
Low-Power Lightweight Vision Supercomputer:

Algorithms and Architectures

Presented by

Fouzhan Hosseini

To

Robotics, Brain, and Cognitive Sciense

Istituto Italiano di Tecnologia

and
Doctoral School of Life and Humanoid Technologies

Universit degli Studi di Genova

A thesis submitted in partial fulfillment of the requirements for

Doctor of Philosophy

April 2013

mailto:fouzhan.hosseini@gmail.com
http://www.eng.cam.ac.uk
www.iit.it
http://www.eng.cam.ac.uk
http://www.unige.it/

to my family and teachers

Those who went in pursuit of knowledge

Soared up so high, stretched the edge

Were still encaged by the same dark hedge

Brought us some tales ere life to death pledge.

Omar Khayyam

Acknowledgements

This not have been possible without the support, guidance, and help

of many people who in one way or another extended their valuable

assistance in the preparation and completion of this work.

First and foremost, a very special thank you goes to my supervisor

Dr. Lorenzo Natale and also Dr. Chiara Bartolozzi for their support,

guidance, and willingness to put up with me over the past few years.

I am sure it has not always been easy for them, and I really appreciate

it.

I would like to especially thank Prof. Giulio Sandini. Without his

kind concern and consideration at a very difficult moment, this work

definitely would have never come to an end.

Many thanks as well go to the technical support staff at the Robotics,

Brain, and Cognitive Science (RBCS) department, the iCub support

team, and the people in the Electronic Lab for all the help. I would

like to specifically thank Marina Antonini, Ingrid Sica, and Francesca

Cagnoni. They have always been great help.

I also would like to thank my previous supervisor Dr. Amir Fijany

who I am sure did his best to help me in my way.

Special thanks also goes to my best friends and colleagues over the

past few years, Dr. David Thomas Branson III, Shahrzad Latifi, Ali

Paikan, Dr. Saeed Safari and Mandana Hamidi for their continuous

support and encouragement. Not having such friends, I could not go

all the way to the end.

Last but not the least, I would like to thank my family for their love,

support and guidance throughout my life. Without them none of this

would have been possible from the start.

Abstract

Mobile robots and humanoids represent an emerging and challenging

example of embedded computing applications. On one hand, in or-

der to achieve a large degree of autonomy and intelligent behavior,

these systems require a very significant computational capability to

perform a wide variety of complex tasks, some of them with real-time

constraints. On the other hand, they are severely limited in terms of

size, weight, and particularly power consumption of their embedded

computing system since they should carry their own power supply.

Moreover, since these systems need to implement a wide variety of

applications, their computing systems should provide programmabil-

ity and adaptability of a general purpose platform.

This thesis has followed two approaches to provide low-power, lightweight,

high performance computing architectures for mobile robots and hu-

manoids:

• exploiting new emerging parallel architectures which provide both

high computational capability and low-power consumption, and

• extracting and processing only important data by using emerging

bio-inspired sensors such as DVS vision sensor.

We proposed a low-power high performance vision architecture for

mobile robots and humanoids which includes CSX SIMD and Tilera

MIMD architectures. The estimated power consumption of such ar-

chitecture is about 50 watt, while the peck performance is over 96

GFLOPs and 144 GOPs.

During this research, various parallel and event-based algorithms with

different computational characteristics have been implemented on our

proposed parallel architecture.

Currently there is a lot emphasis on the use of FPGAs and GPG-

PUs to achieve higher performance for image processing applications.

However, our achieved results indicates that the proposed vision ar-

chitecture provides higher level of programmability, adaptability, and

computational efficiency comparing with both FPGAs and GPGPUs.

These results can indeed further motivate the investigation and ap-

plication of emerging highly parallel, low power, SIMD and MIMD

architectures for mobile robots and humanoids.

In addition, the studies undertaken and the proposed solutions for

parallel formulation and implementation of low, intermediate, and

high-level image processing tasks on the CSX architecture along with

parallel implementation of event-based vision algorithms on the Tilera

architecture can be exploited for implementation of other image pro-

cessing tasks with similar computational characteristics.

Contents

Contents v

List of Figures viii

1 Introduction 1

1.1 Problem of robot autonomy . 1

1.1.1 Energy autonomy in the literature 2

1.2 Research framework . 4

1.2.1 Trends in microprocessor design 6

1.2.1.1 Parallel architectures & state of the art processors 8

1.2.2 Low-power high performance vision architecture 12

1.2.3 Bio-inspired asynchronous even-based vision sensor 13

1.3 Robot setup . 15

1.4 Layout of the thesis . 18

2 Low Level Image Processing ON CSX SIMD Architecture 21

2.1 Introduction . 21

2.2 The CSX 700 architecture . 22

2.3 Parallel implementation of dense stereo vision algorithms 25

2.3.1 Background and related works 25

2.3.2 Overview of target stereo vision algorithms 27

2.3.3 Data decomposition . 29

2.3.3.1 Comparison of data decomposition schemes . . . 32

2.3.4 Proposed parallel implementation 33

2.3.4.1 SSD algorithm 33

v

CONTENTS

2.3.4.2 Multiple window algorithm 36

2.3.4.3 Left-right check algorithm 38

2.3.5 Results and performance of parallel implementations . . . 39

2.3.5.1 SSD algorithm 40

2.3.5.2 Multiple window algorithm 43

2.3.5.3 Left-right check algorithm 44

2.3.5.4 Disparity map output 44

2.3.5.5 Comparison with published results 44

2.4 Parallel implementation of Harris corner detector 47

2.4.1 The Harris corner detector algorithm 48

2.4.2 Appropriate data decomposition scheme 49

2.4.3 Proposed parallel implementation 50

2.4.4 Results and performance of parallel implementation 52

2.5 Summary . 54

3 Implementation of Human Detection on CSX SIMD architecture 56

3.1 Introduction . 56

3.2 HoG descriptor and object detection 58

3.3 Parallel formulation and implementation of HOG-based Human

detection . 60

3.3.1 One scale computation . 61

3.3.2 Multi-scale computation 66

3.3.2.1 Image Downscaling 66

3.3.2.2 Multi-Scale Optimization Problem 67

3.4 Results and Performance of Parallel Implementation 71

3.5 Summary . 73

4 Asynchronous Parallel Event-based Optical Flow 74

4.1 Introduction . 74

4.2 Event-based optical flow algorithm 75

4.3 Tilera Architecture . 77

4.4 Parallel Formulation . 80

4.4.1 The concurrent data structures 81

vi

CONTENTS

4.4.2 Velocity computation . 84

4.4.3 Event distribution . 89

4.5 The application architecture and implementation overview 90

4.5.1 Host-tile communication 91

4.5.2 Memory allocation strategy on Tilera 91

4.6 Results and performance of event-based optical flow implementations 93

4.7 Summary . 102

5 Optical Flow Visual Cues for Robot Navigation 104

5.1 Introduction . 104

5.2 The velocity field . 106

5.3 Locating the focus of expansion 108

5.4 Estimation of time-to-contact . 110

5.5 Experiments and results . 112

5.6 Summary . 115

6 Conclusions and Future Work 119

6.1 Overview . 119

6.2 Conclusions . 121

6.3 Future work . 124

References 126

vii

List of Figures

1.1 Principle of DVS vision sensor operation (one pixel) 15

1.2 Overview of the proposed low-power high performance architecture 16

1.3 iCub humanoid robot standing on top of iKart mobile platform . 16

1.4 CSX and Tilera Cards . 17

1.5 TileExpress-20G installed in iKart 18

1.6 DVS vision sensor . 19

2.1 Simplified CSX chip architecture [1] 23

2.2 Simplified architecture of CSX poly execution unit[1] 24

2.3 Block decomposition scheme . 31

2.4 Row-strip decomposition scheme 32

2.5 Boundary data for each PE in row-cyclic decomposition 33

2.6 Parallelized SSD: communication pattern 35

2.7 Running Profile of Parallelized SSD on CSX processor 42

2.8 SSD output: Tsukuba image . 45

3.1 cells and blocks in HOG descriptor computation 58

3.2 HOG computation: assignment of Blocks to PEs 64

3.3 Multi-scale computation of HOG-based human detection 70

4.1 Event-based optical flow computation 77

4.2 Simplified Tilera hardware architecture [2] 78

4.3 Simplified Tile architecture [2] . 79

4.4 Parallel computation of event-based optical flow 82

4.5 Event-based decomposition . 85

viii

LIST OF FIGURES

4.6 Velocity-based decomposition . 86

4.7 Velocity-based decomposition and mapping to eight processors . . 87

4.8 Image plane decomposition . 88

4.9 Application general overview . 91

4.10 Results of GPP implementation for a clockwise rotating circle . . 94

4.11 Results of GPP implementation for iCub moving head 96

4.12 Results of GPP implementation when a haman passes iCub 97

4.13 Event-based optical flow in obstacle avoidance system 98

4.14 Results of Tilera implementation of event-based optical Flow . . . 100

4.15 Comparison of GPP and Tilera implementation throughputs . . . 101

4.16 Impact of block size on throughput of Tilera implementation . . . 102

5.1 Camera coordinate system . 106

5.2 FOE computation . 109

5.3 A snapshot of the FOE-image . 111

5.4 Experiment setup . 112

5.5 Indoor experiment: snapshots of the Object-map 114

5.6 Indoor experiment: Computed TTC 115

5.7 Driving car sequence: street snapshots and FOE estimation 116

5.8 Driving car sequence: computed optical flow 117

5.9 Car turning left: FOE and optical flow 118

ix

Chapter 1

Introduction

1.1 Problem of robot autonomy

Energy limitation is one of the most important challenges in robotic and espe-

cially for mobile robots. Most mobile robots have to carry batteries as their power

sources, but batteries are heavy and large to carry and they have limited energy

capacity. These days mobile robots are used in many applications, such as floor

cleaning, pick up and delivery, entertainment or education, search and rescue.

However, applications of mobile robots are limited by their level of autonomy. To

achieve a large degree of behavior autonomy, these systems require a significant

computational capability to perform a wide variety of tasks, some with real-time

constraints, while they are limited in size, weight, and particularly power con-

sumption of their embedded computing platform. Becoming more autonomous,

mobile robots are going to be very valuable in more areas, e.g. they can be

sent where humans cannot go or do not want to go, or they may be assigned to

do dangerous and difficult tasks. Autonomous robots 1 are machines which are

able to sense, think, and act, so they must have sensors, computing architectures

and actuators. They need sensors to obtain information from the environment,

computers to process this information and take decision, and finally, actuators to

physically interact with the outside world. All these components consume energy

1In robotic, autonomy is defined in relation to human users/designers. It is quite clear that
robots are not and will not be any time soon autonomous in the strong biological, autopoietic
sense.

1

and should be considered to achieve a better energy efficiency, and eventually

truly autonomous mobile robots.

In this thesis, however, the emphasis is on computation power reduction both

in hardware and software level. Computing platform is the essential element of

any autonomous robot and consumes a large portion of the robot energy budget.

Mei et al. [3] have shown that embedded computer of their mobile robot, called

PPRK, singly accounts for 33.3 % up to 65 % of the total power consumption.

In addition, to become more autonomous, robots need to have more powerful

computing platform which usually means more power consumption. By reducing

computing power, robots will be able to perform more complex task with the

same energy budget. To reduce computation power for mobile robots and hu-

manoids, we have investigated two complementary solutions: (1) by exploiting

new emerging parallel architectures, a low-power high performance computing

architecture has been proposed and parallel implementation of different classes

of image processing and computer vision applications on this architecture have

been provided, and (2) by using emerging bio-inspired sensors such as DVS vision

sensor [4], only important data was extracted and processed. In section 1.2, we

discuss the approaches followed in this work to reduce computation power for mo-

bile robots in more detail, but before that a short review of major works toward

energy autonomy for mobile robots and humanoids is given in section 1.1.1.

1.1.1 Energy autonomy in the literature

Many research works have been conducted in order to cope with energy limita-

tion for mobile robots and prolong their operating time. These works can be

categorized in three classes.

One approach is to provide mobile robots with energy autonomy, i.e. devel-

oping robots which are able to extract energy from their environment through

a self-reliant process. NASA/JPL solar-powered Mars rovers [5] are popular ex-

amples of energy autonomous mobile robots. Other successful examples of such

robots are EcoBot-I and EcoBot-II developed by Melhuish et al. [6, 7] which

mimic animal capabilities of collecting and digesting food. These robots power

themselves by converting biomass into electrical energy by using on-board micro-

2

bial fuel cells. while Ecobot-I [6] was only fed by sugar, Ecobot-II [7] can catch

and digest insects. The latest version of EcoBot-III [8] feeds off and is powered

by sewage, and operated successfully for seven days in an enclosed environment.

However, this technology is still young and these robots have limited energy bud-

get. Therefore, while being fully energy autonomous, these robots are only able

to perform simple tasks and show limited behavioral autonomy.

Another approach to build long-lived mobile robots is to enable them gain

energy from recharging stations or other robots. Several techniques have been

employed to develop autonomous docking mechanisms. The first mobile robots

able to dock and recharge were developed by Grey Walter in the late 1940s [9].

These robots, known as tortoises, used a light following behavior to find their way

into a hut containing a light beacon and a battery charger. Later on Hada and

Yuta et al. [10] reported a week-long repetitive docking experiment with a mobile

robot equipped with infrared sensor and reflective tape on the floor to guide the

robot to the docking station. On the other hand, a docking station equipped with

sensing and communication gadgets can easily guide robots to the station. Silver-

man et al. [11] and Seungjun Oh et al. [12] have proposed autonomous docking

mechanisms using infrared proximity and laser range sensors to guide robot to

go back and firmly connect with the station using landing technique of airplanes.

Moreover, there are commercial robots equipped with auto-docking mechanisms

available in market [13, 14]. Clearly, this techniques puts some demands on the

sensing, computation and task scheduling of the robots. An alternative approach

for a group of robots working together is to distribute energy among themselves.

Zebrowski and Vaughan [15] have proposed the use of a special-purpose energy-

transporting tanker robot in a system of autonomous worker robots. The tanker

robot is responsible to find and recharge worker robots if demanded, while main-

taining its own energy level. Ngo et al. [16] have presented a multi-robot energy-

distributing system. In their proposal, robots are not only able of self-recharging

energy but also capable to collect refreshed batteries at the charging station and

carry batteries to share with other robots. Although these solutions, compared to

conventional autonomous recharging schemes, can improve the overall efficiency

of a team of robots, they have only been evaluated in simulation. In fact, they

are not yet mature enough for real applications.

3

The last approach, widely followed in the literature, to improve the run-time of

mobile robots is to reduce their energy consumption. This is done by considering

energy efficiency either in software or hardware design. Most studies on energy

reduction have considered motion power. Some studies have considered power

consumption in motion control. For instance, Barili et al. [17] presented a method

to control the speed of a mobile robot to avoid frequent speed changes and save

energy. In another study, Yamasaki et al. [18] presented an energy consumption

based control system for humanoid walking, which enables a robot to walk with

arbitrary energy consumption. Michaud et al. [19] have proposed an energy

efficient locomotion for a solar-powered rover, They also discussed the power

management and daily task schedule of the rover based on its power budget.

Another way to reduce motion power of a robot is to find the energy-efficient path

considering the robot task [20, 21, 22]. Furthermore, there are studies on power

management for mobile robots. For instance, Liu et al. [23] have proposed power-

aware scheduling algorithm for mission-critical applications such as Mars rover.

Mei et al. [3] have also demonstrated the benefit of energy-conservative techniques

such as dynamic power management and real-time scheduling to save up robots’

power consumption and prolong operating time of mobile robots. The advantage

of energy efficient solutions is that first, they can be used in parallel with the

other techniques discussed above, and second they allow robots to accomplish

more complicated missions with the same energy budget. The work presented in

this thesis is also aimed to reduce energy consumption of mobile robots by using

energy efficient computing paradigms.

1.2 Research framework

As noted above, mobile robots and humanoids represent an emerging and chal-

lenging example of embedded computing applications. In order to achieve a large

degree of autonomy and intelligent behavior, these systems not only require a

very significant computational capability to perform a wide variety of tasks but

they are also severely limited in terms of size, weight, and particularly power

consumption of their embedded computing system since they should carry their

own power supply. To provide low-power, lightweight, high performance com-

4

puting architectures for mobile robots and humanoids, two approaches can be

considered.

The first approach is to exploit new emerging parallel architectures which pro-

vide both high computational capability and low-power consumption. An exam-

ple is the ClearSpeed CSX massively parallel SIMD architecture which offers 192

Processing Elements with a peak computing power of about 96 GFOLPS while

consuming under 9 watts. Another example is the Tilera parallel MIMD archi-

tecture which offers 64 general purpose processors with a peak computing power

of 192 GOPS while consuming about 20 watts. Combining such architectures

provides a heterogeneous light-weight parallel architecture with unprecedented

computational capability and low-power consumption. Obviously, for employ-

ing parallel architectures in any applications, we should rethink about existing

algorithms and design novel parallel ones.

The second solution would be to use bio-inspired information coding and com-

putation. Despite its dramatic progress, information technology has not yet been

able to deliver artificial systems that can compare with biology. This in fact, is

in part due to a more efficient approach to extract and process important data

employed by biological system. Toward this goal, the iCub humanoid robot[24]

has been equipped with bio-inspired asynchronous vision sensors called DVS sen-

sors. This sensor loosely models the transient pathway in biological retinas [25].

Unlike standard vision sensors which sample the scene at constant time and there-

fore produce massive amount of redundant data, the DVS output represents only

the relative luminance changes. Consequently, exploiting output of DVS sensor

can lead to image processing approaches which are more efficient in terms of

bandwidth, memory size and especially computation time. However, to exploit

features of this sensor, novel algorithms should be developed which are radically

different from conventional image processing.

The work presented in this thesis puts together both complementary solutions

mentioned above, to develop a low-power light-weight parallel computing platform

for mobile robots and humanoids. On one hand low-power massively parallel

architecture have been exploited to provide a small size, low weight, low-power

embedded computing architecture for mobile robots. In addition, DVS sensor has

been used on heavy computational tasks such as optical flow based navigation to

5

reduce computational cost. Next chapters describes the parallel and event-based

algorithms developed during this research.

In the following section, we recall the current trend in microprocessor design,

discuss the potential effect on robotics, and reveiw some state of the art parallel

architectures, then in section 1.2.2 we propose a suitable computing platform for

mobile robots, and finally in section 1.2.3 the important features of DVS sensor

are briefly reviewed.

1.2.1 Trends in microprocessor design

Sequential processing has always been the dominated view in computer science

and digital computing technology. However, given the industry’s shift to multi-

core computing in recent years, parallel computing is attracting growing atten-

tion.

