functions, belonging to infinite-dimensional &gg& Under general hypotheses, these
problems cannot be solved analytically, however it is glesio provide arbitrarily accurate
suboptimal solutions by solving a suitable approximateinear optimization problem. In the
following one of this methods, the Extended RItz Method (ERlis described.

4.2.1 Stochastic functional optimization problems
The general formulation of a functional optimization preiol is:

Problem 3. Find
inf F(vy) =inf E{J [v,2]} 4.2
yeS veS z

where~ € S are the admissible solutions to the problem, befghe subset of an infinite-
dimensional real normed linear spacé of functionsy : B < R” » R™; F: S » R is a cost
functional, while7 : R™ x Z —~ R is a given cost function; finallg € Z ¢ R? is a random
vector taking values from a known sétwith a known distribution, setting the problem in a
stochastic context.

The target of Problern] 3 is to find the optimal solutighamong the admissible functions
~ € S, that minimizes the cost functiondf(~). The method described hereinafter is stated
within a stochastic environment, however it can be applied i deterministic situations. The
stochastic formulation is more complex but is necessaménpresence of random variables
acting on the system, which must be comprised in the probtemulation (e.g. noise, initial
or final states with a probability distribution).

The solution of this class of problems is not easy. The aitalytomputation of the op-
timal solution of Problen3 is feasible in few cases, againggpally under LQG conditions.
In all the other situations, since finding the analyticalutoh is hard, it is possible to use
numerical techniques to approximate the desired optimraitions. The principal difficulty is
that in functional problems the goal is to find one or more Bjgefunctions over an infinite
dimension spacesy° = argmin F(-). Further complications arise in presence of functional
dependencies: anticipating later discussions, if two orenfanctions must be found, e.g.
1,72 = argmin F(71,72) and there exists a functional dependency, eg= v2(y1), then
they must be found jointly, i.e. they cannot be decoupled. udnal approach to functional
optimization is to constrain the solution to take on somacstre (e.g. searching for linear
solutions only), so that to obtain a suboptimal solutionthat can be expressed in a simpler
and closed form. Other approaches consists in giving ugisear for global solutions and
stop at local ones, after simplifying the problem, or aimatghe global solution via numerical
approximations, using parameterized functions.

There are several ways to solve such optimization problegnsidmans of functional ap-
proximation: the method proposed for this work constralres functions to take on a fixed
structure with a finite but sufficiently large number of fresrgmeters. By substituting these
parameterized functions in the cost functional and in thestraints expressed by the subset
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4. Optimal control by means of functional approximators

S, nonlinear programming problem can be obtained, whosdisnlgan be found by means
of a proper descent algorithm. With the increase of the nurobftee parameters, the param-
eterized functions can “cover” the subsgtand the solution of the corresponding nonlinear
programming problem approximates more accurately themgbtsolution of the “original”
functional problem.

The structure of the parameterized approximating funstisrunlimited. The simplestis a
linear combination of “fixed” basis functidﬁs

A(x) = col (2%-%(@, j=1,... ,m) 4.2)

where the parameters are the coefficiefitg} of the linear combination, ang; is a basis
function (e.g. a sigmoid, a cosine, a Gausskt,). Of course,z € R™, and the notation
col(...) accounts for all the elements of vectpe 4(x) € R™, such that:

yj =9(x) = ZV: cijpi() (4.3)
=1

wherep: (), ..., o, (x) € H is a sequence of given basis function. [Eql 4.2 leads to therkno
Ritz method for calculus of variations [Ritz, 1909]. Traaiitally, this method is not indicated
for solving problems with a large number of variables, besngject to the well known COD
issue [[Bellman, 1957]: that is, the number of basis func{guivalent to the number of co-
efficientsc; in (4.2)) necessary to yield an approximation error (i.& fiaximum acceptable
error in computing the approximation of the control funogp lower or equal than a certain
e may grow withn exponentially or in either way very rapidly, typically witnrate of order
O(1/€™).

Ry+1

| l

Figure 4.2: The fixed parametrized structure of an approximating famcti

It is possible to lower this growth and indeed reduce the remalb parameters choosing
different approximating functions, in particular linearrenlinear combinations of basis func-

YIn the following,col(z1, . .., zn) £ [z1...24]".
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tions containing free parameters (instead of fixed basistims), in the form:

’?(wi) =C01(7j($7wj)7 j=1>-"7m) (44)

where
,ij(x’w]) = ¢V+j(¢l(x7"£l)7' .. 7Q0V(m7ﬁl/)7"£l/+j)7 ] = 17° -, m (45)

as shown in Figure 4.2.

Remark 2. The following must be remarked:

the hidden layer containg;,i = 1,. .., v, while the output layep;,i =v+1,...,v+m;

the subscripti denoting eachy; is used to disambiguate the basis functions, which in

principle can be of different type; generally, all the fuoncss in a layer adopt the same

basis function homogeneously, for example, one can haveearlioutput layer and a

sigmoidal hidden layer (in that case, it is simply said tha¢ OHL-NN has sigmoidal

basis functions);

« for a generic basis functiop(-, k), x € R¥ is the generic vector containing the free
parameters;K = dim(x) depends on the basis function type, for example(if, <) =
c'z +b, thenk = col(cy, ..., cp,b) e R*;

e w=col(k;i=1,...,v+m) e RV is the big vector of parameters to be optimized, with
W =Yy " dim(k;);

* Eq.[4.43 is a two-layer NN, which is known to be a universatcfiomal approximator

[Hornik et al., 1989], i.e., there are conditions which s®tahe existence of a sufficient

number of neural units and of the corresponding optimal meof parameters, given

a desired accuracy in approximation. In general, contirsidunctions can be approx-

imated to any degree of accuracy on a given compact set bjofeetd NN based on

sigmoidal functions, provided that the numbesf neural units is sufficiently large. Then

if the functiony°(x) is unique, and is a continuous functiéi{ X, R"™), for everye > 0

there exist an integer and a weight vectotw (and a corresponding “neural” function

Y (x,w)) such that|y°(x) — v, (z,w)| <€, Vx € X. Of course, multi-layer NN can be

used, guaranteeing further approximation capabilitie$ &iuthe cost of a larger number

of parameters.

Common basis functions are parameterized splines, sigihoidradial basis functions.
Using [4.4) instead of (412), the number of parameters togtenized grows “moderately”
(polynomially or even linearly) witm. The latter choice leads to the so-callEdtended
Rltz Method(ERIM), which was first formalized in[ [Zoppoli et al., 20024nd refined un-
til [Zoppoli et al., 2011]. The theoretical aspects disaugshe fundamental property of the
polynomial growth ofl¥ with respect ton and the approximating properties of the method
were discussed in [Kurkova and Sanguineti, 2005], as lenp@ concept oP-optimizing se-
qguences, which will be introduced later on. The ERIM has o be effective in the solution
of functional approximation problems in a variety of cortterd conditions, with stochastic
constraints/costs, binary signals, linear and nonlingstems.
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4. Optimal control by means of functional approximators

4.2.2 The Extended RItz Method (ERIM)

The ERIM basically consists in constraining the admissdastrol functiony(z) € H from
Problem3 to take on a suitable parameterized but fixed smei§{(z,w) € S, as in Eq[4.1,
with a certain number of free coefficienise RV

The most common structure with the ERIM i©ae-Hidden-Layer Neural Netwo(lOHL-
NN), with the following form:

y=9(z,w) = COI(Z cijo(x, ki) +bj, j=1,... ,m) (4.6)
i=1

where:

« w e RY collects all the parameters to be optimized:= col ({c;;}, {si},{b;}); i =
L...,v; j=1,...,m; ¢j,bj e R, k; e RE; thenW = vK + m(v +1);

e zeR”, yeR™sothaty: R” xRV — R™;

+ ¢ : R" x RE — R are theparameterized basis functidie. fixed structure, variable
parameters)

Incidentally,4 : R” x R - R™ describes a OHL-NN with linear output layer, where Z*
is the number of “neurons” constituting the network (i.ee ttumber of “neural units” in the
hidden layer) andv + m) the total number of “neural units”v is also calledcardinality
number of the OHL networklV is the finite number of free parameters, and grows linearly
with v: W = vK + m(v + 1). The main approximation properties of OHL-NN are discussed
in [Hornik et al., 1989] Barron, 1993].

A common structure for the basis functignis the perceptron represented in Figufe 4.3.
A perceptron unit consists of a linear combinationagfwhere each variable element is
multiplied by a so-called “weight” (i.e. a varying coeffiig, plus a bias coefficient, and their
sum is processed by a so called “activation function”.

Remark 3. Except for the additional bias;, the main difference between (4.6) and{4.4) is
that the sequence of basis functiops ..., , in the hidden layer (where subscripimeant
that each could have a different structure) has been replagih a set ofv parameterized
basis function, each of the same type. The reason is thatbsasing the cardinality we can
avoid using different functions if the combination of thegie parameterized basis functions
o(-, ki) € H,Vk; € RF has “sufficient” approximation properties. Choosing the shappro-
priate OHL networks is crucial: for example, when approxiim@ the solution of Problerin 3,
generally nonlinear OHL networks require fewer parametierde optimized with respect to
linear ones (the approximating accuracy being equal).

Sometimes[(4]6) is enriched, for example it can have anatitiiv function in the output
layer different from a simple linear combination of the sitjfrom the hidden layer with a
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Figure 4.3: A perceptron neural unit, precisely theh in the hidden layer of a OHL-NN. Here,
o is the “activation function” of the unit (e.g. a sigmoid),is a generic “weight”x is the input
vector to NN, whiley is the output of the hidden layer. A perceptron can be alsbdése unit for
the output layer of a OHL-NN: in that casg, = 4, (z,w, ), while z (in the figure) is the vector
coming from the hidden layer.

bias, as anticipated in Remdilt2

In practical implementations, Elg. 4.6 can be further shigtifferent. To keep the formu-
lation as clear as possible, two important operations haea lomitted from the equation (but
will be discussed later on): the input and output normabrafunctions, i.e. the mappings
M*, MY for the range of the variables fed to the NN and exiting the NMithin the range
[-1,1]. Using sigmoidal as activation function§ js consequently adapted so that it complies
with the constraints on its admissible values:

Y(Z,w) = col (&j [ZV: chjo (T, kp) + bj] ,7=1,... ,m) 4.7

h=1

where the notationg andz account for the output and input normalization: the inpuialdes
x are normalized from their original range fe1,1], while the NN outputs are scaled from
[-1,1] (the output range of a sigmoidadnh-based neural network) to the admissible range
of v(z). A graphical representation of the OHL-NN in that case issshin Figurel4.4. This
operations are particularly useful wherandy = v(x) have a physical meaning, as will be
clear in Chaptelrls.

Common choices for the parameterized basis functigns ;) are:

2Sometimes a sigmoidal output layer (instead of a classiceht output layer) is preferred since it naturally
generates bounded values within a specific range, which eanaale consistent with the real output ranges after
data normalization. This choice allows removing signalstaaints and not taking care of the possibility that the
NN generates inconsistent values.

3It must be noted that the use of OHL-NN is particularly corieaty for its simplicity and for the theory
assessing their approximation properties. However, NN wibre than two layers can be used —the so called
multi-layer NN — which in general may behave even better.
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4. Optimal control by means of functional approximators
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Figure 4.4: A OHL network with normalized input/output. The normalimat blocks are put in
evidence (magenta and yellow), and the normalized vasadie put in evidence by the notation
Z,g. Single “neural” units (green boxes) as well as the pararaétebe optimized (blue text) are
also highlighted.

« radial constructions:
2
p(z, k) = h(H‘T - TiHFi)J

whereHxH%i = 2"z, I; = T],T'; > 0, while x; = col(7;, non-redundant elements of

I';); an example is represented by Gaussian functionselike ™ ”%i;
* ridge constructions:
o(x,k;) = h(a]x + B;),
wherer; = col(«;, 5;), with 5; € R, «; € R™; moreover,h : R —» R can be a linear
function (such that, e.gh(xz"«o; + 8;) = z"a; + ;) or a nonlinear function, e.g. a
sigmoidal ond. Feedforward neural networks with one hidden layer andliaetivation
functions are also ridge constructions.

Remark 4. Sometimes to simply the output normalizatign) a common choice is to choose
a NN with sigmoidal output layer, for example using

-z

w(z) = ez—ie . (4.8)

e +e’?

4Sigmoidal functions are continuous, differentiable, nezllied functions with a “S” shape and the following
properties: lim o(z) =1, lim o(z) =0/ - 1. The most common “sigmoid” is the logistic function
z—>+o00 z—>—00

1
o(2) = l+e=

defined within[0, 1]. Another sigmoidal function, frequently used in NN, is thgérbolic tangent

tanh(z) = € ¢

e’ +e?

defined within[-1,1].
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which intrinsically generates bounded values within thega[ -1, 1]. Then, ify must generate
admissible values within the rangeU, U], it is straightforward to multiply the output of the
NN byU to obtain the desiredf.

Solution to nonlinear programming problems

By substitutingy(z) with 4(z,w) in Eqg.[4.1, the functionalF () becomes a function of a
finite number IV) of parameters:

F(w) = F(y(,w)) (4.9)

Therefore the original functional optimization problentusned into a nonlinear programming
one, which can be solved by means of some nonlinear progmagndescent algorithm. In
particular, by substituting (4.6) witlr = 1,2,..., a sequence of “approximating nonlinear
problems” is obtained, each of them defining a nonlinear ammgning problem equivalent to
Probleni8 and defined by the cardinality

Problem 4. Find
ing}"(w) = ingE{j[w,z]} (4.10)

wherew ¢ ¥ ¢ RY W = W(v) is the vector of admissible parameters, related to the con-
straints ofS: ¥ = {w:4(,w) € A, nS}.

In order to define the conditions for which the nonlinear pamgming problem can “ap-
proximate” the functional optimization one, i.e. the paetenized solution approximates the
functional one, some properties fand some conditions must hold.

Assumption 5. An optimal solutiony® to Probleni3 exists, and the infimum and minimum are
coincident:
~° = argmiél}'(w), F°=F(»°)
Ye

Assumption 6. An optimal solutionw® to Problenf4 exists, and the infimum and minimum of
functionF(w) are coincident and attained fan°:

o N o

w’ =w, = argruflei\llr}]:(wy), F°=F =F(w,), 7 =79, =50, w,,

Note thatv is explicit inw® = w;,, 7° = F,;, and4° = 4, to make evidence of the depen-
dence on a particular cardinality numberbut the subscriptz can be dropped whenever the
optimal parameterized solution is intended and it is noessary to clarify which particular
is used. Moreover, the following properties are required:

The guarantee of admissible outputs is fundamental whemétkod is exploited for generating controls for a
real physical platform like a humanoid robot, where unpatable or wrong controls could damage the system the
environment, the robot itself or, the worst, people intéiragwith it.
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4. Optimal control by means of functional approximators

Assumption 7. The sequencéy; } -, is such thatlim F(%,) = F°.
V—>00

Assumption 8. The sequencéy;},-, has a limit functiom?®, i.e. lim |y, —~°| = 0, where
||l is the norm defined in the spaégé

If Assumptior{ 5[ 6,17 and 8 hold, then forma#lysequence of problems like Problem 4, with
increasingr, approximates better and better ProbléinThe sequencéy;} -, is defined as
P-optimizing sequencand the corresponding OHL-NN is definedrRxgptimizing networkit
must be pointed out that the limits in Assumptidn 7 ahd 8 damety each other necessarily:
precisely, if theepigraphsof the sequence of Probldm 4 converge to the epigraph of &mbB)
then{37},2, » 7 and{F;}2, - F°.

Figure 4.5: A schematic representation 0fi, } and its relationship with the optimal solutigt.

Remark 5. Note that the aforementioned assumptions are related tpdrtecular instance of
the functional optimization problem: generally it is sges by the triple( H, S, F), that is by

the linear spaceH, the set of admissible solutiorfsand the cost functionaF. Conversely,

the OHL-NN depend on the definition of the functional opttian problem through the re-
quirements the functiofy (or 4, if v is explicit) belong ta. Now the following definition are
recalled from [Zoppoli et al., 2002]:

Definition 1. A, is the set containing all the functioris (4.6) belongingHogiven a certain
vi A, = {§(z,w) e H:weRY W =W(v)},v = 1,2,.... The sequencé4,};’, has the
infinite nested structured; c Ay c...c A, c... (see Figuré 45).

o0

Definition 2. Asequenc¢A, } -, suchthat_J A, is dense irH, is defined asi-approximating
v=1
sequenceand the OHL-NN belonging each s&f are calledH-approximating networks

The following assumption then relates the approximatingvaeks of H with the approxi-
mating functional problem:
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Assumption 9. The decisional functiory € S benefits by certain regularity properties so that

|J 4, is dense inS and the corresponding/ -approximating sequence exists.
v=1

Of course, this assumption is not sufficient to guaranteeeitistence of a’-optimizing
sequence. Indeed, the existencdiehpproximating sequences only ensures that an optimal
solution to Probleni]3;°, is an accumulation point for “some” sequen¢g, } - ,, not neces-
sarily for the{#7} -, determined by ERIM after solving a sequence of Proljlem 4.

The convergence properties of the P-optimizing sequerredsiadamental to establish the
complexity of the method. If the convergence speed of theesees{ F(v;) - F°},-, and
{42) —4°}.-, that is the speed at which the optimal solutions of a sequef®robleni¥,
with v = 1,2, ... epi-converge to the optimal solutions of Probleim 3, can Iseriteed by:

AV + ~0 o n? ) o np'
Baurl g €R 2 FG5) - F <02 )L 511 <0

v

then given an approximation accuracit is sufficient to choose a cardinality numbesatis-

fying:

!

P P
Je,d 20 : .7-"(75)—.7—""30% <e |ve—7°I Sc'%ge

1 P / % /
Vzmax[(g)qna,(c—) n%] (4.12)
€ €

If a P-optimizing sequence verifids (4111), then it is cafjetynomially complex P-optimizing
sequenceas given the maximum approximation ereoffor which F°,~° are approximated)
the basis cardinality number grows at most as a power af which is the input dimension
of the OHL-NN, hereby callegolynomially complex P-optimizing networkhe existence of
a polynomially complex P-optimizing sequence makes theaqimate solution of Problem 3
computationally feasible, and Hy (4]11) ensures that ib&sjble, by acting on, to obtain any
desired degree of accuracy in the approximation by usingor&s containing a suitable but
moderate number of parameterized basis functions.

to have

Remark 6. The polynomial growth of in the ERIM is a fundamental improvement with
respect to the equivalent of the classical Ritz, where alfyidhe growth is in the order of
O(1/€™). In literature many limitations of the latter method are ceged, the major being
the inability to deal with the se$ of admissible functions depending on a large number of
variablesn, and the consequent COD. Furthermore, the known error estisn(for the Ritz
method) either refer to the case= 1 or provide upper bounds which do not make explicit
the dependence am hence, it is unclear to which extent it is possible to obtaibitrarily
accurate approximations by means of a “moderateivhen the admissible decision functions
~ depend on a large numberof variables.

The upgrade of the approximating functions (from lineardalmear basis ones) is the key
of the ERIM, which makes it avoid the COD. Several kinds ofragjmating networks behave
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4. Optimal control by means of functional approximators

like “polynomially complexH - approximating networks”, if the functions to be approxieth
attain some regularity conditions. In particular, for eas triple( H, S, F) it has been shown
that a proper sequence of OHL-NN can be constructed by namigithe functional ovef n
A, the resulting is polynomial complex P-optimizing sequento this extent, the functional
F must exhibit the properties of continuity and convexity. feldiscussions on the convergence
rates in this case can be found [in [Kurkova and Sanguin@d5 2Krurkova, 1997], where the
upper bounds of the rates are found: the interesting prpjethat the errotF (7)) - F(1°)
(both when the cost functiondt is continuous only and continuous and uniformly convex) is
bounded by a quantity which is at least inversely propostidn »'/2, thus independently on
n. Notwithstanding, a large is not sufficient alone to lower the approximation error, tas i
upper bound is also proportional to the variation norm ofapgmal solution,|~° ||G$, being

Gy 2p( k) ke R is the set of functions that can be obtained by varying the fi@ameters
in the basis functions. That is, the norm is related to the basis functigns the OHL-NN
and can be estimated if some a-priori knowledge on the abtéssolutions is available. It
is important to remark that the conditions which allow consting the polynomially complex
sequences, regard the functiorfaland the set of admissible functiosy, and are specified
by geometric and regularity properties stated in a “stataritext: a dynamic system evolving
during the optimization process is not taken into accountf ib exists, is implicitly considered
and embedded in the properties/®fandsS.

4.2.3 A stochastic approximation technique

Problem4 can be solved by means of a classical gradientitgehnf the following funda-
mental assumption regardigg (see Eq._4.10) is verified:

Assumption 10. 7 (w, z) is aC* function with respect ta, V2.

In the following, the various constraints am which define the seb : w € ¥, are taken
into account through penalty functions, so that Problémrédsiced to an unconstrained non-
linear programming problem. If “exact” constraints @must be fulfilled, there exist specific
stochastic approximation techniques that can handle tlsargaired|[Kusher and Yin, 1997].
If Assumption[10 is verified, then under some additional tagty hypotheses alsé (w) is a
C' function, thus its gradient can be computed, i.e. all théiglaterivatives ofF with respect
to the parameters. Then, it is possible to compute the set of optimal paramsetéiby means
of a classical nonlinear programming technique.

Among classical nonlinear programming algorithms, we $oour attention on gradient
algorithms to introduce the concept of stochastic apprakion in a simple and straightforward
way. A general gradient descent algorithm is in the form

w(k+1)=w(k) +a(k)s(k), k=0,1,... (4.12)

wheres(k) is a generic descent direction, am(k) is a positive step-size. The idea of gradient
methods is to exploit the derivative of the cost functi@fw) to find its minimum, attained at
w®, wherev 7 (w) = 0. A descent direction (k) satisfies the conditiow 7 (w(k))"s(k) <

0. The numerical procedure consists in starting from a guessrandom realization of the
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parametersy(0), to generate a sequence of parameters vai(es, w(2), ..., w(k), w(k+1)
which satisfies7 (w(k)) > J (w(k+1)). Typical examples of gradient descent algorithms are:

« Steepest Descent:(k + 1) = w(k) — a(k)VT (w(k))

« Newton:w(k +1) = w(k) — a(k)[V2T (w(k)] ' VT (w(k))

* Quasi-Newton:w(k + 1) = w(k) - a(k)D(k)VT (w(k)), whereD(k) is an approxi-
mation of the Hessian

Incidentally, it must be noticed that the aforementiongmathms are designed for a numerical
approximation based on a deterministic gradi€nf;. In our case, the gradient is stochastic,
becauseF = E{J}. In this case, the stochastic gradient (which is partitykmugh to com-

pute) can be substituted by its numerical approximatiod,specifically by the gradient which
is computed if a single realization of the stochastic vdeazcurs. Without going into further
details of the algorithms, we will bring forward with our disssion using the steepest descent
algorithm, that turns out to be the best choice for this motd [Spall, 2003].

The iterative steepest descent algorithm which allowsisgl?robleni 4 is:

w(k+1) =w(k) - a(k)Vy gj (w(k),z), k=0,1,... (4.13)

Due to the general assumptions of Problem 4, it is pracjiéalpossible to compute an-
alytically the gradientv,, EJ (w(k),z): indeed, at each iteration stép the gradient of a

complex function resultiné from a multiple integral, reldtto the stochastic propertiesof

Stochastic approximatigrapplied to overcome such computational difficulties, ¢siasn
usingVv,,J [w(k),z(k)] i.e. the gradient computed after a single realization ofstieehastic
variablez. Thus, instead of (4.13), the following updating algoritlused:

w(k +1) = w(k) - a(k) VT [w(k), 2(k)], k=0,1,... (4.14)

where the sequence:(k)} is generated randomly according to the known probabilisgrii
bution of z. a(k) is a suitably decreasing positive step-size. The convesgehthestochastic
gradientmethod is assured by a particular choice of the stepcs{zg, that must fulfill a set
of conditions [[Kushner and Yang, 1995].

Remark 7. If J(w, z) is continuous and differentiable (see Assumpiidn 10), usdee reg-
ularity hypotheses alsg 7 (w, z) is, and:

Vuw ];Ej(w,z) = ]?Vw [T (w,2)] . (4.15)

In practical situations, this formula can be exploited tosha certain “rough” approximation
of the stochastic gradient to be used in place of the singlézation v, J [w(k), z(k)], i.e.

Q
EVu[T0.2)] % 5 3 TulT(w2(0))] (4.16)

By increasing suitably the number of realizatioRsto consider at each iteration step it is
possible to obtain a better approximation of the originahdient. This approach has been
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4. Optimal control by means of functional approximators

used, for example, in [lvaldi et al., 2008b], and similarly [ivaldi et al., 2009a] for the eva-
luation of a stochastic constraint. Of course the additioc@mputational burden of such ap-
proximation with respect to the “single” stochastic appimation approach must be balanced
with the improvement in the descent accuracy. This solutiost be also balanced with the
strategy for the adaptive step-sia€k), which is often “perturbed” as being the main object
of heuristics like simulated annealing: since the gradisralready “perturbed” (even if aver-
aged on(Q realizations as in EJ._4.16), sometimes it is difficult toesssif the gradient or the
step-size are determinant for the convergence of the dlgar[4.13).

Eq.[4.14 is the simplest stochastic approximation methadorg the sufficient conditions
for its convergence, which can be found|in [Kusher and Yir§7]9some concern the “shape”
of the cost surfac& (w) (but are very difficult to assess due to the characterisfittsecsurface
itself), some the decreasing behaviordf:). [Baglietto, 1998] the convergence requisites are
discussed. In particular, if functiaf (w) anda« verify the following assumptions:

o F(w) 20,Yw e RW;
» F(w) is continuous and differentiable, and a Lipschitz consiagists such thdtv F (w)
~VF(W"| < L|w-w'|, Yw,w e RY;
e 3ce R = VF(w(k)T BE{[s(k)|L(K)]} = c¢|VF(w(k))|?, k=0,1,..., wheres(k)
is a certain descent direction [n(4112) ahdk) = [s(k-1),...,s(0),w(k-1),...,w(0)];
« 3K1, Ko eR* + E{[|s(k)*|I:(k)]} < K1 + K2 |[VF(w(®)|?, k=0,1,...;
* the sequence of step-sizeék) > 0 also satisfies:

oo

Sa(k) =00, 3 a?(k) <oo

k=0 k=0

then:

« the sequencé& (w(k)) converges;
. klim VoF(w(k)) =0;
* any limit pointw® in sequencdw(k)} is stationary, an®,, F (w°(k)) = 0.

Of course, the properties of (w(k)) are related to the ones ¢f. With regard to the
step-size properties, it is requested thék) decreases towards zero with the increase of the
iterationsk: this is necessary since at the convergence pofrit could happen that(%) + 0
(even if the exact gradient is null, as a consequence of dohastic approximation). It is but
necessary that the stepsize does not become too “small’ommm $0 avoid the risk that the
algorithm could be stucked in some local minima, and not ke momove out of it.

Example 1. If s(k) < b and Z a(k) < B < oo, then |w(k) —w(0)| < T4 a(i) |s(i)] <

bB,k = 1,2,..., that is w(k) |s confined into a ball of radiu#B and centerw(O) if the
optimal solutlon was outside that ball, the algorithm woulglver reach that and eventually
stop in a local minima. This motivates why the step-size eamelither constant nor too small.
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A step-size satisfying the aforementioned conditions (aitttly used because of its sim-
plicity) is:
1
=— . 4.17
Oé(k‘) 02+k‘7 61702>0 ( )

In literature different techniques have been suggesteddelerate the algorithm’s conver-
gence; in particularad hocmethods exists to optimize the neural networks’ parametkrs
is necessary to point out that heuristics frequently imerine optimization process, but their
convergence and performance cannot be generally pryeitri.

4.2.4 Team functional optimization problems

Whenever a plurality of unknown functions is considereabRrm[3 must be extended. Let us
consider a team witld/ agents oiDecision MakergDM), whose decisions are expressed by
the functionsy, ..., va-1. Assuming that each DM can measufeand use it to compute its
decisiony; (x;), and that the decisions of the team must minimize a certaibagicost7, the
following problem can be stated.

Problem 5. Find

inf F(T') = inf E{J [v0(20),...,ym-1(zm-1), 2]} (4.18)
TeSn TeSy z

wherel £ col (7, --.,vm-1) IS the set of functions;(z;) : B; € R™ — R™:, each belonging
to an infinite-dimensional real normed linear spaldg i =0,...,M —1; S); € Hyx Hy x...x
H ;1 is the subset of admissible functions; each functiphas a specific argument, which
may depend on as well as on the other decision functionsj # i; z € Z ¢ R? is a random
vector taking values from a known sétwith a known distribution; finallyF : Sy; — R is the
cost functional, and7 : R™ x R™ x ... R"M-1 x 7  R.

Examples of Problem] 5 are:

 team functional optimization problemshen several decision makers, each provided a
“personal” information vecto¥; (wherel; = x; or genericallyl; = g(xg,...,xp-1)),
cooperate to minimize a common cost functional

» T-stage stochastic single-person optimal decision problewhereM is the number of
control/decision instantg, and random disturbancesact on the controlled system

* Finite Horizon control problemswhere M is the number of control instants, random
disturbances represents the noise vector (e.g. the noise acting on thensyswhile
x; Is the generi@-th state vector of the system to be controlled: in this cheesystem
model is known and embedded in the problem formulation garently in[(4.18))

The latter is of particular interest, since it would be thgzobof our further investigations.

Remark 8. It must be remarked that the argumentsmay depend or and other functions
v5,J # i, through known mappings. In fact; is often written as/; and called “information
vector”, denoting the aggregation of all the possible imf@tion in input to the decision func-
tion ~;, representing a so-calledecision make(DM), or decisional entity. In this cases, it is
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4. Optimal control by means of functional approximators

useful to have a graphical representation of the informafilox among the functiong, as a
fundamental role is played by the “partial nesting” or nottbie information structure of each
DM [Baglietto et al., 2001Db].

The theoretical properties holding true for Probleém 3 cafubg extended to Probleinl 5.

4.2.5 Some notes on the optimization phase

The proposed method enables NN to approximate the optiraebfek solutions, and is sup-
posed to overcome the COD of DP-based solutions. Certagctsgeserve some attention:

» The optimal solution are approximated numerically, arid itot possible to distinguish
a local from the (or a) global solution when running the ojetion algorithms; for
the same reason, the stability of the weight update canngubeanteed, since a pre-
cise analytical condition is missing. The so called “tragqphase” requires consistent
computations and a large number of patterns for the trajmlagending on the problem
statement. Computations are so demanding (in terms of tiime) they sometimes pre-
vent the use of the solution in real-time applications. lat®a[4.5.4 a more detailed
discussion on such limits is reported.

NNs have been chosen for their approximating propertiearrd® proved that neural
networks are universal approximators for continuous fonst more efficient than tra-
ditional functional approximators (polynomials, splinggyonometric expansions, etc.),
even though there exists a fundamental bound on the fumdti@tonstruction error
[Barron, 1993], which is condensed in Maurey-Jones-Barioound. The mean inte-
grated squared error between the approximating neuralonletaind the target function

f is bounded by
2\ fum
o=~ +O(—lnL) (4.19)
v L

wherev is the number of neural units, is the input dimension of the functior, is
the number of training observations, afid is the first absolute moment of the Fourier
magnitude distribution of the target functigh[Barron, 1994]. In particular, withv ~
C¢(L/(nln L))"/ neural units, the order of the bound on the mean integratearsd
error is optimized to b@(C’f((n/L)lnL)l/Q). In [Niyogi and Girosi, 1996], similar
results are shown for Gaussian radial basis functions (RiBEyorks, in particular the
generalization error is bounded by

1/2
O(%)+O([”nln(”£)_ln5] ) (4.20)

wheren is the number of inputsy the number of neural unitd, is the set of training
observations, and is a positive real number, with < § < 1. A frequent heuristic to
determine an approximation of the optimal number of neunébw for a given number
of training observationg. is also given by oc L/3. This result takes into account the
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compromise between the minimization of the generalizagioor (which would require
high numbers of’) and of the estimation error (which would require a low numdie
L). As arule of thumb, in other works (for example [Baramboaed Etxebarria, 2002])
reasonably good results are usually obtained if the numioegwral units is roughly two-
three times the order of the system. Since in our framewafithctions to approximate
are the unknown, it is not possible to make any guess, ingodatti onC'y (Eq.[4.19).
The underlying assumption is that an optimal set of pararmeteists, given a desired
approximation error. In practical terms, multiple traiggnare usually performed, and
the number of neurons is “manually” adjusted .

A two-layer (or One-Hidden-Layer) neural network can bedi® approximate any non-
linear function, with a suitable number of neural units. [NgQiyen and Widrow, 1990]
a method is proposed for the initialization of the weightsiider to reduce the training
time. The basic idea is that picking initial weights so threg hidden units are scattered
in the input space substantially improves learning speetetworks with multiple in-
puts. In the following formulation, the elements of the ihpector (; for example) take
values from the range-1, 1] (the so callednput normalizatio). Considering the output
y of a OHL neural networks with sigmoidal activation functign= >4 v;o (zw; + b;)
wherev is the number of neurons in the hidden layer, ahds the dimension of the in-
put vectorz (sox € R™), then callingrand(a,b) the operation which extracts a uniform
random number within a certain range b], weights and biases are randomly initialized
in the following way:

1
|wi| = vn , by = rand(—|w;|, |w;|)

The authors in[[Nguyen and Widrow, 1990] also suggest thario overlap between
the intervals must be provided, by setting the magnitude,;db 0.7vw. Nguyen'’s for-
mulation was proposed for neural networks approximatirfgCs(Single-Input-Single-
Output) and MISO (Multiple-Input-Single-Output) funatie. In particular, the exact
formula is provided only for the first case, while the latfsolved” by simply scaling
the range of admissible values with the magnitude. Extassio the MIMO (Multiple-
Input-Multiple-Output) can be easily found. For exampleassible adaptation to the
multiple dimension case is to choose weighand bias as:

b = urand(0.70Y™) | w = urand((0.7/n)vH™) (4.22)

wherer,n are the number of neurons and the number of inputs of the Nigerively,
andurand(a) is a function extracting a random value within the rafpge, a].

The choice of the approximating functions is critical. &hatively to NN, one could
use other functional approximators, like Gaussian Mixiiedels (GMM) or Support
Vector Machines (SVM). However, there is no trivial way irapplying SVM in our
current approach. Firstly, SVM is meant as a supervisedilegmmethod, i.e. it tries

to find a functionf(x, «) (with alpha being it's parameters) that approximates best a
set of labeled sampleS, whereS = (z1,v1),...,(Zn,yn), Wherez; is thei-th input
vector andy; thei-th label (desired output). SVM basically tries to find a sioln that
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4. Optimal control by means of functional approximators

minimizes the error between the predictgdnd the actual, by means of a quadratic
optimization problem, which is convex (hence it yields ag&noptimal solution). This
is incompatible with our approach, where there is no suatgths a desired output and
therefore neither an error; there is only the cost functiciaMoreover, the canonical
SVM expects to be trained on a batch of labeled samples, @bér@ur method samples
of the stochastic variables are fed into the ’learning’ @t one-by-one, after which
the parameters are updated. A possible setting in which SéNteeasily be applied, is
if a set of optimal control commands would be known for a given set of input vectors
z+, SO that a certain training set could be created, and the SMNtichen be trained on
this set of labeled samples.

4.3 Finite and Receding Horizon control problems

4.3.1 Applying the ERIM to solve aT'-stage stochastic optimal control problem

In the following the ERIM is applied to the solution of genefidstage stochastic optimal
control problem, i.e. a problem where a sequencg optimal control functions minimizing a
certain cost functional has to be found. Typical problenegiae control of teams of cooperating
agents, decisional problems where multiple entities playe but more frequently to the Finite
Time or Finite Horizon control.

Here we state d'-stage stochastic optimal control problem, where the go#d find the
T optimal control laws that steer the dynamic system from &rairknown stater;; to a final
desired onec’,, by minimizing a suitable cost functiqﬁ@

Problem 6. Given known boundary conditions, i.e. fixed initial state= x; and final state
xp to reach inT stages, for the system:

=Tt+1:ft($taut777t) 9 t:0717"'7T_]- (422)

wherez; € X; ¢ R", n, is a stochastic variable with known distribution, and therols are
subject to the following
ug =v; (x4) € Ug(xy) € R™ (4.23)

find a sequence of optimal control functioffg zo), . . . , ¥3_; (x7-1) minimizing the cost func-
tional
T-1
gm0 b S i aen) @2
705---5MNT-1 105---5MNT-1 | =0
Eq.[4.22 is a set of equations describing a discrete-timehastic dynamic system (in
general, nonlinear), where at the time instant; is the state vector, which may be taking
values from a finite seX; ¢ R", starting from a known initial statey = x; u; is an admissible
control vector, constrained to take values from a finitelg€t:;) ¢ R™; n, is an exogenous

5The following is a fundamental problem, addressing the raajrects of a FH stochastic optimal control prob-
lem. The boundary conditions (i.e. fixed initial and desis&ate) but make it unsuitable for RH controls, as will be
explained later on.
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variables vectorI is a known positive integer. It must be remarked that the traimés [4.23)
can be expressed by means of additional penalty functidms &olded to the main cost function,
that is turning a hard constraint into a soft ongy,n1,...,nr-1 are random disturbances,
and if Dynamic Programming (DP) was applied to solve the lemblater on, the mutual
independence of each random vector would be required. I|EREV is applied, then this
assumption can be removed.

The state vectar;, at time instant, is perfectly known or measurable, thus it can be used to
design a feedback control lawy = v(x;). We remark that a feedback control law is necessary
whenever noise and generally disturbances act on the systeifnrwe want to counteract to
unknown or unmodeled dynamics in the system itself, whiahdtdrive it into undesired states
or even compromise its stability. The cost functi@ns generally of the type:

T-1
J = > by, ur) + hr(ar) (4.25)
=0

where the final ternk () usually weights the disparity between the system stateeatrid of
the maneuver and the desired state; and a sum of ter(ns which can weigh the disparity
between the desired and the system state during the man¢hedrajectory shape, or the
effects of controls, their consumption etc. Note that beeaof [4.28),7 is a “function of
functions”, and precisely:

J =T (0, ,77-1) (4.26)

Eq.[4.25 has a stochastic nature, because the system igedffgc noise, so the formulation
of the problem takes into account the minimization of theeeted value of7, i.e. the cost
functional 7 = E{J }.

Remark 9. It is important to point out that in Problefd 6 the initial sgst stater is fixed to
x;, because the goal was to find a sequence of controls for spbofiindary conditions. The
final statexr is not constrained to take on a desired value, but a desirdaeva; is specified.
Typically, the desired state (i.e. the state to reach) isesged by penalty functions in the cost
function to be minimized, such as:

hT(I‘T) = VT(I‘T - 1‘})2

whereVy e R™", Vp = VL > 0 is a gain matrix weighting each component differently. la th
following, we will not explicitly state the dependency aiteyn trajectories, cost function, etc.
to the desired final state, to keep all formulas lighter.

It is well known that Problernl6 can be solved “analyticallitaugh the DP only if suitable
conditions hold, typically the known LQG hypotheses (linsgstem, quadratic cost function
and mutually independent Gaussian stochastic variabieshe general case, one has to look
for approximate solutions. This is usually done by diseratj or sampling properly the state
space and the controls, so that the functional equationdifated the DP procedure can be
solved only in correspondence of a finite number of stateegldor each control stage, a
uniformly (or not) sampled state space is found (an exampkeshown in Figure 4.1).
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4. Optimal control by means of functional approximators

Alternatively, the ERIM can be used to approximate the dlabatrol laws, exploiting the
recursive formulation of the problem. For a better compnsia of the procedure described
hereinafter, it is useful to refer to the graphical représon of the evolution of the trajectory
x; in time, making explicit the links between dynamic systend aontrol laws (which will
be substituted with neural controllers, following the prdare described in Section 4.2). At
time instantt, the combination of Ed. 4.22 and 4123 can be representedebgytstem and
control blocks shown in Figule 4.6. If we unfold system andtaals in time, and replicate
the basic couple of blocks for each time instart0,...,7', a “chain” is obtained, as shown
in Figure[4.T. Note that the first control functieq = ~y(z¢) can be simply denoted by,
since the initial state is fixed in Probldm &, = x{: thus,u, can be determined exactly, and
the problem actually concerns onjy, ..., yr-1

Mt
Tt
Tt+1

fo f—o->

"t Ut

Figure 4.6: Thet-th elements couple, when the control task is “unfoldedirimet The system and
the control blocks f; and~; respectively, refer to Eq.4.22 and 4.23.

— p* m N-1
xo = ) l "o 1 j o TN-1 l " .
N

uo f |—> v | W f I ynop |uN-1| f T

O

Figure 4.7: The “chain” of state and control blocks, unfolded in timer, Ryoblen{6. Note that
~o is not indicated, sincey is fixed,zo = x§. Thus,ug = vo(xo) is not effectively a control law
spanned oveK, but a simple fixed vectar, € R™, beingug = vo(zg) -

Applying the ERIM to solve Probler] 6 consists basically imsmaining the admissible
control functionsyy(x¢), . .. ,yr-1(z7-1) to take on the fixed parameterized structure of OHL-
NN (see EqL416):., (zo,w0),-- -, Yup_, (x7-1,wr-1). Since the OHL-NN have the same
structure at each control stageand each one is completely specified by the vector of parame-
tersw;. It must be noted thatim(wy ) is related to the cardinality numbey; the dependence
of v, ont is due to the fact that the regularity properties of the fiomct, to be approximated
may be time-varying. So it can be possible that: v;, j + 4, but generally the contrary holds

’In the following we will still useyo to keep the formulation universal: in a general contextcan be uncon-
strained, or taking values from a variable set.
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Tt l
T+l

u i p——
T

Figure 4.8: Thet-th elements couple of Figure 4.6, after the applicatiotefERIM. Note thaty,
is being approximated by(z;, w;). The structure of, is fixed, while the control law is completely
specified byw;.

2>

Wt

true, soitis possible to drop the subsctipfrom 4 and letw, specify thet-th control function:
ut=&(;nt,wt), t=0,...,T—1 (427)

as shown in Figuré_4.8 for theth element of the chain. Note again that the first control
functionug = yo(xg) does not need to be replaced with the OHL-NN, since the Irstate,

in this context, is a fixed vectory = x5, but we will still mention it to keep a more general
formulation. Indeed, this is valid only if the initial stai®fixed: if z¢ is a stochastic variable
with its own probability density, them, (xo) must be replaced withy = §(xg,w) as the other
functions (because, obviously depends ong). This case will be object of interest later on.

By substituting[(4.217) in(4.24), the general cost functipiithe “function of functions” as
in (4.28)) is turned into a function which is only dependemiadinite number of real variables:

J () = T (uog, w1,...,wr-1) (4.28)
wherew contains all the parameters to be optimized:
W = [ug,wy,. .., wp_1] e RV, (4.29)
with W = m + Y271 W; (beingug € R™ andw; € RW).
The solution of Probler] 6 by means of the ERIM can be then suimathby these three

main steps:

« write the cost functional7 (ug,v1,---,77-1)
* substitute the control functions with the OHL-NM(uo,5 (-, w1), ..., 5(,wr-1))
* write the cost function (ug, w1, ..., wr_1)

If the assumption on the known initial statg = =, does not hold, the general formulation is:
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4. Optimal control by means of functional approximators

j(’YOu’yh”’ 7’YT—1)

!

&7(;7('7100)7:7('71”1)7 s 7;7('7wT—1))

l

J(wo,wr, ..., wr-1)

Problent® is then turned into the following:

Problem 7. Given known boundary conditions, i.e. fixed initial state= = and final state
x- to reach inT" stages, for the systein (4122), where the controls are sutoj€d.27) find the
vectors of optimal parametersg, ..., w7_;, i.e. w° (see Eq[4.29), which minimize the cost
function

T-1
F = F {\7(711)} = . E { Z ht(xt,&(a:t,wt)) + hT(l‘T)} (430)

705-++NT-1 05--MT-1 | ¢=0

under the constraints given by the state equation.

Gradient algorithms and stochastic approximation

As done for Problernl344, it is possible to approximate prsgjkely better Problem 6, by suit-
ably increasing the cardinality number in theOHL-NNs, with a sequence of unconstrained
nonlinear programming problems. In analogy to the solupimposed for Problefd 4, the opti-
mal parameters of Problem 7 can be found through a nonlimegraamming algorithm and a
stochastic approximation technique:

w(k+1) = w(k) - a(k)Vg ET (@), k=0,1,... (4.31)
n

wheres; = col(no, . ..,nr-1). As already discussed in Section 4]12.3, it is impossibleatow:
late exactly all the gradient components, because of trehastic nature of).. A stochastic
approximation technique is then applied and the updatetiequaecomes:

Wk +1) = d(k) - alk)Vau T (@,7(k)) k=0,1,... (4.32)

where the sequencg(0),...,7(k),7(k+1),...} is generated randomly according to the
known probability density function of eaaf, Vi. Of course, it must be assumed that function
J(w,7(k)) is C* with respect tap for all no(k), ..., nr_1(k).

In order to update the value of each parametgik) (thei-th parameter of the vectar;
at the iteration step), the partial derivatives of with respect tav (k) must be computed, i.e.

0F  _0F _ (9T _
dug (k) Owy (k) ow? (k)

),tzl,...,T—l;z':l,...,Wt (4.33)
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wherew! (k) is thei-th component of vectow; (k) € R"t, andW; = dim(w(k)) (e.g. W; =
(n+1)v+ (v + 1)m if the OHL-NN hasv “neurons”, and each perceptron unit has the bias).
The update equation for a single parametg(k) is:

wi(k+1) = wi(k) - (k) :(7;@) Wyit=1,.. T-1:k=0,1,... (4.34)
More frequently, when using NN with the ERIM, the followingdate equation is preferred:
wik +1) = wi(k) - a(k)5 (k) +n(w; (k) - w;(k-1)) (4.35)

Wy

where a regularization term is added, weighted)ky[0, 1], as it is usually done when training
neural networks.
Given [4.27), it is quite straightforward to compute thetaderivatives in[(4.33):
0J 0T 93(xr, wi(k))
owi(k) Oug  Owi(k)
0y (s, wi(k))

sincea.—(k) can be easily retrieved from the known structure of the OHIL-N
wy

The tough part is computlngf the procedure consists in a two-steps algorithm, with a

ci=1,... Wyit=1,....,T-1 (4.36)

forward and abackwardphase. The pseudo-code is shown in Algorifim 1.

In detail, the “chain rule” is applied again, so that systerd eontrol blocks are unfolded
in time, as previously done for Figure 4.7. The generic adrfitmctions, are then substituted
with their OHL-NN counterparty(-,w;(k)): thus each control element as in Figlre] 4.8 is
replaced with the one of Figufe 4.8. Starting fram = z and following the connections
between the blocks, one can easily compute all the trajestof stater; and controlsu;(k),
given a realizationj(k) of the stochastic variables. These computations makdotteard
phase In detail, the feedback between system and neural cogrtsab made explicit through
unfolding in time their blocks. Given the initial statg the trajectory of system state and
controls is:

ug, ug = (e, wi(k)) 5 zo,vee1 = f (@, Y (we, we(k)),me(k)) , t=1,....,T -1

Then all the partial costs; (z, u:), hr(x7) and the cost functio (k) are computed.

A backward phas#ollows, where the gradient components needed for the egobrithm
(4.32) are computed. A graphical representation is shoviigare[4.9.

To compute the gradient, the following cost-to-go functi®defined, fort =1,...,7 - 1:

T-1
Ji(wd w7 (R, nf (k) = by (e, 3 (e, wie(R))) + 3 (i, 3(wi, wi(k))) + hr(er)

i=t+1
(4.37)
where

mtT = col(x¢, Tpy1y- -, TT)
wl (k) = col(wy (k), wis1 (k), ..., wr_1(k))
nf (k) = col(ne(k), et (k), ... ,nr-1(k))
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4. Optimal control by means of functional approximators

zo 7701 T 7711 T9 N1 77N—ll TN
Uo f |—> )Aﬁ/ Uy f L) ’%1 UN-1 f j
s Y a
dug Rl aw;\{,l

Figure 4.9: Backward phase: the partial derivatives of the cost fumotidh respect to the outputs
are back-propagated through the OHL-NNSs. Inside each blotke partial derivatives with re-
spect to the parameters to be optimized are computed andarstheé gradient descent. Note that
to simplify the notation and the schemig,= (-, w;).

The partial derivatives with respect to the parametersheae, tfort = 1,...,7 - 1:

OFr  Ohy(wi,up) 09 (x4, wi(k))

8wt(k:) - aut 8wt(k:)
4 8$+1(x£1,u£‘11,n£‘11(k)) Oft(we,ur, (k) 09 (e, we(k)) (4.38)
0441 Ouy owy (k) '
whereas for the first control, fixed, being = v(z()):
8\70 _ 8hO(:Z:OfoO) " 8\71(:1:{77‘[{_1777{_1(]{:)) 8‘][‘0(.’130,'11,0,770(]{3)) (439)

Oug Oug ory Oug

Exploiting the chain rule, it is possible to compute the ipaderivatives needed by the al-
gorithm, by following the trajectories af;, x; across the chain backward, i.e¢.= 7,7 -

1,...,1,0; this operation leads to the following recursive equations
0T _ Ohy(xy,w) L 9T A fe(xe, ue, m(k)) N 0T 04 (1, wi(k)) (4.40)
al’t al’t 8mt+1 8.73,5 8’U,t 8.73,5 '
% _ aht(fvt,ut) + 0Tt41 8ft($tauta77t(k)) (4.41)
Oouy Oouy 0Tl Ouy
initialized by
0r _ Ohr(xr) (4.42)

amT 8xT

It must be pointed out that in the equations above, the degpeydonk has been made
explicit only for the stochastic variableg k), which are randomly generated according to
their distribution, and the parameteigk) = col(ug(k),w(k),...,wr_1(k)) because the
latter are the ones iteratively changed at each stephe initial statex is fixed tox, and
so is the desired final state,. However, the state trajectory;,t = 0,1,...,7 changes at
each iteration step, as a consequence of the change in the parameters and cembeaqf
the control laws generating the sequence of contigls = 0,1,...,7 - 1, and so does the
cost-to-go. Therefore, it would have been more correct ftews (k) and 7;(k): in fact, the
dependence oh has been dropped to keep the equations clearer.
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Algorithm 1 Find@° = [ug, w?, ..., w}_, ] minimizing (4.30) in Probleral7.

Require: T
Ensure: w° = ug,wy,...,wp_,

1. k=0

2: Initialize uy(k), w1 (k), ..., wpr-1(k) randomly or according to some specific technique

3: repeat

4.  Generatey(k),...,nr-1(k) according to their probability density

Forward

5. x1(k) = folz§, uo(k),no(k)] according to[(4.22)

6. fort=1:T-1do

7: Computeu; (k) =5 (ze(k), we(k))

8: Computer, 1 (k) = géxt(k),g}(k),ntg?)) according to[(4.22)

Oy t t t
o Compute s Ry Bur (k) Ban(k)’ Dy (k)
10: end for
Backward
11:  Compute according to[(4.42)
Oz (k)

12: fort=T-1:0do

13: ComputeaUt(k) according to[(4.41)

14: Compute according to[(4.40)

aﬂj‘t(k‘)
15: fori=1:W,do
16: Compute 8,‘7 according to[(4.36)
dwi(k)

17: Update weightw! (k) according to[(4.34)
18: end for
19:  end for

20: until Convergence condition is met
21: return @° = w(k)
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4. Optimal control by means of functional approximators

Remark 10. The forward-backward technique is naturally decentralizeince each neural
control block can “autonomously” be updated, if the prop&ral connections between con-
sequent blocks are set up. It is interesting to observe tiet provide a time-varying parame-
terized feedback control law.

In Algorithm[d], the convergence conditions are not specifstte it is possible to design
different stopping rules, and the convergence conditiariccohange according to the specific
instance of Problef 63 7. In general, itis difficult to guaesnconvergence of the algorithm to a
global minimum. The particular choice of OHL-NN also affetite multi-dimensional surface
J (w), which is also stochastic with respecto so, even if the theoretical convergence of the
method is assured by a suitable choice of the stepcsiz@ (e.g. monotonically decreasing -
the strictness is not required), in practice it is frequeriirtd hard to “descent” the cost function
because of local minima and “flat” region where the cost igfrally constant.

The same procedure described to solve Prolilem 6 by turnimgoitProblem¥7 can be
generalized to the case of team control problems, wheraptauttooperating Decision Makers
act for the accomplishment of a common goal, if a certain édris defined among the team
agents. In &-stage control problem, the order is naturally induced leytitming relationship
among the blocks, that comes after the feedback is madecixpln general team control
problems a causality order can be induced by the flux of in&ion from one agent to another,
e.g. if decisionu, taken byD M; influencesD M5 in generating:s and so on. An example can
be found in|[Ivaldi et al., 2009a].

4.3.2 Variations in Finite Horizon problems

Hereinafter variations to Problelnh 6 are discussed, whéerdiit conditions occur.
« If the initial statex is not fixed tox;, but can take values from a certain set
xg € Xg CR” (443)

thenxg is a stochastic variable (whose probability density probpgrare assumed to be
known) which must be taken into account in the expectatiotm@functional cost to be
minimized, such thaf(4.24) becomes

T-1

Fo B AN B S ) shren)| @40
0,705--MT-1 T0,70,--5NT-1 | ¢t=0

Moreover, [[4.4B) is a new constraint. The solution to théofam is practically the same

as previously described. The first contr@lis not anymore determined straightforward:

in ProblenTug = 5 (g, wo) collapses iny, simply, i.e. does not require a NN, whereas

if z( is stochastic, themy = 4(x¢,wo) and the NN is necessary. The corresponding

forward and backward phases are shown in Figure 4]10(d).406¢03.