From introduction of the Intel 4004 in early 1970’s, each generation of proces-

sors grew faster and smaller while consuming more power and dissipating more

heat. According to Moore’s law the number of transistors that could be fabri-

cated on a single chip was doubling each year. IC technology improvements not

only was leading to more transistors on one chip but also was providing smaller

transistors which operated faster than their predecessors, allowing the processor

to run with higher clock frequency. In fact, in those decades, increasing the pro-

cessor performance was synonymous with increasing frequency. Although smaller

transistors consume less power, the number of transistors on one chip was ris-

ing faster than the falling amount of power per each transistor. Consequently,

processors power consumption was increasing as fast as their performance. How-

ever, finally a point in processor design was reached that power-thermal issues,

such as heat dissipation, has limited the increase of processor frequency1. Given

the limited platform power and energy budget, parallel computing was the only

way to deliver increased performance. Now, the new trend it to increase the ef-

ficiency and number of cores on a chip, to achieve higher performance without a

1In 2004, Intel announced it had canceled the development of Tejas, the successor of Pentium
4 because of the heat problem due to the power consumption of the core. From introduction of
8086 through Pentium 4, Intel had increased processor frequency from each generation to the
next, but finally it changed its road map to multi-core processing.

6

corresponding increase in power consumption [26].

Multi-core technology has eventually become the dominant stream in CPU

design. Intel and AMD, the mainstream manufactures of microprocessors, are

producing processors with several cores for servers and even laptop and desktop

environments. Each core also utilizes several Floating point unit. So, instead

of raising frequency, they are focusing on increasing cores in one chip. In this

manner, performance will increase much faster than power consumption. Be-

sides, some massively parallel processors have emerged such as Cell, the general

purpose graphics processing unit(GPGPUs), Tilera, and CSX. These highly par-

allel and low power architectures along with emerging parallel framework and

programming models such as OpenCL and CUDA are the signs of a new era of

computing.

As noted in section 1.1, computers are essential elements of robots. The con-

tinuous increases in performance, coupled with decreases in size and weight of

microprocessors, had major effects on the development of mobile robots [27]. Be-

ing equipped with more powerful on-board computers, mobile robots have been

able to perform more complex tasks. Attempt to improve the cognitive ability of

these robots have been more focused on software level, since each generation of

processors brought increased performance on existing applications with no extra

effort. However, this is not true anymore unless the applications are written to

run in parallel and to scale to an increasing number of cores [28]. In the next

decades, we will witness the effect of new trend in processor design on robots and

especially mobile robots. While the new multi-core technology can provide mobile

robots with new massively parallel architectures, high computational capability

and low-power consumption, it brings new challenges to robotics on how to ex-

ploit these new architectures. New parallel algorithms must be developed. In

addition in parallel computing the right choice of parallel architecture according

to characteristic and requirements of the application is very important to achieve

the desired performance.

In the following, we first review the architecture of some state of the art

parallel processors and then we discuss the choice of parallel architecture for

mobile robot applications.

7

1.2.1.1 Parallel architectures & state of the art processors

Over years of continuous research on computer architectures, various forms of

parallel architectures have evolved, and new forms will probably emerge in the

future due to worldwide research to discover new architectures that can satisfy the

increasing computation demands better than existing architectures. Each type

of parallel processors has its own characteristics, advantages and disadvantages

and hence is suitable for certain applications.

Given the wide range of parallel architecture types, it is not easy to develop

a classification scheme for parallel architectures. In addition, various types of

parallel architectures usually have overlapping features to some extents. Conse-

quently, parallel architectures are usually classified under different factors such

as, the internal characteristics of processors or processing elements (PEs), the

communication mechanism among the PEs, interconnection network among PEs

and memory modules, number of instruction and data streams, and even number

of PEs.

One of the broad classification of parallel architectures was proposed by Flynn

in 1966. Flynn’s classification is based on number of simultaneous instruction and

data streams which flow among PEs and main memory during program execution.

He categorized computer architectures into four main classes described in the

following.

• Single Instruction, Single Data Stream (SISD): These computers are actu-

ally sequential processors and are not able to perform parallel operations.

• Single Instruction, Multiple Data Stream (SIMD): In this configuration, a

single control unit controls multiple execution units. This let the processor

to execute one instruction stream on multiple data streams. In other words,

one instruction stream is issued by the control unit, and multiple execution

units perform the same instruction on different data streams.

• Multiple Instruction, Single Data Stream (MISD): This type of architec-

tures allows multiple instruction stream operate on a single data stream.

However, this type is an uncommon architecture and there are not many

8

examples of MISD architectures. Some pipeline architectures can be viewed

as MISD architecture.

• Multiple Instruction, Multiple Data Stream (MIMD): In this configuration,

multiple autonomous processors simultaneously execute different instruc-

tions on different data. This type of architecture provides more flexibility

and consequently is the most common and widely used form of parallel

architectures.

Extensions to the Flynn’s classification has been proposed in recent years

such as single program, multiple data (SPMD) class which combines the ease of

SIMD programming with MIMD flexibility. In the following, we quickly review

four currently available and more pervasive parallel architectures: Cell, GPGPU,

CSX, and Tilera processors. They are very different in their architecture, and

therefore each one has its own features, advantages, and disadvantages.

Cell Processor The Cell Broadband Engine (BE) [29] is a heterogeneous multi-

core architecture which was jointly developed by Sony, IBM, and Toshiba. The

Cell Architecture consists of one PowerPC Processor Element (PPE), eight Syn-

ergic Processing Elements (SPE), one Element Interconnection Bus (EIB),and

Memory and I/O Controllers.

Two type of cores, PPE and SPE, are specially designed for their tasks and

support different set of instructions. PPE, built on IBM’s 64-bit Power Archi-

tecture, is optimized for control tasks. This is the core which runs the operation

system, responds to interrupts, and also distributes the processing work among

the SPEs and coordinates their operation, while SPE, 128-bit RISC vector proces-

sor, is optimized for data-intensive computing. In other words, each SPE provides

data-level parallelism, while combining eight SPEs on one chip brings task-level

parallelism.

EIB provides the infrastructure for inter-element communication, memory

and I/O requests. The way of connecting elements together is very crucial in

term of performance. The EIB consist of four rings, two of them carry data in

the clockwise direction and the other two transfer data in the counter clockwise

direction.

9

CSX The ClearSpeed’s CSX SIMD architecture [1] has been developed to pro-

vide both high performance computing and low-power consumption. Each CSX

core has a standard, RISC-like, control unit with instruction fetch, caches and IO

mechanisms, and also has two execution units, the mono execution unit, which

is dedicated to sequential processing, and poly execution unit.

Poly execution unit includes an array 96 PEs and provides parallel computa-

tion. The PEs, similar to other SIMD architectures, operates in a synchronous

manner, i.e. all PEs execute the same instruction but on their own piece of data.

Each PE includes an ALU, a floating point unit (FPU), an integer multiply-

accumulate (MAC) unit, a register file, and private memory. In addition, the

poly execution unit includes a programmable IO unit which is responsible for

data transfer between external memory and PEs’ memories. This unit can works

in parallel with computational unit.

Moreover, the PEs are able to communicate with each other via a dedicated

bus called swazzle path. Swazzle path connects the register file of each PE with

the register files of its left and right neighbors, and allows PEs to perform a

register-to-register data transfer in either left or right neighbor in each cycle.

Tilera The Tilera [30] MIMD architecture includes a two-dimensional grid of

identical processing components called tiles. Each tile is a full featured proces-

sor with its associated cache hierarchy and a non-blocking switch which connects

the tile to on-chip networks. Each tile processor is a 3-wide very long instruc-

tion world (VLIW) unit with two or three instructions per bundle, and can run

programs independent of the other tiles.

The Tilera three-level cache scheme can store large portion of data and con-

sequently reduce the memory communication time significantly. Each tile has its

own L1 cache and L2 cache, while all the tiles’ L2 caches are combined to provide

on-chip L3 cache. This mechanism is highly effective because if one tile references

its own cache and do not find the data, it would be looking for a neighbor may

have it. Obviously, that is faster than going off chip to external memory by good

ways.

Moreover, the Tilera iMesh network, which provides ample on-chip inter-

connect bandwidth, is responsible for all on-chip data communications. iMesh

10

consists of six different on-chip interconnection networks, each specialized for a

different use; two of them are user accessible and can be used to transfer data

between tiles, while four of the six networks are only system accessible. Two

system accessible networks are used for data transfer between tiles, and between

tiles and external memory, one interconnection network is used to provide cache

coherency among tiles’ caches, and the last one is used for communications to IO

devices.

General Purpose Graphic Processing Unit The graphics processing unit

(GPU), first introduced in 1999, has evolved from a fixed-function special purpose

graphic processor into a fully-fledged general-purpose parallel processor. In fact,

today, GPGPU is the most widely used parallel processor. Over the last decade,

the GPU architecture and even the programming interface was changing markedly

from generation to generation. Introduction of CUDA programming model in

2006 was a turning point in what today is called GPU Computing. Instead of

programming dedicated graphics units with graphics APIs, the programmer could

now write C-like programs and target the massively parallel GPGPU processors.

CUDA follows a SPMD programming model. It has introduced a three level

hierarchy of threads: a thread, a thread block, and a grid of parallel thread

blocks. A CUDA program calls parallel kernels. Each kernel executes across a

set of parallel threads which are organized in thread blocks and grids of thread

blocks. Each thread within a thread block executes an instance of the kernel,

and has its own registers and private memory. Each thread block is a group

of concurrently executing threads that can cooperate among themselves through

barrier synchronization and shared memory, and each grid is an array of thread

blocks that execute the same kernel, read inputs from global memory, synchronize

between kernel calls, write results to global memory [31].

The CUDA hierarchy of threads maps to a hierarchy of processors on the

GPGPU. A GPGPU executes one or more kernels; a streaming multiprocessor

(SM) executes one or more thread blocks; and CUDA cores in the SM execute

threads. GPGPUs are different in number of CUDA cores, SMs, and CUDA cores

per each SM. For instance, Fermi, a CUDA-based GPU, includes 512 CUDA cores

which are organized in 16 SMs of 32 cores each [32]. Each SM executes threads in

11

groups of 32 threads called a warp. To make the best use of hardware, threads in

a warp should execute the same code path and access memory in nearby addresses

(similar to SIMD architectures).

1.2.2 Low-power high performance vision architecture

As noted in section 1.2.1.1, there are a vast number of parallel architecture types

and each type is suitable for a certain application areas. Since visual input are

primary sensory information for many mobile robots and humanoids, and on the

other hand processing visual information usually requires intensive computational

capabilities, this work is focused on image processing and computer vision tasks

used in robot visual systems.

Conventional image processing algorithms are traditionally classified into three

classes: low-level, intermediate-level, and high-level. The low-level image process-

ing algorithms perform the same operation on all pixels of input image to produce

the pixels of output image, and hence are the best candidate for data-level par-

allelism. The intermediate-level image processing algorithms perform operations

on the input to produce a more abstract representation like a set of features.

These operations are also appropriate candidate for data-level parallelism. The

high-level image processing algorithms perform high-level analysis on the abstract

data provided by intermediate-level algorithms. These algorithms are suitable to

exploit instruction level parallelism due to their irregular structures. However,

some high-level image processing tasks such as object classification/recognition

include some form of matrix-vector operations which are suitable for exploiting

data-level parallelism. SIMD or SPMD architectures such as CSX and GPGPUs

are especially designed for data parallel applications. Hence, such architectures

are excellent candidates for exploiting data-level parallelism, while to exploit in-

struction level parallelism, an MIMD architecture like Tilera or Cell processor is

appropriate.

Furthermore, as mentioned in section 1.2, DVS sensor provides an asyn-

chronous and sparse representation of the scene which only includes the relative

luminance changes(see section 1.2.3 for more detail on how DVS sensor works).

Due to this asynchronous and sparse representation, the novel event-based vision

12

algorithms, developed to work on the output of the DVS sensor, are more suited

to be implemented on an MIMD architectures.

Consequently, the proposed supercomputer architecture, in this work, must

include a combination of SIMD and MIMD architectures to provide high com-

puting performance in wide range of computations involved in vision system.

On the other hand as already discussed, mobile robots and humanoids require

a low-power light weight, but high performance embedded computing platform.

While having a high performance computing platform allows them to accomplish

more complex tasks, they are severely limited in terms of size, weight, and par-

ticularly power consumption of their embedded computing system. Therefore,

satisfactory performance and acceptable performance per watt are the two im-

portant criteria a proper computing architecture for mobile robots must have.

There are various technical factors that affect the overall performance of comput-

ing architectures. However, an important measure of computer performance is

floating-point operations per second (FLOPS) or operations per second (OPS).

Table 1.1 compares some state of the art processors in terms of architecture,

performance, and power consumption. According to this table, considering ar-

chitecture, performance and performance per watt, in other words giga FLOPs

(GFLOPs) and GFLOPS per watt of available parallel processors, Clearspeed’s

CSX700 [1] SIMD architecture and Tilera’s Tile64 [30] MIMD architecture are

the most appropriate candidate for a low-power lightweight supercomputing ar-

chitecture for mobile robots and humanoids.

1.2.3 Bio-inspired asynchronous even-based vision sensor

Conventional frame-based visual sensors have two drawbacks; they produce mas-

sive amounts of redundant data, and are limited in temporal resolution by their

maximum frame rates. Consequently, conventional image processing methods

are very costly in terms of computation time, memory usage and communication

bandwidth, especially for high frame-rate applications, as they usually operate

on the entire image in each frame. In contrast, research in biology/neuroscience

has shown that high temporal resolution but sparse acquisition play an impor-

tant role in the efficiency of the human visual processing system [33]. Inspired

13

Table 1.1: Multi-core Processors Performance Comparison

Processor Core Clock Speed Power Performance Performance per watt

(MHz) (watt) (GFLOPs) (GFLOPs / w)

Intel Core i7-965 4 3200 130 69.23 0.53
TeslaTM C2050 * 448 1150 238 515 2.16
PowerXCell 8i 9 3200 92 200 2.17
CSX600 96 250 10 25 2.5
CSX700 192 250 < 9 96 >10.6
Tile64ProTM ** 64 750 15-22 144 8

* the Kepler GPGPU architecture, introduced to the market in 2012, delivers up to
3x the performance per watt of Fermi architecture according to Nvidia numbers.

** This processor does not include FPU. The performance, therefore, is given in terms
of giga OPS (GOPS). It should be mentioned that Tile-GX processor family, the
successor of Tile64Pro annonced in 2012, supports floating point hardware.

by biological evidence and after several attempts [34, 35, 36, 37] a novel visual

sensor named Dynamic Vision Sensor (DVS) has been developed by Lichtsteiner

et al.[4].

DVS is an asynchronous sensor which works based on temporal contrast in

intensity. Hence, the output of DVS sensor has three key properties: it is event-

based, sparse, and represents the relative luminance change. DVS includes an

array of 128x128 pixels. These Pixels respond asynchronously to relative changes

in intensity and generate spike events. Each event indicates a change in log

intensity has occurred since the last event in the pixel i.e.

|∆ log I| > T (1.1)

where I is the pixel illumination and T is a global chip threshold. Figure. 1.1

illustrates how one pixel of DVS responses to changes in the intensity. In this

figure, the upper diagram represents the logarithm of sensed intensity in one

pixel over time and the lower diagram shows the responses of the pixel over time.

As can be seen, when the change in log intensity is bigger than the threshold,

the pixel generates an event. As shown in Fig. 1.1, each event also specifies

the sign of the change. In fact, there are two types of events: on and off which

represent increasing or decreasing the intensity, respectively. By directly encoding

14

time

lo
g

I

time

O
N

O
N

O
N

O
F

F

O
F

F

O
F

F

lo
g

I

Reset Level

Off threshold
ON Threshold

Figure 1.1: Principle of DVS vision sensor operation (one pixel)

scene reflectance changes, DVS reduces data redundancy while preserving precise

timing information.

The final output of the sensor is an asynchronous stream of time-stamped

address-events (AEs). AEs encode the x and y-address of the pixel in the array,

in addition to the type of the event (ON or OFF). Timestamps are generated

by a free-running counter outside the main sensor chip. All of the events that

arrive within the same clock have the same timestamp On the other hand, since

the pixels react independently and then they should send their data via a shared

bus, the events which ideally should have the same timestamp may have differ-

ent timestamps in practice, e.g. when a bar is moving to the right, the events

generated by edges of the bar can have different timestamps.

1.3 Robot setup

As discussed in section 1.2.2, the proposed low-power high performance vision

architecture includes CSX SIMD and Tilera MIMD architectures. An abstract

view of the overall architecture, integrating Tilera, CSX, and a general purpose

processor is shown in Fig. 1.2. In our prototype the interconnection network

15

 MIMD
Parallel

Architecture
(Tile64)

 SIMD
Parallel

Architecture
(CSX700)

General Purpose
Processor

Interconnection
Network

Figure 1.2: Overview of the proposed low-power high performance architecture

Figure 1.3: iCub humanoid robot standing on top of iKart mobile platform

consists of the PCIe buses of the host system which includes the general purpose

processor. The estimated power consumption of such architecture is about 50

watt (9 (CSX700) +22 (Tile64) + 20 (GPP) < 50).

To have a prototype of the proposed architecture, we have exploited iKart

mobile platform[38]. iKart is a six wheeled mobile platform originally designed to

provide autonomous navigation capabilities for iCub humanoid robots. Figure 1.3

shows the iCub robot standing on top of the iKart platform. Moreover, the

iKart is augmented by an Intelr CoreTM i7 processor which support on-board

computation and server repository for the icub software. The platform is also

equipped with a wireless bridge and a Lithium ion polymer battery.

Figure 1.4 shows ClearSpeed Advanced e710 Card [39] and Tilerar TileExpress-

16

(a)

(b)

Figure 1.4: (a) ClearSpeed Advanced e710 Card (b) Tilerar TileExpress-20G
Card

20G card [40]. Advanced e710 Card includes one ClearSpeed CSX700 proces-

sor and 2 GBytes of ECC-protected DRAM. TileExpress-20G card features a

TILEPro64 processor with clock frequency of 866 MHz, 8GB of DDR2 Memory

with Two 10Gbps Ethernet ports (CX4). Both cards can be installed in a PCIe

slot (x8 or x16) of a host machine and exploited as coproccessors. The required

drivers are provided by manufacturers for Linux operationg system.

As a rapid working prototype of the proposed vision architecture for mobile

robots and humanoids, Advanced e710 Card and TileExpress-20G were mounted

on the iKart. Figure 1.5 shows a TileExpress-20G card installed on PCIe slot of

the computing platform of iKart.

It should be mentioned that iCub and also iKart are equipped with both tra-

ditional RGB cameras and DVS vision sensor. Figure 1.6(a) shows a DVS vision

17

Figure 1.5: TileExpress-20G installed in iKart

sensor with a standard USB2.0 interface that can be mounted on any compu-

tation platform. Figure 1.6(b) shows a DVS vision sensor with the associated

custom hardware components specifically designed to be installed inside eye balls

of the iCub humanoid robots.

1.4 Layout of the thesis

The research undertaken is reported in six chapters.

Chapter 1 discusses the problem of energy autonomy in robotics and reviews

some studies undertaken to prolong robot operating time. This chapter intro-

duces the research framework followed in this work to reduce computation power

of mobile robots and humanoids. A low-power light weight high performance

computing architecture, including CSX SIMD and Tilera MIMD architectures, is

proposed. This thesis covers some parallel vision algorithms developed for this

architecture. Besides, DVS vision sensor is used. Exploiting output of DVS sen-

sor can lead to image processing approaches which are more efficient in terms

of bandwidth, memory size and especially computation time. This thesis also

18

(a) (b)

Figure 1.6: (a) DVS sensor with USB interface (b) DVS sensor with the associated
hardware components designed for iCub eye balls

covers event-based vision algorithms developed to work on DVS output for robot

navigation task.

Chapter 2 presents parallel implementation of low-level image processing tasks

on the CSX SIMD architecture. It is particularly shown that the row-cyclic is

the most efficient data decomposition scheme for data parallel computation of

low-level image processing algorithms such as the local stereo vision algorithms

and Harris corner detector. In addition, strategies are proposed to minimize

parallel processing overhead. The performance of the parallel implementations

are reported and discussed. For most cases, faster than real-time performance

has been achieved.

Chapter 3 presents parallel formulation and fast implementation of HOG-

based human detection on the CSX SIMD architecture. A detailed analysis of

multi-level computational structure of the HOG-based object detection is given

and it is shown that block level decomposition is the most efficient in terms of

reducing the redundancy in the computation and communication. In addition,

the mapping of multi-scale computation to 2D strip packing problem is described.

Computation of HOG descriptors and HOG-based human detection are represen-

tative examples of intermediate and high-level image processing tasks, and the

the ideas presented here especially for multi-scale computation and dealing with

complex data dependency pattern can be easily exploited for parallel implemen-

tation of other object detection/classification algorithms. A performance of over

19

6 fps has been achieved for an image resolution of 640 × 480 while consuming

only 9 watts. This performance can be further increased by deploying multiple

CSX architectures.

Chapter 4 presents parallel formulation and massively parallel implementa-

tion of an event-based optical flow algorithm on the Tilera MIMD architecture.

A hybrid parallel modes is used to achieve an efficient parallel implementation

with minimum parallelization overhead on the Tilera MIMD architecture. In high

level, the computation is structured in a four stage pipeline, and data decompo-

sition technique is used to further exploit parallelism in computation. There

are two important issues that should be considered in parallel implementation

of event-based vision applications. First, commonly used data decomposition

scheme can lead to unbalance computation, and consequently inefficient paral-

lelization. Second, due to the sparse nature of data, it is more difficult to exploit

the cache subsystem of computing platforms effectively, and hence the memory

communication overhead may increase. Implementation of the event-based opti-

cal flow is provided on both GPP and Tilera architecture, and the experimental

results for both implementations are presented. Even our GPP implementation

is fast enough to satisfy performance requirements of some applications, and has

been successfully used in a real-time obstacle avoidance system.

Chapter 5 proposes two event-based algorithms to estimate the focus of ex-

pansion (FOE) and time-to-contact (TTC) for a moving event-based vision sen-

sor. These information are vital in vision-based navigation for mobile robots and

humanoids to control movements and especially avoid obstacles. The proposed

algorithms exploit the information provided by the event-based optical flow algo-

rithm presented in chapter 3. The FOE is computed by pooling the information

provided by all the flow vectors computed in fixed time intervals. Then, FOE

estimation along with flow vectors are used to compute TTC. The proposed algo-

rithms have been tested in real world scenarios, and the experimental results are

presented. According to the results while estimation of FOE can be pretty accu-

rate if there are enough number of events, the computation of TTC is vulnerable

to the errors of optical flow magnitudes.

20

Chapter 2

Low Level Image Processing ON

CSX SIMD Architecture

2.1 Introduction

In this chapter, parallel implementation of low-level image processing algorithms

on the CSX SIMD architecture is explored. Two different classes of low-level

image algorithms are considered: dense stereo vision and corner detector. These

algorithms are usually performed as the first step in many vision-based robotic

applications. While the real-time computation of some of these algorithms is pos-

sible with standard general purpose processors (GPPs), such an implementation

especially for stereo vision algorithms taxes the system and does not leave enough

resources for the next steps of computation [41]. These algorithms perform the

same operation on all pixels of input image to produce the pixels of output im-

age, and hence are best suited for exploiting data-level parallelism. This chapter

extensively discuss the appropriate data decomposition schemes and details the

parallel implementations issues on the CSX architecture for the considered algo-

rithms.

In order to achieve real-time performance for low-level image processing tasks,

two approaches have been mainly followed in the literature. In the first approach,

special-purpose architectures such as ASICs and FPGAs are developed to achieve

a better performance. While ASIC and FPGA architectures, due to their low

21

2. Low Level Image Processing

power consumption, are suitable for embedded applications, their relatively low-

level programming model, compared with rather general purpose architectures,

is a disadvantage for our target application, mobile robots and humanoids which

need to implement a wide class of algorithms. In the second approach, high-

performance architectures such as GPGPUs and cell processor are deployed. Al-

though GPGPUs and cell processor have easier programming model, as stated

earlier (see section 1.2.2), their high power consumption makes them impractical

for embedded applications such as mobile robots and humanoids.

In the rest of the chapter, first a brief but comprehensive overview of the CSX

architecture is given in section 2.2. Then, parallel implementation of the stereo

vision algorithms and Harris corner detector on the CSX architecture along with

the achieved results are presented in section 2.3 and 2.4, respectively. It the end,

a summary of this chapter is given in section 2.5.

2.2 The CSX 700 architecture

In this section, we briefly review the ClearSpeed CSX 700 architecture with em-

phasis on some of its salient features which have been exploited in our implemen-

tation (see, for example, [1, 42] for more detailed discussions).

As illustrated in Fig. 2.1, the CSX700 has two similar cores; each core has a

DDR2 memory interface and a 128-KB SRAM, called external memory. Each core

also has a standard, RISC-like, control unit and two execution units, the mono

execution unit, which is dedicated to processing mono (i.e., scalar or non-parallel)

data, and the poly execution unit.

The poly execution unit includes 96 PEs and performs parallel computation

(see Fig. 2.2). Each PE has a 128 bytes register file, 6KB of SRAM, high speed

I/O channels to two adjacent PEs, as well as external I/O. It also includes an

ALU, an integer multiply-accumulate (MAC) unit, and an IEEE 754 compliant

floating point unit (FPU) with dual issue pipelined add and multiply, as well

as support for floating point division and square root. The computational units

within each PE can operate both in parallel and pipelined fashion. However, in

order to better exploit these parallel and pipeline capabilities, specific instruction

set called vector type operations should be used.

22

2. Low Level Image Processing

Programmable I/O

Ins

Cache

Data

Cache

128 K

SRAM

128 K

SRAM

M
e

m
o

ry
 U

n
it

D

D
R

2

M
e

m
o

ry
 U

n
it

D

D
R

2

Core 1

Poly Execution Unit

Mono

Controller

Poly Controller

Programmable I/O

Ins

Cache

Data

Cache

Core 2

Poly Execution Unit

Mono

Controller

Poly Controller

On Chip Network

PE96PE2PE1 PE96PE2PE1

Figure 2.1: Simplified CSX chip architecture [1]

The CSX700 has a clock rate of 250MHz[43]. Considering the add and the

multiply FPUs working in parallel and each generating one result per clock cycle,

the peak performance of each PE is then 500 MFLOPS, leading to a peak per-

formance of 48 GFLOPS for one core and 96 GFLOPS for two cores (one chip).

However, sequential (i.e., scalar) operations, wherein single add or multiply is

performed, take 4 clock cycles to be performed [43]. This leads to a sequential

peak performance of 62.5 MFLOPS for each PE, 6 GFLOPS for one core, and 12

GFLOPS for two cores (one chip). This indeed represents a drastic reduction in

the peak, and hence, achievable performance. However, vector instructions allow

greater throughput for operations. For example, vector instructions that operate

on sets of 4 data are executed much faster, e.g, such vector add or multiply in-

structions take 4 cycles to be completed [43]. However, for some operations the

code generated by the CSX compiler might not be optimized to enable achieving

such a performance. Therefore, in order to make sure that the best performance

is achieved, we have also written part of our codes in CSX assembly language.

Poly execution unit includes a Programmable IO (PIO) unit (Fig. 2.2) which

is responsible for data transfer between external memory and PEs’ memories,

called poly memory. The PIO unit serially transfers data form each of 96 PEs’

memories to the external memory and vice versa. As shown in Fig. 2.2, the PIO

unit consists of a PIO engine and 96 IO buffers. Each IO buffer is connected to

the register file and memory of one PE. In fact, serial data transfer is performed

to/from each PE’s IO buffer. It is important to note that this architecture enables

23

2. Low Level Image Processing

A
L

U

M
A

C

D
IV

/S
Q

R
T

F
P

-M
U

L

F
P

-A
D

D

Register File

(128 bytes)

SRAM

(6 Kbytes)

I/O Buffer

(64 bytes)

646464

PIO

Engine
128

32

128

Poly Execution Unit

64 64

PIO Unit

PE1 PEi -1 PEi PEi + 1 PE96

Figure 2.2: Simplified architecture of CSX poly execution unit[1]

the computational units and the PIO unit to work in parallel, thus enabling

overlapping of communication with computation. This feature is fully exploited

in our implementation to reduce IO overhead. Due to the IO buffer size, at

each communication step the maximum size of the data that can be transferred

between the external and each PE’s memory is 64 bytes. Also, to better utilize

the underlying bus bandwidth, the data size has to be at least 32 bytes, i.e. the

time required to transfer 32 byte data or less is almost the same.

Moreover, each PE is capable of communicating with its two neighboring PEs

by using a dedicated bus called swazzle path. As shown in Fig. 2.2, swazzle

path connects the register file of each PE to the register files of its left and right

neighbors (Note that the boundary PEs, i.e., PE1 and PE96 are also connected

to each other, thus forming a ring communication structure). Consequently, on

each cycle, PEs are able to perform a register-to-register data transfer to either

their left or right neighbor, while simultaneously receiving data from the other

neighbor. The swazzle path can work in a pipeline fashion. There are assembly

instructions that allow swazzling of sizes up to 32 bytes much faster than calling

the swazzle functions on multiple of 8-byte objects. The swazzle path provides

the facility for parallel data communication among PEs.

24

2. Low Level Image Processing

2.3 Parallel implementation of dense stereo vi-

sion algorithms

Stereo vision has been extensively investigated and a great variety of algorithms

have been developed for its computation [44]. In general, dense stereo vision

methods can be categorized into two classes: local and global. In local methods,

the disparity map is computed using a winner-takes-all (WTA) strategy, i.e., the

disparity of each pixel is calculated without considering disparity assignment of

other pixels. In contrast, global methods formulate stereo matching as a global

optimization problem. However, for real-time applications, local stereo vision

algorithms have been usually considered, due to their rather low computational

cost.

An extensive overview of stereo vision algorithms, with emphasis on the appli-

cation for intelligent vehicles, is presented in [45]. The results in [45] demonstrate

that using a local method such as sum of squared differences (SSD) algorithm

along with a robust error rejection scheme, such as left-right check (i.e., using

both images as reference) and multiple window computation, can lead to the best

results. It should be emphasized that, in terms of choice of more accurate stereo

vision algorithms for mobile robot applications (which share many commonalities

with the intelligent vehicles), we rely on the analysis and benchmarking of the

various algorithms reported in [45].

The class of stereo vision algorithms considered for our implementation on the

CSX architecture is briefly presented in section 2.3.2. Data decomposition scheme

and implementation issues are discussed in section 2.3.3 and 2.3.4, respectively.

Finally, the performance of our parallel implementation is presented and discussed

in section 2.3.5, but first of all, related work are reviewed in section 2.3.1.

2.3.1 Background and related works

This section briefly review various implementations of local stereo vision algo-

rithms in the current literature.

Implementation of stereo vision algorithms on General Purpose Processors

(GPPs) have been studied in [45, 46]. van der Mark et al. [45] have used the sum

25

2. Low Level Image Processing

of absolute differences (SAD) similarity measure and achieved a performance

of 11.38 frame per second (fps) for 512 × 512 images with disparity of 48 by

fully exploiting the SIMD computational features (i.e., SIMD SSE2) of a 3.2

GHz Pentium 4 processor. Di Stefano et al. [46] have also used SAD similarity

measure and reported a performance of up to 25.94 fps for 320 × 240 image

resolution with a disparity of 64 is reported. While the GPP provides the highest

degree of flexibility and programmability, the results reported in [45, 46] clearly

demonstrate that they cannot provide the adequate performance for larger images

of practical interest, such as VGA (640× 480) or emerging HDTV (1280 × 720)

and/or more accurate algorithms.

A parallel implementation of a local stereo vision algorithm on the Cell Broad-

band Engine has been reported in [47], achieving a performance of 30 fps for VGA

images with a disparity of 48. Yang et al. [48] have presented implementation of

a local stereo vision algorithm on GPGPUs. Using an ATI Radeon 9,800 graphic

card, they have achieved a performance of 13.86 fps for 512× 512 images with a

disparity of 94. Zhu et al. [49] have reported a CUDA-based implementation of

SAD algorithm on GPGPU, and achieved a performance of 204 fps for 450× 375

images with a disparity of 64. GPGPUs and cell processor usually offer a much

higher peak computing power and hence can potentially achieve good perfor-

mances. They also offer programmability (though less than GPPs but more than

FPGAs and ASICs) but, as stated earlier, their high power consumption makes

them impractical for embedded applications.

Various implementations of stereo vision algorithms have been also considered

on special-purpose architectures. Chang et al. [50] have used DSP and achieved

a performance of 50 fps for 384×288 images with a disparity of 16. Jia et al. [51]

have presented an FPGA-based stereo vision system and, with a disparity range

of 64, have achieved 30 fps and 120 fps for 640× 480 and 320× 240 image sizes,

respectively. In [52], an FPGA implementation of a fuzzy hardware structure

for disparity map computation has been proposed to achieve 440 fps for 640 ×
480 images with disparity of 80. Woodfill et al. [53] have proposed an ASIC

chip, called Tyzx DeepSea, and by using a different algorithm, i.e., the census

transform, they have achieved a maximum performance of 200 fps for 512× 480

images with a disparity of 52. In [54], a dataflow hardware architecture has been

26

2. Low Level Image Processing

developed and a performance of 50 fps for 256 × 192 images with a disparity

of 25 has been achieved. In [55], an FPGA implementation of a stereo vision

algorithm for automotive applications has been presented with a performance

of 425 fps for 320 × 240 images with a maximum disparity of 100. ASICs and

FPGAs can be used to design custom hardware and exploit the specific features

of the computation to achieve a low-power high-performance implementation.

However, they are not adequate for our objective due to their relatively low level

programming model.

2.3.2 Overview of target stereo vision algorithms

In this section, we briefly describe the class of stereo vision algorithms considered

for implementation on CSX architecture.

SSD algorithm

The SSD algorithm is a straightforward window-based approach to obtain the

disparity map on a pair of rectified stereo images. To describe the algorithm, let

IR(i, j) and IL(i, j) denote the intensity of pixels located at row i and column j

in the right and left images, respectively. The input parameters of the algorithm

are w the window size and β the maximum disparity. Assuming the right image

as reference, the disparity for each pixel (i, j) in the right image is calculated as

follows:

• Consider a window centered at (i, j) in the right image

• Consider a window centered at (i, j+k) in the left image where j ≤ k < j+β

• Calculate convolution of the windows in the left and right images as

S(i, j, k) =

i+w−1
2∑

l=i−w−1
2

j+w−1
2∑

m=j−w−1
2

[
IR(l,m)− IL(l,m+ k)

]2

(2.1)

27

2. Low Level Image Processing

• The pixel that minimizes S(i, j, k) is the best match. So,

k∗ = arg min
j≤k<j+β

S(i, j, k), (2.2)

d(i, j) = k∗

Briefly, the SSD algorithm consists of the following three steps:

1. calculating the squared differences of intensity values for a given disparity

2. summing the squared differences over square windows

3. selecting the minimal SSD value at each pixel.

SSD with multiple windows

To reduce the errors introduced by depth discontinuity, the use of multiple corre-

lation windows with the same size and different centers have been proposed [56].

For example, by using a 5-window scheme, the disparity for each pixel (i, j) in

the right image is calculated as follows:

First, convolution of the windows in the left and right image are calculated

by using Eq. (2.1). Then, the two lowest SSD values of neighboring windows are

added to the S(i, j, k):

min1 = min
{
S(i− h, j − h, k), S(i+ h, j − h, k),

S(i− h, j + h, k), S(i+ h, j + h, k)
}

min2 =second min
{
S(i− h, j − h, k),

S(i+ h, j − h, k),

S(i− h, j + h, k), S(i+ h, j + h, k)
}

S5(i, j, k) =S(i, j, k) +min1 +min2 (2.3)

where h is the correlation window half width, i.e. w = 2h+1, and S5(i, j, k) refers

to image row i, image column j, and disparity k, by using 5 correlation windows.

28

2. Low Level Image Processing

Finally, using WTA technique, the pixel that minimizes S5(i, j, k) is the best

match, i.e.

k∗ = arg min
j≤k<j+β

S5(i, j, k), (2.4)

d(i, j) = k∗

In [56] other schemes by using 9 and 25 correlation windows have also been

suggested.

SSD with left-right check

While using WTA techniques, a post processing step is needed to remove errors

caused by occlusions. To detect and remove such errors in the estimation, left-

right consistency check which exploits uniqueness constraint is often used [45]. In

this technique, first both left to right and right to left disparities are calculated.

Then for each point the corresponding results are compared. It is assumed that

the results of left to right and right to left should be the same. Different results

indicate an inconsistency, which might have been introduced by occlusion, and

hence these results are removed. Left-right check technique lead to a significant

increases in computation cost, as it needs the disparity map to be computed

twice.

2.3.3 Data decomposition

Data decomposition is the key factors for efficient implementations of data parallel

algorithms. Data decomposition scheme has a direct impact on the required

communications to external memory, the amount and distance of data exchanges

among processors, and the required local memory space. In the CSX architecture,

the size of PE’s memory is rather limited and it can only store small segments

of data. Consequently, PEs might need to receive data from external memory or

other PEs. Data transfer from external memory to PEs’ memory (poly memory)

is much more expensive than inter-PE communication via swazzle path [1]. In

fact, the cost of inter-PE communication among neighboring PEs is the same as

simple arithmetic operations and hence should be exploited as much as possible.