» The final state specified in the statement of Proklém 6, batraady explained in Re-
mark(9 its dependence was not made explicit in the cost fumcfi. To specify a desired
final statex}, two possible approaches are possible: first, the use ofcalks soft
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Figure 4.10: The “chain” of states and controls, unfolded in time, wHed®4 holds. Note thai;
in the control blocks mean¥(-, w;). [4.10(a)and4.10(b) show the forward and backward phase
respectively.

constraint i.e. a penalty function to be added to the cost functigrusually convex
with a single minimum ine},, which behaves like an attractor for the system staté¢o
xp, second, éard-constraint requiring thater = 7., which but may not be satisfied
if reachability in7T" stages is weak. As a consequence of the stochastic veciog aat
the system, but also on the nature of the cost and state dnsathemselves, it might not
be possible to satisfy the constraint exactly. The intergshere, is the first approach
(also because satisfying hard constraints in our contedtiaequire notable efforts). In
(4.24) a term accounting for the final state is already camsidt /- (z7), where, for
exampleir (xr, o) = |ar — x4

In general, if the desired final statg. is made explicit, the functional cost (4124) must
be written as:

T-1
F- B {z heCeos (o) +hT<wT,a:z;>} (4.45)
M05--NT-1 | t=0

and if the desired state is not fixed a priori, but is time-i@gy(i.e. there exists;,t =
0,...,T) the cost function becomes:

T-1
Fo o {zht<xt,%<xt>,x;>+hT<a:T,x;;>}
105--MT-1 | t=0

+ With a little complication with respect to the previous eas =7, is not fixed, but again
can take values from a finite set

xpe Xy cR” (4.46)
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4. Optimal control by means of functional approximators

then [4.24) becomes

T-1

F= E {Z he(@e, ve(2e)) + hT($T7$})} (4.47)
TpyN05--NT-1 \ ¢=0

and [4.46) is again a new constraint. In this case, the ddoimotions~; must also take

into account the desired final state, as they could “changp&dding on the desired final

state. Then it is correct to write:

ug =y(x,xp), t=0,...,T-1 (4.48)

to make the feed term7, explicit. Of course the “chain” and the equations used fer th
forward-backward algorithm must be modified to accomplgsthe new cost and control
function.

One could also define?, as the initial state of a constant system, i.e.

Cr1=g1(&)=¢, t=0,...,T-1

where(y = =7 (with the same probability properties). Then an aggreggsées could
be designed, wherg = col(xz;,(;) € R?" would be the new state vectdr, = col(f, g;)
the new system of equations, = v(&;) the new control function.

If both =y andz7, are not fixed, then

T-1

F= E {z P e (), 66) + hﬂmm})} (4.49)
T0sTpyM0s- T -1 t=0

and Probleni 6 becomes a finite horizon problem with stoahéstiindary value con-

straints.

A desired trajectory might also be specified for the systetesthus outlining &acking
problem(see Figuré 4.11). The goal is to find the set of optimal cdstitat minimize
F while making the system statg track a desired:;. The target state can be treated
differently if some information about the target systemriswn or not. If the target can
be modeled, i.e. a differential equation can be written as

:1:;—1 = ft*(xz7 u;an;) (450)
where the simplest equation is
i =) (4.51)
with a suitable initialization vector with known probabjliproperties, then it is possible
to gather both systemis (4]122) ahd (4.50) into an aggreggsters.

Then an augmented system vector is desigéed col (z;, z; ) € R?*, andF = col(fy, f;)
andu; = v(&;) will be the new system of equations and control functions.

The latter example raises a practical point. Notwithstagdhe polynomial complexity
properties of the ERIM, in practical situations one want&dep the input space to the
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Figure 4.11: A tracking problem.

OHL-NN as small as possible. To this purpose, one can exfieitlinearity of the
system equation to state the tracking problem as a diffeateegulation problem, where
the system state i& = z; — z;,& € R™ and the goal is to bring the new system state
to zero. The corresponding control functiep = v(&;) halves the input space, being
u: R™ —» R™, The impact on the complexity of the problem once the ERIMpigliad

is notable: if using OHL-NN, the total number of parameteasfiW = N[(2n + 1)v +
(v+1)m]reducestdV = N[(n+1)r+ (v +1)m] (Nnv parameters less). A graphical
representation of the effect of both solutions on the basiple of blocks is shown in
Figurel4.12.

Tt Tt+1
[ f

—
Ve Ut
*
Ly
Tt
f Tt+1
- >
o* & Yt L
t +

Figure 4.12: Thet-th element couple, when the control task is “unfolded” meiand a desired
value z; is considered. In the first case; is another input to the neural controller. In order
to reduce the computational complexity by halving the ispotthe neural controller, the second
solution is proposed, where the input is the difference betwthe desired and the current state.
The two solutions are “identical” only if is linear.

» The stochastic vectoy; acting on the system has been considered to address the most
general problem, where noise and disturbances may act ay#tem. Under suitable
assumptions one can neglect the contributiom,pbr a problem can be stated without
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4. Optimal control by means of functional approximators
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Figure 4.13: Forward phase, when the systen{is (#.52).

anyn; since the beginnir@.ln that case, the system equation is
mt+1:ft(xt7ut)7 t:0717"'7T_]-; (452)

the control function:; = v;(x;) does not change, while the cost function does, according
to the statement of the problem. If, for exampig,is stochastic, then the cost function
to minimize is
T-1
-7:=mEO{tZ(:) ht(mtht(a?t))JrhT(!ET)} - (4.53)

A graphical representation of the chain of system and cbhtozks, unfolded in time,
is shown in Figuré 4.13.

4.3.3 A Receding Horizon technique

There are two main limitations to FH control. First, the kori T must be known and fixed
a priori, but often, feedback control systems must run fdfigantly long periods, and the
control horizon can be hardly “predicted”. This is the cabka oobotic motion controller in
particular tasks, such as when a the target to reach is tangng. In these ongoing processes,
FH optimal control cannot be adopted: this issue is usuallyes! by seeking for Infinite Hori-
zon (IH) controls (for example, optimal LQG regulators hae¢h FH and IH formulations).

Second, variable or stochastic final states can be takeragwount if the ERIM is used,
but in the general statement of7astage problem the final state is fixed, and the sequence
of optimal controls is open-loop. In other words, in Problémo changes are admitted,
and if something in the problem statement changes, for elathp target state, the con-
trol sequence is no longer optimal. In addition, Recedingizém (RH) control can be used
[Kwon and Han, 2005]. The main advantage of RH control is thaaturally yields closed-
loop controls due to the repeated computation and implestientof only the first control of
an optimal sequence: this is substantially different frdsdentrol, where the initial and finite
state to reach are fixed. The basic concept of RH is as follows.

At the current time a sequence d&f optimal controls, minimizing &'-stage cost function,
are derived, basically solving a FH problem like Probldm &cizely, the finite fixed horizon
taken into account i, ¢ + T'], and controls are denoted by

FH , FH FH
U0|t 7“1\1& I 7uT—1‘t (454)

8Sometimes it is difficult to assess the effect of exogenouslvies on the system, because these terms are not
identifiable or modeling is hard. Then either one includetheproblem a generic random vectgror neglect the
noise.
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where the suffix|t refers to thei-th control in the FH sequence generated at tim&mong
the sequence of optimal controls computed on the fixed hofiza + T'], only the first one is
adopted as the current control law, hence

wy = up () = uOF‘It{ (4.55)

T defines the so called “Finite Horizon Sliding Window”. Atgé + 1, the same procedure is
repeated: the time intervid + 1,¢+ 1+ T'] is considered, and a sequenc&afptimal controls

is computed
FH  FH FH
Upe+1s Unfes1s -+ - UT—1jt+1

and then only the first is applied to the system. The proceidurepeated up to infinity, for
t =t+2,t+3,..., where the corresponding time intervals pre2, T+2+T], [t+3, T+3+T], . . ..

A graphical representation of the concept of RH is shown gufe[4.15: notice that the term
“receding” is indeed introduced since the horizon recedesime proceeds. We point out
that the above receding horizon procedure implicitly defingtime-invariant control policy
uz + Xy — Uy of the formu{‘H(mt), as in Eq[4.55, which is intrinsically closed-loop, as show
in Figure[4.14.

Nt

* RH
Ty Uy T
Target Controller System -

!

FH FH
j FH u0|t""’uT—1\t
Optimization WFH
Solver oft
Tt
_alass e

Figure 4.14: Using RH for closed loop control. The mechanism for selertiie first of a sequence
of FH optimal controls is reported with more clarity in Figld.T5.

Stabilizing properties of RH control have been establidbedifferent problem statements,
for example under LQ assumptions [Kwon and Paearson,| 19W&nket al., 1983] and for
nonlinear systems [Mayne and Michalska, 1990]. The satukias first provided using the ter-
minal equality constraints;,.7 = 0, [Keerthi and Gilbert, 1988, Mayne and Michalska, 1990];
such hard constraint was relaxed [in [Michalska and Mayn@3[L9vhere the regulator was
simply required to drive the system to a neighborhood of tiggrg where the control switched
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4. Optimal control by means of functional approximators

FH
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Figure 4.15: The concept of a Receding Horizon controller. At time instan0, the target value
x¢ is measured, and a sequence of optimal conw%&, . ,u?ﬁ‘l‘o is computed, consequently
with a FH trajectoryzf ...,a:?l_{llo. Then only the first control is retained; = ugrg. At time

0[0 > ] .
t=1,2,...,the same procedure is repeated. Three consecutive “ieste shown, fofl" = 4.

to a linear regulator designed to stabilize the nonlineatesy, steering the state to its origin. In
[Parisini and Zoppoli, 1995] the attractiveness of theiangas imposed by means of a penalty
function in the cost function.

A general RH control problem can be stated in the followingwa
Problem 8. Given the fixed initial state, = x; and a desired state; to reach, for the system:
Tev1 = fr (v, ug,me) 5, 1=0,1,... 00
wherex; € X; ¢ R"”, n; is a stochastic variable with known distribution; find thetioal

controlsu; € Uy wherew; is the first of a sequence df optimal controI5u8|t, e ,u"T_”t,
having the form

uop = Yo (we) € Up(ae) S R™
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which minimize at each time instanthe cost functional

T-1
F = E {J}= E { hi(xi|t77;(xi|t)) + hT($T|t)} (4.56)

Nolts+->NT-1|t NMolts-->NT-11t \ =0
* * ok
wherez, =z anday,, = 7.

Notice that the control functions;,i = 0,...,7T -1 are time-invariant, i.ey;; = v;, Vt. As
previously pointed out for Probleii 6, in (4]156) there is noeaplicit reference of the desired
state in the cost functiofy . It is straightforward to notice the relationship betweealdfem[6
and ProbleniI8: the RH contral; is the first of the optimal controls which are effectively
computed once a specific instance of Protd[ém 6, where tlial istiatex; of the FH problem is
the current state; in the RH problem islt = x¢) while the desired state}. is set to the same
of the RH problem i’}lt = x7).

Incidentally, one may notice that if both initial and desdirgtate to reach:y are known
a priori, exploiting the reachability properties one mawkhof directly implementing a FH
control. However, due to the stochastic noise, the realityaipi 7" stages may not be satisfied
or guaranteed, thus a RH control law would be more indicated.

However, the main motivation for using a RH controller istthiecan easily deal with a
time-varyingz; to reach. In particular, in this case a certain principle besassumed.

Certainty Equivalence

Whenever the controlled system has to track a desired tamgis decisions depend upon the
evolution of a certain system, the RH can be easily appliegbimhbined with the so called
Certainty Equivalenc®rinciple (CE/CEP).

The CE is fundamental when the target is time-varyirjg,and its dynamics and statistical
properties are unknown or unpredictable, but it is perjesteasurable at time instant In
this case, every the RH controller is designed as if the stochastic quantityvould remain
unchanged in the future, fort + 1,. .., co. For example, if the target at instanis in the state
z7, the controller would assume =z, V¢ > £. Attime+1, a new measure;, , of the target

t+1

is provided, so the controller would assumje= z7,,,Vt > ¢t + 1. The procedure is repeated

iteratively. The corresponding RH control problem is:

Problem 9. Given the fixed initial state, = x; and a time-varying desired staig to reach,
for the system:

T+l = ft (xtautynt) ) t= 0717"' 7E< S
wherez; € X; ¢ R", n; is a stochastic variable with known distribution; find thetiogal
controlsu; € U, € R™ whereu; is the first of a sequence dfoptimal controISuat, ... ,u°T_1|t,
having the form
Us‘t :"}/;(:L’t) € Ut(lll‘t) ERm, 1=0,...,T-1

which minimize at each time instanthe cost functional

T-1
F= E {J}= E { > hi(@ge, vilwge)) + hT($T|t)}
Nojt»-+-TNT-1t Mojt»-+NT-1lt | =0
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4. Optimal control by means of functional approximators

* * ok
wherex, =z anday,, = zf.

X
N ——
\.__—,/
[ ]
[ ]

FH

s Zilo

f f f f f f f f >

0 1 2 3 4 5 6 7 8 t

Figure 4.16: An example of tracking when a RH controller is used. A timeyirzg targetz*

is tracked by a system, where a RH controller is used to findotitenal controlsu® and the
corresponding “optimal” state trajectory. At each time instant, the CEP is applied, and' a
stages - FH problem is solved. Here, the finite horizofi is 6. At time instantt = 0, the target
value zj is measured, a sequence of optimal cont@i‘g, . ,ug‘g is computed, consequently
with a FH trajectorya:gllo{, . ,a:spllo{. Then only the first control is retained;, = ugIIO{' and the
system state; = xf‘gl is found. The procedure is repeated iterativelyiferl, 2, .. .. In figure, the
FH trajectorie&:f‘tH, i=0,...,5, YVt are shown, as well as the final RH trajectafy

We remark that in Problefn 9 there are no assumptions or mofi¢gfe target behavior.
This means that the RH contral$ are “locally” optimal, with respect to the current measure
of the target. Combining the RH framework with the CEP, mahaas at each stage theT
optimal controls are derived, with the stochastic quanyaining constant: that is, in the
case of tracking, considering the target trajectory to haddshown in Figure 4.16.

It is now evident that the main advantage of RH control is ithdelds closed-loop controls
which can counteract to disturbances and time-varyingmpeters, due to the repeated com-
putation and implementation of only the first control of algmere which is “optimal” given
the current problem statement: so at each time ingtahe initial and desired state of a new
instance of FH problem are set, after measuring the curgetémm and target state. This is
substantially different from FH control, where the initehd finite state to reach are fixed
priori. In particular, as already observed for Prob[ém 6, variablstochastic final states can
be taken into account if the ERIM is used, but in the geneedbstent of d-stage problem
the final state is fixed, and the sequence of optimal consasmputed in “open-loop” (and is
a sequence of numerical values, not functions).
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ERIM and RH control

The classical RH technique assumes that a FH optimizatiatineo computes at each con-
trol instantt a sequence of optimal controls: basically the control wiscéwe generated after
the solution of a nonlinear programming problem at each tms&antt. This procedure can
be implemented in real applications only if the process dyina is sufficiently “slow”, i.e.
the time between two consequent controls is enough to sdhl¢ eontrol problem. This as-
sumption is unrealistic in the case of humanoid roboticsthasrobot (and sometimes also
the target) dynamics is fast and the complexity of the probéenerally increases with the
number of DOF to control. In order to solve the optimizationlgem on-line, with the guar-
antee of satisfying the temporal constraint, a proper haredvand software are required: at
least, one should be provided with a real-time processiiigsupporting fast and highly pre-
cise computations, directly connected to the robot seraijactuation devices (to avoid de-
lays). Unfortunately, different multi-level control aitgctures often do not support this control
scheme. Both iCub and James, for example, cannot suppas ghown in Figure 4.14, be-
cause the PC104 “controlling” the robot is not more than aerface to the cluster (where
demanding computations are performed), and cannot belarceusputations. This fact moti-
vates the use of the ERIM in this problem: since it allows emtiating in an off-line phase
all the computational burden required to approximate ther@ control functions, in the on-
line phase the control actions can be promptly generateld aviémall computational effort
[Ivaldi et al., 20084, Ivaldi et al., 2008b].

Remark 11. The ERIM can be generalized also for Infinite Horizon (IH) ttol In practi-

cal applications, the impossibility of applying the ERIMth® IH case is basically due to the
necessity of using a chain containing an infinite number ofaenetworks, which leads to a
controversy in the initialization of the backward phase whading the optimal parameters of
the functional approximators [Pianosi and Soncini-Se&#)&]. A workaround is to approx-
imate and “truncate” the cost, for example assuming thattaget the IH for the backward
phase “starts” att, wheret « t < t.,. However, the complexity of the solution in this case is
considerably high, and justified only for offline precompiota of the optimal control laws, or

in applications where the dynamics of the controlled systeparticularly “slow”, such as in
management of water reservoifs [Pianosi, 2008].

Applying the ERIM to a RH control problem is very easy. Follog/the same procedure
described for turning Problelm 6 into Problei 7, applyingERe#M consists in constraining the
finite sequence of control functions, generated at eachitistantt, to take on a fixed structure
with a certain number of parameters to be optimized. Moreipety, Problenh ]9 becomes:

Problem 10. Given the fixed initial state, = = and a time-varying desired staig to reach,
for the system:
T+l = ft (;rt,ut,nt) s t=0,1,... , 00
wherex; € X; ¢ R", n; is a stochastic variable with known distribution; find thectars
of optimal parametersv;, V¢ corresponding to the optimal controlg ¢ U; ¢ R™ with the
following structure:
ug =5z, w°)
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4. Optimal control by means of functional approximators

wherew?® is the first of a sequence ®fvectors of optimal paramet&:o;u0

' ' _ TERER ,w;_l‘t, corre-
sponding to the optimal controt%lt, . ,u°T_l|t, having the form

gy =A@y wi,) € Up(zgy) SR™, i=0,..., T~ 1

which minimize at each time instanthe cost functional

T-1
F= E {J}= E { > hi(@ge, A (@i, wig)) + hT($T|t)}

Nolts---NT-1|t Mojts-NT-1lt | =0
* * ok
wherex, =z andxy,, = ;.

If 4 are OHL-NNSs, the approximating properties of neural RH aalgr can be found
in [Parisini and Zoppoli, 1995]. The same arguments holdceming the existence of a suf-
ficient number of neural units and of the corresponding ogitimector of parameters given a
desired accuracy in approximation [Hornik et al., 1989hm@viously discussed in Sectibn#4.2.
In particular, if the first control function®(z;) = fyg‘t(a:t) is unique, and is a continuous func-
tionC(X;,R™), for everye > 0 there exists an integer, a weight vectotv; and a corresponding
neural RH controk; (z¢,wy ), such that|v° (z;) — 4, (x4, wy)| < €, Vay € X.

Problem[ID outlines an iterative procedure for finding théna@l parameters. At time
instantt, a FH optimal control problem as Probléin 7 is stated, forithe interval[¢,¢ + T'],
where the initial and desired state to reach are set as pidyidiscussed, measuring the current
system and target state, and applying the CEP. The solutitmed=H problem with ERIM,
yields a sequence of optimal parameters

w8|t, e ,w%_”t .
Only the first is retained for the RH control, such that
wi = wgy, 5 up =5(wwp) -

At the next timet + 1 another FH neural problem is stated, for the time intefval 1,¢ + 1 +
T1, with different initial and target state, a new sequenceonftiols is computedu8|t+1,
W41 then the first is used to compute the 1-th control lawuy,; = 5 (@41, wy, ;). For
t+2,t+3,...the procedure is repeated iteratively.

Within this formulation, at each time a new FH problem mussblyed. However, we can
exploit the time invariance of the problem and the functia@proximating properties of the
NN, and solve a “general” FH problem only once for all (unddgitable assumptions).

Indeed, we can state a FH control problem like Proklém 7, evtier initial and final state,
xg, oy are not fixed, but can take values from a certain set:

xge Xy cR", ap e X7 cR"”

With a slight abuse of notation, we specify the control fiomstand their parameters with the suffi meaning
thei-th control computed by solving the optimization problertirat instantt. In fact, it is not necessary to use
since the controls are time-invariant, thus;, = w;, V¢, meaning that a unigue control function (precisely, a ugiqu
vector of parameters) must be computed. However, to enhthecadvantage of the complete precomputation of
the control laws, we will keep both indexes.
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in that case, the cost functional must include them in theetgtion of 7, i.e.

F= E {J}

$67$}77707---777T—1

and the same for the control laws, whose outputs necesskjlgnd on the boundary values,
in the most general formu; = 4(x¢, x5, xp, w®), Vo, € Xy € R™, where the approximated
optimal controls are generated for any possible instance feifl control problem, given the
known stochastic boundary conditions. In that case, Pnofilé becomes:

Problem 11. Given the fixed initial state, = z; and a time-varying desired staig to reach,
for the system:

Tt+1 :ft(xtautant) ) t20717...700

wherex; € X; ¢ R", n; is a stochastic variable with known distribution; find thectar of
optimal parametersv® corresponding to the optimal controlg € U; < R™ with the following
structure:

u; = ’A}/(mt7x;7wo)

wherew?® is the first of a sequence @f vectors of optimal parametersy, ..., wr_1, corre-
sponding to the optimal control functions having the form

U; Z’}/;(I]Zi,{L’S,:L’r},wi) EUZ(IL’Z) ng’ iZO,...,T—l

wherezg = ¢, 7 = 7, which minimize at each time instanthe cost functional

T-1
Fo B 0= p S ha) i)
wé@}ﬂ?ownﬂ?T—l wé@}ﬂ?ownﬂ?T—l 1=0

wherezg € X5 ¢ R" andz7 € X1 c R™.

The fundamental difference between Problemh 10 and Probins that while the first
requires the execution of the optimization procedure ah ¢imae instantt (i.e. the solution
of a specific FH problem), the latter requires the solutioraaghore generalized (yet more
complex) FH control problem only once. The main advantagthisfapproach, is that it is
possible to pre-compute explicitly, upon a desired appnation accuracy, the optimal RH
control law, completely in an off-line phase. The infornoatiof the optimal RH control law
lies on the vector of optimal parametets,, that is on a finite number of real values. Thus, once
the control law is computed, it can be easily implementedembtedded in real-time control
loops: at any time instartt given the target and system measuremejis:;, the computation
of the associated optimal contret is almost instantaneous, being a simple forward of a NN (a
finite number of sums and products). A scheme illustratirglinefits of this solution when
applied to closed loop control is shown in Figlre 4.17.

The pseudo-code for the solution of Problem 11 is shown iroAtflgm[2.
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4. Optimal control by means of functional approximators

Algorithm 2 Receding-Horizon procedure combined with ERIM, for theusoh of Prob-
lem[1].

“Online” RH

Ensure: u;, Vt

1: Pre-computev® = Offline FH(T, X, X7})
2: loop

3:  Measurex;, z;

4 Apply ug =4 (zr, 7, w°)

5. end loop

“Offline” FH
Require: T',X7,X7 .
Ensure: w° = wg,...,wy_
1. k=0
2: Initialize w(k) randomly or according to some specific technique
3: repeat
4.  Generatey(k),...,nr-1(k) according to their probability density
5.  Generater;(k),z7 (k) according to their distribution oveX;, X7,
6: Initialize zo(k) = 2§ (k)
Forward
: fort=0:T-1do
8: Computeu; (k) =Y (x¢(k), x7, we(k))
o: Computer,1 (k) = fi(ze(k), ue(k),n:(k))
hy  Ohy  Of Of

10: Compute
P e (1) Dua (k) Dy (k) Dua ()
11: end for
Backward
12:  Compute
P Oz (k)
13: fort=T-1:0do
14: Compute
P Ouy (k)
15: C t
ompu eaxt(k)
16: for:=0:W,; do
17: Compute ijj
owy (k)
18: Update weightw; (k)
19: end for

20:  end for
21: until Convergence condition is met
22: return w° = w(k)
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Figure 4.17: Using a neural approximation of a RH control law, as descritmg Probleni Ii. In
contrast to Figure4.14, in the online phase the optimingitmcedure required to find the controls
is no longer needed, since the NN can be pre-trained offlihasti = uf = 4(zy, 27, w°). The
OHL-NN represented in the box is the same as in Figure 4.4.

4.4 Neural Finite and Receding Horizon regulators for reacing
and tracking

In the following we will state two fundamental motion cortpyoblems, which must be im-
plemented in a robot in order to provide reaching and tragkkills.
Let us consider the following robotic scenarios:

1. A humanoid robot is sitting in front of a desk, and lookingsame objects: the task
is to choose some objects, pick up them and put them in a boxenWhecognizes an
interesting item (for example, because its attentive sysiels this item as interesting),
it moves quickly its hand towards the object, thus perfognénpoint-to-point, goal-
directed movement; grasps the object, and with anothert4mipoint fast movement
put the object inside the box, finally releasing the hand.

2. A humanoid robot is playing in a interaction scenario vétbhild: the baby wants the
robot to catch his object, so he moves the hand almost raydiontthe space, to catch
the robot’s attention. The robot, once recognized the targeves its hand towards the
moving target, until it catches the target.

The first scenario addressegeachingproblem: the initial position of the end-effector
and the desired target position of the object to reach arerkntf the target is in the reachable
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space of the robot’s workspace, and a certain movementoliigen be estimated, itis possible
to state the reaching problem as a FH optimal control problem

The second scenario addresses instetrdciting problem: the initial position of the end-
effector is known, however the target position is known anktantly (at each measurement),
since it changes rather unpredictably (although smoatigreover, it is hard to cast a pre-
diction on the movement duration: in this case, it is posstblstate the tracking problem as
an IH or RH optimal control problem.

In the previous Sections, it was shown how the ERIM can apprate numerically the
optimal solution to such problems. Another advantage afdlpiproach, is that once the struc-
ture of the control functions is fixed (i.e. OHL-NN with“neurons”), it is possible to switch
from one solution to the other by simply loading a new set ahpeeters, which is merely a
vector of real numbers. Thus, one can build a “neutral” NNtadriunction on the main board
connected to the robot (i.e. the PC104 for iCub), and theplgitnad the right set of parame-
ters for any desired control task. Furthermore, not onlyg fessible to switch from FH to RH
controllers, but also among different FH controllers, vehe cost function to minimizg has
been chosen to implement different computational mototrobmodels, as the ones described
in Chaptel.B. That is one can switch from reaching with the M®dction 3.2.11), to reach-
ing with the MTCM (Sectiorh_3.2]2), to tracking minimizing ergple quadratic cost function.
Switching can be done online, because the optimal contraitions are pre-computed in an of-
fline phase, where the NNs are “trained” with iterative pohaes like the ones in Algorithid 1
and Algorithm(2.

Let us now state the problems more specifically.

Let us denote by" the Cartesian coordinates of the end-effector of the rofiti, respect
to a fixed reference frame, kay + the corresponding vectors of the manipulator joints ceordi
nates and torques, respectively. Then the forward kines@ix” = f.;m(q) : R™ — R™,
and can be easily retrieved by means of the Denavit-Hartgrdescription of the robot kine-
matics [Sciavicco and Siciliano, 2005]. The forward dynesrgan be instead described by the
rigid-body dynamics model. We remark that:

* ¢ € R™ is the vector of joints coordinates, and can be differenb¢eptually) from the
vector of controlled joints;

e 2" € R™ is usually a vector withlim(z") = 3,6,7 depending on what is controlled
among the Cartesian coordinates: position only, or posditd orientation

The generic Cartesian coordinates of the target are debgtedl ¢ R™=. At time instantt, the
robot and target state vectors afe 7.