29

2. Low Level Image Processing

For the CSX architecture, we analyze and compare various data decomposition

schemes in terms of the following parameters: (a) required memory space for each

PE, (b) size of data that needs to be transfered to PE’s memory more than once,

and (c) inter-PE communication time.

Having an image and a linear array of PEs, several data decomposition schemes

can be employed including row (column)-stripe decomposition, block decomposi-

tion, and row (column)-cyclic decomposition [57]. Here, we analyze these schemes

for parallel implementation of the SSD algorithms on the CSX architecture. In

the following, c and r denote the number of columns and rows in the image,

respectively. Also, w, β, and p indicate the SSD window size, the maximum dis-

parity, and the number of PEs, respectively. In every memory communication,

each PE reads or writes m bytes of data from/into the external memory. Finally,

Mm is the memory needed to calculate SSD values for m pixels.

Block decomposition Block decomposition scheme is illustrated in Fig. 2.3(a).

The image is divided into p = d ∗ s blocks, with each block having c/d columns

and r/s rows. The first block is assigned to the first PE, the second one to the

second PE, and so on. Each block is denoted by an ordered pair (i, j) where

1 ≤ i ≤ s and 1 ≤ j ≤ d. In the same way, each ordered pair also denotes the

PE that is responsible for processing of the corresponding block. In the following

P (i, j) refers to PE(i−1)s+j.

Figure 2.3(b) depicts the boundary data needed for computation by P (i, j)

and its four immediate neighbors. To handle boundary data, needed by two neigh-

boring PEs, there are two possible alternatives: first,transferring boundary data

from external memory to both PEs, hence performing redundant data communi-

cation, or second, transferring to one PE and then using swazzle path to transfer

it to the other PE. To process first rows and also columns, P (i, j) requires the

last rows and columns of P (i−1, j) and P (i, j−1), respectively. However, These

PEs have not yet received data that P (i, j) needs. Therefore, if the swazzle path

is used then P (i, j) should skip processing of the boundary data, until P (i− 1, j)

and P (i, j− 1) provides the required data. Also, for processing the last rows and

columns of data, P (i, j) needs data which has already been sent to P (i, j + 1)

and P (i + 1, j), respectively. For these PEs to provide the boundary data to

30

2. Low Level Image Processing

P(1,1) P(1,2)

P(2,1) P(2,2) P(2,d)

P(1,d)

P(s,d)P(s,2)P(s,1)

c
c/d

r

r/s

(a)

P (i, j)P (i, j - 1) P (i, j + 1)

P (i - 1, j)

P (i + 1, j)

(b)

Figure 2.3: (a) Block decomposition (b) Boundary data for each PE in block
decomposition. P(i, j) refers to PE(i−1)d+j

P (i, j), they need to store this part of data in their memory which is a limited

resource. The choice of PEs receiving the boundary data form external memory

or via swazzle path depends on the trade-off between the required PE memory

space and the cost of external memory communication. It should be noted that

by using the block decomposition scheme on the CSX architecture, the distance

between P (i, j) and P (i+ 1, j) is equal to d, i.e. to exchange data between these

PEs, the data must pass through d PEs.

Row-stripe decomposition Figure 2.4(a) illustrates the row-stripe decom-

position. The rows are divided into several groups, each has r/p rows. Then,

the first group is assigned to the first processor, the second one to the second

processor, and so on.

The boundary data for PEi is shown in Fig. 2.4(b). Boundary data is trans-

fered from external memory to both PEs or from one PE to another via swazzle

path. To process the first rows, PEi requires last rows of PEi−1, and to pro-

cess its last rows, PEi needs the first rows of PEi+1. Using swazzle path, PEi

should skip processing the first rows, until PEi−1 receives its last rows. Also,

PEi+1 should store data related to its first rows in its memory. In fact, like block

31

2. Low Level Image Processing

PE1

PE2

PEp

r

r/p

(a)

PEi

PEi – 1

PEi + 1

(b)

Figure 2.4: (a) Row-stripe decomposition (b) Boundary data for each PE in
row-stripe decomposition

decomposition, neighboring PEs do not process data located in their boundary

concurrently. Consequently, PEs may need data before their neighbors receive it,

or data should be stored in limited memory of PEs.

Row-cyclic decomposition In this scheme, the first row is assigned to the

first processor, the second row to the second processor, etc. Since one row is

assigned to each PE, each PE needs to communicate with the PEs which are at

most at the distance of (w − 1)/2, as shown in Fig. 2.5. Here, each PE needs

data just after its neighbor has finished processing that same data. So, swazzle

path can be utilized without using extra poly memory space.

2.3.3.1 Comparison of data decomposition schemes

The parameters calculated for each data decomposition scheme are summarized in

Table 2.1. As can be seen, block and row-stripe decomposition schemes require

either more PE memory space or more redundant external memory communi-

cations. Interestingly, though the block decompositions scheme might seem a

natural choice, it is further inefficient since it requires non nearest neighbor com-

munication among PEs. Because of efficient usage of swazzle path and limited

PEs’ memory, row-cyclic decomposition scheme is the most efficient for imple-

32

2. Low Level Image Processing

PEi

PEi - 1

PEi + 1

PEi - (w - 1) / 2

PEi + (w - 1) / 2

Figure 2.5: Boundary data for each PE in row-cyclic decomposition

menting SSD algorithm on the CSX architecture.

2.3.4 Proposed parallel implementation

In this section, we discuss parallel implementation of the SSD algorithms on

the CSX architecture, based on the row-cyclic data decomposition scheme as

discussed in the previous section. In order to efficiently utilize both cores of

the CSX architecture, the input images are divided into two nearly equal parts.

The first dr/2e + (w − 1)/2 rows are assigned to the first core, and the last

br/2c+ (w − 1)/2 rows are assigned to the second core. Sending boundary lines

to both cores represents a small overhead but enables each core to perform all

computation locally and thus resulting in a near perfect speedup of two. In the

following, the details of various implementations on a single core are discussed.

2.3.4.1 SSD algorithm

Outer and Inner Loop Iterations As mentioned in section. 2.2, each CSX

core includes 96 PEs. To apply the row-cyclic decomposition scheme for compu-

tation, the input images are divided into groups of 96 rows and the computation

is performed in several iterations (sweeps), denoted as Outer Loop Iterations. In

each iteration, operations are performed on a group of 96 rows. To handle bound-

ary conditions, two consecutive iterations are overlapped. For example, in the

33

2. Low Level Image Processing

Table 2.1: Figure of merit for different data decomposition schemes for SSD

Data decomposition Boundary Redundant external Inter-PE** PE memory
data memory Comm. comm. space

Block S * - sβw + d2βW Q+mβW/2
+β

M rd(β + 2W) + 2csW - Q
Row-stripe S - csβW Q+mβW/2

M 2cpW - Q
Row-cyclic - rcβW Q−MmW

In this table, Q = 2m+ β + wMm and W = (w − 1)
* S indicates that boundary data is shared between PEs by using the swazzle path.
M indicates that boundary data is transferred from external memory

** In calculating number of inter-PE communications for block and row-stripe de-
compositions, it is assumed that the w is smaller than number of rows which are
assigned to the PEs.

first iteration, PE96 performs operations on row 96. However, the results are not

correct since it does not have access to row 97 which is needed for its computa-

tion. To handle this boundary condition, rows 95 and 96 are also considered in

the second sweep of rows. That is, in the first outer loop iteration, the results are

correct for rows 1 to 94 and not for rows 95 and 96. This redundant calculation

represents a small overhead, but it allows regular operations to be performed by

all PEs.

In order to reduce memory communication overhead, computation and com-

munication should be overlapped. To achieve maximum overlapping, each row is

divided into a set of segments of size m. The computation for each row is then

performed in several iterations (sweeps), denoted as Inner Loop Iterations. In

each inner loop iteration, the computation is performed for a segment of data,

i.e., m pixels. We have chosen m = 32 for two reasons. First, this size enables

maximum utilization of the CSX bus bandwidth (see section 2.2). Second, it

allows the best overlapping of the computation and communication (see below).

Memory Communications Pattern Figure 2.6 shows memory communica-

tion pattern for computation of one outer loop iteration consisting of dc/me inner

loop iterations. In each inner loop iteration, the PIO unit (see section 2.2) trans-

34

2. Low Level Image Processing

PIO Unit

Computation Unit

Read Left Image

Read Right Image

Write Result Image

Computation

1

1

1

1

2

2

2

2 3

3

3

4

4

n

n-1 n

n

n

n-2

n-1

time

Figure 2.6: Parallelized SSD: communication pattern

fers two sets of 96 data segments, one set from right image and the other set from

left image, from external memory to 96 PEs memory. Also, the PIO unit trans-

fers 96 segments of the result from 96 PEs’ memory to external memory. Data

are transferred serially while the PEs process the received data in parallel. As

shown in Fig. 2.6, in the initial phase, PEs are idle and PIO unit copies the first

set of segments of data from external memory to PEs’ memories. However, for

processing of each pixel of the right image, β (maximum disparity) pixels ahead

in the left image are also needed. Therefore, only in the initial phase m + β

pixels of the left image are transfered to PEs. At the end of this initial phase, all

PEs have received the required data and start the processing of the first set of

data segments while PIO unit start transferring the second set of data segments

from external memory into 96 PEs memories. PEs start processing of the second

segments, as soon as they have completed the computation of the first segments.

While PEs process second data segments, PIO unit transfers the third segments

of data from external memory to 96 PEs memories and transfers the first segment

of the results from 96 PEs to external memory. This pattern continues till all the

segments are processed. Finally, when the computation for one row is completed

the PEs become idle and the PIO unit transfers the last segments of result to the

external memory.

With our choice of m and by using this data communication pattern, trans-

ferring input data segments to and reading the results from 96 PEs’ memory take

35

2. Low Level Image Processing

less time than processing one data segment. In fact, the PEs’ computation units

are busy all the time and therefore the communication time is fully overlapped

with the computation.

Computation Steps Sequential SSD algorithm has three steps (see Sect. 2.3.2):

evaluating square of differences, summing the squared differences over SSD win-

dows, and selecting the minimum. Using the row-cyclic data decomposition

scheme, each PE receives the data of one line of the input images and is re-

sponsible to calculate the same line of the output. Step 1 computes square of

difference. The computation of Step 2 is divided into two sub steps: first, calcu-

lating summation over one line using local data, and then receiving the results of

two neighboring PEs and calculating sum over the window. Finally, for each pixel,

the minimum value among calculated SSD values is obtained. Thus, the paral-

lelized SSD has four steps as follows: computing square of differences, summing

SSD values over one line of the window (local-sum), summing SSD values over

windows, and finally selecting the minimum. Algorithm 1 shows the computation

steps of parallelized SSD for one segment of data.

As discussed in section 2.2, in order to achieve a better performance, the

pipeline capability of PEs should be exploited as much as possible through vec-

torization of the computation. In section 2.3.5.1, the effect of vectorization on

each step of the computation is presented.

2.3.4.2 Multiple window algorithm

SSD with multiple window is implemented the same as SSD with one window,

just in the last step more inter-PE communications and comparison operations

are needed to derive the final result. Since here more inter-PE communications

are needed, and using the row-stripe data decomposition scheme decreases the

inter-process communications, the question then raises as “is the row-cyclic data

decomposition scheme still the best strategy?”. In fact, the same argument as

in section 2.3.3.1 can be applied here. Using 5 windows, the number of inter-PE

communications increases four times for both row-stripe and row-cyclic schemes.

Nevertheless, considering limited memory of PEs and the fact that in the CSX ar-

chitecture, inter-PE communication takes just 2 cycles, row-cyclic decomposition

36

2. Low Level Image Processing

Algorithm 1 Parallelized SSD: Computation Steps

calculate ssd(IR, IL, Res, m, d, w)
IR: Segment from right image
IL: Segment from left image
Res: Segment of the output
m: size of data segment
d: maximum disparity
w: window size

Step 1: Compute square of differences
for i = 1 to m

for j = 1 to d
SD[i, j] = (IR[i]− IL[i+ j])2

Step 2: Sum the squared differences over lines
for j = 1 to d

for i = 1 to m
SSD[i, j] = SSD[i− 1, j]− SD[i− w+1

2 , j] + SD[i+ w−1
2 , j]

Step 3: Compute SSD values over windows
for i = 1 to m

for j = 1 to d
up value = down value = SSD[i, j]
for k = 1 to (w − 1)/2
up value = swazzle down(up value)
down value = swazzle up(down value)
SSD[i, j] = SSD[i, j] + up value+ down value

Step 4: Select the minimum
for i = 1 to m
min value = SSD[i, 1]
min idx = 0
for j = 2 to d

if SSD[i, j] < min value
min value = SSD[i, j]
min idx = j

Res[i] = min idx
end

37

2. Low Level Image Processing

is still the best strategy.

As mentioned in Sec. 2.3.2, by using five windows, for each pixel and each

disparity, the two lowest values among four neighboring window should be found.

To achieve better performance it is necessary to reduce the number of operations

as much as possible. To this end, the two lowest values can be found by using

only 3 comparisons as follows. For pixel x the SSD values of pixels x−h and x+h

are compared, where w = 2h+ 1. Then, each PE sends min{(x−h), (x+h)} and

max{(x− h), (x+ h)} to its two neighbors. Now, each PE has the minimum and

maximum of up and down values. The two minimums can be found by comparing

the maximum of up hand with minimum of down hand and vice versa.

2.3.4.3 Left-right check algorithm

Since CSX700 has two similar cores, task parallelism might seem to be the best

approach for implementation of the left-right check algorithm. In this approach,

one core performs the left to right search and the other one performs the right to

left search and then the results are compared. Another possible approach is to use

data parallelism as before, i.e. input images are divided between two cores, and

each core performs both left to right and right to left search and subsequent com-

parison and produces the final results. The SSD values which should be computed

for both left to right and right to left are the same. Therefore, performing left and

right searches concurrently enables us to use the results of already computed SSD

values. Moreover, in this approach the computation intensity increases. That is,

once a part of data is read, all the computations are performed and the results are

written back to the memory. However, in the former approach each part of data

is read and write from memory 3 times. Moreover, each core should access the

other core’s memory which is more expensive. Thus, the second approach based

on data parallelism provides a better performance. The only issue is that, due

to the PEs’ memory size limitation, the memory should be managed efficiently

to keep all necessary data for doing both right to left and left to right searches

simultaneously. We have implemented both approaches and the results, discussed

in section 2.3.5.3, proves the better efficiency of the data parallelism approach

over the task parallelism one.

38

2. Low Level Image Processing

2.3.5 Results and performance of parallel implementa-

tions

We have implemented the following algorithms on the CSX architecture:

• SSD: left to right search

• SSD MV5: left to right search, SSD with 5 windows

• SSD LR TP: SSD with left-right check implemented according to task par-

allelism

• SSD LR DP: SSD with left-right check implemented according to data par-

allelism

The computation cost of the algorithms, in terms of number of operations per

pixel and using 3 × 3 windows, is shown in Table 2.2. The computation time

of the implemented algorithms for image sizes of 640 × 640 and 1280 × 720 are

summarized in Table 2.3. Another considered performance measurement is the

sustained number of FLOPS. The sustained GFLOPS and GFLOPS per watt

of various implementations are presented in Table 2.4. The sustained GFLOPS

results are obtained by dividing the number of operations of each algorithm by

its computation time. The sustained GFLOPS/Watt is obtained by considering

the maximum power consumption of 9 Watts for CSX architecture.

As can be seen from Table 2.3, we achieve real-time, and for most cases even

faster than real-time, performance for all considered problem instances except for

1280x720 images with disparity of 32, for which only SSD algorithm achieves the

real-time performance. However, for this case the real-time performance can still

be achieved by using two CSX architectures and dividing the image, as it was

done for two-core implementation.

Another important observation is that the computation time of different al-

gorithms closely correlate with their computation cost in terms of the disparity

range. In fact, as our practical results demonstrate the computation time almost

linearly increases with the disparity range, e.g. the computation times almost

double for a factor of 2 increase in the disparity range. This close correlation

is due to the fact that the disparity range directly affects the amount of the

39

2. Low Level Image Processing

Table 2.2: Number of operations per pixel by using 3x3 windows

Algorithm Number of operations

SSD 7β
SSD MW5 12β
SSD LRDP 8β + 1
SSD LRTP 7β + 1

computation performed by each PE. The disparity range has a small impact on

the initial phase of data transfer (see section 2.3.4.1) wherein m + β pixels are

needed to be transferred. However, as will be discussed below, the overall com-

munication overhead is very small and hence increasing β will not significantly

affect the overall performance. As shown in Table 2.2, the computation cost is a

linear function of the maximum disparity, β, and consequently, by increasing the

maximum disparity, the performance would decrease almost linearly.

Note that the sustained GFLOPS is a function of image size. That is, it is a

function of the number of idle PEs in the last iteration of outer loop iterations.

For example, for 1280x720 and 640x480 images the number of the idle PEs in

the last outer loop iteration is 16 and 42, respectively. Therefore, due to a better

utilization of PEs a better GFLOPS for 1280X720 images is achieved.

In the following, a more detailed analysis of performance and implementation

issues of each algorithm is given.