It is assumed that the following compact model can be usedsoribe the evolution of the
end-effector with respect to the target, if the conirphcts on the robot:

§t+l :f(gtaut) ) t:0717"' (457)

where at time instant, &; is the big state vector, taking values from a finite=Seat R", andu;
is the control vector, constrained to take values from agfig@itl/ ¢ R™.
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Figure 4.18: A conceptual scheme, representing the interaction amadngf,réarget, and neural

controls, unfolded in timeT' accounts for the “target”, whil® for the “robot”. 4; can be either a
FH control law,5(-, w$ ), wherew; = w't, or a RH control lawy (-, w®), wherew® = wRH,

Remark 12. Here, we keep the problems statement as generic as possilnleed, we do
not specify neither the nature of nor the one of¢;. For example, the control vectar;
can be a velocity joint command, or a joint torque commagidzan be generically a vector
describing the difference between the current end-effemtordinates and the target ones,
& = [« - z}], or a more detailed vector containing position, velocitiesceleration errors,
etc. (e.9&; = [¢) — 2}, 4] — 2}]). Consequently, we do not specify the structurg,dhat could
be a pure kinematics or dynamics model, or a combination tf.bo

Assumption 11. The robot kinematics and dynamics model is perfectly known.

Thanks to Assumptioh 11, it is possible to write Eq. 4.57, mhéis perfectly known.
Moreover, thanks to the time invariance of the systéifand of the cost function), = 0 can
be considered as a generic time instant. The goal of the irgacbntrol problem is to find,
at time instant, a sequence a¥ optimal controlsug, ... ,u%_; that minimize a suitable cost
function 7, which is chosen so as to characterize the trajectory ofytbke state;, which is
steered from an initial statg towards a desired".

J takes generally the following form

N-1
T = > hi(&,&" us) + hy(€n) (4.58)
i=0

wherehy, h; are partial cost terms. A typical cost structure in automesintrols is:
N-1 ) ) ,
T =3 Pillul”+Vil&l™ + Vv [€n] (4.59)
i=0

where P;, V;, Vy are suitable positive definite weight matrices. ¢Jfz 29(t) - 2" (t) then
(4.59) penalizes generically the error between the Carteordinates of end-effector and of
the target to reach, at the end and during the whole traje¢saely andV;), along with a
penalty on the amount of “energy” spent for the controls. 8@examples of cost functions for
computational motor control models have been presentedhaptei 3.

Then, the neural reaching problem can be stated as foll@es &l optimization problem:

Problem 12 (Neural Reaching) Given the system of Ef. 4]57, find the vectors of optimal
parameterswyg, ... ,wy_; that minimize the cost function

N-1
F= E { Z(:] hi(&i, €, 9(&, & wi)) +hN(§N,€*)}

SOEE’S*GE*
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under the constraints given by the state equation, wherérasrtake on the structure,; =
’A}/(é‘hf}:wi) eUcR™.

It is remarked that the problem is generalized for any ptesilitial state¢, € = and desired
state¢* € =~ (i.e. for every possible robot and target’s coordinatesyijiitue of the expectation
operatorE. The solution of Proble 12 follows the aforementionedkitiee procedure for the
solution of7T-stage FH problems. It is important to point out that oncepiteblem is solved,
the set of vectoray, . .., wy,_; explicitly carry the information about the optimal contfalvs.

Incidentally, the solution of Problem 12 allow solving watlt effort the corresponding
RH problem. Indeed, by making the assumption that at timeims the target statg;” = 0
will hold for IV stages, thus applying a CEP, it is possible to exploit the Fiks control law
and apply it as a RH control law, as previously discussed.s Tiethod particularly fits to
the tracking unknown/unpredictable targets: the robalirags the target to retain the current
position whenever a new measurement is available, and ntowesd it as if the planned
trajectory would assume it fixed f@¥ stages. A change in the target’s position does not affect
the tracking policy, since at each time instant the targetsrdinates are measured and the
proper control corresponding to a newer trajectory is paréal.

Then, the neural tracking problem can be stated as follosva,RH optimization problem:

Problem 13 (Neural Tracking) Given the system of Eq. 4]57, find the vector of optimal para-
metersw®, being the first among the sef, ..., wjy,_; that minimize the cost function

N-1
77 el { > hin € 4G wi) +hN(sN,f*>}
o=, (T en =0
under the constraints given by the state equation, wheréralsrtake on the structure,; =
(&, & w;) e U < R™.

Oncew® = wy is found, the generic tracking control law is:
U; = ’?(gbgt*»wo)

that is a generic, time-invariant closed loop control fiorct

Since the RH problem exploits the solution of the correspandrH problem, only the
latter must be solved. The solution of the aforementionetblpms is based on the forward-
backward algorithm: Figure 4.118 shows a simple scheme \WéH'¢hain” of NN, target and
system blocks, unfolded in time, which are used for computive optimal parameters (see
also [Ivaldi et al., 2010]).

4.5 Numerical results

In the following, we will discuss some numerical results,endtwo peculiar systems have
been tested in a variety of problems settings, both in regchnd tracking mode: a 2DOF
robotic manipulator and a 3DOF nonholonomic mobile robohe Bim was to analyze the
performances of the proposed methods on relatively simpiimear systems with respect to
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the growing complexity of the problem. In particular, theacto use a simple nonlinear system
was inspired by the desire to apply the method directly at j@vel control, thus combining
the optimal planning with the low-level task to joint spacaeersion modules.

Numerical simulations show interesting results: howeegen if the proposed methods
show some evident advantages, there are many practicakisgbich have to be taken into
account, and which we believe could set limitations on th@iegtion domain of the methods.
First, the method can manage only theoretically a significaimber of parameters without
incurring in the COD, i.e. the exponential growth of the n@mbf parameters with the com-
plexity of the problem, because their growth is actuallyypoimial [Zoppoli et al., 2001]. But
the number of parameters is still very high, due to the feat tihe number of controld” must
be large enough to provide a plausible sequence of conttots similarly each NN can pro-
vide sufficient approximation capability for wide class oh€tions only with large number of
parameters. The second issue is the training complexitisha a combination of the effects
of the number of parameters, the back-propagation algoyifmd the stochastic gradient. The
third issue is related to the stochastic formulation andcctirssequent amount of training data,
and the time required to train the chain. Finally, the ifitetion of the OHL-NN can play a
role, as a randomized initialization is correct from a tledioal point of view, and is the only
plausible way to initialize the neural network if there isapriori hypotheses on the structure
of the control laws. If any information on their “shape” isaflable, it could be useful to ini-
tialize the networks differently, for example with a clasdileast-squares algorithm. A more
detailed analysis of these defects is reported in Sectiod 4.

4.5.1 A two DOF manipulator in a planar space

In the following preliminary numerical results concernitig control of an anthropomorphic

arm are presented. For the sake of simplicity, a two DOF arnsésl: the main reason is the
possibility to easily compute both Cartesian and joint dowates easily, as the forward and
inverse kinematics are known, andras m = 2 the manipulator is not redundant. The forward
kinematics of the planar arm is:

2" =1y cosqp + 1y cos(q1 + q2)

y" =lising +losin(qr + q2) .

whereq,, g2 are the joints angles, while’, 3" the Cartesian coordinates of the end-effector in
the X - Y planar space. A representation is shown in Figure|4.19.

Point-to-point movement with the MIJM

With the following numerical example, we want to verify thapability of a chain of neural
networks to approximate a desired control function miningza certain cost, upon a desired
accuracy. Here, the “neural controllers” must drive the-effdctor from an initial to a desired
position in the robot’s workspace, with initial and final vglocities.

The “neural controllers” must drive the end-effector of anipalator from any initial po-
sition & = [z0,%0] € X ¢ R? to a final desired* = [z*,y*] ¢ X ¢ R2. The initial and final
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by

q1 X

Figure 4.19: A simple model of a two DOF planar arm.

velocity must be equal to zero. The MJM has been chosen asputational model describing
the motion trajectory, and the followinginimum jerkis the cost criterion:

T d?’l‘r 2 d3yr 2
= dt 4.60
jfo[(dt3)+(dt3 (4.60)
As shown in Figuré 4.20, the MJM produces bell-shaped, smtoajectories in the joint space,
while the planar trajectory is almost straight. The knowalgincal solution has been compared

with the “neural” trajectory: withV = 60, OHL-NN with sigmoidal activation function and
linear output layer, and = 40, the accuracy in the approximation was very high.

Tracking a point moving unpredictably
An instance of Problefn 13 has been stated with the followog function:

N-1
T = e(w) + & Vinéin (4.61)
i=0

whereg; = [27 — 27,y —y?] e X ¢ R? ¢* =0, N = 30,v = 40, OHL-NNs with sigmoidal
activation function. f was basically a double integrator. Approximatély’? samples were
used for the off-line training of the NNs, considering anyggible position of both target and
end-effector in the reachable space. The criterion for #s& accomplishment in(4.61) is

a tradeoff between the minimization of the energy consumpénd the “best” end-effector
proximity to the target during and at the end of the maneuveo(ld not be able to reach it
perfectly, as a consequence of the unpredictable behalvtbedarget or the robot’s intrinsic
physical limits). Weight matrice¥; were chosen such as to obtain a reasonable compromise
between the attractiveness of the target and the energymi®n, whereas(u;.),j = =,y

is a nonlinear but convex function [Ivaldi et al., 2008c]:

c(uj) = [% In(2 + it 4 e Uity - %1}(1(4)] Jj=x,y (4.62)

which, for large values of approximates the ideal but non differentiable eo8t; ;|, as shown
in Figure[4.2P. Of coursey;; indicates thg-th component of the control at time instant.e.
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Figure 4.20: A minimum jerk planar movement of a two DOF arm: Cartesian jairds position
and velocity are shown, as well as samples of the planactaje The neural approximation and
the analytical solutiorf [Flash and Hogan, 1985] are almoistaident (MSEx 1077).
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Robot trajectory in the x—y plane.
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Figure 4.21: The end-effector of a two DOF arm, tracking a point movingrruapredictable way
on a planar space.
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u¢. Moreover,V; = diag(1.0,80.0,5.0,10.0), ¢ =0,...,N -1, Vi = 40I (being! the identity

or unit matrix), whilea: = 0.01 and 8 = 50. In Figure[4.21 the end-effector, starting still in
a certain position, tracks a target moving unpredictablihnspace. Cartesian coordinates as
well as joints coordinates (for the two DOF) during the moeeirare shown. It is worth noting
that although the target dynamics is quite fast, and theeffiedtor was initially “far” from the
target, the arm follows the moving point with reasonabldqgrerances.

o(u])

Figure 4.22: The cost function{4.62), wittk” = 0.01 andg = 50.

Figure 4.23: The mobile robot described by Hqg. 4.63.

4.5.2 A three DOF nonholonomic mobile robot in a planar space

A nonholonomic mobile robot moves on a planar space. Thet qodsition with respect to the
coordinate system is described by the Cartesian coordimathe space,y and by the angle

6 of its axis of symmetry with respect to theaxis (see Figure_4.5.1). On the robot sides two
couples of thrusters, aligned with the axis of symmetry,raceinted at constant distande
and can be modulated so as to obtain the desired intensity dbtceF” and the desired torque
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C by which to control the robot motion. The thrusts identife tivo controlsu; andus:

F = (u1 +ug)e =mi

! 4.63
C=(uy —ug)d=J0 ( )
Massm and moment of inertia are assumed to be constant during the maneuver. The system
state is then composed of six variabless col(x, z,y,v,0,60), and the nonlinear differential
dynamic of the robot is:

é:l = 627 63 = T4, 65 = 66 )

=L (us +uz)cosés , 1= 2 (us +ug)sinés , €6 = 2 (u1 - uz)

subject to constraints to the maximum allowed thrust valiigs< U, i = 1, 2.

Let us now denoté; = £(tAt), u; = u(tAt), whereAt is the sampling period, obtained
by dividing the duratioril” of the maneuver intdV discrete stages. As done before, fht
component of vectorg;, u; is denoted by, ;,u; ;. Then a discrete-time version of the system
can be obtained by using a first-order Euler’s approximation

§1,041 =61t + Al §2
§o,441 =82t + At%(ul,t +ug,¢) cos(&s,¢)
E3,041 =630 + At &a g
§ape1 =Cap + At%(ul,t +ug,¢)sin(&s )
5,041 =656 + Al &gt

d
6,041 =6t + Atj(ul,t —ugy)
which can be written in a more general and compact form as

§t+1=f(§t7ut)7t=071>"'>N_1

where&; may take values from a finite séf; ¢ R", while u; is constrained to take values
from a finite setU;(&;) ¢ R™ (related to the physical limits of the thrusters). The desiobot
configuration at instarttis denoted by, : a desired trajectory to track can be described by the
sequence of vectos, ...,y .

It is important to remark that the linearized models of suehholonomic systems are not
controllable. So far a number of control strategies have Ipeeposed. I [Aicardi et al., 1995]
a Lyapunov stabilizing control law was proposed, while in[&d Hu, 2005] a switching con-
troller was presented, based on a Lyapunov-like functi@atheying stability over a receding
horizon. In [Parisini and Zoppoli, 1995] a receding horizmmtrol strategy was introduced,
which was based on the use of neural approximators: in pé&tijache generalized control law
was found as the best interpolation of a set of optimal detestic controls, within a specific
training set.
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A reaching problem over a Finite Horizon

We address the problem of regulating the planar robot inre[dib.1, that is to steer the robot
towards a target positiofi* from any initial one, by minimizing a certain cost functiamhich
generally takes into account the fuel consumption and theeonger accuracy. The criterion for
the task accomplishment is a tradeoff between the minimizaif the fuel consumption, taken
into account by a general nonlinear convex functién; ;), (i = 1,2), and the “best” robot
proximity to the target at the end of the maneuver ( it couldb®oable to reach it perfectly, as
a consequence of the robot’s intrinsic physical limits):

N-1
T =3 clurg) +c(ug) + € — EllFr, (4.64)
t=0

As previously done for the manipulator example, the weightrivesV; are chosen so as to
obtain a reasonable compromise between the attractiveh#sstarget and the fuel consump-
tion. More specifically, we used = 10 control stages iff" = 10 (so At = 1.0); moreover

V; = diag[1,0.1,40.0,0.1,40.0,0.1], for¢ = 1,...,T — 1, andVy = diag(40.0). ¢(u;;) has
been indeed designed to be realistically proportional éahihust, and approximate at the same
time the ideal but non differentiable ca&t|u, ¢|: again, we used EQ. 462, witki = 0.01 and

£ = 50. The control functions were implemented by OHL-NN, usiryinputs variablesq
from & and6 from &) andv = 80 neural units in the hidden layer.

A tracking problem over a Receding Horizon

There are many applications of mobile robots following gé#r for example, when they must
follow a human as their leader. To this purpose, a RH reguigiroblem can be stated. As done
for the 2 DOF, an instance of Problém| 13 has been stated. Ap@rgeneral RH control law
can be easily found after the solution of the equivalent Fddileion problem, which is stated
for any possible robot and target configuration. In detalebof L admissible configurations
of both robot and target;” andz? were generated, then fed to the iterative algorithm for the
computation of the optimal parameters of the approximatihgs. Note that formulating the
problem as a regulation one, the system state (i.e. thedliife between robot and target) is
steered to the origin of the state space: this brings thendaga to halve the number of inputs
to the NN, as already discussed in Figure 4.12. In the follgwiumerical examples, the cost
is the same as i (4.64N = 30, At = 1s and the OHL-NNs have = 80 neurons.

Figure[4.25 shows some FH trajectories, afei0® training steps, which have been used
to provide the solution to the RH problem. It must be remartked the entire workspace was
sampled to get a suitable set of configurations for both rabdttarget, but in the regulation
problem the goal is to bring the difference between the rainok the target configuration to
zero, that is why the trajectories are directed towards tiginoof the Cartesian space. The
starting points are found after computing the differendsvben the robot and the target’s con-
figuration (both position and velocities). To keep the pkd<lear as possible, each trajectory
is shown in the planar space, and corresponding positiahgedacities are shown. Itis evident
from Figure[4.2b that the training phase was not sufficierstproximate the global optimal
solution: some trajectories in fact are not perfect as ebgplem the proximity of the origin
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Robot trajectory in the x-y plane. Robot trajectory and target- x-y coordinates.
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Figure 4.24: Optimal trajectories frongy € =y to z* € Z*. In particular,=y, =* accounts for
any possible configuration of the robot (in terms of positieglocity and orientation) on the two
platforms[4.24(a) (x¢, yo) = (0.0,2.0) and(z*,y*) = (20.0,-2.0), orientation and velocities are
null. @-24[) (zo, yo,00) = (1.3,2.0,0.523596) and (z*,y*,0*) = (20.0,-2.0,-0.087266), but
the robot starts with a velocity which is in opposite direntivith respect to the targety = -1.0,
and arrives with a non-null velocity. = -2.0.
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Figure 4.25: FH neural trajectories, where the difference between thetrand the target’s con-
figuration is driven to zero iV steps. Each trajectory is found using the outcome of a seguen
of NV neural control functions, aftei0® training steps and as many robot and target samples. The
red circles are the starting points in the Cartesian spaomeS®xamples of FH trajectories in the
planar space are shown.
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Figure 4.26: RH neural trajectories, using the first neural control fiorcof the FH set in Fig-
ure[4.2b. The same starting points for the trajectorieslaoe/s. Here, only the first neural con-
troller of the ones used in Figute 4125 is used to generat®Hheontrol at each time instants.
The numerical simulation shows the effect of the RH conl for a longer time with respect to
the fixed horizon used to compute the control functions. R&aidy, the RH controllers are still
“active”, though generating null controls, when the taigetached by the robot.
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Robot trajectory in the x—y plane.
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Figure 4.27: The RH controller applied to a mixed tracking/reaching tabk robot moves toward

a target which arbitrarily and suddenly changes its pasiticthe state space in an unpredictable
way. This case is representative, for example, of the fatigwituation: the mobile robot exploring
its workspace (i.e. a room) and while its attentive systesméinuously looks for interesting objects
that the robot must pick up and take somewhere else.
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Robot trajectory in the x-y plane.
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Figure 4.28: The RH controller applied to a tracking task: the mobile rdiotiows a target, as-
suming a totally unpredictable motion. (even if here, f@ shke of simplicity, the target trajectory
here is a simple circle. This case is representative, fomgka, of a mobile robot following a

moving target, according to a predator-prey paradigm.
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(as optimality suggests). This is a common problem whemitrgithe chain of neural net-
works (see hereinafter the discussion in Sedtion 4.5.4sipte causes can be the insufficient
number of training iteration, or simply the fact the stodltagradient algorithm stopped at a
local minima and both gradient and descent step cannot rhakeotst lower any further, and
consequently enhancing the performance of the neuralaentHowever, dealing with RH,
only the first control law is used and the solution of the FHng/qreparatory (i.e. we need
to solve the complete chain of neural networks, but oncedaue retain the first and discard
the remaining) so it is possible that even if some controklave not “optimal” the one needed
for the RH is already “trained”. This is also a consequenc#heflearning algorithm, which
makes the first neural networks in the chain train faster waipect to the last ones. In fact
Figure[4.26 shows the trajectories produced with the RHriiecle, using the first neural con-
troller of the ones used for the FH trajectories in Fiduré4 2 must be noticed that the time
to reach the origin of the planar space is approximately dngesof the FH case, and the shape
of the control function is similar also. However, it is impanmt to put in evidence that the RH
controller remains “active” even when the target is reachleds, if the robot has reached the
target, it keeps controlling even if the difference betwtentwo vectors is zero. The latter is
an important property, since it shows (in this regulatioaraple) thaty°(0) = 0.

Finally, Figured4.27 and 4.28 show the RH controller agplie two different tracking
tasks: a multiple reaching case and a pure tracking taskreathe target is moving unpre-
dictably.

4.5.3 Atwo DOF arm actuated by elastic joints

We consider the following system, describing an arm actubye: flexible/elastic joints:

{ M(q)G+N(q,4) +K(g-0)+J(q)f =0

Bii+ K(0 - q) -7 (4.69)

where for then elastic joints,q ¢ R™ andf ¢ R™ are the generalized coordinates of the
driven links and actuators. A simplified model is assumederet = diag(by,...,b,) is
the inertia matrix of the actuators, ¢ R™ are the motor torquesM (q) is the inertia ma-
trix of the manipulator links, whileN (g, ) contains the centrifugal, Coriolis and gravity
forces. f is a generic external force field, e.g. a divergent force fipticeived by the end-
effector. K is the stiffness matrix, generally symmetric and definitsifdee: here, we assume
K = diag(k1,...,kn),k; > 0Vi. Given the invertibility of the mass matricéd, B, Eq.[4.65
can be written as:

g= -M ' (q)N(g,d) - M (9)K(q-0)-M " (q)J" (a)f (4.66)
0= B lr+B1'K(q-0) '
which is a control-affine system of the form
t=a(z) +b(x)u+c(x)f (4.67)

where the system state vectoand the control vectar arez = col(q, ¢, 6, 9) andu = col(k, )
respectively. Of course[_(467) is in continuous form, and istraightforward to find its
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4. Optimal control by means of functional approximators

discrete-time form, for example by applying an Euler’s cesization algorithm. The discrete-
time state vector is thef) = col(qt, s, G¢, 0,04, 0;),t =0,1,..., N -1, while the control vector
isuy =col(k, ), =0,1,...,N -1, and the generic state equation is

Eei1 = (&) +b(&)u +E(&) fry t=0,1,...,N-1

Here, the following situation is considered: a two DOF arm=(2), performing point-to-
point movements with fixed and known initial and final posigo In this example, all joints
have variable stiffness, thus is not constant, but in general is a function of tidie= K (t).
Indeed, joint stiffness can change in response to diffecenimands from the robot control
system, as a function of the system configuration or of sontemoriteria. The goal is to find
the optimal torque and stiffness profiles that drive the awmfa known initial posé; to a
desiredsy, in NV stages, while minimizing a given cost functigh

N-1
J=> Ru+Q& +Qn&x
=0

whereR, ), Qy are suitable weight matrices.

This motor control problem is formulated as a FH neural regcproblem, described by
ProblemZI2. The OHL-NN approximating the control laws héwe= 12 inputs an®2n = 4
outputs. The following parameters were used to describarthedynamics:

e massm; =14,mo=1.1

* link length: a; = 0.3, as = 0.33

e link COM:[; =0.11,1, =0.16

e link inertia: I; = 0.025, I = 0.045

MoreoverB = I, while friction has been neglected (or considered null).

Figure[4.29 shows a suboptimal solution, for the cAse 15, with At = 0.1s. Controls
were generated hyy OHL-NN with v = 5. The cost weights ar@ = diag[1,1,0.0001,0.0001, 0, 0],
Qn = Q, R = diag[0.001]. The stiffness profile is highlighted: notably, its vantiduring the
movement recalls co-contraction, that is the human aliditghange intrinsic musculo-skeletal
compliance. This feature is crucial when dealing with utaiaties and unpredictability in the
model.

4.5.4 Discussion of methods and results

The proposed method is effective and has several advantagparticular in the capability
of providing approximating optimal control functions whican be used to implement closed
loop control in limited processing and resource machinebe ERIM is potentially capa-
ble of managing difficult problems, and the only requirersepireventing its application to
FH and RH problems, are the differentiability of all the i®mnvolved in the optimization
problem (state and cost functions, controls, constra@us) the sufficient smoothness of the
control functions to be found. However, its effectivenessvident only if the complexity
of the problem is “small”. It is true that other nonlinear iopization methods show simi-
lar limitations when dealing with NMPC schemes. Howevem &ve the main drawbacks.
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Figure 4.29: A point-to-point neural suboptimal trajectory, for a 2DOfmaactuated by elastic
joints. The graphs show the control trajectories of vagabint stiffness and torque.
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4. Optimal control by means of functional approximators

First the optimal solutions are approximated: local as wasliglobal optima are possible,
and it is not possible to distinguish a local from the (or abgll solution during and after
the training phase. Second, the stability of the weight teodannot be guaranteed, since
a precise analytical condition is missing. It is possiblepéatially overcome these two is-
sues in practice by re-training the chain of neural netwarkdtiple times, with different
values of its update parameters, i.e. changing the learsigsize, the initialization rule
of weights and biases, etc. This approach has been adogiedoalNeural Dynamic Opti-
mization [Seong and Widrow, 2001a, Seong and Widrow, 20&Hmng and Widrow, 2001c],
which face the same issues (the two methods are similar)taletipal terms, many issues oc-
cur, and cannot be neglected since the method has beentgkssra universal one and one of
the most convenient in solving such optimization problems.

The “curse of dimensionality”

The ERIM is preferred over DP because it can manage a sigmifruamber of parameters
without incurring in the COD, i.e. the exponential growthtbé number of parameters with
the complexity of the problem. In Section ¥.2, the polyndngisowth with respect to the
number of parameters was discussed.

The number of parameters to handle is but considerable sahgkito the following facts.

* A plausible sequence of controls must be provided. The mumvbof neural networks
constituting the “chain” and providing controls at eachdimstant{,¢+1,...,t+ N-1)
must be chosen considering a finite-time movement (i.erisgethe robot from a starting
configuration to a final one) and the controls frequency. Bsaeés arise. If the frequency
is high, i.e. At is in the order ofms, hundreds or thousands of time instants must be
considered, each corresponding to a “neural” element ichae.

Example 2. The end-effector must perform a movemerit iseconds, and controls are
sent each\t ms. For At = 5ms andT = 1,5, 10, 20s the number of “neural” elements
in the chain is200, 1000, 2000, 4000 respectively.

The second problem is the fact that the duration of the Idngesement should be
considered in order to set the FH problem properly: unfately, the maximum duration
cannot be predicted a priori, because it can be context bdi&sendent (e.g. if you want
to catch a moving object, the movement is fast and can lassémands; conversely a
precise pre-grasp movement can last many seconds). leydartifor a FH controller it
is fundamental since a too small number of contml€ould lead to control sequences
which are not able to drive the end-effector to the desiresitiom correctly.

» The NN must have a sufficient number of parameters to apmabe correctly the de-
sired optimal control function. In our framework, the fuoct v to be approximated
is the unknown. With the ERIM, we constrain the function tketn a parameterized
structure, such that the NN can approximate any possiblieedefsinction, but there is
no indication on the nature nor on the “shape” of the admlissibntrol function. The
underlying assumption is that the control function is camtius and differentiable, so
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that it can be approximated by the NN: in general, the smodkigefunction, the easiest
the approximation (i.e. less parameter are necessary toxapate it).

Example 3. Suppose a polynomigl(t) = ¥, ¢;t* is used to interpolate a functiofyt)
from noiseless data. If the function is a line, theoreticalien only two parameters are
necessary, as it can be described by the equagign = ¢y + c1t. If the function is a
cubic, then more are necessary, beif(@) = cq + c1t + cot? + c3t®. The more complex
the function, the more parameters are necessary.

Remark 13. Some functions are “hard” to approximate with few paramstes.g. Heav-
iside’s step function, Dirac delta-like splines. In gerleraugh derivatives require more
parameters, or more basis functions.

A specific theorem assessing the number of parameters of dnNMNHnecessary to
approximate a certain function does not exist. Howeverhbdsiwexist and are mainly
related to the smoothness properties of the function to peoapmated.. If there are no
a priori hypothesis on the “shape” of the control functions, and dliffierentiability is
assumed, then the number of “neurons” for each OHL-NN musthosen according
to some practical heuristics. For example, one can solvéipteulnstances of the same
problem, augmenting the number of parameters progregsingl certain performances
are met.