2.3.5.1 SSD algorithm

The computation time of different steps of the implemented parallel SSD algo-

rithm, for 640 × 480 input images with a disparity range of 16, is presented in

Table 2.5. To better analyze the performance of different steps of the algorithm

and particularly the memory communication overhead, we have also used the CSX

visual profiler tool [58]. The tool is able to log the start and finish time of all

the events which occur in one core such as poly computing, accessing to mono or

poly memory, data transfer between mono and poly memory, etc. Fig. 2.7 shows

the initial part of the log file related to the initial memory communication. As

can be seen, while reading the first segment of data, the PEs are idle (in Fig. 2.7

40

2. Low Level Image Processing

Table 2.3: Computation time of the implemented algorithms on CSX700 archi-
tecture

Image Algorithm
Latency (ms) fps

β = 16 β = 32 β = 16 β = 32

640× 480 SSD 5.57 10.56 179 94
SSD MW5 12.5 24.51 80 40
SSD LRDP 11.05 21.07 90 47
SSD LRTP 11.84 21.62 84 46

1280× 720 SSD 14.72 28.04 67 35
SSD MW5 33.2 65.18 30 15
SSD LRDP 29.51 56.58 33 17
SSD LRTP 31.31 57.76 31 17

Table 2.4: Sustained GFLOPS and sustained GFLOPS/Watt on CS700 architec-
ture

Image Algorithm
GFLOPS GFLOPS/watt

β = 16 β = 32 β = 16 β = 32

640× 480 SSD 6.17 6.51 .685 .723
SSD MW5 4.71 4.81 .523 .534
SSD LRDP 3.58 3.74 .397 .415
SSD LRTP 2.93 3.19 .325 .354

1280× 720 SSD 7.01 7.36 .778 .817
SSD MW5 5.32 5.42 .591 .602
SSD LRDP 4.02 4.18 .446 .464
SSD LRTP 3.32 3.59 .368 .398

41

2. Low Level Image Processing

Figure 2.7: Running Profile of Parallelized SSD on CSX processor related to initial
memory read. Poly Compute shows the time the poly execution unit(PEs) is busy.
PIOE Data Transfer indicates data transfer between PEs’ and external memory.
Receiving the first data segment, PEs start computation, and computations and
communications are overlapped

PIOE Data Transfer is active and Poly Compute is inactive). Upon receiving the

first data segment, computation starts and the subsequent memory communica-

tions are fully overlapped with the computation. (both PIOE Data Transfer and

Poly Compute are active). The output of the visual profiler is consistent with

the scheme and model illustrated in Fig. 2.6 and discussed in section 2.3.4. It

shows that ignoring the initial and final phases, the PEs (poly execution unit) are

continuously performing the computation and never become idle, waiting for data

from external memory. Furthermore, as can be seen from Table 2.5, the initial

and final memory communications take only 16.3 µs, representing just 0.3% of

the total computation time.

Such a small overhead clearly demonstrates the efficiency of our parallel imple-

mentation, i.e., the fact that the computation is fully parallelized with a minimum

of overhead. Therefore, any further improvement in the computation can be only

achieved by increasing the speed of PEs in the computation by employing an

efficient vectorization strategy. The details of improvement achieved by vector-

ization of the computation are presented in Table 2.5. Note that, for some parts

of the computation, we have directly developed our own assembly code to achieve

a better performance since the CSX compiler does not always generate the most

optimized assembly code. In particular, a more efficient use of the swazzle path

for inter-PE communication can be achieved by directly using the assembly lan-

guage of the CSX. As can be seen from Table 2.5, by using vectorization and

assembly code, the total time of computation has been reduced from 9.6 ms to

5.57 ms, representing about 40% reduction.

42

2. Low Level Image Processing

Table 2.5: Computation time of parallelized SSD steps (optimized and non-
optimized code) for images of 640× 480 resolution and disparity range of 16

Step Timing (ms) Optimized Timing (ms)

Initial & Final Overhead 0.0163 -
Square-of-differences 3.36 1.16
Sum(over line) 1.974 0.88
Sum(over window) 2.27 1
Selecting the Min 2.26 -
Total 9.6 5.57

Table 2.6: Comparison of Computation time of SSD and SSD with multiple win-
dow on the CSX700 architecture for images of 640× 480 resolution and disparity
of 16

Step SSD (ms) SSD MW5 (ms)

Square-of-differences 1.16 1.16
Sum(over line) 0.88 0.88
Sum(over window) 1 1
Selecting the Min 2.26 8.92
Total 5.57 ms 12.5 ms

2.3.5.2 Multiple window algorithm

Multiple window selection is implemented in 4 steps. Steps 1, 2, and 3, in which

the SSD values are computed, are exactly the same as the single window imple-

mentation. In step 4, more swazzling and comparison operations are required.

Due to the sequential nature of these operations, it is not possible to use vector

instructions. Table 2.6 compares the computation time of SSD and SSD MW5.

We have observed that in the code generated by the CSX compiler, there are

a lot of unnecessary move instructions in the functions for calculating the two

lowest value of four SSD value of neighboring window. By writing these func-

tions in assembly, the computation time was decreases from 16.84 ms to 12.5 ms,

representing about 25% reduction.

43

2. Low Level Image Processing

2.3.5.3 Left-right check algorithm

We have implemented left-right check by using two approaches mentioned in

section 2.3.4.3. The computation times of these two approaches for two image

sizes are depicted in Table 2.3. The results prove that dividing image between

two cores and doing left to right and right to left search on the same core lead to

a slightly better performance.

2.3.5.4 Disparity map output

In our work, we have used the same algorithms implemented by other researchers

such as [44] and [45] and proposed parallel implementation of these algorithms on

CSX SIMD architecture. The results of our parallel implementation is identical

to the sequential ones. i.e., to achieve these frame rates, we have not made trade-

offs between speed and accuracy in our parallel implementation. However, to

evaluate the accuracy of the proposed approach, we used the Middlebury stereo

vision benchmark [59]. The ground truth of Tsukuba image [59], along with the

depth maps computed by using our implementation is presented in Fig. 2.8. Also,

Table 2.8 compares accuracy of our implemented SSD with the literature in terms

of the error rate calculated by Middlebury webpage for Tsukuba image.

2.3.5.5 Comparison with published results

In this part, we compare performance of our implementation with previous im-

plementation of WTA techniques for dense stereo vision, in terms of achieved

performance and performance per Watt. Since various works have reported their

results considering different image resolutions and maximum disparity range, the

performance of each implementation is measured in terms of millions of disparities

evaluated per second (MDEs).

Table 2.7 compares the performance of the three implemented algorithms on

the CSX700 and a Pentium 4 processor with a clock frequency of 3.2 GHz [45]. In

[45], implementation of three algorithms, SAD, SAD with five multiple window,

and SAD with left-right check by fully exploiting the SSE SIMD instructions

set are discussed. As Table 2.7 shows, our implementation achieves a much

44

2. Low Level Image Processing

(a)

(b)

(c)

Figure 2.8: Tsukuba image (a) ground truth disparity map (b) depth map built
from SSD (c) depth map built form SSD MW5

45

2. Low Level Image Processing

Table 2.7: A comparison between the stereo vision implementations on the
CSX700 and Pentium 4 processor with clock frequency of 3.2 GHz

Author MDEs Algorithm

This work 1,032 SSD
van der Mark [45] 143 SAD
This work 442 SSD MW5
van der Mark [45] 75 SAD MW5
This work 501 SSD LRDP

van der Mark [45] 114 SAD LR

better performance than CPU implementation even with utilizing SSE SIMD

instructions set.

Table 2.8 compares the performance of our SSD implementation on the CSX

architecture with the current literature in terms of MDEs and MDEs per Watt.

As also shown in Table 2.8, stereo vision algorithms have been implemented on

different platforms which could be classified into two main categories: imple-

mentation on rather general purpose architectures and rather special-purpose

hardwares. Our work should be classified as the former group due to the level

of programmability of the CSX architecture. Conventional CPUs, GPGPUs, and

Cell processor are also rather general purpose architectures which have been used

to implement stereo vision algorithms. According to our knowledge, by using

local approaches for stereo vision, the following are the fastest results reported

on each of these architectures: CPUs [45], GPGPUs [48, 49], and cell processor

[47]. As can be seen from Table 2.8, our results show a much better perfor-

mance over these implementations in terms of both MDEs (except [49] which

outperforms our approach in terms of MDEs) and particularly MDEs per Watt.

Indeed, in terms of MDEs per Watt, our approach is one order of magnitude

better than Cell and two orders of magnitude better than CPU and GPGPU

implementations. On the other hand, some special purpose implementations out-

perform our approach in terms of MDEs and MDEs per Watt. For example,

the ASIC [53] and the FPGA [55] implementations are one order of magnitude

better than our implementation in terms of MDEs per Watt. In fact, ASIC and

FPGA implementations could be the most efficient in terms of performance and

46

2. Low Level Image Processing

Table 2.8: A comparison with other implementations of local stereo vision algo-
rithms in the literature

Author Platform Window Power Error* MDEs MDEs/Watt
(watt)

van der Mark [45] CPU ** 9× 9 82 n/a 143 1.74
Yang [48] GPGPU 4× 4 60 7.07 289 4.82
Zhu [49] GPCPU 3× 3 289 n/a 2,203 7.62
McCullagh [47] Cell 4× 4 92 n/a 961 10.45
This work CSX700 3× 3 9 23.6 1,032 114.6
Chang [50] DSP 4× 5 n/a*** 21.7 88 -
Ambrosch [55] FPGA 3× 3 2.5 n/a 3,264 1,305.6
Woodfill [53] ASIC 5× 5 <1 n/a 2,555 2,555

* The reported error rates are calculated by Middlebury webpage for Tsukuba image
[59]

** SSE Instruction are exploited for the implementation
*** This work is a software implementation

power consumption. FPGAs are more flexible than ASICs. However, they do not

provide flexibility and programmability of a rather general purpose architecture.

Table 2.8 illustrates that the performance of our approach fills the gap between

general purpose architectures and special-purpose hardwares in terms of MDEs

per Watt, and achieves a rather high performance in terms of MDEs. Indeed, our

results clearly demonstrate that CSX architecture can provide excellent perfor-

mance along with low power consumption and programmability of a rather more

general purpose architecture for various embedded applications.

2.4 Parallel implementation of Harris corner de-

tector

Feature detection is a low-level image processing task which is usually performed

as the first step in many computer vision applications such as object tracking

[60] and object recognition [61]. Harris Corner Detector (HCD) [62] is a popular

feature detector due to its invariance to rotation, scale, illumination variation

and image noises.

47

2. Low Level Image Processing

Fast implementation of HCD has been considered on various architectures.

Teixeira et al. [63] have implemented HCD on a GPU. For an image of 640× 480

resolution, the HCD is computed in 10.1 ms. They realized that the large number

of memory accesses degrade performance. Therefore, by compressing each 2×2

pixels in the original image as one pixel, they reduced the computation time to

3.3 ms with one pixel imprecision. Saidani et al. [64] have employed Harris corner

detector on Cell processor. Furthermore, Dietrich [65] has implemented HCD on

a FPGA as part of a stereo vision system. The developed FPGA is capable of

calculating HCD for images of the resolution 358 × 288 at the speed of 60 fps.

Also, Cheng et al. [66] have proposed an ASIC implementation of HCD as part

of a vision processor. The proposed architecture is capable of computing HCD

for images of the resolution 128× 128 at the speed of 1367 fps.

Rest of this chapter is dedicated to parallel implementation of HCD on the

CSX architecture. First, HCD algorithm is briefly described in section 2.4.1.

Then, data decomposition scheme and implementation details are discussed in

section 2.4.2 and 2.4.3, respectively. Finally, experimental results are presented

and discussed in section 2.4.4.

2.4.1 The Harris corner detector algorithm

To detect corners in a given image, the HCD algorithm [62] proceeds as following.

Let I(x, y) denote the intensity of a pixel located at row x and column y of the

image.

1. For each pixel (x, y) in the input image compute the elements of the Harris

matrix G =

[
gxx gxy

gxy gyy

]
as follows:

gxx =

(
∂I

∂x

)2

⊗ w

gxy =

(
∂I

∂x

∂I

∂y

)
⊗ w

gyy =

(
∂I

∂y

)2

⊗ w, (2.5)

48

2. Low Level Image Processing

where ⊗ denotes convolution operator and w is the Gaussian filter.

2. For all pixel (x, y), compute Harris’ criterion:

c(x, y) = det(G)− k(trace(G))2 (2.6)

where

rcl det(G) = gxx.gyy − g2
xy,

trace(G) = gxx + gyy (2.7)

and k is a constant which should be determined empirically, and trace(G) =

gxx + gyy.

3. Choose a threshold τ empirically, and set all c(x, y) which are below τ to

zero.

4. Non-maximum suppression, i.e. extract points (x, y), which have the maxi-

mum c(x, y) in a window neighborhood. These points represents the corners.

2.4.2 Appropriate data decomposition scheme

In section 2.3.3, we described the three commonly used techniques for distributing

arrays or matrices among processors: block, row-strip and row-cyclic decompo-

sition schemes. Here, we analyze these data decomposition schemes for parallel

implementation of HCD on CSX architecture. We recall the three important

parameters that should be considered: (a) required memory space for each PE,

(b) size of data that needs to be transfered to PE’s memory more than once, and

(c) inter-PE communication time (for detailed discussion see section 2.3.3).

According to the algorithm description in Section 2.4.1, HCD performs a set

of operations in windows around each pixels. In fact, HCD uses windows which

may have different sizes in 3 stages: calculating partial derivatives, Gaussian

smoothing, and non-maximal suppression. Let ω be the sum of these window

sizes. As before, p indicate the number of PEs. Also, c and r denote the number

of columns and rows in image matrix, respectively. Finally, in each memory

49

2. Low Level Image Processing

Table 2.9: Figure of merit for different data decomposition schemes for HCD

Data Boundary Redundant external Inter-PE PE memory
decomp. data memory comm. comm. space

Block S cs(ω − 1) r(ω − 1) Q
M - (cs+ r)(ω − 1) Q+Mm(ω − 1)/2

Row-strip S cp(ω − 1) - Q
M - c(ω − 1) Q+Mm(ω − 1)/2

Row-cyclic - cω(ω − 1)/2 Q−Mm(ω − 1)

In this table, Q = ωMm +m, S indicates that boundary data is shared between
PEs by using the swazzle path, and M indicates that boundary data is transferred
from external memory
In calculating number of inter-PE communications for block and row-stripe de-
compositions, it is assumed that ω is smaller than number of rows which are
assigned to each PE.

communication, each PE reads or writes m bytes of data (pixel) from/into the

external memory. Mm is the memory space needed to calculate the elements of

Harris matrix for m pixels.

The parameters calculated for each data decomposition scheme are summa-

rized in Table 2.9. In block and row-strip decomposition schemes, the required

poly memory space increases linearly with ω. Note that, the size of windows

in HCD are determined empirically for each application. For larger ω, e.g. 7

or 11, using these data decomposition, the required PE memory will be larger

than poly memory space. It is possible to decrease the required memory space

in these decomposition schemes, but then redundant memory communications

will increase. Row-cyclic decomposition needs less poly memory space and no

redundant external memory communication. Although row-cyclic decomposition

require inter-PE communication via swazzle path more than row-strip decompo-

sition by a factor of ω/2, this overhead will be negligible since communication via

swazzle path is very fast (see section 2.2).

2.4.3 Proposed parallel implementation

Parallel implementation of HCD on the CSX architecture based on row-cyclic

data decomposition is similar to implementation of SSD algorithm presented in

50

2. Low Level Image Processing

section 2.3.4. To efficiently exploit both cores of the CSX700, the input images

are divided into two nearly equal parts. Besides, on each core, to apply the

row-cyclic decomposition scheme, the input images are divided into groups of 96

rows and the computation is performed in several iterations. In each iteration,

operations are performed on a group of 96 rows. To handle boundary conditions,

two consecutive iterations are overlapped.

In addition, to overcome the overhead of external memory communication,

communication and computation overlapping is greatly exploited in our imple-

mentation. To achieve maximum overlapping, each row is divided into a set of

segments of size m. The computation for each row is then performed in several

iterations over these data segments.

Computation Steps In this section, we present processing of one segment

of data, i.e., m pixels. In our implementation of HCD, we have divided the

algorithm into 5 steps: calculating partial derivation of I in direction x and

y, Gaussian smoothing, computing Harris criterion, non-maximum suppression,

followed by non-maximum suppression. Algorithm 2 shows the pseudocode for

this processing.

To calculate partial derivation of I, we have used Prewitt operator. Prewitt

operator uses two 3x3 kernels, PX and PY , which are convolved with the original

image to calculate approximations of the derivatives in x and y directions, respec-

tively. In our implementation, we take advantages of the fact that convolution

kernels used by Prewitt operator are separable, i.e. these kernels can be expressed

as the outer product of two vectors.

PX =

−1 0 1

−1 0 1

−1 0 1

 =

 1

1

1

 ∗ (−1 0 1
)

PY =

−1 −1 −1

0 0 0

1 1 1

 =

−1

0

1

 ∗ (1 1 1
)

(2.8)

51

2. Low Level Image Processing

So, the x and y derivation can be calculated by first convolving in one direction

(using local data), then swazzling the computed data and convolving in the other

direction.

Next step is Gaussian smoothing. Elements of Harris matrix, gxx, gxy, and gyy

are calculated using Eq. (2.5). As stated in section 2.2, the Gaussian smoothing

can be performed using standard convolution methods. Gaussian kernel is also

separable. Thus, the 2-D convolution can be performed by first convolving with

a 1-D Gaussian in the x direction, and then swzzling the calculated values and

convolving with another 1-D Gaussian in the y direction. The y component is

exactly the same as x component but is oriented vertically. Then, Harris’ criterion

is computed using Eq. (2.6).

In the next step, non-maximum suppression, the maximum value of Harris

criterion in each 3x3 neighborhood is determined. First, each PE obtains the

maximum value in 1x3 neighborhood. Then, each PE swazzle the maximum

values to both its neighbors. Receiving the maximal values of two neighboring

rows, the maximum value in 3x3 neighborhood can then be obtained. Using this

strategy, the maximum value of 9 element in a 3x3 neighborhood is obtained by

just 4 comparisons.

2.4.4 Results and performance of parallel implementation

To evaluate the performance, we have implemented the following HCDs on the

CSX700 architecture: HCD3×3 and HCD5×5 which uses a 3×3 and 5×5 Gaussian

kernel, respectively. Since our proposed parallel approach provides flexibility, it

can be easily applied to images with different sizes, and various sizes of Gaussian

filter or non-maximum suppression window. The performance of implemented

algorithms in terms of latency, fps, and sustained GFLOPS for different image

resolutions are summarized in Table 2.10. As Table 2.10 shows, for all tested

image resolutions, even for resolution of 1280× 720, our implementation is much

faster than real-time.

The arithmetic intensity, i.e., number of operation per pixel, of HCD3×3 and

HCD5×5 is 40 and 64, respectively. As Table 2.10 shows, the sustained GFLOP

depends also on the image size. The reason is that in processing the last sweep

52

2. Low Level Image Processing

Algorithm 2 Pseudocode of Parallelized HCD

ω1: Gaussian window size ω2: NMS window size

PEs in parallel do
1. Derivation of Ix and Iy:

Ix = I ⊗ [−1 0 1] , Ix = [swazzle down(Ix), Ix, swazzle up(Ix)]⊗ [1 1 1]
Iy = swazzle up(I)− swazzle down(I) , Iy = Iy ⊗ [1 1 1]

2. Guassian Smoothing:
gxx = I2x ⊗ x−Guassian, gxy = (IxIy2)⊗ x−Guassian, gyy = I2y ⊗ x−Guassian
gxx = [swazzle down(gxx), gxx, swazzle up(gxx)]⊗ y −Guassian
gxy = [swazzle down(gxy), gxy, swazzle up(gxy)]⊗ y −Guassian
gyy = [swazzle down(gyy), gyy, swazzle up(gyy)]⊗ y −Guassian

3. Computation Harris Criterion: c = gxxgyy − g2xy − k(gxx + gyy)

4. Non-maximum suppression:
for k = 1 to m
mx[k] = max{c[l] | k − (ω2 − 1)/2 ≤ l ≤ k + (ω2 − 1)/2}

for k = 1 to m
mx[k] = max{mx[k], swazzle up(mx[k]), swazzle down(mx[k])}

5. Thresholding:
for k = 1 to m

if c[k] ≥ τ and c[k] == mxp[k]
corresponding pixel is corner

∗ swazzle up() and swazzle down() represent communication with left and right
neighbors, respectively.

53

2. Low Level Image Processing

Table 2.10: Performance of HCD on CSX700 architecture using 3× 3 and 5× 5
Gaussian filter

Image Latency (ms) fps Sustained GFLOPS

Resolution HCD3×3 HCD5×5 HCD3×3 HCD5×5 HCD3×3 HCD5×5

128× 128 .165 .224 6060 4464 3.97 4.68
352× 288 .8 1.22 1250 819 5.06 5.31
512× 512 1.74 2.63 574 380 6.02 6.37
640× 480 2.15 3.28 465 304 5.71 5.99
1280× 720 7.04 10.89 142 91 5.23 5.41

Table 2.11: Comparison with other implementations in the literature

Image Resolution fps reported in [ref] fps achieved by our approach

128× 128 1367 [66] 4464-6060
352× 288 60 [65] 819
640× 480 99 [63] 304

of data, some PEs may be idle, and the number of idle PEs depends on image

size. For example, performing HCD3×3 for images of resolution 640 × 480 and

1280 × 720, the number of idle PEs are 4 and 32, respectively. Due to more

utilization of PEs, better GFLOPS is achieved for images of 640×480 resolution.

Table 2.11 compares our implementation results with those reported in the

literature. As can be seen, our approach provides much better performance in

terms of latency or frame per second while providing a high degree of flexibility

in terms of problem size and parameters.

2.5 Summary

This chapter presents fast parallel implementation of several dense stereo vision

algorithms and HCD algorithm on the CSX SIMD architecture. Several data de-

composition schemes were analyzed for an efficient parallel implementation with

minimum communication overhead on the CSX architecture. In particular, it

was shown that the row-cyclic is the most efficient data decomposition scheme

for data parallel computation of low-level image processing algorithms such as the

54

2. Low Level Image Processing

SSD-based stereo vision and its variants and HCD. Moreover, it was shown that,

by devising a careful strategy, it is possible to significantly reduce the memory

communication overhead by almost fully overlapping computation and commu-

nication. In addition to an efficient parallelization, exploitation of the vector

processing capability of the PEs was a key for achieving a better performance.

For stereo vision computation, SSD and its more robust, and hence more

computationally expensive, variants have been considered. For most cases, even

faster than real-time performance was achieved. The exceptions being multiple

window and left-right check algorithms for HDTV images with disparity of 32.

Our HCD results also represent a much faster than real-time implementation for

all considered experiments.

The experimental results, presented in this chapter, clearly indicate that the

CSX architecture is indeed a good candidate for achieving low-power high per-

formance capability for low-level image processing tasks.

Next chapter explores parallel implementation of a more sophisticated and

computationally expensive image processing algorithms on the CSX architecture.

55

Chapter 3

Implementation of Human

Detection on CSX SIMD

architecture

3.1 Introduction

This chapter studies parallel implementation of vision based human detection by

using histogram of oriented gradients (HOG) descriptors [67] on the CSX SIMD

architecture. Computation of HOG descriptors and HOG-based human detection

are representative examples of intermediate and high-level image processing tasks,

respectively. The ideas presented here especially for multi-scale computation

and dealing with complex data dependency pattern can be easily exploited for

parallel implementation of other object detection/classification algorithms. One

example is computation of SIFT descriptors [68] which share similarities with

HOG descriptor computation.

Furthermore, HOG descriptor [67] have become very popular and is being

widely used in computer vision for object detection and in particular for human

detection due to its excellent performance. On the other hand, detecting humans

is required for a mobile robot or a humanoid: first for safety reasons and then

to mimic human-like and social behavior. However, a major challenge in real-

time applications of HOG descriptor is its computational complexity. In fact,

56

3. Human Detection

in the first original implementation of the HOG-based human detection on a

conventional computer [67] only a performance of 1 fps could be achieved for

a image of 320 × 240 resolution and with a rather small number of detection

window of 800. Consequently, there have been several research works to improve

the computational efficiency of the HOG descriptor.

Attempts to improve the computational efficiency of HOG-based object de-

tection have followed two approaches: modifying and simplifying the original

algorithm, or exploiting parallelism in its computation. In the former approach,

most efforts are based on early rejection of scales or positions [69, 70]. For exam-

ple [69] reports a performance of 5 fps for an image of 320 × 240 resolution and

with 12800 detection windows.

The second and perhaps more promising approach is to speed up the HOG

computation by exploiting parallelism. Cao et al. [71] have studied implemen-

tation of HOG-based human detector on a FPGA. However, they considered

some modifications and simplifications to the original algorithm since compu-

tation of HOG descriptor is not suitable for FPGA implementation due to its

rather complex communication and data dependency patterns. CUDA-based im-

plementation of HOG descriptor has also been considered on GPGPU [72], [73].

Wojek et al. [72] have used a GeForce 8800 Ultra as their experimental platform

and achieved a performance of 10 fps for colored images of 640× 480 resolution.

GeForce 8800 Ultra has the peak performance of 384 GFLOPS and power con-

sumption of 157 watt. Prisacariu et al. [73] have used GTX 295 and achieved a

performance of 12.5 fps for colored images of 640× 480 resolution and 15 fps for

grayscale images of 640× 480 resolution. GTX 295 has the peak performance of

1788.48 GFLOPS and consumes 289 watt.

In section 3.3, our parallel implementation of HOG-based human detection on

the CSX SIMD architecture is extensively discussed. Before that, in section 3.2,

computation of HOG descriptors and HOG-based human detection are briefly

described. In section 3.4, the achieved results are presented, and a summary of

this chapter is given in section 3.5.

57

3. Human Detection

Overlapping

Blocks

Cells

Figure 3.1: Division of the image in cells and blocks for HOG descriptor compu-
tation

3.2 HoG descriptor and object detection

In this section, we briefly discuss the computation of HOG descriptor [67], [74]

and its application for object detection.

HOG Descriptor. To calculate HOG descriptor, the image is first divided

into small spatial regions called cells and the histogram of gradient orientation

is calculated for each cell. In [67] both radial and rectangular cells have been

discussed. Here, we consider each cell as a 2D array of m × m pixels. Then,

histograms are normalized over groups of cells, called blocks. Every block is a

2D array of n × n cells. There is overlapping among the blocks since each cell

participates in several blocks. (Fig. 3.1)

In the following, each cell is denoted by an ordered pair c(i, j) where 1 ≤ i ≤
r/m and 1 ≤ j ≤ c/m (r and c denote the number of rows and columns of the

input image , respectively). Each block is also denoted by an ordered pair b(i, j).

The block b(i, j) consists of cells c(i, j), c(i, j + 1), . . . , c(i+ n, i+ n).

Calculation of HOG descriptor consists of three steps: first, the magnitude

and the orientation of gradient is calculated for each pixel in the image. To see

this, let I(x, y) be the intensity of pixel located at row x and column y. Then,

the magnitude of gradient, m(x, y), and the orientation of gradient, θ(x, y) are

58

3. Human Detection

calculated by:

m(x, y) =
√
Ix(x, y)2 + Iy(x, y)2 (3.1)

θ(x, y) = arctan
Iy(x, y)

Ix(x, y)
, (3.2)

where Ix(., .) and Iy(., .) denote the partial derivation of I in direction x and y,

respectively.

Second, the histograms are calculated for each cell. To calculate histograms,

the orientation bin are evenly spaced over 0◦−180◦ or 0◦−360◦ into q bins. Each

pixel calculates a vote for the histogram bin based on θ(x, y), the orientation of

gradient on that pixel. The vote is also a function of m(x, y), gradient magnitude

at that pixel. Also to improve performance, the contribution of each pixel in

the cell histogram is wighted by a Gaussian function centered in the middle

of the block. Moreover, weighted votes are interpolated trilinearly between the

neighboring bin centers in both orientation and position, to reduce aliasing effect.

The final step is normalization to form the block’s descriptor which is calcu-

lated as follows. Let Ci,j = (c1, c2, . . . , cq) denote the q dimension histogram of

cell c(i, j). Then, the unnormalized descriptor vector for the block b(i, j) is de-

fined as bi,j = (Ci,j,Ci,j+1, . . . ,Ci+n,j+n). Various normalization schemes could

be considered. By using L2-norm, the HOG descriptor of the block b(i, j), Bi,j,

is then given by:

Bi,j =
bi,j√
‖bi,j‖2

. (3.3)

Object Detection. To detect objects, a sliding window based algorithm is

used. First, a detection window is defined as a grid of k × l blocks. The detec-

tion windows are overlapping since a given block can belong to several detection

windows. The descriptor of the detection window is then obtained by combining

the vectors of HOG descriptors of its blocks. To this end, let d(i, j) denote the

detection window consisting of the blocks b(i, j), b(i, j + 1), . . . , b(i + k, j + l).

Then, the descriptor of this detection window is given as the vector Vij =

(Bi,j,Bi,j+1, . . . ,Bi+k,j+l). For object detection, the detection window is scanned

59

3. Human Detection

across the image at all positions and scales and the resulting descriptors are fed

into a pre-trained linear SVM classifier to score each descriptor. It should be

mentioned that the best results by using HOG descriptors have been achieved in

human detection since HOG descriptors are not orientation invariant.

Human Detection. As reported in [67], the best results for human detection

have been achieved by using the following set of parameters. Each cells is defined

as a rectangular of 8x8 pixels and each block as a rectangular of 2x2 cells. Orien-

tation of gradients are spaced over 0◦ − 180◦ into 9 bins. The detection window

size is taken to be of 7x15 blocks or 64x128 pixels. The step size of sliding window

is also taken to be of one cell (8 pixels) both horizontally and vertically. We have

used this set of parameters in our parallel implementation.

3.3 Parallel formulation and implementation of

HOG-based Human detection

In this section, we discuss parallel implementation of HOG-based object detec-

tion. The human detection problem is considered here, but that does not change

the parallel formulation of the general algorithm. As mentioned in section 3.2,

the computation is repeated for various scales, which represents repeated com-

putation of the same problem but with reducing size. For example, consider a

VGA image of 640x480 resolution as the first scale of computation. Given the

parameters discussed in section 3.2, for this first scale the number of cells, blocks,

and detection windows are 4800, 4664, and 3285, respectively. By using a scale

ratio of 1.05 (as also used in [67]), the total number of images obtained by this

scaling is 28 (including the original image). The smallest image is of 168x128

resolution with a number of 336 cells, 300 blocks, and 14 detection windows.

Finding a mapping of computation on a SIMD architecture, which is efficient

for various problem sizes, is challenging. Here, we first describe our technique to

parallelize computation of one scale. Then, we discuss how to extend our solution

for multi-scale computation.

60

3. Human Detection

3.3.1 One scale computation

We consider parallel computation of each scale on a single core (with 96 PEs) of

the CSX architecture. As will be discussed in the following, both cores of the CSX

architecture are then employed to exploit parallelism in the overall computation

of all scales. The computation for object detection by using HOG descriptor, as

described in section 3.2, can be analyzed at four levels of operations as follows:

• Pixel Level Operations: This level includes all preprocessing on the

input image to generate images of gradient magnitude, m(x, y), and gradient

orientation, θ(x, y), according to Eq. (3.1) and Eq. (3.2), respectively, to be

used as the input for next level.

• Cell Level Operations: This level includes computation of histogram for

each cell c(i, j). However, as discussed in section 3.2 each cell participates

in several blocks. In each block, the contribution of each pixel in the cell

histogram is weighted by a Gaussian function centered in the middle of

block. Also, in each block, pixels of neighboring cells contribute to the

histogram of the cell.

• Block Level Operations: This level includes calculation of HOG descrip-

tor, Bij, for each block b(i, j), as described in section 3.2. In our application

for human detection, the vector of block descriptor has 36 elements.

• Detection Level Operations: This level includes linear SVM evaluation.

For human detection, each detection window d(i, j) consists of 7x15 overlap-

ping blocks, b(i, j), b(i, j+1), . . . , b(i+14, j+6). Let Vij denote the descrip-

tor of detection window d(i, j). Then, Vij = (Bi,j,Bi,j+1, . . . ,Bi+14,j+6). To

evaluate d(i, j) for human presence, dij is computed as:

dij = WtVij + a, (3.4)

where W is a vector with 3780 elements and a is a constant. Both W and

a are determined in the offline learning phase for human detection [74]1.

1Here, the parallelization of the learning phase is not considered.

61

3. Human Detection

As can be seen, the computation involves several level of operations with

different granularity. Therefore, the first critical decision to achieve optimal per-

formance is the choice of grain size. For our parallel implementation on the CSX

SIMD architecture, we have chosen the block level granularity. A pixel or cell

level decomposition (finer grain parallelism) would result in a significant inter-PEs

communications. With a detection level decomposition (coarser grain), the per-

formance would suffer from lots of redundant computation of HOG descriptors,

since overlapping detection windows include same blocks.

With a block level granularity, the input image is subdivided into blocks and

PEs are assigned to compute the HOG descriptor of the blocks. Since, even for the

smallest image scale the number of blocks (> 105) 1 is greater than the number of

PEs (96), each PE has to calculate the HOG descriptor of several blocks. Hence,

the next decision is to determine the assignment of the blocks to PEs. Since HOG

descriptors of blocks are used as the input for the detection level, this assignment

also affects the computation at the detection level. In the following, detection

level computation and the optimal scheme for assignment of blocks to PEs to

enable an efficient implementation of detection level computation are discussed.

At the detection level, for each detection window d(i, j), dij is computed using

Eq. (3.4). On one hand, Both vectors W and Vij have 3780 elements. On the

other hand, PE’s memory space are rather limited. In fact, 1536 elements can

be stored in whole PE’s memory space. Therefore, some parts of data should be

stored in external memory and this part of computation is memory bound.

To compute Eq. (3.4), W can be written as W = {W1,1,W1,2, . . . ,W7,15},
where each Wij is a vector of 36 elements corresponding to a block. Thus,

Eq. (3.4) can now be computed as:

dij = a+
15∑
k=1

7∑
l=1

Wt
klBi+k−1,j+l−1, (3.5)

1Resolution of the smallest image scale is at least equal to detection window resolution
(64× 128)

62

3. Human Detection

then

dij = a+
15∑
k=1

7∑
l=1

dklij (3.6)

where

dklij = Wt
klBi+k,j+l. (3.7)

Since detection windows are overlapped, each block contributes in several

detection windows in 105 different positions of (k, l). Therefore, for each b(m,n),

we have to compute

dklm−k+1,n−l+1 = Wt
klBm,n

∀k, l : 1 ≤ k ≤ 15, 1 ≤ l ≤ 7. (3.8)

So, to reduce external memory communication, each PE computes the partial

result of dkli,j using Eq. (3.8), just after computing HOG descriptor of one block.

Since, HOG descriptors are already in PEs’ memories, only vector W is transfered

from external memory into PEs’ memories. However, each block participates in

105 detection window, i.e. each block produces 105 partial results which also

could not be stored in limited memory of PEs. So, to save memory space, each

PE should store a summation of partial results. To perform summation, each PE

requires partial results computed by other PEs.

Figure 3.2 illustrates our scheme for the assignment of blocks to PEs. As

shown in this Figure, PEj is assigned to calculate the HOG descriptors of all

blocks b(i, j). PEj also calculate values of dij for all detection windows d(i, j).

This scheme permits efficient usage of swazzle path and limited PEs’ memories.

This scheme allows Eq. (3.6) to be performed in two steps. First, PEs com-

municate their partial results, dklij to calculate partial summation dkij as follows:

dkij =
7∑
l=1

dklij , (3.9)

63

3. Human Detection

b(1,1) b(1,2)

….

.

.

.

.
 .

 .

PE1 PE2 PE3

.

.

.

.

.

.

….

….b(1,3)

b(2,3)

b(3,3)

b(2,1)

b(3,1)

b(2,2)

b(3,2)

Figure 3.2: The Assignment of Blocks to PEs

then, each PE calculates final value of dij as:

dij = b+
15∑
k=1

dkij. (3.10)

For example, consider detection window d(1, 1). PE1 is responsible to calcu-

late d1,1. First, PE1 calculates d1,1
1,1 and receives d1,2

1,1, . . . , d
1,7
1,1 from PE2, . . . ,PE7,

respectively, and then, calculates d1
1,1. Second, PE1 calculates d2,1

1,1 and receives

d2,2
1,1, . . . , d

2,7
1,1 from PE2, . . . ,PE7, respectively, and then, calculates d2

1,1 and add

d1
1,1 and d2

1,1 together, and iteration continues.

Algorithm 3 presents the pseudocode for HOG descriptor computation and

SVM evaluation for PEj. Line 1 calculates the number of blocks. Line 2 allocates

memory for array d which stores dij for each detection window d(i, j). The first

14 elements are not valid data, and store results of some redundant computations

on boundary blocks. This redundant calculation represents a small overhead, but

it allows regular operations to be performed for all blocks by all PEs 1. Lines

3-4 perform pixel level operations for pixels in cell c(1, j). Since blocks b(1, j)

and b(1, j + 1) share the cell c(1, j + 1), PEj receives the results of pixel level

operations on cell c(1, j + 1) from its neighbor via swazzle path (line 5). Each

1This feature is used in multi-scale computation

64

3. Human Detection

iteration of for loop of Lines 6-19 computes HOG descriptor of one block and

also the partial results for SVM evaluation. Since two consecutive blocks b(i, j)

and b(i + 1, j) share two cells, in each iteration m(x, y) and θ(x, y) for 2 new

cells are required (Lines 7-9). Line 10 calculates HOG descriptor as discussed in

section 3.2. Lines 11-19 handle SVM evaluation according to the Eq. (3.10).