In general, given an OHL-NN witly neurons,n inputs, m outputs, the total number of
parameters iV, = (n+ 1)v + (v + 1)m. The “chain” used to solve a FH problem contains
T /At neural elements. In this configuration the total number odupeeters is:

TN, Tn+1)v+T(w+1)m
At At

which grows linearly withv. Still, its growth is not negligible with the problem compity,
and even for a simple problem (like the control of a two or ¢hD®F robot) it is enough large
to invoke a COD issue. A graphical representation of the traf the number of parameters
Nyt With respect to the problem complexity is shown in FiduréiBcan be clearly seen that
in a practical situation wherA¢ = 5ms, T = 10s andv = 200, the total number of parameters
is about 4 millions!

Niot =

(4.68)

Training a chain of neural networks is “hard”

Another drawback is the training complexity, which is a camalion of the effects of the
number of parameters, the back-propagation algorithm stochastic gradient. For the sake
of simplicity, the stochastic element will be discusseédain, and here the focus is only on
the back-propagation algorithm. Denotingas op the number of operations required for a
single forward and backward phase (on a single NN) respgtiV’ / At the number of neural
elements in a chain, an the number of iterations of the algorithm to compute therogti
parameters, the total number of operations for the traipmage is:

Otrain = Tt(OF + OB)
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4. Optimal control by means of functional approximators

which encounters the same problem mentioned for the growilis. Moreover, since the
algorithm autonomously stops only if the global optimumaached, or a local one has been
reached and a certain stop condition is verified, the numbierations K is practically un-
known, but usually very large. In addition, there is not thiamgntee that a single instance of
the learning algorithm (one “shoot”, i.e. one instance gitlee random initialization of the
parameters and a specific data set) can lead to the solutturallg it is common practice to
“re-train” the chain multiple times, changing the learnpagameters, e.g. changing the descent
rule, the regularization terms, etc., or launching in patahultiple shoots of the optimization
algorithm. Sometimes the neural networks are “stuck”, imafte in flat regions where the
cost function has a very smooth gradient, so that even ceradite changes in the stepsize do
not lower the cost. This is a known problem in literatyre [Gord Tesi, 1992] and so far a
number of heuristics have been suggested, like simulateekding techniques which basically
perturb the descent. However, in a stochastic context theéignmt is already “perturbed” and
sometimes these techniques are not of any use, like digtus§epall, 2003].

Training a chain of neural networks in a stochastic context$ “harder”

If training a chain of neural networks and system blocks rslfia deterministic context, it is
even harder to do it in a stochastic context. Difficulties @rielent in the simplest case when
only the initial state is stochastic, i.e. the initial stéd&es values from a finite sefy € =,
according to a certain known distribution:

» Because of stochastic steepest descent, it is not guacatiat the expected cogt
always decreases during training. Recalling the stoahgssidient technique from Sec-
tion[4.2.3, sincevF cannot be computed exactly, the gradient coming from a &ingl
realization of the stochastic variables is used. This méaaisat each iteration step a
“perturbed” gradient is used, instead of the correct onds fiossible to use a better
approximation of the gradient, computing its expectedealer a certain numbé/ of
realizations of the stochastic variable, i.e.

_ 1M 5
VI =~ M};VJ(U(hLW(k))

where at iteration step, for the current weights)(k), M realizations of the stochastic
variables vectof) are computed, and forward and backward phases are perfanmtbe
chain of neural networks with fixed parameterék), so that it is possible to compute
an average of all the partial derivatives. Obvioudlymust be set balancing the benefits
of a better gradient with the computational burden whicmtsoduced by making//
additional forward-backward phases. Additional ways tdrads the problem of global
minima of stochastic functions can be found|in [Spall, 2003]

» A large number of training, test and validation data is reggh The cost functional
depends on a set of stochastic variables, whose probabiistributions are known.
Thus, a significant amount of data is required, because wa toegample properly the
whole space of stochastic parameters. If, as frequentlgdra the stochastic variable is
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the initial (or desired) system state (or both), then a bietaampling of the state space is
required, taking into account the dimension of the spaceefisas the resolution (i.e. the
minimum distance for which two samples are considered dfetdnt”) and the samples
distribution.

Example 4. Consider a state space of unitary dimensian-(1) where the state variable

f is an angle, e.g. defining the orientation of a mobile robdhwespect to a fixed frame.
The variable range i§0, 27]. Calling , the sampling resolution, the number of samples
(if the sampling is uniform) iSVsamples = 29—” If the dimension of the state space is
n, supposing all the variables are of the same type, then tte¢ tumber of uniform

samples iSVsamples= [%—”]n A graphical representation is shown in Figlre 4.31: note

that in a practical situation where for exampte= 6 and§, = 7/180, NsamplesiS in the
order of10'°!

In general, if the dimension of the state space ind M the number of samples in a
single dimension (supposing the same number of samplesatdr gtate variable), the
total number of samples is at leaStampes= M". The quality of the data set may
also influence the learning phase. Not only a significant remab data is required,
but the sampling type may also affect the training procesgFumagalli et al., 2010a]
a dissertation on the difference between uniform samplimgj @ndom sampling for
different machine learning methods was presented. Inquéati a random sampling
method was compared to a selective one, where a certainsigganf the training set
was guaranteed taking a subset, such that the inter-sangiéenck (computed as the
Euclidean distance between the two samples in the stameédrdiput space) was at
least bigger than a certain threshold. Experimental reshibwed that the two methods
perform identically for large training sets: the differenicetween the two was evident
only for small amounts of data (very small, considering tr@bfem dimension). A plot
about such performances is shown in Figure4.32.

Initialization of the NN affects the optimization algorith m

Finally, the initialization of the networks certainly pka role. A randomized initialization is
“correct” from a theoretical point of view, since it provislean unbiased starting point for the
steepest descent algorithm: having multiple shootings (nultiple instances of the learning
algorithm, for different randomized initial conditiong)lences the chance to lead to the global
minima avoiding the local ones. However, if there exist Hijppses on the “shape” of the con-
trol laws, it is possible to exploit such information to “pshape” the approximating networks,
e.g. to initialize with a suboptimal solution. In this caseglassical Least Squares algorithm
can be used to train the NN [Hagan and Menhaj, 1994], whickistsof the following steps:

1. Generate (or measuré) different stochastic variables, such as desired gtate =*:

£*(0),...,&*(L-1).

2. For each realizatiog*(¢), solve the corresponding T-stage optimal control problem
(which is deterministic, if the stochastic variables ar@dixand find the deterministic
sequence of optimal controlg (¢),u1(¢), ... ,ur_1(¥)
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4. Optimal control by means of functional approximators

3. Train theT neural networks with a least-square based method: thatais, the¢-th
neural network with the training s¢t&:(0), u¢(0),...,(&(L-1),u:(L-1))}

At the end of the aforementioned procedure, each NN is liziéid so as to minimize the least-
square error between its prediction and the output fromrtirihg set. Basically, this method

simply initialize the network with a suboptimal solutiorufod with a supervised learning tech-
nique.
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Figure 4.30: The growth of the total number of parameters to be optimi2ggl, with respect to
the FH problem complexity: the number of neurenghe duration of motion (in secondg) Here,
At =5ms,n=6,m=2.
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Figure 4.31: The growth of the number of data samples, when the variatda iangle, and its
range[0, 2] is uniformly sampled. The number grows exponentially wite timension of the
data space. Note that the; axis has a logarithmic scale.
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Figure 4.32: Comparison of random and selective subsampling based ndastdized Euclidean
distance. This image is taken from [Fumagalli et al., 20,1 @édere the input space of a simple
mapping problem (mapping joints position, velocities andederations with forces and torques
measured by a proximal sensor) was randomly or uniformlysady Euclidean” and Euclidean
PV A denote subsampling based on Euclidean distance in theastlined input space (using
only position or using position-velocity-accelerationjhe performance index was the Normal-
ized Mean Squared Error (NMSE) computed on a common vatidatt. The evidence is that the
two different subsampling strategies are equivalent fogddraining sets. The Euclidean-based
sampling outperforms for small data-sets, while the twohods$ perform nearly identically with
the increase of the data-set.
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Chapter 5

Motion control on humanoids

5.1 A closed loop control scheme

In Section 4.4 a general approach @ptimal neural motor controlvas presented. More pre-
cisely, it was shown that a neural approximation of FH and Rkl laws can be exploited
for optimal planning in a tracking/reaching control scheseisfying some performance cri-
terion. It was shown that it is possible to concentrate @lrtssource demanding computations
in an offline phase, and to retrieve almost instantly theratgbnline, taking into account the
feedback on the current status of the system.

In Sectior 4.5 several examples for different robots weesgmted. Trajectories were con-
veniently planned in the task space (e.g. the Cartesiarejpaad the optimization procedure
provided the optimal control law® (and consequently controis’(¢)), either found using a
FH or RH paradigm, and the optimal system state trajectoryeXample of planning in joint
space was also discussed, where the dynamics of the robdumaesmental to the task.

In this chapter we will discuss how to combine the neuralroptimotion planning with a
humanoid robotics control scheme. As anticipated in Chid@jtenost humanoids robots can
be controlled through a series of control layers, whereethffit control loops are integrated.
In particular, two are the principal methods to control thbat from a “high” level: sending
joint velocity commands, or joint torques commands. At lovesel (i.e. on the boards) each
control type is converted into suitable commands for theiaots, but let us just consider
the aforementioned controls as the ones “supported” by ldopms and their architecture
without entering into the details of the low level control.

In the above control problems, it was assumed that the diesapgectory was expressed in
the joint space or in the task space, and in the latter casanheguivalent description in terms
of joint positions, velocities and acceleration was imficavailable. In humanoids robotics,
if the desired trajectory for the end-effector is specifiethie operational space, it is necessary
to interpose some Inverse Kinematics (IK) module to tramsfoperational space references
into the corresponding joint space references. If torquerobis enabled, a Forward Dynamics
(FD) module can further translate them into suitable jantjie commands.

In Figure[5.1, a conceptual scheme combining the neurahjrignmodule with IK and
FD is shown (where iKin and fDyn represent the IK and FD modekpectively). Both IK
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and FD can be learned from experimental data, or estimatad diccurate model of the robot
kinematics and dynamics is available. Before entering tinéodetail of these modules, let us
briefly overview the main operation they perform.

Let us denote by € R™ the position and orientation of the end-effector and withR" the
joint angles of the robotic manipulator. The forward kin¢icgcan be generically indicated
by = K(q), while its inverse relation ig = K~'(z). The Jacobian of the manipulator is
J e R®" such thati: = J(q)q.

The IK module “translates” the desired Cartesian velogitiethe end-effector into proper
joint velocity commands This can be easily done by eitheolian inverse control or Jacobian
transpose control, as discussed|in [Sciavicco and Sioiliad0%]. Here we adopt a Closed
Loop Inverse Kinematics Controller (CLIK), in the form:

i =J v+ (I-T"0)g,

whereJ" is a regularized damped Least Squares pseudo-inverse dadabian/; ¢, an ar-
bitrary joint velocity vector projected in the null-spacktloe Jacobian matrix by the operator
(I - J'J) (I is the identity matrix). The use of the regularized pseuu@ise rather than the
inverse of the Jacobian is motivated by the singularity ofisgonfigurations of the manipula-
tor and its redundancy properties. For redundant mangmglatvheren > m, the solutions to
the latter equation are not unique (if they exist), that e¢hcan exist multiple joint configura-
tions corresponding to the same end-effector position ¢aigahtation) in the space. Secondary
tasks projected in the null-space of the Jacobian are ysexfiloited to choose among the
possible admissible configuration, solving the redundammoplem. A scheme illustrating how
the neural network copes with the CLIK controller is showirigure[5.2.

The FD module generally estimates the joint torque comméandsthe desired joint confi-
gurations, including position, velocity and acceleratitithe manipulator dynamics is known,
the dynamic equation describingnalink robot manipulator (according to the standard rigid
body model) is:

B(q)i+C(q,4)d+ Fog+ Fssgn(q) + g(q) =7-J (q)h (5.1)
where:

* ¢ « R™ are the variable joint angles, andj € R" respectively denote the joint velocities
and accelerations

* B(q) e R™™ is the inertia or mass matrix

* C(q,q) €e R™" is the Coriolis matrix

» F, e R™"is the diagonal matrix of viscous friction coefficients

* Fs € R™™ is the diagonal matrix of static friction coefficient&s(sgn(q) is a simple
model of Coulomb friction torques)

* g(q) € R™ the gravitational forces

» 7 ¢ R™ the control torques to each joint

» J(q) is the Jacobian matrix

* h is the vector of forces and moments exerted by the end-effectthe environment (if
there is no interaction, it is simply null)
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5. Motion control on humanoids

The computation of joint torques per se is not an issue, ifegipe dynamics model (e.g. a
rigid body model) of the manipulator is known (which can berfd for example from the
CAD model of the robot). The key point is whether a joint taedaedback is available on the
robot in order to implement joint force or torque controlthfs feedback is not available, it is
possible to “cancel” the FD module and command exclusivelé joint velocity space.

The remainder of the chapter is organized as follows. Ini&e&L2, the IK module is in-
troduced, along with a detailed description of the CLIK noethin Section 54, the FD module
will be discussed. In particular, since iCub is not yet pded with joint torque sensing capa-
bilities, Section 5.4 will also illustrate a method to esdien joint torques from a set of inertial
and force/torque sensors, which has been used to enableauicbls. Finally, Section 5.5 will
show some experimental results.

Optimal
Planning

Task

Figure 5.1: A conceptual scheme of a classic layered/hierarchicalobsitheme for robotics. The
task parameters, such as the control function to be minihibe current status of the robot, the
task goal etc. are fed to the optimal planner, which compilie®ptimal trajectory, typically in
the operational space (e.g. Cartesian space). Desiredtydlothe operational space is converted
into desired velocity in the joint space, by means of an Isedfinematic layer. Joint velocity
commands can be converted into joint torque commands (ifc¢het architecture support torque
control) by a Forward Dynamics layer. In this scheme, feellib@ops are not voluntarily depicted.

5.2 Closed Loop Inverse Kinematics

Given a desired trajectory for the end-effector, computethke optimal neural controller and
denoted by:*(t), with its velocity profilez*(¢), Cartesian and joint space velocity commands,
v(t) andq*(t) respectively, are computed with a Closed Loop Inverse Katen{CLIK) algo-
rithm, as shown in Figurle 5.2, which allows avoiding the fiiieffect due to the discretization
of the joints positions [Sciavicco and Siciliano, 2000].

Among the possible ways to invert the kinematics the foltayis used:

i =Jw+ (I-J"0),
=JT(JIT+ D)o+ (I-JT )4 (5.2)

whereJT is a damped least-squares pseudo-inverse of the Jacdbignrepresents an arbi-
trary joint velocity vector which is projected in the nuppace of the Jacobian matrix by the
operator(I — J'.J) (I is the identity matrix), is usually chosen such that joints positions are
maintained far from their mechanical physical limits, psety:

oH
= o 2
q null a4
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Figure 5.2: A simple CLIK scheme. The bloci" refers to [5.2). The retrieving of the target's
cartesian coordinates is not modeled, as it would requidisituss the robotic visual system, the
target identification module etc. For the sake of simpljahany details about the closed loop
control are voluntarily neglected, to keep the scheme clear the computation of the feed-
forward command is not detailed.

which minimize the cost function
L3 gi-a
Hig) = - (—

where[¢"", ™3] is the range for the-th joint, andg; its midpoint. In such manner it is possi-
ble to cope with singularities and to exploit the intringgdundancy of the manipulator. The pa-
rameterk? in (5.2) can be determined adaptively in different ways gkample using the con-
dition number of the Jacobian matrix or the manipulabilitgasure[[Chiaverini et al., 2008].
In [Sugihara, 2009] a pseudo-inverse Jacobian based oretlenberg-Marquardt formula was
proposed, where the damping factor was found consideriagdisition/orientation error and
the singular value decomposition of a suitable weightedllian. The algebraic operation
yielded smallest joint deviations in the proximity of thagular configuration of the redundant
arm, however the author himself pointed out that the metldddead to physically unfeasi-
ble motions, as the continuity of the solution was not preser Herd, we prefer the method
proposed in[[Chiaverini et al., 1991], whekedepends on the smallest singular vaitg,, of

the Jacobian matrix:
12 = 0 Omin > 0 (5.3)
[1_(_O-g_m)2]];: O’m|n<6’ .

For example, in James we set 0.20 andk = 0.10, after manually driving the arm to singular
configurations and studying the singular values, and ge#tisafety threshold. In fact, it must
be pointed out that the smallest singular value can be ldwaar the threshold even in non-
singular configurations of the arm.

Note that the singularity is solved by acting on the singuédues, which are configuration-
dependent, while redundancy is resolved by selecting theiso which stays furthest away
from the joints bounds. A point-wise approach like this may lead to the best solution for
the overall trajectory. It is reasonable to solve the IK thisy, since “globally” the control
functions are already an approximation of the global oneg the smoothing properties of the
neural networks should prevent rough behaviors.

LAll cited method were evaluated: best results were foundgug.3).
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Figure 5.3: James’s arm CLIK controller, with the contribution, in eeitte, of the neural con-
troller.

The generation of the commanded Cartesian velocitiesin (5.2) is shown in Figurg 5] 2.
With an abuse of notati&w(t) =2*(t) + R(s) = e(t), wheree(t) = z*(t) — z(t) and R(s)

a regulator which will be discussed hereinafter. The ata<CLIK scheme relies on a purely
proportional regulator, i.eR(s) = K., whereK, is a diagonal positive defined matrix. In an
ideal situation, the correction terii.e(t), wheree(t) = z*(t) — x(t), guarantees convergence
to zero of the Cartesian error and the error dynaénicK.e = 0 is asymptotically stable. The
convergence velocity of such system depends on the eigms/alf the gain matrix<, > 0
[Chiaverini et al., 2008, Sciavicco and Siciliano, 2000].

When the robot is performing tracking tasks, the discrmbetsystem must respond to
rapid variations of the target trajectory: hence, the gsdinshould be raised until some rea-
sonable performances are met. Unfortunatély,cannot be raisedd libitunt its upper-limit
is determined by the physics of the problem, and high-fraqueerms, delays and unmod-
eled dynamics also prevent to incredsg to a desired value. For these reasons the simple
proportional gaink. is substituted with the following:

R(s):K61+ST€

(5.4)

whereK, is still a positive diagonal matrix;. a time constant. Incidentally, (5.4) corresponds
to a PI controller, where the proportional gairfisr, and the integral one i&.. The sampling
time At is then fundamental for the proper tuning of the digital gné gain. The time con-
stantr, (corresponding to the zerel /7.) can be then manually adjusted (e.g. looking at step
and ramp response, and their transient trajectories), smrasse the proportional gain while
preserving the system safety.

In general, regulatof (5.4) can guarantee asymptoticl#yabiith faster response of the
system with respect to the purely proportional regulattre €ommanded Cartesian velocities
are then:

o(t) = #*(8) + Koroe(t) + K, f e(t)dt. (5.5)

Also in this case, it is possible to guarantee stability amavergence, for. > 0, K. > 0 and
the trend of convergence depends on the two eigenvaluekimgsiiom s + k.7.s + ke = 0
(K, = kel).

The semi-global stability of the regulatdi(s) by means of a Lyapunov function can be
also proved. Given a desired trajectary ¢ C, wherez*(t),* are bounded, define with

2R(s) denotes a Laplace transform of the reguldgor
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e(t) = x*(t) — z(t) the trajectory error such that= * — & = #* — J4. Consider the following
candidate Lyapunov functiol (e) = —e e > 0 (“globally” definite positive, sincéd’(0) = 0),
with V =eé = " (i* - J§). Take the following velocity

g=Jt (m t Kore + K, / e(t)dt) ,

then substitute it intd:
V= el [i* = JITG + keree + ke f e(t)dt)]
=— K.1.e—¢' K, f e(t)dt
< —keTe [le]® = kea €]

wherea = [ e(t)dt. Assume thaBla : [e(t)dt < ae|. If V is a Lyapunov function,
i.e. V <0, thene = 0 is a globally stable equilibrium state. Sinkg 7. > 0, the sign ofa
determines the stability property. df > 0, thenV ||, V <0, sinceV is a quadratic function,
with V(0) = 0. If a < 0, thenV is still a quadratic function, with’(0) = 0, butV(e) > 0 for
0 < Je| < £: in this region, there is no attractiveness, however it issjile to shorten that
region to a desired, by increasing suitably In this case¢ = 0 is semi-globally stable. [0

5.3 Forward Dynamics

In Section[5.2 we presented a method for converting desiagéctories in the operational
space into desired trajectories in the joint velocity spatie latter can be either sent to the
robot, to a joint velocity control interface, or furtherisdated into joint torques commands, if
there is a force/torque control interface is available.tttenmore, desired trajectories can be
planned directly in torque space, considering a nonlineztehof kinematics and dynamics of
the system. In each of the following cases, it is necessargrpute the Forward Dynamics of
the robot, i.e. the mapping between its proprioceptive goméition (joint positions, velocities
and accelerations) and joint torques. Of course, a suithblamics model (e.g. a rigid body
dynamics model) must be known.

The classical dynamic equation describing:dink robot manipulator is described by
Eq.[5.1. A notable property is the linearity of the model wigpect to the dynamic parameters
which characterize the manipulator, particularly in theaize of external forceé & 0) (5.1)
can be written as:

T=Y(q,4,4)m (5.6)

whereY € R™? is theregressorandr € R? is the vector collecting the set of constant parame-
ters which describe the manipulator dynamijcs [SciavicabSigiliano, 2005].

Such parameters, including link mass, inertia, Center a§M&OM) location, etc., can
be usually retrieved from the CAD model of the robot. Fredlyethey are partially known,
or known with some uncertainties: in this case, supervisathing techniques such as Sup-
port Vector Machines (SVM) and NN can be used either to fincbibst set of parameters or

116



5. Motion control on humanoids

to directly approximate the forward dynamics of the roboh iAteresting analysis and com-
parison of model based versus supervised learning teahifiguhis problem can be found in
[Fumagalli et al., 2010a], and will be shortly discussed éct®n[5.3.1.

5.3.1 Robot dynamics: model or learning?

The robot dynamics, expressed BY-) in equation Egl_5]1, can be identified either deriving
it analytically, or approximating it using a set of expermed data and a machine learning
technique. In the latter case, the learning algorithm isoain to the underlying dynamics
model that is used to produce the examples, but the main tyeus that nonlinear effects
do not need to be explicitly modeled, as these are learneticithpby the algorithm. In
this sectioﬁ, we will report some significant results about a comparisbthe model-based
approach and two machine learning algorithms, appliededdantification of a robotic arm
dynamic model:

1. Model-Based Approach

Eq.[5.1 defines torques as a linear product of matrix, ¢,G) and vectorr: the first
depends solely on the joint positions, velocities and &tadbns, whereas contains
the dynamical parameters that we must estimate to deséwbmanipulator dynamics
[Kozlowski, 1998]. In particulary is the minimum set of identifiable parameters, i.e. a
linear combination of a multitude of elements, containingdacts among each link mass
m; € R, inertial parameters; € RS (the inertia matrix can be defined by six parameters
because of its symmetric properties), Center Of M@ss R? (COM - in form of a
distance vector between the COM frame and the referencesfaditie link, eventually

a roto-translational matrix if frames have also differenéwotations), length, and soffn
The system dynamical parametersan be often retrieved from an accurate model of
the robot (e.g. CAD drawings), but they are not generallyueste, hence a weighted
linear Least Squares technique can be used to improve stairate. Givenl. samples,
consisting of measurementsy, q¢, G, G¢ ), the set of optimal parameters can be found
as:

L
= arg min > (e =Y (qe, e, Ge) ™) Tw(Te = Y (qe, 4o, Ge) )
=1
wherew is a suitable weighting diagonal matrix. The explicit smatis given by:
=Al7=[aToA] " ATOF |
wheref) = dla‘g(w)' A= COI(Y(qla Ql7ql)7 s 7Y(QL7q‘L7q.L))1 andr = COI(Tla s 7TL)'

2. Least Squares Support Vector Machines for Regression

3The detailed description of the methods can be found in [Faffieet al., 2010a].

4Each kinematic chain link has an associated reference frdefimed by the Denavit-Hartenberg convention
[Denavit and Hartenberg, 1955, Lagarde et al., 2009]. Aidi;namic and kinematic quantities of each link (COM,
inertia, length, etc.) refer to the associated refereramér
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Least Squares Support Vector Machines (LS-SVMs) belongécactass of kernel me-
thods which use a positive definite kernel function to edtmea linear approximator
in a (usually) high-dimensional feature space [Suykens$ e2@02]. Let us define the
data setS = {a:g,yg}eil, where inputse, € R™ and corresponding outpuis € R for ¢ =
1,..., L. LS-SVM estimates a linear decision function of the fofx) = (w, ¢(z)) +b,
whereb is a bias term ang(-) : R” — R/ maps samples from the input space into a
(usually) high-dimensional feature space. The weightarect and biash are chosen
such that both the squared normwefand the sum of the squared errers= v, — f (/)

are minimized, which is found by solving a dual optimizatfmoblem in the form

L L
maximize 1||wH2 + 1C Ser = > ap ({ze,w) +b+er—ye)

2 2 A =1
whereay € R are the Lagrange multipliers associated with each samgie. décision
function can be rewritten af(x) = X%, as (¢(2¢), ¢(x)) +b. Hence, a kernel function
k(x;i,xj) = (¢(x;),o(x;)) can be used to implicitly map the data into the feature space.
Given a kernel matrixs = {k(a:i,a:j)}ﬁjzl, the solution to the optimization problem in
@2) is given by a system of linear equations:

- T

which is reduced to &L + 1) x (L + 1) matrix inversion, solved efficiently by state of
the art algorithms such as Cholesky decomposition [Ca&Iég6].

. Neural Networks Lastly, a multiple input - multiple output OHL-NN can be uséar

its generalization and approximation capabilities [Herei al., 1989], and de-noising
property when dealing with experimental data. Given a bdtia set, a typical training
algorithm for NN is based on the well known Levenberg-MargugLM) algorithm
[Levenberg, 1944, Marquardt, 1863], where the criteriontfaining the network (that

is to find the optimal parametets’) is to minimize the mean squared error between the
estimated and the measured data:

L
w® = argmin ®(w) = arg min 3 Y e (w)eg(w)
i=1

whereey(w) = ¢ - (7, w) is the error between the measured and the predicted data,
estimated by a NNy(-,w), with the same structure seen in Chapter 4. The iterative
algorithm consists in a back-propagation of the error fiemgtto compute its partial
derivatives with respect t@, and a weight update equation

W1 = wp, = [T (we)J (wi) + 17T (we)e(wi)

wheree(wy) = [e1(wy), ... er-1(wi)], andJ(wy,) € RPW is the Jacobian matrix of
the errors with respect to the parameters of the NN. The peteap, adjusted iteratively,
balances the LM between a steepest descent and a GaussaNggaathm.
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Generally, learning algorithms outperform the rigid bogyamic model in terms of pre-
diction accuracy, given that a sufficient amount of trainiiaga is available. The generalization
performance of these methods improves steadily as morengasamples become available.
LS-SVM converges slightly faster than Neural Networks, thir final performance on large
data sets is nearly identical. The model-based method, ewttter hand, requires very few
samples to achieve acceptable predictions.