Algorithm 3 HOG Descriptor & SVM Evaluation - PEj

1. n = number of image row/8− 1
// the height of each cell (in pixels) is 8

2. d: Allocate an array of type float and size of n + (15 - 1)

3. Receive I(x, y) for pixels in cell c(1, j) from external memory
4. Calculate m(x, y) and θ(x, y) for cell c(1, j)
5. Receive m(x, y) and θ(x, y) for cell c(1, j + 1) from PEj+1

6. for i = 1 to n
7. Receive I(x, y) for pixels in cell c(i+ 1, j) from external memory
8. Calculate m(x, y) and θ(x, y) for cell c(i+ 1, j)
9. Receive m(x, y) and θ(x, y) for cell c(i+ 1, j + 1) from PEj+1

10. Calculate HOG descriptor, Bij

11. for k = 1 to 15
12. d[(i+ 15)− k] = W1,1Bi,j

13. for l = 2 to 7
14. d = Wk,lBi,j

15. send d to PEj−l // via swazzle path
16. d = receive data from PEj+l // via swazzle path

17. d[(i+ 15)− k] = d[(i+ 15)− k] + d
18. end
19. end

20. Send d[14 : i+ 14] to the external memory as the result

As Fig. 3.2 illustrates, the number of required PEs to perform Algorithm 3

on a given image is determined by number of image columns. If the number

of required PEs is greater than 96 available PEs, then the given image should

be divided into smaller overlapping images which share some boundary columns.

Then, each of these smaller images could be processed independently. Also, if the

number of required PEs is less than 96, some PEs will be idle. Moreover, number

65

3. Human Detection

of iteration in Algorithm 3 (or number of blocks which are assigned to each PE)

is determined by number of image rows. Since the computation of all blocks

are exactly the same, all iterations take the same computation time. Hence, the

computation time for the image is a linear function of iteration numbers.

3.3.2 Multi-scale computation

To calculate HOG descriptor for various image scales, first the input image is

scaled down using a bilinear interpolation scheme (see below). Then, the com-

putation of the HOG descriptor and SVM evaluation are performed for each

downscaled image. Here, we first describe our parallelization approach to im-

plement image downscaling on the CSX architecture. Then, we show that the

efficient implementation of multi-scale computation on a fixed number of PEs can

be mapped as the solution of the strip packing problem.

3.3.2.1 Image Downscaling

To scale down the input image, we use bilinear interpolation as follows. To

estimate the value of an unknown pixel, bilinear interpolation considers the closest

4 known pixels surrounding the unknown pixel. Then, the value of unknown pixel

is set to the weighted average of these 4 pixels. To see this, let r denote the scale

ratio. To estimate the value of pixel at row x and column y in downscaled

image, the four pixels (x1, y1), (x1, y2), (x2, y1), and (x2, y2) in the input image

are considered, where

x1 = bx ∗ rc, x2 = x1 + 1 (3.11)

y1 = by ∗ rc, y2 = y1 + 1. (3.12)

Thus, to compute each row of output image, two rows of input image are

required. Our parallel implementation is based on output data decomposition,

i.e. output image is partitioned into rows, and each row is computed by one PE.

The first row of output is assigned to the first PE, the second row is assigned to

the second PE, and so on 1. Since each CSX700 core has 96 PEs and the output

1This is the row-cyclic data decomposition of output data. In chapter 2, it was shown

66

3. Human Detection

images can have more than 96 rows, PEi is assigned to compute all the rows j

where i = j mod 96. This parallelization approach minimizes both the external

memory and the inter-PE communications.

Data decomposition scheme for image downscaling and HOG descriptor com-

putation is different. To calculate each scale of the input image, first PEs receive

the input image and the scale ratio, and then calculate the resulting downscaled

image. The downscaled image is then transfered to external memory. Afterward,

Algorithm 3 could be performed on the downscaled image.

3.3.2.2 Multi-Scale Optimization Problem

In section 3.3.1, we discussed the computation of HOG descriptor and SVM

evaluation on one scale of image. The same algorithm can be applied for all

scales in several rounds where in each round Algorithm 3 is applied to one scale

of image. However, such a straightforward approach would be inefficient in term

of PEs usage and hence the total computation time since the number of idle PEs

increases as the scale of the image decreases. To clarify this issue, consider the

example of 640×480 input image and scale ratio of 1.05 for which the computation

is performed on 28 scales. The number of required PEs and iterations for each

scale are shown in Table 3.1. As can be seen, to perform computation for scales

12 to 28, less than 50% of 96 available PEs are used. So, if in each round the

computation is performed only for one scale, a large number of PEs would be

idle. For example, the computation for scales 27 to 28 uses just 22 and 21 PEs,

respectively.

A consequence of our parallelization strategy is that in Algorithm 3 regular

operations are performed for all blocks by all PEs. Therefore, it is possible to

perform the computation on several scales of input image simultaneously in each

round to reduce the number of idle PEs and hence the total computation time.

The only constraint is that the total number of required PEs to compute these

scales should be less than or equal to 96. As an example, the total number of

required PEs to perform computation on scales 25 to 28 is 90 PEs. To perform

computation on these scales in one round, the first 24 PEs can operate on scale

that row-cyclic data decomposition is the most efficient scheme for parallel implementation of
low-level image processing tasks on the CSX architecture

67

3. Human Detection

Table 3.1: The resources required for all scales of image of resolution 640 × 480
and scale ratio equal to 1.05. The first number denotes the required number of
PEs and the second one shows number of iteration

Scale 1 2 3 4 5 6 7

Required PEs 80 76 72 69 65 62 59
Iterations 59 56 53 50 48 46 43

Scale 8 9 10 11 12 13 14

Required PEs 56 54 51 49 46 44 42
Iterations 41 39 37 35 34 32 30

Scale 15 16 17 18 19 20 21

Required PEs 40 38 36 34 33 31 30
Iterations 29 27 26 25 23 22 21

Scale 22 23 24 25 26 27 28

Required PEs 28 27 26 24 23 22 21
Iterations 20 19 18 17 16 15 15

25, the next 23 PEs (PE25 to PE47) on scale 26, the next 22 PEs (PE48 to

PE69) on scale 27, and the next 21 PEs (PE70 to PE90) on scale 28. If these

computations are performed simultaneously in one round and in an overlapped

fashion, then the number of required iterations will be 17, which is the number of

iterations required by the biggest scale, i.e., scale 24. While, if the computations

are performed in different rounds, then the number of required iterations will

be 63 (sum of required iterations for the four scales). The key issue is then to

find an optimal scheme for mapping the computations of various scales on the

fixed number of PEs to minimize the total computation time. This optimization

problem is indeed equivalent to the solution of the strip packing problem.

The strip packing problem consists of packing a set of rectangular items of

width at most W on a strip of fixed width W and of infinite height (see, for

example, [75]). The items may neither overlap nor be rotated. The objective is

to minimize the height used.

Let S = {1, 2, . . . , n} where each s ∈ S denotes one scale of input image.

Assume Is and Ps denote the number of iterations and the number of PEs required

for computation of scale s, respectively. Since each CSX700 core has 96 PEs, it

68

3. Human Detection

can be considered as a strip of width 96. Also, as shown in Fig. 3.3(a), the

computation for scale s of input image can be considered as a rectangle item

of width Ps and height Is. The objective is to minimize the computation time

which could be considered as the height used to place all the rectangles (i.e, the

computation of all different scales of image) into a strip (one CSX700 core).

The strip packing problem is NP-Hard [75]. Various methods have been pro-

posed to solve strip packing problem exactly or approximately. A class of com-

monly used heuristic algorithms for strip packing problems are level algorithms.

In all level algorithms, items are pre-sorted into decreasing order of height. Then,

items are packed from left to right on a series of horizontal levels. Within the

same level, all items are placed so that their bottoms are aligned. The first level

is the bottom of the strip, and the subsequent levels are determined by the height

of tallest items packed on the previous levels. For our current implementation,

we have used a best-fit decreasing height (BFDH) heuristic to solve the mapping

problem. This algorithm packs the next item on the level with minimum residual

horizontal space.

Figure 3.3(b) illustrates the packing scheme produced by the best-fit algorithm

for the example specified in Table 3.1. Each level in the produced packing repre-

sents one round of computation, i.e. all scales of input image which are placed in

one level are computed in one round. For example, as shown in Fig. 3.2, the first

round includes computation of only the first scale while the last round includes

computation of scales 28 and 27.

It should be emphasized that the computations of rounds are totally indepen-

dent and hence they can be performed in any order. Note that, this also includes

the computation for image downscaling. Therefore, since each CSX700 has two

cores, each core can be assigned to perform computation of half of the rounds.

Likewise, if more than one CSX700 is used, rounds are divided into groups, and

each group is assigned to one core. Number of groups is equal to number of

available cores (number of chip ∗2).

69

3. Human Detection

Ps

Is S

(a)

S25

S23

S20

S18

S17

S15

S14

S13

S12

S26

S22

S24

S28S21 S27

S16 S19

S10

S11

S9

S8

S7

S6

S5

S4

S3

S2

S1

(b)

Figure 3.3: (a) Computation for each scale of image can be presented by a rect-
anglur of width Ps (number of required PEs) and height IS (number of iterations
or time) (b) Packing produced by the BFDH heuristic for the example specified
in the Table 3.1

70

3. Human Detection

Table 3.2: Performance of HOG-based human detection algorithm on one core of
CSX700 Architecture for images of 640× 480 resolution and scale ratio of 1.05

Step Computation time Sustained GFLOPS
(ms)

Image Downscaling 33.67 1.39
Gradient Computation 43.48 .7
Gradient Swazzling 2.51 -
HOG Descriptor 100.68 1.72
Computation
SVM Evaluation 111.31 1.71
Total 292.03 1.51

3.4 Results and Performance of Parallel Imple-

mentation

We have implemented our proposed parallel algorithm for HOG-based human de-

tection on the CSX700 SIMD architecture. As discussed in section 3.3.2, efficient

mapping of the multi-scale computation for HOG-based human detection on the

CSX700 architecture is equivalent to the solution of the strip packing problem.

For the example of 640 × 480 input image and the scale ratio of 1.05 (given in

Table 3.1) and by applying BFDH algorithm (shown in Fig. 3.3(b)), we have

obtained a total computation time of 570 iterations. For this example, by using

one core of the CSX700 processor, we have achieved a performance of 3.4 fps. The

computation time of different steps of our parallel algorithm for grayscale images

of 640× 480 resolution and scale ratio equal to 1.05 is presented in Table 3.2.

Gradient computation (Lines 3-4 and 7-8 of Algorithm 3) takes 43.48 ms (14%

of total computation time). As mentioned in Sec. 3.3.1, in our parallel implemen-

tation each PE performs gradient computation for half of the pixels of its assigned

blocks and receives the result of gradient computation for the other half of the

pixels of its blocks from its neighbor via swazzle path. As shown in Table 3.2,

gradient swazzling (line 5 and 9 of Algorithm 3) takes just 2.51 ms. Therefore,

this represents an efficient scheme for reducing the computation time since with-

out swazzling the total time of this step would be of about 89 ms. The most

71

3. Human Detection

Table 3.3: Performance comparison of one core and two core implementation

Latency (ms) fps Sustained GFLOPS

1 core 292.03 3.4 1.51
2 core 146.23 6.8 3

Table 3.4: Comparison with other implementations in the literature

Computation time Peak Performance fps / watt
(ms) (GFLOPS)

This Thesis 146.23 96 .75
Wojek [72] 99 384 .06
Prisacariu [73] 67 1788.48 .05

costly step is the SVM evaluation which has a computation time of 111.31 ms.

Note that, although the operations in SVM evaluation are performed efficiently

since they are fully vectorized, the PEs are idle for part of the computation of

this step waiting to receive data (the vector W) from the external memory. It

should be emphasized that this idle time is somehow unavoidable since the vector

W cannot be stored in PE’s memory due to its limited size.

Next, we have implemented the above example by exploiting both cores of

CSX700. As discussed in section 3.3.2, the computation of rounds are totally

independent and can be performed in any order. So, the rounds are divided

into two nearly equal groups and each group is assigned to one core of CSX700.

Table 3.3 compares our implementation of one and two cores of CSX700. Our

results illustrates that using both cores of CSX700, we achieved a near perfect

speedup of two.

Table 3.4 compares our implementation with those reported in the literature.

Although, in terms of computation time our implementation is slower but in

terms of power consumption and particularly fps per watt, it represents a much

better performance. To achieve better performance in terms of computation

times, more CSX700 processors can be used. As discussed in section 3.3.2, the

multi-scale computation can be divided among more cores, i.e. by using multiple

CSX700, enabling almost a linear speedup. For example, by using 4 CSX boards

a performance of about 25 fps can be achieved while consuming 36 watts.

72

3. Human Detection

3.5 Summary

This chapter presents parallel formulation and fast implementation of HOG-based

human detection for mobile robot applications on the CSX SIMD architecture. A

detailed analysis of multi-level computational structure of the HOG descriptors

showed that the choice of block level grain size for parallel implementation is

the most efficient in terms of reducing the redundancy in the computation and

communication. Besides, the main challenge in parallel implementation of HOG-

based human detection is the need for multi-scale computation. A consequence

of our parallelization strategy is that regular operations are performed for all

blocks by all PEs. Taking advantage of this regularity, it was shown that efficient

multi-scale computation on a fixed number of PEs can be mapped as the solution

of a 2D strip packing problem.

Our practical implementation results indicate that a performance of over 6

fps for an image resolution of 640 × 480 can be achieved while consuming only

9 watts. This performance can be further increased by deploying multiple CSX

architectures. Such performance per watt enables novel capabilities in mobile

robots and humanoid applications.

At the end of this chapter, it should be mentioned that for parallel compu-

tation of HOG-based object detection, the main challenges were on one hand,

complex data dependency pattern, varying granularity (pixel, cell, block, and

detection window), and multi-scale computation and on the other hand small

size of PEs’ memories in the CSX architecture. Other intermediate or high level

image processing tasks especially object detection algorithms share similarities

with HOG-based object detection in terms of computation needs. The solution

proposed in this chapter can be exploited for parallel formulation and implemen-

tation of those tasks.

73

Chapter 4

Asynchronous Parallel

Event-based Optical Flow

4.1 Introduction

This chapter first presents an event-based optical flow algorithm [76] and its serial

implementation, and second, studies the parallel formulation and implementation

of the algorithm on the Tilera MIMD architecture. Optical flow provides crucial

information for various robotic applications such as navigation, obstacle avoid-

ance, and tracking moving objects. Optical flow computation has been extensively

studied over last decades. For a review on different optical flow computation

methods and comprehensive study on performance of optical flow algorithms in

terms of accuracy see [77, 78]. Actually, state-of-the-art methods can provide

excellent and robust computation of flows for a variety of applications. How-

ever, they are very time consuming and power hungry, and consequently are not

suitable for real-time and low-power applications such as mobile robots and hu-

manoids. Fleury et al. [79] have proposed a general pipeline structure for parallel

implementation of several optical flow techniques on a distributed-memory MIMD

architecture, Transtech Paramid. While they have achieved speed up for all the

cases, the reported computation times cannot satisfy the real-time application

requirements.

As mentioned in chapter 1, event-based DVS vision sensor provides an sparse

74

4. Event-based Optical Flow

representation of the scene. By only processing important data, the event-based

vision algorithms can provide much faster solution compared with the conven-

tional image processing algorithms. To reduce the computation cost in terms of

both time and power, we have exploit DVS vision sensor for optical flow appli-

cations. At first step, the event-based optical flow algorithm proposed by Ben-

sonman et al. [76] was implemented and tested on the iKart mobile robots and

icub humanoid robots. Then, to further improve the run-time of the algorithm,

we solved the problem in parallel and implement the parallel algorithm on the

Tilera MIMD architecture.

In section 4.2, the event-based optical flow algorithm is reviewd. Then, a brief

but comprehensive overview of the Tilera architecture is given in section 4.3. Par-

allel formulation of event-based optical flow and the implementation issues are

discussed in section 4.4 and 4.5, respectively. Then, the results of both imple-

mentations on GPP and Tilera architecture are presented in section 4.6. Finally,

a summary of this chapter is given in section 4.7.

4.2 Event-based optical flow algorithm

As mentioned above, we have exploited the event-based optical flow algorithm

proposed by Benosman et al. [76]. Like the standard approach in computing

optical flow [80, 81, 82], they have assumed the brightness change constraint

equation, which is based on the hypothesis that the intensity structure of local

time-varying regions of image are constant under motion for a short duration, so:

dI(x, y, t)

dt
= 0, (4.1)

where I represents the image gray level intensity. Expanding Eq. (4.1) leads to:

∂I

∂x

∂x

∂t
+
∂I

∂y

∂y

∂t
+
∂I

∂t
=
(
∂I
∂x

∂I
∂y

)T (∂x
∂t
∂y
∂t

)
+
∂I

∂t

=
(
∂I
∂x

∂I
∂y

)T (vx
vy

)
+
∂I

∂t
= 0, (4.2)

75

4. Event-based Optical Flow

where (vx, vy)
T denotes the 2D velocity field. Equation (4.2) is a linear equation

with two unknowns, and consequently it does not have a unique solution. One of

the most popular techniques to overcome this problem is based on local constant

flow assumption and was first proposed by Lucas and Kanade [81]. They assumed

that (vx, vy)
T is constant over an n × n neighborhood of the pixel (x, y). Then,

the optical flow equations (i.e. Eq. (4.2)) for all pixel in a n × n neighborhood

can form an equation system as follows:
gradT (I(x1, y1))

...

gradT (I(xm, ym))

(
vx

vy

)
=

−It1

...

−Itm

 (4.3)

where gradT (I) and It denote spatial and temporal derivatives of I, respectively,

and m = n2. This equation system then can be solved using least square error

minimization technique.

Benosman et al. [76] have suggested that the Eq. 4.3 can be formulated

in an event-based manner. Since the event-based DVS sensor does not provide

gray level intensity, the main difficulty would be the computation of the spatial

derivatives. To provide an estimation of spatial derivatives, the activity of the

neighboring pixels in a time interval of ∆t are compared as follows:

∂e(x, y, t)

∂x
∼

t∑
t−∆t

e(x, y, t)−
t∑

t−∆t

e(x− 1, y, t) (4.4)

∂e(x, y, t)

∂y
∼

t∑
t−∆t

e(x, y, t)−
t∑

t−∆t

e(x, y − 1, t). (4.5)

Besides, the temporal derivative can be estimated as follows:

∂e(x, y, t)

∂t
∼
∑t′

t−∆t e(x, y, t)−
∑t

t−∆t e(x, y, t)

t− t′

=

∑t
t′ e(x, y, t)

t− t′
, with t−∆t < t′ < t. (4.6)

The computation steps of event-based optical flow are illustrated in Fig. 4.1.

First, for each event e(x, y, t), all the events in a n × n × t neighborhood are

76

4. Event-based Optical Flow

Y

Sp
ac

e

X

Timet2{

Δt
1t

t2

Stage one
 Integrate events in a n x n x Δt neighborhood
around e(x, y, t)

Stage two
 Compute the partial derivatives in
the neighorhood

t1

Stage three
 Form least squares matrices

It

IxIy

Stage four
 Calculate velocity vector at pixel (x,y)

spatial
matirx

temporal
matirx

velocity
vector

Figure 4.1: Event-based optical flow computation

indicated. Second, the partial derivatives are computed using Eq (4.4), (4.5),

and (4.6). Third, the least squares matrices are built, and finally the velocity

vectors are computed.