In [Fumagalli et al., 2010a], the three methods have beeluaes experimentally on a
common data set that has been gathered during a sequenaalofirarm movements, per-
formed in joint space by the humanoid robot James. Withotérgng into the details of the
experiment and the full comparison among the methods, wartrdygre some interesting re-
marks:

* Number of Training Samples the two learning methods have a strong dependency on
the size of the training set. They consistently improve grenince with the increase of
the training set, eventually outperforming the model-dasggproach by an order of mag-
nitude, as shown in Figufe 5.4fa); whereas the model-bggedach appears to perform
at a constant level, regardless of the number of samples.niéans that the model-based
approach is the preferred approach when only very few sangpéeavailable.

* Contribution of Velocity and Acceleration on the Estimation: including joint veloc-
ities and accelerations does not always improve the geratiah performance of the
learning methods when training is done on a small numberrapiss. This is probably
due to the fact that learning algorithms require an increpamount of training samples
to make effective use of this additional information (i.be {COD [Duda et al., 2001]).
Figure[5.4(0) shows that both LS-SVM and NN use joint velesito improve their pre-
dictions only if given a sufficiently large training set. dbaccelerations do not seem
to contribute positively to the estimation, but this is pbly caused by the experiment
itself, where motions were smooth, and by the fact that acatbns were not measured
directly but derived from positions (thus, very noisy).

» Selective subsamplingto avoid data oversampling in an abundance of training, data
selective subsampling strategy was designed to removelassutmat were nearly identi-
cal to each other, which particularly affects LS-SVM penfiance. A certain “sparsity”
of the training set was guaranteed by taking a subset, sathh# inter-sample the Eu-
clidean distance in the standardized input space was dtddaseshold:. When this
distance is determined solely based on the joint posititires) Euclidean subsampling
results in a significant improvement for small data sets. l&ge data sets, and thus a
small inter-sample threshold, the Euclidean and randorsetsthave very similar sam-
ple distributions and therefore similar performance. Intcast, random subsampling
performs better than Euclidean subsampling based on jositipns, velocities and ac-
celerations. Some results are shown in Figuré 5.5.
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Figure 5.4: Comparison of the three methods on random training sub$éisreasing dimension and three different input spacesr feints

of James’ arm were involved in the experimeR.denotes the input space containing only joint positians R*), PV contains both joint
positions and velocities;(¢ € R®), andPVA contains joint positions, velocities and acceleratiang,(i € R'?). Note that if5.4(b) both axes
are in logarithmic scale to accentuate differences in fiealggmance.
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Random
A Euclidean PVA
0.081 - = = Euclidean P

L L " L
60 100 200 500 1000 2000 5000
Training set dimension

Figure 5.5: Comparison of random and selective subsampling based ndastdized Euclidean
distance. Euclidean Pand Euclidean PVAdenote subsampling based on Euclidean distance
thresholdst = {1.35,1.15,0.88,0.65,0.5,0.35,0.18} using position inputs and thresholds=
{6.0,5.3,4.5,3.7,3.1,2.5,1.8} using position-velocity-acceleration inputs, respestiv

5.4 Force/Torque feedback for control

Once the FD of the robot is known, it is possible to computedésired torque commands
for an optimal trajectory. In an ideal case, where the rolyoiadhics is perfectly known and
all possible interactions with the environment are pelyesteasurable (i.e. we have a full
knowledge of the system) one could send torque commandsimioep. In real situations, a
closed loop feedback control must be implemented.

When force or torque commands are applied to the robot, liawier is grounded on the
sensory system: joint torque sensors rather than forcee(ibe latter typically placed at the
end-effector), are required. Exploiting the sensors mftion, the robot not only can carry
out force regulation, but also react safely whenever uneeplecontacts occur during task exe-
cution [Siciliano and Villani, 1996, De Luca, 2006, Haddaet al., 2010k, Mistry et al., 20[L0,
Calinon et al., 2010, Fumagalli et al., 2010a)].

Traditionally, torque feedback is provided by specific jaorque sensors, distributed over
the entire structure of the robot, measuring the momentummpooent which works along the
axis of rotation of the joints. However, retrieving such s@@ments using localized torque
sensors might not allow a full perceptual representatiath@interaction scenario, in terms of
forces and torques which rise over the whole structure. Evienque sensors are distributed
over the entire structure of the robot and can measure tleenaltdynamic as well as the
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interaction occurring on their link, they can measure alsisgmponent of momentum which
works along the axis of rotation of the joints. More speclfi¢aince forces and torques are
linearly related by the transposed Jacobian, which mighe l@anon-empty null-space, there
exist singular configurations where some interaction for@esensory level cannot be fully
retrieved (e.g. pure forces working on a direction whichasafiel to the joint torque sensor
axis arehidder).

A more robust and complete representation of the intemradboces can be retrieved by
Force/Torque Sensors (FTS). Classically, robots are pgdipvith six-axis FTS mounted in
their end-effectors, where the most interaction with theirenment occurs during manip-
ulation [Sciavicco and Siciliano, 2005]. This solution i@ngpact and less invasive with re-
spect to the design of joint torque sensors [Parmiggiani ,e2@09,/ Luh et al., 1983], allows
a complete representation of the interaction and thus thixaament of active compliance
[Caccavale et al., 2005, Chiaverini et al., 1999, Siciliand Villani, 2000]. However, this in-
formation is localized at the tool level. In other words, &t the end-effector does not allow
retrieving neither the information about the manipulatgnamics, nor about the potential in-
teraction occurring on any link of the robotic system. Irsthituation, this information must
be retrieved with other sensors.

If a FTS is located proximally, for example in the middle ofiadmatic chain, it is possible
to exploit its measurements in a different way, and bagicallopagate” its measures through
the chain. A simple way consists in “projecting” its measueats on the joints through the
transposed Jacobian. A more complete representation céoubé by applying recursively
Newton’s laws, and will be briefly introduced in Section Bl4dowever, the analytical solution
for computing joint torques becomes quite complex for mamglicated kinematic structures.

In Sectior 5.4.2, we describe instead a procedure whictvslitetrieving a more complete
and better representation of the interaction forces oweettiire structure of single and multi-
branched kinematic chains, such as a humanoid robot. Timoged approach makes use of
three sets of sensors, distributed along the kinematicichai

« force/torque used to measure dynamical wrenches, i.e. the forces ancenisithat are
due to the dynamics of the structure;

* inertial, since their measurements can be propagated through theitctiee kinematic
model of the robot is known, thus allow retrieving a complééscription of the kine-
matics information of the links in the manipulator;

« finally, distributedtactile sensors provide the information about the location of atista
occurring dynamically with the environment.

Under suitable assumptions, we will show that by exploitingse sensors it is possible both
to detect external wrenches and to obtain complete infoomadf the wrenches transmitted
along the structure (and thus also joint torques). BasicHla precise dynamical model of
the robot is known (i.e. a rigid body model), internal for@es torques can be computed
by means of recursive algorithms, such as the clas§tealursive Newton-Euler Algorithm
(RNEA) [Sciavicco and Siciliano, 2005]. To the best of oupkhedge, a similar solution has
been adopted only once in [Morel and Dubowsky, 1996, Moral.e2000] where a single FTS
placed at the base of a 3 Degrees Of Freedom (DOF) PUMA maipuas used to estimate

122



5. Motion control on humanoids

Figure 5.6: Notation for thei-th link of a kinematic chain. A more complete descriptiom ¢
found in [Sciavicco and Siciliano, 2005].

the joint torques. In Sectidn 5.5.2, some experiments avenishwhere the proposed method
has been applied to estimate forces and torques on 32 of th®53f the iCub. Moreover, we
enrich the estimation by also computing external forceswtcantact location. This informa-
tion can be fixedh priori for particular robot tasks, but in general must be updatetherfly:
in iCub it is provided by its “artificial skin”. In the remaied of this section we will introduce
the Enhanced Oriented Graph (EOG) method, which is usedrforpethe RNEA computa-
tions on both single and multiple branched open kinemat&nsh when one or multiple FTS
are available. It must be pointed out that the RNEA is herpgsed as a tool to compute kine-
matic and dynamic information recursively, but its adoptie not a must and other recursive
algorithms could be used. The proposed method is thus shmlwe generic and applicable
to every open kinematic tree. Force sensors are used tovwefine estimation of the internal
wrenches and for the computation of external interactidme fiumber of FTS to employ and
their placement along a manipulation structure is not ddfiliée only suggest spreading them
on different links of the system to increase the quality alidbility of the results. The method,
in fact, presents a systematic procedure for compuling1 external wrenches fronV inter-
nal wrenches (i.e. measurements from FTS). Remarkablgrwsaine conditions that will be
presented in next sections, all link wrenches and jointuesqgcan be theoretically computed.
It is necessary to introduce the notation of the variablgaired for computing the internal
and external forces and torques. Given a fofeeR? and a moment € R?, a wrenchw € RS
is the vectorw = col (f, ). FTS, which actually measure a wrench, are named according t
the physics terminology, whegeis called torque. To discriminate from the joint torquewe
call x moment accordingly to the mechanical terminology. The digson of the kinematics
and the dynamics of a link (see Figlire]5.6) adopts the Dehtaritenberg notation. We limit
the discussion to revolute joints for the sake of simpljdiyt the method is generic for both
revolutionary and linear joints. Here is a list of the addpsgmbols:

(-) generic Cartesian reference frame

v® givenv € R™ a generice-dimensional vecton® is v expressed ifa)
R® the SO(3) rotation matrix from{a) to (b)
4,5 distance vector from (a) to (b)
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z; z-axis of (i), aligned with the axis of rotation of joirit
0; the angle associated to tih joint
p; € R3, denotes the linear acceleration(of
w;, w; € R3, the angular velocity and acceleration(of
m; mass associated with theh link
I' e R®3 represents the inertia tensor of thth link, defined with respect to the center of
mass oriented as the frani@
C; €3 the coordinate vector of the center of mass of liftk, with respect tdi)
f; €R3, represents the forces applied @h, that linki + 1 exert on the-th link
pi € R3, represents the moment applied (@i, that linki + 1 exert on the-th link
7; € R the joint torque, i.e. the component @f along z;
w; € R¥is the wrenchw = (/) applied on(i), that linki + 1 exerts on linki

5.4.1 Wrench transformations and FTS measurements

Consider a kinematic chain, where a FTS is embedded in gkt link as shown in Fig-
ure[5.8(b). Name the sensor frafe and number progressively the links framiés) , (is + 1), ...
as(s+1),(s+2) and so on: interestingly, all links wrenches,;, = [ f5:F, u5**] can be ex-
pressed as function of the FTS measurements [ /2, 5] by the compact formula:

Weirk = Agik Ws + Wik,

T ~
Toak = WS Copp 20 + Tork

where A, andCy, ;. basically contain the rotations and distance vectors atviames to
transform wrenches between different coordinate franpes;ically:

S T
As+k = [ TRs+kk 1 A ’ T:|
s s+k— s
_Rs+k (Ts—l,s+k—1) Rs+k

s+k-1 A DS
Os+k — |:(Ts+1,s+k—l) Rs+k—l]

S
s+k—1

Werp = [f57F, 58] and 7., instead contain all the dynamic terms which are not takem int
account by simply applying a wrench transformation betwdi#arent frames in a rigid-body.
Indeed, matrixA,,; is the Adjoint matrix defining a wrench transformation in gidi body
[Murray et al., 1994].

As an example, in the “static” case (i.e. whgr= §; = 0, Vk) we have:

k-1
stk _ ps T ps s+7 Cst]
sk = Bo fs - Z Rs+k Mes+j pCS+j
Jj=0
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s+k s s s+k-1 A pS
Hgvk = R+k :us R+k (Ts 1,s+k—1) fs

- s+5 T -5+7
- Z Rs+k Ms+j (Ts+]C ) pC’S+J

s+j

+ Z RZI% M (Ts+] s+k— 1) p

T +k-1 A
Tst+k = [ Rpo1 He— Ripy (ri 1,s+k—1) Is
- s+ T o st] A S+]
- Z_E) Rs+k—1 Ms+j (Ts-%-jC' ) Csyj

s+j

- -
E : s+) m A s+]
+ — Rs+k—1 s+j (Ts+] s+k— 1) Cisij 20

which gives:
S ] s+1
Fstk _Rs+km5pCS Rs+km3+1p0
s+k
= RS T A s+1T/ s+l 2541
st Rk (Tsc) mspe, Rs+k s+1,CS+1) ms+lpcs+1
s+k T(,.8tk—=1 \A s+ s+k-1
_Rs+k (Ts,s+k—1) mspC’S _Rs+k (rs+1,s+k 1) m3+1pCs+1
s+k— ss+k—2 s+k— ss+k—-1
_R5+k Mgtk 2pCs+k 5 -R ms+k lpCch L
s+k—2T s+k—2 s+k—2 s+k—1T s+k—1 s+k—1
R8+k 1 s+k—2705+k 2) Mis+k— 2pCS+k 2 R8+k 1 s+k—1705+k 1) Ms+k- 1pCS+k 1

s+k 1T, s+k—1 >s+k—2
s+k (Ts+k—2,s+k 1) Ms+k- 2pC s+k—2

and the following torques:

ms(Po )T (s o)t —ms (pc )’ (ngﬁl DN RS

ss+k—2 \T s+k-2 R s+k—2
— Mgsk—2(Pe ko Ts+k—2,C’S+k_2) s+h—1T
Ts+k = “m (j “S+k-2 \T (,rs+k—1 )" Rstk-2 20
s+k-2\PC, ., s+k—2,5+k-1 s+k-1
ss+k—1 \T (,.s+k-1 A ps+k-1
Mgtk 1(pcs+k L (7°3+k_1,5+k_1) Rk

The “dynamic” case (i.e. when joint velocities and accelers are not zero, thus during
motion) is not explicitly reported for the sake of brevitydasimplicity, because the equations
become much more complicated. However, even in that cageitltéorques can be retrieved
just applying the aforementioned formulas recursively.
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Figure 5.7: An open chain represented as a graph.

5.4.2 Enhanced Oriented Graphs

Graph theory has been extensively used to represent meahagstems [Wittenburg, 1994,

Featherstone and Orin, 2008] and kinematic chains, pragumbmpact and clear models, in
matrix forms with beneficial properties (e.g. branch-iretlisparsity | [Featherstone, 2010])
when the connectivity among its elements is expressed. eTisemot a unigque choice for a

graph representing a chain: for example/in [Feathers@0@/] graphs are undirected, nodes
and arcs represent bodies and joints respectively; thétiresgraph is undirected (i.e. non-

oriented), but nodes are “labeled” according to a “reguianbering scheme”.

This section presents the theoretical framework offhbanced Oriented Grapi{&OG),
applied to the computation of both internal and externahehes applied to single and multiple
branches, generally non-grounded, kinematic chains. Toy@oged method is an extension of
the classical RNEA [Featherstone and Orin, 2008, SciavacmbSiciliano, 2005]. Similarly to
the classical approach we represent a kinematic chain asph guch that computations of
the system dynamics can be obtained performing a pre-omtka post-order traversal visit of
the graph itself. However, we enhance the graph with speuiiites representing both known
and unknown (kinematic or dynamic) variables. Remarkady, all the unknowns will be
specified a-priori (e.g. contacts at arbitrary locationghhiappear and other contacts might
be removed) and therefore the graph structure will be adeqneordinglﬁ. This dynamically
evolving graphical description of the chain modifies the wg graph is visited during the
Newton-Euler recursion, thus changing in particular thedation along which the recursion
is propagated in the graph. In order to cope with this evglviepresentation we introduced
another difference with respect to previous RNEA graphiegresentations by representing
the kinematic chain as asrientedgraph: the direction along which edges are traversed will
determine either the use of the classical Newton-Eulersémo formula or a slightly modified
version of it.

The enhanced graph representation

We here consider an open (single or multiple branches) latierohain withn DOF composed
of n + 1 links.

Adopting the Denavit-Hartenberg notation [Sciavicco arligno, 2005%], we define a set
of reference framef)), (1), ..., (n) attached at each link.

SWithin this context, a crucial role is played by the disttiol tactile sensor, primarily used to compute the
presence and the location of externally applied wrenchesn E the tactile sensor would be capable of measuring
also the component of the force normal to the skin surfaéginfformation is not used in this paper where we focus
computing both the applied force and torque (i.e. the whgteraally applied wrench) exploiting the embedded
Sensors.
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5. Motion control on humanoids

The i-th link of the chain is described by a vertex (sometimes called node), usually
represented with the symb@). A hinge joint between the linkand the link;j (i.e. a rotational
joint) is represented by an oriented edge connectingy; with v;: D — (. In an DOF open
chain, each vertex (except for the initial and termingland v,, respectively) has two edge
connections. Therefore, the graph representation ofilieks chain is an oriented sequence
of nodesv;, connected by edges._; ;.

The orientation of the edges can be either chosen arbytr@irivill be clear later on that
the orientation simply induces a convention) or it can felloom the exploration of the kine-
matic tree according to the “regular numbering scheme”tftexatone and Orin, 2008], which
induces a parent/child relationship such that each node hesque input edge and multiple
output edges. Following the classical RNEA and the clakBieaavit-Hartenberg notation, we
assume that each joint has an associated reference framthevit-axis aligned with the rota-
tion axis; this frame will be denote@; ;). In kinematics, an edge ; from v; to v, represents
the fact thate; ;) is fixed in thei-th link. In dynamicsg; ; represents the fact that the dynamic
equations will compute (and make use of);, i.e. the wrench that theth link exerts on the
j-th link, and not the equal and opposite reactian, ;, i.e. the wrench that thgth link exerts
on thei-th link (further details in Section 5.4.2). In order to silifypthe computations of the
inverse dynamics on the graph (see Sedtion b.4.2), kineraati dynamic measurements have
been explicitly represented. Specifically, the graph regmeation has been enhanced with a
new set of graphical symbols: a triangle to represent kitieng@antities (i.e. velocities and
acceleration of links w, w, p), and a rhombus for wrenches (i.e. force sensors measutemen
on alink —f, 1). Moreover these symbols have been further divided kmimyvnquantities to
represent sensors measurements,uarkthownto indicate the quantities to be computed, as in
the following:

e : unknown kinematic information

» ¥ known (e.g., measured) kinematic information
+ {: unknown dynamic information

* ¢: known (e.g., measured) dynamic information

Kinematic variables can in general be measured by meansrofgypes, accelerometers,
or simply inertial sensors. When attached on liftk, these sensors provide angular and linear
velocities and accelerations (w, p andp) at the specific location where the sensor is located.
We can represent these measurement in the graph veitick triangle(w) and an additional
edge from the proper link where the sensor is attached toidrgte]. As usual, the edge has
an associated reference frame , in this case corresporalthg teference frame of the sensor.
Similarly, an unknown kinematic variable is representethva white triangle () with an
associated edge going from the link (where the unknown katenvariable is attached) to the
triangle. The reference frame associated to the edge weékhine the characteristics of the
retrieved unknown kinematic variables as it will be cleaSectiol 5.4.2.

Similarly, we introduce two new types of nodes with a rhondlabishape:black rhombi
(#) to represent known (i.e. measured) wrenchvsite rhombi(¢) to represent unknown

SAccording to our kinematic convention an edge is fixed on thei-th link. Therefore a sensor fixed in the
i-th link, will be represented by; s, i.e. an edge from the link to the sensor.
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Q link and sub-link

(b)

Figure 5.8: The notation introduced to represent node (vertex, limg sub-node (sub-
link). 5.8(b} A representation of a FTS within thig-th link. Note that the sensor divides the link
into two sub-links, each with its own dynamical propertigsparticular, it is evident that the center
of mass (COM) of the original linky; ., differs fromCF, CB, i.e. the COM of the two “sub-links”.

wrenches which need to be computed. The reference frameiaiesbto the edge will be the
location of the applied or unknown wrench.

Remark 14. There is not a fixed rule to determine the orientation of thgeecbnnecting the
rhombi to the graph: according to our convention for repratseg the wrenches, the edge can
be either directed from the rhombus to the link or vice verspethding on the variable we are
interested in representing (i.e. the wrench from the linthexternal environment or the equal
and opposite wrench from the environment to the link).

It is important to point out that, whereas the position4pf is static within the graph
(because sensors are fixed in the manipulator), the locati¢mstead can be dynamic (contact
point locations are dynamically detected by the distridutectile sensor). If a contact moves
along a chain, the graph is accordingly modified. This rulewsha big benefit of the EOG,
which dynamically adapts in response to the location of tilenawn external wrenches.

Within this representation, embedded FTS can be insertetuiying” the manipulator
chain where the FTS is located and creating two virtual ‘teoks” from the link hosting phys-
ically the sensor. The EOG is then split into two sub-graphisere black rhombi ¢, i.e.
known wrenches representing the FTS measures, one pel) graghtroduced and attached to
the sub-links. In practice, suppose that an FTS is placeldenstth link (see Figuré 5.8(b)).
Let (s) be the frame associated to the sensor. The sensor virtugitjesd link ;g into two
“sub-links” (hereafter denoted forward and the backwalulgwks). The sensor therefore mea-
sures the wrench exchanged between the “forward” and thekiterd” sub-links (this will be
represented by two rhomboidal nodes). Under these coasidies, the FTS within a link is
represented by splitting the node associated to the limktimd sub-nodes (with suitable dyna-
mical properties, see Figure 5.9). Two known wrenches irfdha of black rhombi are then
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5. Motion control on humanoids

920, 0,09,

Figure 5.9: The graph shows how to insert an FTS in a graph representi#tamkinematic chain.
The node on which the sensor is attached (highlighted) astimally divided into two sub-nodes.
The graph is divided into two sub-graphs and two black rhofkbdown wrenches corresponding
to the sensor measurement) are connected to the sub-nodes.

flow
unknown . . known
ej,k
flow

known unknown
€jk

Figure 5.10: The basic operation for propagating information across@@EGiverw; we assume
to knoww;, w;, p;. This information can then be propagated to all the conmenteles. Ifvy, is
connected ta; by e, (i.e. the edge is directed fromy to v;) then we can computey, wy, P
using [5.7) (just replacé+ 1 with k). If v, is connected t@; by e ; (i.e. the edge is directed
from v, to v;) then we can computey, wg, Pr using [5.T) (just replace- 1 with k). Similar
considerations can be done for dynamic variables.
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attached to the sub-nodes, with suitable edges whose assboéference frame (s) for both
edges.

Exploiting the RNEA for EOG

The graphical representation proposed in the previougseran be used to compute the inter-
nal dynamics of a (floating) kinematic chain provided witffisient tactile, haptic and inertial
sensors. In particular, in this section we describe how topde both kinematic and dynamic
variables, associated to the edges of the graphical repietss.

A first recursion on the graph (pre-order traversal) will guite the linear acceleratiop)(
and the angular velocity and acceleratian §) for each of the reference frames associated to
the edges of the graph. This procedure practically propaghe information coming from a
single inertial sensor to the entire kinematic chain. Athesiep, the values ofj( w, w) for
a given link are propagated to neighbor links by exploitihg Encoder measurements and a
kinematic model of the chain.

A second recursion (post-order traversal) will computétadi(internal and external) wren-
ches acting on the chain at the reference frames associ#tedlithe edges in the graph. In
this case, Newton-Euler equations are exploited to prdpdgece information along the chain.
At each step, all but one wrench acting on a link are assumébd taown and the remaining
unknown wrench is computed exploiting a dynamic model oflitleand the output from the
kinematic recursion.

Kinematics

We here describe the basic equations for propagating tharidtic information within the
graph. The proposed notation might seem a little bit too ggnespecially if compared with
the classical computations where the major simplificatsaihé assumption that kinematics are
propagated in the kinematic tree along a constant path.rloase instead, we are interested in a
formulation capable of exploiting multiple (dynamicallysierted) inertia sensors to propagate
the kinematic information from the sensors to the surroogdinks. Therefore the flow of
kinematics cannot be predefined but needs to be dynamiaddiyted to the current structure
of the EOG.

The basic step here described consists in propagatingrieenkitic information associated
to an edge connected to a nadwo all the other edges connecteditcAs usual, for each edge
i we consider the associated reference frdimeReferring to Fig[ 5.11(§)-5.11(c) we assume
that knowing the linear acceleratiop;f and the angular velocity and acceleratiasy,(w;)
of the reference framgj) we want to compute the same quantities for the frgmesharing
with (j) a common node. Fig. [5.11(d) represents the case where the edgets v but
the edgej entersu; recalling the kinematic meaning of the edge directions,sketch in Fig.
represents a situation whéipis attached te while () is rotated by the joint angle;
aroundz;. The situation is exactly the one we have in the classicabiéiartenberg forward
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5. Motion control on humanoids

kinematic description and therefore we hégve [SciaviccoSindiano, ZOOEﬂ:

Wi = Wj + éij,

wj = d)j + éij + éjw]' X Zj, (57)
Di = Dj+wi X1y +wi x (w; X155),

wherez; andf; indicate the rotational axis and the angular position ofjtinet associated to
the edgej. Similarly, Fig.[5.11(0) represents the case where the édgéersv but the edgg
exits the node; therefore Fig. 5.17|(b) represents a sitwathere(;) is attached te while (7)
is rotated by the joint anglé;. The situation is exactly the opposite encountered in idaks

Denavit-Hartenberg so that we have:

Wy = wj - 9222,

L;.)Z' = d)j - 9222 - 9iwj X Zi, (58)
Pi=Pj —wj x 15— wj x (wj x155).

Finally, Fig.[5.11(d) represents the case where ottand(;j) are attached to the link repre-
sented by. In this case, continuity formulas are obtained putting 0 andd; = 0 in Eq.[5.7
(or equivalently Ed. 518):

W; = (,Uj,

Wi = Wj, (5.9)

Pi = pj + w; % Tjitw; X (wi X Tjﬂ;).

These rules can be used to propagate kinematic informatimss different edges connected
to the same node. The only situation which cannot be solvéiteisne where all edges enter
the nodev, i.e. none of the associated reference frames is fixed tartker] We can handle
these casea posterioriby defining a new arbitrary reference frarhe) attached to the link.
In our formalism, this is achieved by adding a kinematic wwn (37) and an edge from to

v with associated framgv).

Remark 15. If the edge directions are chosen according to a “regular teming scheme” as
proposed in Section 5.4.2, each edge will have a unique mggedge and multiple outgoing
edges.

The only nodes with no outgoing edges will be the ones cooredipg to the leaves of the
kinematic tree (typically the end-effectors). For thesde® we will add a kinematic unknown
(V) and an edge from to v with associated framév) (typically the end-effector reference
frame of the classical Denavit-Hartenberg notation).

"In the classical recursive kinematic computation [Sciesiand Siciliano, 2005] there is a one-to-one corre-
spondence between links and joints (see Fifiure 5.6) thudtiresin a kinematic equations slightly different from
Eq.[5.1. Classically, theé-th link has two joints and associated reference frafigsand (i — 1), respectively.
Only (¢) is attached to the-th link while (: — 1) is attached to the link — 1. The rotation between these two
links is around thez-axis of (i — 1) by an angle which is denotef} and therefore the analogous of EQ.15.7 in
[Sciavicco and Siciliano, 2005] refer ) in place oféj and z;_1 in place ofz;. In our notation, we get rid of
this common labeling for joints and links by explicitly digguishing the link represented with the nodand the
attached joints represented with the edges . .. and associated framésg), (j), ... whose axes are therefozg
zj, ... With associated anglek, 6;.
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(i) (i) (i)
(@) (b) ©)
Co Co~ {’L}
Cr(v) ~ {d} Cr(v)
(d) (e)

Figure 5.11:[5.11(af5.11(c) the three cases accounting for the exchange of kinemdtomma-
tion.[5.11(d}5.11(e) the two cases accounting for the exchange of dynamic irdtam.
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5. Motion control on humanoids

Dynamics

We here describe the basic equations for propagating thenaigrinformation within the graph.
Also in this case, the flow of dynamical information cannotgoedefined because the graph
structure continuously changes according to the positidhebapplied external wrenches (as
detected by the distributed tactile sensor). The basicstgposed in this section assumes that
all but one wrench acting on a link are known and the remainmgown wrench is computed
by using the Newton-Euler equations. Using the graph reptason, a node with all its
edges represents a link with all its joints. As proposed iati8e[5.4.2, at each edgs, ,,

we can associate the wreneh, , thatu exerts onv. At each edge,, we can associate the
wrenchw,, , thatv exerts onu. The Newton-Euler equations for the linkcan therefore be
written as follows|[Sciavicco and Siciliano, 2005]:

Z fel_ Z feo =mvijva

EIEC[(’U) EOECO(’U)

Z (H(i[ + f(i[ X T617Cv) l
EIEC](’U) (5 0)
- Z (/JJEO + feo X Teo,Cv) = fzwz +w; X (flwl)a

epe CO (U)

wher@:

Do, = Di + Wi X 1i,cy +wi X (Wi X750, ), (5.11)

and whereC;(v) is the set of ingoing edge§y (v) is the set of outgoing edges and where
the index: refers to any edge i (v) (necessarily non-empty in consideration of what we
discussed in Sectidn 5.4.2). In other terms, recalling therkatic meaning of outgoing edges,
i is an edge associated with any of the arbitrary referenceesa:) fixed with respect to the
link v. As anticipated, Eq..5.10 can be used to propagate the dgrinformation across the
graph. Assuming that all but one wrench acting on a link akn the remaining unknown
wrench can be computed with Eq. 5.10. Let us denote witie edge associated with the
unknown wrench. If € C;(v), then the situation is the one represented in [Fig. 5.1 1(dwan
have:

fi=_ Z fel+ Z feo+mv]50v7

ereCr(v) eo0€Co(v)
er¥t
pi==fixric, = 2, (He + fey XTerc,) (5.12)
516C1<v)

er¥t

+ Z (/Leo + feo X reo’CU) + fzwz + w; X (sz)
eoECO(U)

8with slight abuse of notation we indicated with ., the vector connecting the generic fraig to the one
placed on the center of ma&$ of thev-th link.
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If i € Co(v), then the situation is the one represented in[Fig. 5.11@&wenhave:
fi= Z fel_ Z feo_mvp.Cm

ercCr(v) e0eCo(v)
eoFt
pi=~fixric, + 3 (Hey + fer XTesc) (5.13)
ere C[('l))
- Z (Meo + feo X Teo,cv) - I:id)i — W X (fiwz’)-
505CO'(”U)
eoFt

Remark 16. With reference to EQ. 5.12-5]13, it must be noted that if onlyedge is connected
to the generic node, thenC;(v) u Co(v) = {i}. Hence, the sums fi, X (ux + fi X ri.c,)
(being k& is the generic index for the edge) are null and the equatiaesbasically simpler.
This case is peculiar, and its significance will be clear fada when the solution of the EOG
is discussed in detail.

Building EOG for Computing Dynamics and External Wrenches

In Sectiori5.4.2 and 5.4.2 we presented the basic stepsdpagating kinematic and dynamic
information across a graph representing a kinematic tne¢hi$ section we describe how to
use these basic steps to compute the whole-body dynamitts specific attention at getting
estimates for the externally applied wrenches (denoted ¢t During these computations
the graph structure is assumed static but it might change e computation to the next.
Initially, the graph structure needs to be defined.

1. Create the graph representing the kinematic tree; defiodafor each link and an edge
for each joint connecting two links. The edge orientatioarisitrary and in particular it
can be defined according to a “regular numbering scheme”.

2. For each inertial sensor (measuring the linear accedarand the angular velocity and
acceleration) insert hlack triangle (¥) and an edge from the nodeto the triangle,
wherew represents the link to which the sensor is attached. Adgsotahe edge the
reference framés) corresponding to the sensor frafhe.

3. For any node with only ingoing edges, addwhite triangle(v/) and an edge from to
the triangle. Associate to the edge an arbitrary refererscad(v ).

These steps define the kinematic EOG which can be used to ¢ertipkinematics of
the entire chain. Specifically, if this graph contains a lgirigertial sensor (represented by a
wnode), the associated measurements can be used to complitee#tr acceleration and an-
gular acceleration and velocity for all the edges of theﬁrz@omputations can be performed
following the procedure in Algorithrinl 3, that ispae-ordef ] traversal of the tree with elemen-

°Kinematic chains are often grounded and therefore thestseaibase link with null angular kinematics =
[0,0,0]", & = [0,0,0]T and gravitational linear acceleratigin= g, beingg the vector representing the gravity
force. This situation is mathematically equivalent to aeriial sensor attached to the base link and measuring
constantlyw = 0, w = 0 andp = g.

19see also Remafkl5.

"pre- andpost-orderrefer to different classical graph visiting algorithrs f@n et al., 2002].
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tary operations defined by Hq. 5.7, Eq.J5.8 or[Eqd]. 5.9. If rpldtiw nodes (i.e. inertial sensors)

are present in the graph, each path between two of these notesponds to a set of three
equations containing the measurements: one for the lireeaiexations, one for the angular
velocity and one for the angular accelerations. These msatan be used to refine the sen-
sor measurements or to give better estimates of the joiotitms and accelerations (typically

derived numerically from the encoders and therefore oftagy).

Remark 17. In this respect, a possible algorithm for computing the dredistimate of the
kinematics, given the multiple sources, is briefly repoitedlgorithm[4. Basically, given a
set of K kinematics source¥, which for brevity we namey, ..., xx, Algorithm[3 is solved

K times. At each timé, x; is the only kinematic source which is not being removed from
the EOG, and then the onlyin the graph. The solution of the EOf times yields a set of
conditional estimates;,.,, ... ,wj|x . VJ (@analogous considerations hold farandp), which
can be used by classical filters to provide the better esénf@g. maximum likelihood filters,
Kalman filters etc).

A clarifying example is shown in Figufe 5.12(a): notice ttis visit order is not related
to the edge direction, since the latter only affects the ngee equations that must be used to
propagate the variables, as shown in Figure]5.10. Onceitiekand accelerations have been
computed for all edges, a new series of steps needs to bempedmn the EOG to obtain the
dynamic enhanced subgraphs.

4. For each FTS embedded in the linkut the graph into two subgraphs according to the
procedure Figure 5.9. Divide into two nodesvp and vy representing the sub-links
(with suitable dynamic properties); define tatack rhombi(4) and add two edges
from the rhombi to the nodes. Associate to both the edgesatine seference framigs)
corresponding to the sensor frame.

5. If there are other known wrenches acting on a link (e.g.s@enattached at the end-
effector), insert dlack rhombug4) and an edge from the rhombusutowherev repre-
sents the link to which the wrench is applied. Associate ¢odtige the reference frame
(s) corresponding point where the external wrench is applied.

6. If the distributed tactile sensor is detecting extesnalpplied wrenches, insertwahite
rhombus(¢) for each externally applied unknown wrench. Add an edgeeoting the
rhombus withv, wherewv represents the link to which the wrench is applied. The edge
orientation is arbitrary depending on the wrench to be cdetp(i.e. the wrench from the
link to the external environment or the equal and opposienein from the environment
to the link). Associate to the edge the reference framecorresponding to the location
where the external wrench is applied.

After these steps have been performed, we basically olotdiveedynamic enhanced sub-
graphs, each of which can be considered independently. dhesncan be propagated to the
unknown nodes<) if and only if a unique unknown for each sub-graph existsthis is the
case, then for each unknown we can define a tree with the @deroot. Wrenches can be
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Figure 5.12:[5.12(a&)An example of kinematic EOG with multiple branches. Stayfirom the root

WV, the propagation of kinematics information follows the-preler traversal of the tree. Thus, the
order of “visiting” nodes is: a, b, ¢, d, g, e[5.12(b} an example of dynamic EOG with multiple
branches. The propagation of dynamics information folldhes post-order traversal of the tree:
starting from leaves, information is propagated from dleifdto parents, until the rodp. Thus,
the order of “visiting” nodes is: d, g, ¢, e, f, b, a. It must lwed that leaves are not necessarily
4. as explained in RemafKL6.

propagated from the leaves to the root following the prooedu Algorithm[3, which is basi-
cally apost-ordertraversal of a tree [Cormen et al., 2002] with elementaryrajpens defined

by Eq.[5.12 or EJ.5.13. If there is npnode in a subgraph (i.e. no external forces are acting
on the subgraph), then thpost-ordertraversal of this graph produces two equations (one for
forces and the other for wrenches) with no unknd@ing hese equations can be used to esti-
mate on-line the dynamical parameters of the corresporidivgmatic sub-tree exploiting the
linearity of these parameters in the equations [Sciavicb&iciliano, 2005].

Remarkably, in the considered cases (dr@er subgraph at maximum) each edge in the
subgraph is visited during thmost-ordertraversal. As a result, all internal wrenches are com-
puted and therefore a complete characterization of theevhotly dynamics is retrieved.

As a consequence of what has been shown, gvéfT'S distributed on a chaidy + 1 sub-
graphs are produced and therefore a maximumVof 1 external wrenches can be estimated
(one for each sub-graph).

Case Studies

In order to clarify how to exploit computation of wrenchesamEOG, different situation are
hereafter reported.
Once again, the reader should note that the employment Bf¢havit-Hartenberg notation

2practically, these equations can be obtained by defininglimary Oconnected to an arbitrary node.plst-
ordertraversal of the graph Witl(l} as root determines the equations by simply assuming tharénech associated
to the edge connected {bis null.
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5. Motion control on humanoids

Algorithm 3 Solution of kinematic EOG exploiting a tree

Require: EOG,wy,wo, Po
Ensure: wi,wi,ﬁi, Y,
1. Attach a nodew for every kinematic source (e.g. inertial sensor)
2: Setwg,wp, Po in W
3: Re-arrange the graph withwas the root of a tree
4: KinVisit(EOG proot)

KinVisit(EOG ;)
1: Computew;, w;, p; with Eq.[5.7 of 5.8 or 5]9 according to direction of the edggscon-
nected tov
2: for each child v, of v; do
3:  KinVisitEOGu;)
4: end for

Algorithm 4 Fusion of multiple kinematic sources

Require: EOG,k; = [wk,wk,ﬁk], k=1,...,.K
Ensure: &, w, p, Vi

1. foreachk=1: K do

2:  Attach a nodew for sy,

3:  Computewy,, , Vi

4: end for

5. Computew; = filter* (Wi, ;- - - Wiy )

* filter is a generic filter for data fusion from multiple semso

wo =0 W1 =7
wo=0 Wt =7
p’n-kl =7
\ Zoot oy,
(0) (1) (n)
fO =7 fn+1
Ho =7 Hn+1
' @ €0,1 E €1,2 €n-1,n : ‘
(0) (1) (n)

Figure 5.13: A representation of classical Newton-Euler computatiamstie graph in Fig[517.

Kinematics is assumed known at the ba¥e)( Wrenches are assumed known at the end-effector
(#, e.g. if an external FTS is used) and propagated to the base.
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6-Axis FTSs
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Figure 5.14: [5.14(&) an example of link with multiple connections, which repets a typical
case of multi-branched tree. At the extremity of the links;ept for one, FTS are located. The
situation can be represented with an EE@4(b} an EOG representing a situation similar to the

one 0f5.14(3). On the left side, the sketch of the graph; emitht side, the figure shows the order
in which the graph will be visited for computation.
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5. Motion control on humanoids

Algorithm 5 Solution of dynamic EOG exploiting a tree

Require: EOG,wsV FTS
Ensure: w;, Yv;

1:

A owbd

For every FTS, attach a nodto the corresponding link
Setw, in each$
For each$, split the graph and create two sub-graphs (see text foilg)eta
Attach a node)to each link where a contact is detected: if there is no comacsubgraph,
choose an arbitrary position and attach a fictitis
Re-arrange each sub-graph witias the root of a tree
for each subgraphdo
DynVisit EOG wroot)
end for

DynVisi{EOG p)

1:

2
3:
4.
5
6

if v has childrerthen
for eachchild e, j, € C(v), e, # i do
We, , = DyNVisSi{(EOG h)
end for
cend if
: Computew; with Eq.[5.12 or Eq.5.13 according to the direction of thee=dg

for the definition of the kinematic structure of the linksdahe RNEA for the definition of the
dynamics of the system, are not mandatory. Custom choigcebecadopted.

When passing from one vertex to the other, [Eq.15.12 o Eql 5.18ed. This equation

provides the computation of both internal and externaldsyaepending on the definition of

kn

own and unknown variables on the graph. With referencagore[5.10, when the flow of

the information is along the same direction of the edfjeof Eq.[5.12 or EqL5.13 is to be

co
un

mputed. One of the forces among ¢} otherwise, depending on which of tkdinks the
known is located.

* Single-Branched Open Chain

In the case presented in Figlire 53.13 for a single open chwre exists, for the links in
between the base link and the final link, one sinfjlesince the maximum value @f
depends on the number of links attached to:ttie. When the flow of the information
is along the same direction of the eddepf Eq.[5.12 or Eq. 5.13 is to be computefy;
otherwise. Next sections show some cases which demonsteateenerality of the EOG
method also for open, multi-branched kinematic chainsh\Wispect to Figurie 5.13, we

point out that the unknowspattached to the base is used if a contact is detected on that

link (e.g. if the artificial tactile skin reveals a contactla¢ base). In absence of contact,
the node{is no longer needed. In this case, it is possible to write¢ansive equations
as a compact set, where all the dynamic variables are kndwsfdrmulation can be
exploited to obtain, for example, a better estimate of th&l+body model parameters,
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e.g. links mass.

» Multiple-Branched Nodes and External Forces

External forces may be acting in other locations differeatrf the end-effector (e.g. on
an internal link in between the base and the end-effectery @nsequence of contacts
with the environment. In such cases, the application pointie centroid of the contact
region) must be known. Also in this case, [Eq. 5.12 or[Eq.]5dl8sh Note that one
external force can be determined if, and only if, all the othieenches flowing through
the edges connected to the link can be determined.

Consider the general example of one link connectedvtother links, N > 2. The
situation is represented in Figure 5.14(b). The graph &ssucto a similar situation
instead is shown in Figufe 5.14(a), left side. The right sifiEigure[5.14(g) shows the
steps the algorithm performs to determine the unknown wremg; acting on links,
when a direct measurement of that wrench is missing.

The first step consists in setting the unknown wrenches dgiverguantities that have
flown from the known leaves. These quantities can in generaiéasured by FTS within
a link, or sefa priori (e.g. with the assumption that lirkkis moving without interaction,
this wrench can be set equal to zero). In the second steppétiwhlinks connected to;
performs the calculation (using Eq. 5112 or Eq. 5.13) nexgds define the information
passing through the edge which connects to jin&ccording to the direction of the edge.
Moreover, verte) preforms again the evaluation of the force transmitteg &gain from
Eq.[5.12 or Eq.5.13, according with the direction of the eelge Finally, v; evaluates
weyt. Note that in this example, the assumption thgt; is the only unknown must hold.

* Virtual Joint Torque Sensors In case the Denavit-Hartenberg notation has been em-
ployed for the definition of the kinematic of the structure, estimation of the joint
torque can be performed, once thh wrench is known:

T = ,uiTzZ-_l (5.14)

wherez;_; is thez-axis of the reference framé - 1) as in Fig[5.6. The method shows
that it is possible to have an estimation of joint torquesicivizan be used, successively,
for joint torque control. Moreover, this is not the only infieation that it is possible to
extract from the method. Joint torques are here found asameaenent of the wrenches
flowing through the edges. These wrenches allow having arbegpresentation of the
possible contact situation, which can be used as a virtuaborement, to perform every
kind of tasks involving force detection and control. It ixassary to note that the more
6-axis FTS are employed, the more accurate will be the edtima

5.5 Experimental results

In this following experimental results on the humanoid ribplatforms are illustrated.
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5. Motion control on humanoids

q[°] | au[°] | @[°] | a3[°]
-10 | -140 | -115 0 mazx
150 | 100 | 15 | 100 | min

Table 5.1: Value ranges of the James’ arm joint positions.

5.5.1 Closed loop motion planning with joint velocity contol in James

In Section[4.#4 a method to find the neural controls that makaebatrmove optimally with
respect to a specific criterion was presented. Numericaltsesere shown in Sectidn 4.5 for a
two DOF arm and a three DOF mobile robot, where theoreticdlpaactical issues were also
discussed.

Here, the method is applied to the control of James’ arm,diocuon the first four joints,
i.e. three joints of the shoulder and one of the elbow. Thgeani the four joints is reported in
Table[5.1. James hand is considered as the end effector ofahgulator. At this stage, the
orientation of the hand is neglected.

Denoting withz" = [z, y, z] the Cartesian coordinates of the end effector with respest t
fixed reference frame, and with= [qo, ¢1, 92, g3] the vector of the joint position variables of
the arm (see Table5.1), then the forward kinematit@) = fam(q(t)), farm: R* - R3is
found using the Denavit-Hartenberg conventipn [Sciaviaed Siciliano, 2005]. The target's
Cartesian coordinates are denotedd#dyt). The orientation of the end effector is neglected.
Within this context, the four DOFs manipulator is redundant

Different tasks are shown: the focus is both on the respoh#gedCLIK regulator when
tracking a time varying desired trajectory, and on the gertnce of both FH and RH neural
controllers, used to plan Cartesian trajectories for riegchnd tracking tasks. In this specific
case, the regularizing parameters of the Jacobian matieqifb.3 were set té = 0.20 and
k = 0.10: these values were chosen by driving the arm to singulartiposj so as to set a
safety threshold. The variable delay in the communicatiraegss (from PC to DSP boards via
PC104 and back) affects the global performance of the cddotvp. Delay is actually variable
and depends on multiple terms: delay on the CAN bus (rangorg 2 to 4ms, approximately),
the delay of the DSP in elaborating the commands from the B@pating the low-level con-
trol trajectories, sending the commands to the motersnis), and the delay in the backward
communication (i.e. retrieval of joint positions and velms from the DSP, from 2 to 5 ms, ap-
proximately). To avoid a stochastic modeling of delaysytwere treated as a high frequency
pole. At first, the simple proportional regulati®(s) = K. was tested. Unfortunately, high-
frequency dynamics prevented to rafsgto a desired value: in the experimenks, = 207 was
already revealing elastic effects (a step-response waktasavestigate the system); higher,
e.g. K. = 401, was compromising the safety of the robot (high oscillatietpcities exalt the
elasticity effect of tendons transmission). For theseaesshe simple proportional gaifi,
was substituted with EQ. 8.4, so as to have a high propottgaia while not incurring in insta-
bility of the system. Different settings concerning sam@ltime, time constant and gain were
investigated (in particular varyingt = 5+50ms), and reasonable performances were obtained
with At = 20ms, 7. = 30, K. = 0.5 It must be remarked that the commanded velocitig9
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Figure 5.15: Recording a human handwriting trajectory with the Vicontegs A marker has
been placed on the subject finger: cameras recorded the &tiosrof the marker while the subject
performed the motion.

are checked by a further lower level control: to prevent timt to make fast movements, joint
velocitiesq* (t) are saturated in the ran@e25, +25](°/s). This rough solution is necessary to
avoid the stress of the elastic parts of the robot (mainlgdes) and their consequent damage.

Hand-writing: human vs. robot

In Figure[5.16 a hand-writing task is presented, where tlikbedfector (located in the wrist)
performs a time varying 3D movement, precisely James’sasiga. The signature consists of a
sequence of Cartesian coordinates which were measured WBON motion capture system
during a human writing task. Therefore, the érof the global trajectory and
its dimensions correspond to a smooth human movement. @sijign references can be re-
trieved from the Vicon, thus feed-forward commaridswere not used in the CLIK algorithm.
Cartesian position and velocities of the end-effector @ in Figure 5.17(&), while the
corresponding arm’s joints position and velocities arenshin Figure[5.17(8). The purpose
of this experiment was mainly to tune the performances ofdélgelator of Eq[ 54, since the
transient response was fundamental in order to have a flanttitrg of the desired trajectory.
It must be noted that joint velocities are noisy, becauseders can measure only the motor
positions (though accurately), so the joint velocitiesammputed via numerical differentiation
on the DSP boards, which cause a noisy estimation as shoviguref5.17(b).

“Human-like” motions

In [Ivaldi et al., 2008a] a bell-shaped motion on a planafesa& was planned for a 2DOF arm,
where the cost function wasminimum jerkone, and the movement tinfewas fixed. Here,

a 4DOF manipulator performs multiple reaching movementsere the desired point to reach
changes at each time, unpredictably, and the motion @iteliows the same principle. Thus,
a MJM is implemented (see Sectibn3]2.1). The time to accsimpl movement is roughly
determined at each trial by Fitts’ law: with reference to[E@. in the experiment, the following
parameters were used=1.5,b = 0.7,¢ = 0.5, W = 0.0025 (the latter meaning that the target is
2.5mm wide). ParameteD was computed at each trial, being the Euclidean distaneecleet
the initial position of the end effector and target positiothe Cartesian space. In Figlre 5.18
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5. Motion control on humanoids

human = = =robot

-0.12
0.34

-0.14

-0.16
0.25

Figure 5.16: The human (blue) and James’s signature (red).

multiple subsequent reaching trajectories are shown, evtier duration of each was chosen
according to[(32). Figurp 5.19(a) focuses on two among fbeementioned movements:
the Cartesian position and velocities are actually shapediaimum jerk trajectories. In the
second movement, an “error” is evident: looking at the j@émel, in Figurd 5.19(B), it must be
noted that the desired velocity in Joint 3 exceeds the séfietghold (heré5 deg/s, then the
real, executed trajectory is slightly different from thesiled minimum-jerk one.

Tracking a target moving unpredictably

In this experiment, a RH neural controller as described Impm 13 is used to plan Cartesian
trajectories for reaching. The desired trajectory is ott@rized by the following convex cost
function:

N-1

J = Z C(Uz) +§iT+1Vi+l§i+l

i=0
where¢ = [Ax, Az, Ay, Ay,Az,AZ], i.e. the difference between the target and the end-
effector Cartesian positions and velocities= [#,9,%] = [v",uY,u*]. Note that7 again
represents a tradeoff between the minimization of the gnesgsumption (acceleration and
velocity can be considered as proportional to the powerwopson) and the “best” end-
effector proximity to the target during and at the end of thenguver. The second term is
indeed related to the distance to the target during the mvanewhich results in high velocity
desired trajectories. Conversely, the first term acts asvgpite quantity, which is necessary
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Figure 5.17: Comparison
between human and robot
handwriting.
Cartesian position and ve-
locity of the end-effector
during the signature task.
Red dashed lines are the
desired reference (i.e. the
human recorded trajec-
tory), while black lines
are the measured trajec-
tories of the robot hand.
E.17(b) Joint positions
and velocities of the robot
arm during the signature
task. Red dashed lines
are the desired velocities,
while black lines are the
effective joint measured
values.
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5. Motion control on humanoids

Cartesian Position [m]

- — —desired actual
I I I | | | | | |

0 5 10 15 20 25 30 35 40 45 50

-0.3

01 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Time [s]

Figure 5.18: Cartesian positions of the end-effector during multiplecténg tasks. The duration

of each single point-to-point movement is determined by[Eg, while the trajectories have a
minimum jerk shape. Failures in reaching (i.e. inabilityréach the target perfectly) are due to
joint velocities limitations (for safety reasons) whichviiusly compromise the perfect execution
of the trajectories.
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5. Motion control on humanoids

Time to perform a reaching movement - a = 1.5, b = 0.7, ¢ = 0.5

3 = W=0.0005
= W=0.001
2 : : W=0.002
W=0.0025
= W=0.005

0 L L L L L L L L L |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D

Figure 5.20: Fitts’ law: the time to accomplish a moveménfunction of the amplitude of move-
mentD.

to reduce the risk of damage of the platform.

Remark 18. ¢(u;) reminds the absolute work terin [Berret et al., 2008], meamputhe energy
expenditure of a movement. In this case the goal is not tormuei an absolute work term
(which would require the torques and thus a more complex miynianodel), however it is inte-
resting to show that the proposed method can be applied tovtheementation of “complex”
nonlinear costs, which are usually superseded due to theihematical difficulty (e.g. induced
by the absolute value).

Weight matrices were set g, = diag(1.0,80.0,1.0,80.0,5.0,10.0), ¢ = 1,...,N -1,
Viv = 401. ¢(u;) is a numerical approximation df; |*. Output velocities were bounded within
a safe range. The state functi¢rf4.57) describing the system is a double time integratan®f t
controlled accelerations;. The double integrator approximates ideally the robot aediLIK
controller; the latter takes entirely account of singtiesi and redundancies, and is properly
tuned to achieve the desired behaviors. Thus, the ovestiisyperformances do not degrade.

The training of the neural networks chain was performedioé-with the following pa-
rameters:N = 60,v = 40 (where N represents is the number of control steps, and the
number of total neurons of the net),= tanh. More than10” random samples were used to
feed the networks, considering the whole reachable Cartesgiace for the robot, and an aug-
mented space for the target (to consider also unreachabpktsy velocities and position were
uniformly sampled.

Remark 19. The considerable amount of training data is required as thetol problem is
stated in a stochastic framework: each possible configomatin terms of position, velocity
and acceleration) of the four joints of the robot, produciagcertain end-effector position
and velocity in the Cartesian space, as well as the targatisrdinates in the space, must
be considered. It is remarked that the control problem dagistake into account any prior
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knowledge of the target behavior: there's no prediction wreivolution, based neither on the
past nor on some a priori information.

Remark 20. The flops count for the on-line computation of the approx@datptimal controls
is about4633, which in a Pentium IV 3GHz are approximatdlgus. More specifically, the
operations to make a forward “step” of a NN arén +m) products,y(n+m+1)+m+2(v+m)
sums2(v + m) exponentials and + m divisions.

In Figure[5.22 the task is presented: the target is “fixed. (istill), but changes unpre-
dictably its position after a variable unknown period of éimrhis situation is representative
of the case where the attentive system of the robot seleetgettto be reached in the space
(e.g. when the robot recognizes a known object of intere¥fhenever a new interesting
object is presented to the robot, it is selected as the nege@.r Cartesian trajectories of
the end-effector and target position (named “desired”)sa@vn in Figur¢ 5.21(h), while the
corresponding arm’s joint position and velocities, conepuby the CLIK, are shown in Fig-
ure[5.21(0). The saturation of velocities is evident in thiatjvelocity profiles.

In Figure[5.2B instead, a target moving in the 3D space alongce path is followed
by the end-effector. This situation is comparable to thes a@lsen the robot wants to catch
a moving object (e.g. the human engage the robot in a “catflydu can” game, where he
moves the object randomly in the space so as not to make tbéenedch for the object). Even
if the robot does not have any information on the target'skiatics or dynamics, and does
not model or attempt to predict the behavior of the targetsordeway anticipate it, the robot
is able to track almost perfectly the desired trajectorygufé[5.24(d) anf 5.24(b) show the
Cartesian coordinates of the wrist and the joint positiod @elocities of the arm during the
movement.

5.5.2 Estimation of intrinsic and extrinsic wrenches in iClb

Theoretical results discussed in Secfion 5.4.2 have begleimented in iDyn, a library for dy-
namics of single and multiple-branched serial-links kiagimchains|[Ivaldi et al., wwW]. iDyn
is built on top of iKin [Pattacini, www/| Pattacini et al., 20§11 a library for forward-inverse
kinematics of serial-links chains of revolute joints wittasdard Denavit-Hartenberg nota-
tion. Both libraries are part of an open source softwaregutopjeleased under a GPL license.
Though being tailored for the iCub, remarkably iKin and iDgre generic, cross-platform
and portable C++ libraries (relying on CMake and YARP midglee [Fitzpatrick et al., 2008,
Fitzpatrick et al., 2010]) that can be used to study kinecsaind dynamics of potentially any
robotic device.

Figure[5.25 illustrates a scheme of the global control sgst8ensor measures, acquired
through local boards, are sent through CAN bus or COM porhéoRC104, being the local
CPU on the robot (located on its head). An interface modutming on the PC104 repli-
cates collected measures to a local Gigabit Ethernet nkiveomploiting YARP middleware
[Fitzpatrick et al., 2008]. In one PC of the iCub cluster, sieecalled “whole body dynamics”

This situation must not be underestimated, because theitmmlof the reference variablg® has sudden
changes, steps in the position and impulses in the velasisi |
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Figure 5.22: “Neural” trajectory (blue) of the end-effector, reachintaeget (red) which changes
unpredictably. The shape of each trajectory is determigekdcost functiori/ and its parameters.
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start /

Figure 5.23: Trajectory of the end-effector (blue) when tracking a targed) moving along a
circle. The starting position of the end-effector is reprasd by the green sphere.
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Figure 5.25: A schematic structure of the control system. From the rdbistpossible to retrieve

the joints positions;, the inertial measurements, wo, jo (W) and the FTS measures, (§).
Joints velocities and accelerations are estimated thrspghific filters (black rectangles on the
top). Dashed arrows indicates information sent through FA®rts on the local network, thus
subject to delays. More details on this scheme can be foutttkionline documentation of the
iCub:http://eris.liralab.it/wki/ForceControl.

is computed, i.e. the whole body joints torques are comptiiemligh iDyn. Joint torques es-
timated by the latter process are then sent back to the boarttse robot via PC104, where
local force/torque control strategies can be finally appli#& must be noticed that while the
computation of the torques (i.e. the time required by iDyndmpute the whole body torques,
precisely to solve the kinematic and dynamic EOG) takes ena@e3.2ms, the time elapsed
between the received measurements and the outcome of thputaifan is about.3ms. To
this time, a variable delay must be added, due to the stachzedtavior of the network, which
is necessary to carry information among different PCs.

Remark 21. The weak point of the global process is the round-trip-tifha sensor measure:
practically, a delay is introduced whenever informatiorsént through the local network, thus
between the sensor measure and the application of a suitalvitrol strategy exploiting that
measure a certain time elapses. This delay, which is vatygtgeent and 10m.s on average,
is the weak point of the active control strategy as it is immated on the platform, since
it constrains the control bandwidth. We are currently irtigegting the possibility to modify
the platform, in particular the embedded electronics, idesrto support direct joint torque
control, but in a totally different way, to improve controéngiormances for certain critical
joints. However, for the current configuration of the rolibe proposed approach is apparently
the only possibility to provide force/torque control.

Given the sensors position and the description of the rolmanhkatics, it is quite easy to
build the kinematic and dynamic EOG.

The structure of the EOG needed for the computation of thetrkinematic variables for
all joints is shown in Figur@@ the inertial sensor is the unique absolute source of kine-

5Each vertex is named a¥ - k, whereX = {H, LA, RA, RL,LL, T} is a code for the limb (head, torso,
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5. Motion control on humanoids

matic information @) (encoders are relative sources, and their informationnsicered as a
property of the links); unknownsyt) have been placed at the end-effectors, so that kinematics
variables are propagated through all the graph nodes.

Since the complete knowledge of the kinematic informat®a prerequisite for the com-
putation of the dynamics, the kinematic EOG shown in FiguP&&) is adequate for all appli-
cations. The dynamics EOG is instead task-dependent.

As the iCub is provided with a set of four FTS, the dynamic EQ@ivided in five sub-
graphs, each containing a wrench meas# (The head terminal wrench is usually set to
zero, so it is treated as a known variable (aghin

The choice of the nodes where unknown wrencigsdre applied is instead totally arbi-
trary and depends on the application point of an interadtoce.

For example, if the robot is moving unconstrained in the spadthout incurring into con-
tacts with itself or the surrounding as in Fig{ire 2.5(a),nown wrenches{) can be statically
attached to the end-effectors of the main limbs, hands asid fé/hereas in an interaction
scenario, such as the robot crawling on the floor (see Figir@), external wrenches are
clearly assumed on wrists and knees. This application affdigphts the importance of the
inertial sensor, which allows performing the Newton-Ewemputations with a floating base
frame. Indeed, linear and angular velocity and accelaraiiche head, measured by the sen-
sor, change continuously as an effect of the progressioheofdbot on the floor, combined
with the head movements.

In general, unknown wrenches due to any sort of contact ¢dvstatically attached to a
specific link, since the application point of the externat®(i.e. the centroid of the contact)
is unknown and generally difficult to predict (unless vistegdback is exploited to predict
possible contact situations, but it is not always reliabléjowever, thanks to the artificial
tactile skin it is possible to retrieve such information dgrically: therefore the EOG structure
can be defined on the fly based on the contact position at eaelinistant. In such cases, as a
consequence of the fact that only one unknown is allowedauer sub-graph, the external force
due to contact is the unknowr)§ while wrenches located at the end-effectors are assumed to
be known and null §).

Examples of sub-graphs are reported in Fidure]5.32, whictespond to the contacts
shown in Figuré 5.31, where three different contact locegtim the left arm are presented.

Model Validation

A rigid-body dynamics model has been used to describe thdewtobot. Kinematics and
dynamics parameters were retrieved from the CAD descrigiidhe robot. Two experiments
prove the reliability of the approach:

1. both arms and legs FTS measurements were compared withmibdel-based predic-
tion, during unconstrained movements (i.e. null exterrnanghes);

2. measurements from an external FTS, applied at a givetiggosin the end-effectors,
were compared with their estimation.

right/left arm/leg) andc means that the corresponding link is thh for that specific limb.
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Figure 5.26: Representation of iCub’s kinematic and dynamic EG&@6(a) iCub’s kinematic EOG. It is noticeable that the inertiahser
measure W) is the unique source of kinematic information for the whbianched systen{5.26(b} iCub’s dynamic EOG, when iCub is
standing on the mainstay and moving freely in the space,@srsin Figurg 2.5(3). Given the four FTS, the main graph isbguthe four links
hosting the sensors, and a total of five sub-graphs are figafigrated. The unknowns are the external wrenches at thefieatr: if the robot
does not collide with environment, they must be zero, wheifeacollision happens, an external wrench must arise. T$@atement between
the expected and the estimated wrenches allows detectirigate with the environment. Of course, the hypothesisdtldt interactions can
only occur at the end-effectors. The external wrench on fapehead is assumed to be null. Notice that the mainstaypiesented with
a unknown wrench). iCub’s dynamic EOG, when the iCub is crawling like a babyskewn in Figur¢ 2.5(b). As in the previous
case, five sub-graphs have been generated after the imsefrtioe four FTS measurements, but unlike the free-stanthisg, here the mainstay
wrench is missing, being the iCub floating (unfixed) on therfl@pecific locations for the contacts with the environmeatspecified as being
part of the task: thus, the unknown external wrenckgsdre placed at wrists and knees, while wrenches at the felspaims are assumed
known and null ¢). Interestingly, while moving on the floor the contact wittetupper part could be varying (e.g. wrists, palms, elboss),
the unknown wrench could be placed in different locatioastthe ones shown in the graph.
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5. Motion control on humanoids

Figure 5.27: Enhanced graphs for predicting the four FTS measuremeéntsyvhen the external
wrench acting at the end-effectors (hands and feet) is kntypically null.

FTS Predictions

During unconstrained, contact-free motion, as shown infei@.5(@), the measurements
from the four six-axes FTS embedded in the limbs have beerpawed with the analogous
guantitiesw, predicted by the dynamical model. Sensor measurementsan be predicted
assuming known wrenches at the limbs extremities (handsety &nd then propagating forces
up to the sensors. In this case, null wrenches were assuraeduse of absence of contact
with the environment. It must be noticed that in Figure 2)|s(alimbs are moving freely in
the space without colliding with the robot own body or theiemvment. Though having a
fixed base (the robot is supported by a metallic mainstay arechlly inserted into its hip),
remarkably also the head is moving: thus, the presence oh#rdal sensor is crucial for
the computation of joint torques. The EOG in this case is showFigure[5.2. Tablg 5.2
summarizes the statistics of the errars- 1w, for each limb during the sequence of movements
in Figure[2.5(8). In particular, the table shows the meanth@dtandard deviation of the errors
between measured and predicted sensor wrench during thenmeows. Figure 5.28 plots the
error betweenu, andw, for the right arm during the same sequence of movements @y
limb out of four is shown without loss of generality).

External Wrench Estimation

When solving the dynamic EOG in Figdre 5.26(b), it is posstblretrieve one external wrench
per sub-graph. Thus, we compared the estimation of an extemench applied at the end-
effector with a direct measure of it, through a free-stagdiix-axes FTS which was “pushed”
on the terminal link. In particular, a wrenah” was exerted on the left hand and measured
with the external FTS. Its value was then compared with the estimation of the external
wrench obtained by propagating the embedded FTS measure sub-graph until the frame
wherew” was applied. A plot ofv” andw” is reported in Figurg 5.29.

As a counter evidence of the reliability of the method we cared the torques$, deter-
mined with [5.14) with the ones corresponding to the prageobdn joints of an external wrench
applied at the end-effector” = ngE, whereJz € R®" is the Jacobian (here referred to the
frame of the node connecting torso, head and arms).
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right arm:e 2 ws pa — Ws A

€fo €f1 €fa €0 €1 €po
€ |-0.3157 -0.5209 0.7728-0.0252 0.0582 0.019Y
o. | 05845 0.7156 0.7550 0.0882 0.0688 0.0364

leftarm:e £ W, r4 —ws 1A

€fo €f1 €/ €uo € €po
-0.0908 -0.4811 0.86990.0436 0.0382 0.0030
o. | 05742 0.6677 0.79200.1048 0.0702 0.033}

M

A4

right leg: e £ ws rr, — ws RL

€fo €f1 €f €ug €y €un
€ -1.6678 3.4476 -1.55050.4050 -0.7340 0.017
oe | 3.3146 2.7039 1.7996 0.3423 0.7141 0.0771

=

leftleg: € = w, 11 — ws 11,

€fo €f1 €fa €ug €y €uz
€ |0.2941 -5.1476 -1.9459-0.3084 -0.8399 0.0270
oo | 1.8031 1.8327 2.3490 0.3365 0.8348 0.0498

*- a7 —
D EZW—w = [€fy, €15 €f €pns € Epus ]

* SlUnit: f:[N],u:[Nm].

Table 5.2: Errors in predicting FTS measures (see text for details)
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5. Motion control on humanoids

6fu [N] 6”0 [Nm}
2 0.4
1 02
0 0
1 -02
-2 -04
-3 -06
) 10 20 30 0 10 20 30
ef, [NV] €uy [N
2 0.4
1
02
0
0
-1
i -02
P o5 1 15 2 25 3 35 049 10 20 30
€r, [N] €ur [NM]
3
02
2
01
1
0
0
-01
-1
-02
-2

(<)

10 20 30 0 10 20 30
time [s] time [s]

Figure 5.28: Right arm: error between the wrenches measured by the Fbrsens:4 and the
one predicted with the model; 4, during the “Yoga” demo.

During this experiment the arm is not moving, while the exérforce is applied on the
hand. Joint torques measured with thgual torque sensorswre7 = 71 + 7, beingr! the
internal joint torque, i.e. the torque which is due to theiitsic dynamic of the system:?,
i.e. the external force projected on joints, instead is rifcted by the internal dynamics
(e.g. the gravitational component in this specific stateegaFiguré 5.30 shows a comparison
of the variation of torque, due to an external wrench appboa In particular, we show the

comparison between” and7¥ = 7 — 77,

Exploiting the tactile feedback

As anticipated, the iCub artificial “skin [Cannata et al00&,Roboskin Project, www] allows
retrieving information about the location of possible @mttpoints (i.e. location of externally
applied wrenches) practically on the most of the robot bdelgure[5.32 shows how the dy-
namism of the EOG method can be fully exploited when the limlesg the contact occurs is
known through tactile measurements.

We remark again that Figure 2.5(a)-2.%(b) are only possisiances of the EOG, and that
the graph is continuously re-created along with the updbatkeosensory information coming
from the tactile skin, indicating the contact locations.
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Figure 5.29: Left arm: comparison between the external wrench estimatfted the FT sensor
measurements and the one measured by an external FT sdased pn the palm of the left hand.
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5. Motion control on humanoids
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Figure 5.30: Left arm: comparison between the torques computed expipitie embedded FTS
and the ones obtained by projecting the external FTS on thisjthrough the Jacobian (see text).

Figure 5.31: Some possible application points (marked with a frame) x¢emal forces (arrows)
arising during contact of the iCub arm with the environméfgper, fore-arm and palm are covered
with plastic shells, providing the base for the tactile ebeis.
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Figure 5.32: A sketch of the different situations in case of contacts ateg at different locations

in the left arm, as shown in Figure 5131. The external wrenastimate {)) is attached to different
nodes. In the first and second sub-graphs, the wrench at theffactor is assumed to be known
(#), typically null, since only one unknown per graph is alla\see text for details).

5.5.3 Jointimpedance control of the iCub elbow

Robots with rigid joint, like iCub, can be controlled in tag by simply commanding a feed-
forward torque, i.eqg = 7. If robots are actuated by flexible joints, joint stiffnessde also
controlled. In iCub, actuation is provided by rigid electmotors, however a joint impedance
control interface is available, which can be exploited taukte a compliant joint: in parti-
cular, it is possible to control the equilibrium positionatirtual spring and its stiffness and
damping. Precisely, the joint impedance control law is:

T = ks (q - ") = kD 4+ Toftses (5.15)

wherekg, kp > 0 are the stiffness and damping constants, emulating a /gpuiag at the joint,
andry a feed-forward offset torque. The desired computed tordguie tracked at lower level
by a simple PID algorithm. Playing with stiffness and dangpinis possible to make the robot
joint behave like a soft or hard spring, while maintainingnicol on the desired joint position.
Notably, ks andkp are physically related, as shown in Figlre 5.33: the dampamgtant must
increase with the stiffness, to prevent unstable behavinrhe following experiment, we aim
at demonstrating that by controlling a manipulator by $iytaadapting stiffness and torque, in
a feedforward manner, it is possible to cope with unceiisrdand time delays in the system.

For sake of simplicity, we consider a single joint arm, mavin the vertical plane, de-
scribed, as in Eq.4.65, by the generic dynamic equationgiwihithe case of a single DOF can
be simply written as:

T=mlccos(q) g+ (m*+1)i=G(q)+ Bj (5.16)

wherer is the joint torquem, l¢, I the link mass, length of the COM, and inertia respectively.
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Figure 5.33: An experimental evaluation of the stiffness-damping refeghip when controlling
the elbow joint of the iCub. The lower region highlighted adrcauses unstable behaviors of the
arm when reaching its equilibrium point after an externatéois applied. Boundary values were
detected by overshoot of a step response. The light bluerresfliows feasible values, which make
the joint behave like a softer or stiffer spring. The bouydagion between the two can be ideally
described by the following relationshipp = 0.075ks — 0.0015.

We assume the following model of “human-lik&"actuator holds:

T=75-ks(q-q") —kp(¢d-q") (5.17)
where agairkg, kp are positive constants representing the stiffness and idgnopthe elastic
actuator. To simplify the problem statement, since the dagnhpalue is closely related to
the stiffness value, the following relationship is assumeg = Akg, for someX > 0 (e.g.,
A = 0.2). A stochastic optimal control problem is stated, whichento account the time
delay of the controlled system, and an additive neisafecting the joint torque, which is
generically due to uncertainties and modeling errors. Tda $ to find the optimal stiffness
and torque controls which make the arm perform an upwardtypeipoint movement while
minimizing the following cost function:

T
7 =B {upla(™ - @I + wll @I+ [ ully +wplla-a"F + wlli- "It

with suitable weightsu,,, w, (€.9.w, = 10, w, = 0.1wp). In this case, a suboptimal solution

5This actuator model emulates the main properties of thegantat muscle structure in humans.
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Figure 5.34: An experiment consisting of multiple trials, the iCub elbfallows desired profiles
(red) for stiffness and torque. Desired trajectories haentprecomputed by the iLQG solving a

stochastic optimal control probleif.34(a)joint position and velocity5.34(b}joint stiffness and
torque.

has been found by means of the iLQG algorithm [Todorov andﬂlﬁlE'»] The following pa-
rameters, compatible with the forearm of the iCub, were tsel@scribe the system dynamics:

* mass:m = 0.812kg

* link length: a = 0.2735m

e link COM: [ = 0.1033m

« link inertia: I = 5.0826 x 10-3kg m?

The desired movement was set frafn= —60 to ¢, = —30 degrees, which were remapped in
the iCub elbow joint range. The movement duratibrivas set tal.5s, while the control rate

was set tdOms. The additive noise was modeled by:
e=(a+Bq)n (5.18)

wheren has a normal distributiom(~ N (0,1)). Interestingly, the analysis has been performed
on a further model, where the error is also proportional &dbntrol torque:

e=(a+pBq+~7)n (5.19)

which accounts for a control-dependent noise. In order taessonable values of the pa-
rameters, the modeling error has been identified: precisslymated joint torque has been

The description of the iLQG method and its implementationds reported here, for not being completely
relevant to the experiment discussion.
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Figure 5.35: Meane and standard deviation. of the joint torque error from the elbow joint
of iCub’s right arm. The standard deviation is evidentlyinghr with the increase of velocity,
while the error mean is linearly proportional to the velgciPolynomial fitting models are. =
1.2544% - 0.351¢ + 0.057 ande = 0.213¢ — 0.049 respectively.

compared with the one computed by (5.16), so thatr, casured — Tmodel- A S€quence of up-
ward movements with a minimum jerk profile was performed i right arm of iCub, with
increasing average velocity (frothto 55 deg/s): mean and standard deviations of the errors
are reported in Figufle 5.85. Then, a normality tesyyamas performed, exploring within rea-
sonable accuracy the parameter spaee5 over a discrete grid in the rang@.0 : 0.001 : 1.0].
Precisely, the Jarque-Bera test [Jarque and Bera) 198Hlaleain Matlab, was used. The best
sets of parameters found after the exploration wefe 5°) = (0.15,0.37) for the model[(5.18)
and(a®, 3°,7°) = (0.04,0.41,0.21) for (5.19): their fitting is shown in Figuife 5.36.

Once the stochastic optimal control problem has been spotlieddesired trajectories have
been used to control the iCub elbow stiffness and torque f@edforward manner. To adapt
the computational contrd (5.1L7) to the robot availableiface [(5.15), the following has been
defined:mygeet = 70 + kDG™.

Preliminary results are shown in Figlire 5.34. Some obsenamust be made. The damp-
ing effect is evident, introducing a small but noticeabléaglen the trajectory. The stiffness
trajectory features extremely low values: however, thatpof this experiment is to show that
the feed-forward termy is sufficient to achieve a desired behavior and that stiffrieging
trajectory must be increased only to counterbalance thertaioties and noise in the problem.
Thus, it is also correct to expect some misalignments betweedesired and real trajectories.
Moreover, there’s a known problem with the stiffness valdles resolution of the stiffness val-
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ues in the DSP i9.01 Nm/deg, which is quite high for the trajectories we are agrtiox this
means that the desired stiffness trajectory is practic¢tilyncated” and actually is quantized.
Another flaw in the experiments is that torques are estimbyeithe EOG on the basis of the
measurements from the FTS, which have a certain drift duhiegise. This drift can be com-
pensated, however it is not yet fully predictable. So it lEapgpthat a certain offset between the
model and the real measurements is affecting our resultsigkffor example, in the figures it
is approximately).1INm): this explains the differences between the desiredioend the one
estimated (with a certain delay, again) by the robot dynamiodule.

To overcome these issues, we are currently performing the saperiments on a prototype
of the new arm of the iCub, which is equipped with a joint te&rgensor at the elbow.
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Figure 5.36: An experimental evaluation of the elbow joint torque erroedo uncertainties in the
dynamic model of the iCub arm. Examplesipthistogram) fitting a normal Gaussian (red line)
are presenteb.36(a)shows the torque errermodeled by Ed. 5.18, whi.36(b)by Eq.[5.19.
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Chapter 6

Conclusions

Optimal control theory has recently become of great intdoesieuroscience, since it provides
a framework and arich set of tools for describing and modetmmputational motor control in
a convenient way. The existence of “optimality” principiasensori-motor control in the brain
and in the CNS has been demonstrated in different experimidusing on the precomputa-
tion of motor commands, trajectories, feedback and feedda commands. However, there
is not a unique answer to what mechanisms are really at the ®agur motions: a variety of
optimal control models has been proposed, and since diffenedels are apparently equally
effective in explaining movements in the same or a similatext, it is difficult to assess which
is the most representative of human movements, and why.

Notably, by investigating human motor control it is not eduent to address similar prob-
lems as the ones engineers usually face in robotics, andiapen humanoid robotics. By
implementing what we believe the optimality principles arging the human CNS, it is pos-
sible not only to provide an experimental verification of greposed models, but also achieve
behaviors which may outperform traditional classical colist The point being that while clas-
sical control theory has been mainly focused on minimiziagking errors, reject disturbances,
minimize the motion duration, guarantee stability, etoe, $tudy of human motor control may
unveil other criteria as the fundamentals for achievingupec performances and characteris-
tics which make our motor control so efficient and “optimat’ a sense.

But, when trying to transfer human models on a robot, onesfaeseral limits: in terms
of physical and structural impairments in the architectimghe technology for actuation and
sensing, and in the theoretical tools which can be expldibegenerate controls. It is then
crucial to catch the biological principles of human motontrols and understand to which
extent these principles can be implemented in a robotidgptat and evaluate what is the
revenue of that process. This thesis actually followedpghist.

The first part of this thesis addressed the solution of s&ichaptimal control problems,
which can be used to state control problems to study both haraad humanoids, according
to recent theories in computational motor control. Thelatbiity of powerful mathematical
tools for generating suitable controls is particularlyaiall indeed, classical control theory
is built on top of strong assumptions, as the known LQG comast which are hard to be
verified in experimental platforms such as robots. With thissis, we propose a theoretical
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tool which can be used to generate optimal controls for a mithess of problems, since it
does not require particular features (neither in the systemin the cost functions) but the
continuity and differentiability of their actors. Thusc#n be applied to complex systems such
as humanoid without restricting assumptions. The applicalof the proposed approach has
been empirically demonstrated by several numerical anérarental examples, with linear
and nonlinear systems.

However, there are several issues which still need to beeaddd and remain open for
further research. First, the convergence for the stochaptroximation algorithm cannot be
guaranteed, and in general does not always occur. A certaitigal experience with the
offline optimization is required. A possible solution to duastically the time required to train
the neural approximators would be to parallelize the coatjarts and run the optimization
over a high-performance cluster grid of GPUs. This is notughoto guarantee to find the
global optima of the control problem, however a considerallarch in the parameter space can
be performed, even if not exhaustively, and to a certainnextean help excluding unfeasible
control laws. The time constraint is the main limitationeé foroposed technique, since finding
a solution (global or local) requires a considerable amaofititaining time and samples, thus
limiting the application domain of the technique to offlingtinization. However, once the
approximating functions are trained, even in a rough martheralgorithm is also suited for
an incremental training which can be perfectly integrateé onodular robot architecture.

Despite its flaws, results obtained applying the methodfferdint case studies are promis-
ing: in particular, for the application in real-time domssuch as robotics, since pre-computing
the control laws allows saving time during online executidhe performances of the RH neu-
ral controller combined with the CLIK were impressive on &sirand given the elasticity of the
platform were particularly positive. It is also worth nagithat the experiments performed on
James were also the first (to the best of our knowledge) wherERIM has been successfully
applied for the control a real physical system.

Another interesting advantage of the proposed approabhtstte formulation of the motor
control problem in the stochastic optimal control framekvisr particularly suited for finding
control laws in a modular architecture, where multiple ag@oexist and in a sense cooperate
to achieve the same goal. A brief hint of these future devetams has been discussed in
Section 3.3 4, where the main concepts of Team Theory hase ineloduced. Since the CA
of the robot is basically a pool of modular controllers, ratging with each other regularly,
it would be more than interesting to investigate a paral@iveen CNS and CA, and model
interconnections between different controllers actingherobot: each may have its own goal,
but they all cooperate for the same task accomplishment.

The second part of the thesis has been dedicated to the gemaho of a theoretical frame-
work which allows integrating dynamics in motor control netgj providing both an estimate
of the joint torques and a detection of external forces dumitacts.

The estimation of the latter on the iCub has been partigufagnificant: it is clear that the
proposed method is fundamental for enabling force/torquntrol in a platform where a direct
joint torque feedback is missing. The main disadvantagbeoFT S-based method is indeed the
delay caused by the software estimation of the torques,hwdaanot be done directly on the
DSP but is performed on a remote machine. In this regard, eewrently investigating the
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6. Conclusions

performances of the torque estimation via EOG on the prpgotf the new iCub arm, which
will be equipped with direct joint torque sensing.

However, numerous experiments in iCub involving activeeéocontrol showed the effec-
tiveness of the proposed approach, which has been alretatyrated in other modules of the
iCub software library. The current implementation of theabdynamics paves the way for
numerous developments: e.g., the integration of the dycecomputations with the tactile
feedback of the artificial skin, for accurate detection deexal forces; the explicit computa-
tion of the forward and inverse dynamics of the iCub limbsallow more advanced control
schemes; the accurate estimation of the dynamical paresngft¢he robot (since only CAD
parameters have been used so far).

The message emerging from the experimental results dedusghis thesis is that there
is more than a rationale in using the formalism of stochagitmal control to model human
movements. The main benefit of such an abstract mathemétirakwork is that the key
concepts and motion criteria can be “ported” from humansumédmnoids and vice versa in
a relatively easy way, i.e. a parallel between the two systeam be done. Within certain
limitations, it is also possible to integrate successftily computational motor control models
provided by neuroscience into controllers for humanoistsjwhich is particularly convenient
since the proposed optimal control framework is also suitedcontinuous adaptation and
incremental learning, i.e. it can be combined with a devsleptal approach to humanoid
robotics.
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