4.3 Tilera Architecture

In this section, we briefly review TILEPro64 [2] architecture with the emphasis on

the key features, i.e. memory organization and on-chip interconnection network,

which have been employed in our implementation1.

As illustrated in Fig. 4.2, TILEPro64 is a many-core architecture including 64

processor cores (called tiles) organized in a two-dimensional mesh interconnected

1TILE-GxTM processor family, the successor of TILEProTM family are currently available in
the Market. However, to test our parallel implementation, we only had access to the TILEPro64
processor

77

4. Event-based Optical Flow

DDR2 Controller DDR2 Controller

DDR2 Controller DDR2 Controller

C
on

tr
ol

le
r

P
C

Ie
P

C
Ie

X
A

U
I

G
B

E
G

P
IO

X
A

U
I

PCIe x4

PCIe x4

JTAG,
UART

HPI,
I2C,
HPL,
FlexIO

10Gbe

10Gbe

Gbe

Gbe

FlexIO

DDR2 (0) DDR2 (1)

DDR2 (3) DDR2 (2)

Figure 4.2: Simplified Tilera hardware architecture [2]

with Tilera’s iMeshTM on-chip network. Each tile is a full featured processor and

as shown in Fig. 4.3 consists of three main parts: processor engine, cache engine,

and switch engine. The processor engine is a 32-bit 3-way VLIW processor with

two/three instructions per bundle. The cache engine provides L1 instruction

cache, L1 data cache, and combined L2 cache for each tile. In addition, the cache

engine is equipped with a DMA controller which provides facilities for fast data

transfer between tiles and between tiles and external memory. The switch engine

provides connection to the iMesh on-chip network. Since the tiles are laid out in

a two dimensional mesh, the switch engine connects the tile to the north, south,

east, and west neighbors. The switch engine directly connects to IO devices if

the tile is adjacent to an IO device. In the following, more details on TILEPro64

memory organization and on-chip communication architecture is provided.

Memory organization TILEPro64 architecture provides a 36-bit physical ad-

dress space which is globally shared between all 64 tiles. To balance memory

bandwidth, the physical address space is distributed into four different DDR2

78

4. Event-based Optical Flow

MDN TDN
UDN IDN
CDN STN

Processor
Engine

L2
L1I L1D

DMA

Switch Engine

Figure 4.3: Simplified Tile architecture [2]

RAMs. This feature allows parallel read/write operations from different memory

modules. In addition, locating tasks on the tiles near memory controllers they

use can maximizes memory network bandwidth by avoiding unnecessary link con-

gestion. Actually, being on the same left/right half of the chip as the memory

controller is particularly helpful [83].

On the TILEPro64 processor, each tile cache system includes 16KB of L1

instruction cache, 8KB of L1 data cache, and 64KB of L2 combined cache. In

addition, the processor provides facilities for a dynamic distributed cache (DDC)

system. DDC system allows a page of shared memory to be homed on a specific

tile or distributed across several tiles, then cached remotely by other tiles. There-

fore, if the requested data is not found in local L1/L2 cache of the tile, at first the

cache of the home tile is searched and in case of data miss, the request is passed

to the external memory. This mechanism allows a tile to view the collection of

on-chip caches of all tiles as a large shared, distributed coherent cache. The cache

coherency of DDC is supported in hardware. Data access time for L1, L2, dis-

tributed coherent cache and external memory is equal to 2, 8, 35 and 69 cycles,

respectively. Therefore, in order to achieve better performance, data distribution

should be performed in such a way to maximize local memory access.

Finally, it should be mentioned that the Tile processor architecture defines

a relaxed memory consistency model. Consequently, non-overlapping memory

accesses to the shared pages of the memory from one tile can be reordered and

79

4. Event-based Optical Flow

can become visible to other tiles sharing that page in an order different from

the original program order with a few restrictions (for details see [2]). The Tile

architecture provides the memory fence and test-and-set instructions. The former

can be used to establish ordering among otherwise unordered instructions, and

the latter can be used to read and write a memory location atomically.

Communication architecture The on-chip interconnection network, iMesh,

is responsible for data transfers between tiles, between tiles and external memory,

and between tiles and IO devices.

As shown in Fig. 4.3, the iMesh consists of a single static network and five

dynamic networks. The static network uses circuit switching mechanism to es-

tablish a path between source and destination. This network is user accessible

and is suitable for streaming scalar data between tiles. The dynamic networks

can be classified into two groups: memory networks and messaging network. The

memory networks handle all memory traffic such as cache misses, DDR2 requests,

and so forth. The memory networks consists of the Memory Dynamic Network

(MDN), the Tile Dynamic Network (TDN), and the Coherence Dynamic Net-

work (CDN). The messaging networks are User Dynamic Network (UDN) and

the IO Dynamic Network (IDN) and allow the user level program to control the

network and transfer data between tiles or to/from IO devices. It should be men-

tioned that Tilera API library, iLib, provides a set of functions to use underlying

interconnect network for data transfer between the tiles.

4.4 Parallel Formulation

In this section, the parallel formulation of event-based optical flow is presented.

Decomposition, mapping, and minimizing interaction overhead are the fundamen-

tal steps to solve a problem in parallel [84]. To parallelize event-based optical

flow, like any other problem, there were several choices for each of these steps.

In the following, the main alternative choices along with their advantages and

disadvantages are discussed.

Computing optical flow on the Tilera architecture in the abstract view can

be seen as a three stage pipeline: receiving events on the board, computing ve-

80

4. Event-based Optical Flow

locity vectors, and sending the velocity vectors out to the host machine. Since

these stages produce and consume data at different rates, the producer-consumer

pattern is best suited to model this computation. Producer-consumer pattern

decouples processes that produce and consume data at different rate. In this

pattern, queue data structures are used to communicate data between producer

and consumer processes.

The main computation is performed in the second stage of the pipeline, com-

puting velocity vectors. In the following we will discuss how to exploit parallelism

in computation of velocity vectors. However, here suffice it to say that this pro-

cess will be further divided into smaller tasks which will be assigned to multiple

processors running in parallel, i.e. the events received in the first stage of the

pipeline should be distributed among several tasks which compute velocity vec-

tors. Hence, one stage must be added to the three stage pipeline, between the first

and second stages. The parallel model of optical flow computation is illustrated

in Fig. 4.4. The events are arrived to the board via PCIe or network ports. The

receiver process is responsible to catch the arrived packets and save them in a

circular queue. The distributor process processes the arrived packets and assigns

each event to the corresponding task of the velocity process. Then, subprocesses

of the velocity process compute velocity vectors and add the computed results to

an output buffer. The output buffer is sent out to the host by the sender process

through PCIe or network ports.

The parallel model presented in Fig. 4.4 is a high level model. The distrib-

utor and especially velocity processes can be further divided into smaller tasks

which will be performed in parallel. In the following, first the shared data struc-

tures, which are used to communicate between processes in our parallel model,

are described, then parallelization of the velocity and distributor processes are

discusses.

4.4.1 The concurrent data structures

As mentioned above and can be seen in Fig. 4.4, three queue structures are used

to communicate data between producer and consumer processes in our pipeline

model. Circular queue structures are used to communicate data between the

81

4. Event-based Optical Flow

PCIe / Ethernet

{ { { {

V2S queue

Sender
 Process

Receiver
 Process

Distributor
 Process

R2D

Velocity Process
& subprocesses

D2V D2V D2V D2V

PCIe / Ethernet

Figure 4.4: Parallel computation of event-based optical flow

82

4. Event-based Optical Flow

receiver and the distributor processes and also between the distributor process

and each subprocess of the velocity process. This circular queues are called R2D

and D2V, respectively. Finally, an extended queue data structure, called V2S

queue, is used to communicate between the velocity subprocesses and the sender

process.

These queues are shared data structures. In classic lock-based multithreaded

programming, the operations that change shared data must appear as atomic by

locking and unlocking a mutex, such that no other thread intervenes to spoil the

data’s invariant, i.e. the access to the shared data must be serialized by locking

and unlocking a mutex. However, this serialization can have a major impact on

the performance and achievable speedup of the parallel application [85]. One

solution is to use lock-free data structures1, but it is very difficult to implement

lock-free data structures and prove their correctness.

However, under sequential consistency memory model [86], Lamport [87] has

proved that a wait-free single-producer single-consumer circular queue can easily

be implemented without using explicit synchronization mechanisms between the

producer and the consumer. Higham and Kavalsh [88] have formally proved that

even under weakly ordered memory consistency model, the Lamport’s algorithm

with simple modification works correctly. The main idea of the algorithm is to

couple control and data information into a single buffer operations by using a

known value, which cannot be used by the application.

In our proposed parallel model, both R2D and D2V structures are single-

producer single-consumer circular queues. Since, as mentioned in section 4.3, the

Tilera architecture defines a relaxed memory consistency model, we have exploited

the Higham and Kavalsh’s algorithm [88] to implement a lock-free structure for

D2V. However, since R2D circular queue is used to store the arrived packets,

Highamand kavalsh’s algorithm cannot be used to implement this queue. To

write in R2D queue, receiver process first have to reserve a space in the queue

and then start writing the data. Also, to read data, distributor process have to

1 There are two types of non-blocking thread synchronization mechanisms: wait-free and
lock-free. Wait-free guarantees the progress of each subtask or threads of the process, regardless
of the behavior of other threads. Lock-free guarantees the progress of the process, i.e. while a
given thread might be blocked by other threads, all CPUs can continue doing other useful work
without stalls. Wait-free is a stronger condition.

83

4. Event-based Optical Flow

lock the associated element of the queue.

Finally, lock-mechanism is used to implement V2S queue. By using double

buffering techniques, however, the implementation of the V2S queue allows the

sender thread to send out the computed result while the velocity subprocesses

can write the computed velocity vectors on the other parts of the queue.

4.4.2 Velocity computation

In this section, parallelization of the velocity process is discussed. In the following,

r and c denotes the number of rows and columns of the image plane, respectively.

An ordered pair (x, y) represents the pixel located at row x and column y in the

image plane. Also, e(x, y, t) denotes an event arrived at pixel (x, y) at time t.

Finally, the size of the neighborhood considered around each event to compute

velocity vector is n × n. In the following, we discuss different decomposition

schemes for parallelization of the velocity process.

Event-based decomposition. The even-based decomposition is illustrated

in Fig. 4.5. This decomposition scheme is based on partitioning the input data,

i.e. one task is created for each event e(x, y, t), and this task performs all the

computation required to calculate velocity vector at position (e.i. pixel) (x, y)

and time t. Arrived events can be related to any positions in the image plane. To

compute velocity vectors for the events arrived in a n×n neighborhood, as can be

seen in Fig. 4.5, the associated tasks need to access shared data. In this scheme,

the data related to stage one and two of event-based optical flow computation

(see Fig. 4.1), in fact a large portion of data, should be stored in the shared

memory space. The local data of each task only includes the partial derivatives

and least square measurement matrices.

Since tasks are generated dynamically upon arrival of events, a dynamic map-

ping technique is required. Actually, since all the tasks are of equal size, a simple

dynamic mapping technique can provide overall load balancing among available

processors. However, as already mentioned, the tasks related to neighboring

events (in space and time) need to access the shared data to perform their com-

putations, consequently synchronization among these tasks is required, i.e. some

84

4. Event-based Optical Flow

ei(xi, yi, ti)

ej(xj, yj, tj)

ek(xk, yk, tk)

el(xl, yl, tl)

Arrived Events:

Figure 4.5: Event-based decomposition

task must wait for the other tasks to complete their process. Thus, the synchro-

nization cost will increase the computation time and will outweigh the advantage

of overall load balancing.

Velocity-based decomposition. As discussed in section 4.2, each velocity

vector can be computed independently of others as a function of input events in

a small neighborhood. This lead to velocity-based decomposition which actually

partitions the output data. The velocity-based decomposition is illustrated in

Fig. 4.6. In this scheme, a task is created for each pixel (x, y) at the image plane.

This task is responsible to compute the velocity vector if an event arrives at this

position. As shown in Fig. 4.6, each task keeps a local copy of events which arrive

in the n× n neighborhood centered on its corresponding pixel. Consequently, all

these tasks, even those assigned to neighboring pixels, can perform computation

using only their local data, i.e. the synchronization and inter-process communi-

cation are minimized in cost of increasing memory usage. In fact, the required

memory space for this scheme is O(rcn2), while it is only O(rc) for the event-based

decomposition scheme.

85

4. Event-based Optical Flow

(xi, yi)

(xi+1, yj+1)

(xk, yk)

Figure 4.6: Velocity-based decomposition

Since the tasks are statically generated, either static or dynamic mapping

can be used. The commonly used techniques for distributing arrays or matrices

among processors such as block distribution can be used to statically map the

tasks to the available processors. However, these techniques may lead to an un-

balance computation especially when the input data has some special pattern.

For example consider there is a set of 8 processors {T1, T2, · · ·T8} and a black

distribution mapping as shown in Fig. 4.7 is used to map the tasks to the proces-

sors. If there are only events in the left side of the image, some processors (T3,

T4, T7, and T8) will not get any work, while the processor on the left (T1, T2, T5,

and T6) are assigned much of the work. A randomized distribution can improve

the load balancing among processors [84]. While a dynamic mapping can provide

overall load balancing, it entails moving the data associated with tasks among

processors. This data movement1 is costly and may render a static mapping more

suitable.

1on Tilera architecture, the associated data have to move from one cache to another

86

4. Event-based Optical Flow

T1 T2 T3 T4

T5 T6 T7 T8

Figure 4.7: Velocity-based decomposition and mapping to eight processors

Image plane decomposition. Image-plane decomposition is illustrated in

Fig. 4.8. This scheme is actually based on partitioning intermediate data (see

Fig. 4.1, stage three of event-based optical flow computation). As shown in

Fig. 4.8, the image plane is partitioned into 2-D blocks, and one task is assigned

to each block. Each task is responsible to computes the velocity vectors at all

pixels of the block, and only performs computation on local data. However, to

compute velocity vector in boundary areas of each block, data from neighboring

blocks are required. In Fig. 4.8 the gray shaded areas represent boundary area

of the block i. To avoid data-exchange overhead among tasks, as also shown in

Fig. 4.8 for the black i, each task keeps track of events arrived in the boundary

area of its neighboring blocks, in addition to its own block data. Consequently,

all the tasks can work asynchronously and minimize inter-process communication

in cost of a small increase in memory space usage.

Since the tasks are known prior to the execution and on the other hand the

size of data associated to each task is relatively large, static mapping is the best

choice for this data decomposition scheme. Since for a real robotic application the

tasks are expected to have almost the same size, a simple mapping technique such

as equally distributing blocks among available processors can provide overall load

balancing. However, as discussed for velocity-based decomposition, if the input

has some special pattern, this general mapping technique may lead to unbalance

87

4. Event-based Optical Flow

Block i

Figure 4.8: Image plane decomposition

computation. When the input has a fixed known pattern, it is possible to define a

static mapping technique which provide load balancing. It should be mentioned

that a randomized distribution will be helpful only if number of blocks is much

more than number of available processors.

Appropriate decomposition scheme. As can be seen, different decomposi-

tion and mapping techniques can be considered for parallelization of the velocity

process. For our parallel implementation on the Tilera MIMD architecture, we

have chosen the image plane decomposition. Both Event and velocity vector

based schemes are fine-grained decomposition and provide highest degree of con-

currency. However, they have several drawbacks, especially they increase memory

access time and perform redundant computation.

The events sent by DVS camera have spatial and temporal locality, i.e. when

an event arrived at one pixel, it is likely that more events will arrive at that pixel

and its neighbors. Actually an isolated event is considered as noise generated

by the sensor and is dropped before further computations [25].In image-plane

decomposition scheme, this spatial and temporal locality of events can be mapped

to spatial and temporal locality assumption used in cache subsystem of computing

platforms to decrease memory access time significantly.

88

4. Event-based Optical Flow

In addition, locality of events also means that computation of derivatives,

stage three of event-based optical flow (see Fig. 4.1), can be saved for neigh-

boring pixels. However event and velocity-based decomposition cannot exploit

this feature, since the computation related to neighboring pixels are assigned to

different tasks1.

Finally, the number of tasks generated by velocity based decomposition is

equal to rc i.e. it depends on the image plane size (in case of DVS128 it is

equal to 128∗128 = 4094), but our target hardware architecture includes only 64

processors. This means that we cannot benefit from very high level of concurrency

provided by this decomposition technique.

Image-plane decomposition is a coarser grain scheme, however it still provide

good degree of concurrency. Furthermore it reduces parallelization overheads

(inter-process communication overhead), and saves computation and memory ac-

cess time by exploiting temporal and spatial locality of events.

4.4.3 Event distribution

As shown in Fig. 4.4, the distributor process pops the arrived packets from the

R2D circular queue, then it has to decode the events and assign them to the

corresponding velocity subprocess to compute velocity. For parallelization of the

distributor process, different decomposition schemes can be considered.

Like the velocity process, an image plane decomposition can be used. However,

such scheme is not efficient for the implementation of distributor process, since

the subprocesses have to perform redundant computation to decode the arrived

events.

A coarse grain data decomposition may assign one task to each arrived packet

in the queue. While this is an efficient scheme to exploit parallelism for distributor

process, it will cause unordered computation of velocity vectors in the next stage

of pipeline (the velocity process), and therefore, it is not acceptable.

A fine grain data decomposition scheme may distribute events of one packet

among available processes based on their indexes in the packet. Assume dn de-

notes the number of the subprocesses available for the distributor process. Then

1They can only save computation in cost of increasing inter-process communication.

89

4. Event-based Optical Flow

subprocess j (1 ≤ j ≤ dn) is assigned to compute all the events in the packet at

index i where i = j mod dn. This fine grain decomposition can be employed for

parallel implementation of the distributor process.

However, the side-effect of this scheme is that in our parallel model, shown

in Fig. 4.4, a multi-producer single-consumer circular queues structure will be

required to communicate between the distributor and velocity subprocesses. As

discussed in section 4.4.1, lock-based data structures can have a major impact on

efficiency and performance of parallel applications, and look-free circular queues

for multiple producer and consumers are much harder than single-producer single-

consumer queues to implement. On the other hand, the distributor process does

not perform intensive computations. Therefore, the better choice is to not decom-

pose the distributor process in smaller subtasks, and instead have the possibility

of using lock-free single-producer single consumer circular queues to communicate

between the distributor and the velocity subprocesses1.

4.5 The application architecture and implemen-

tation overview

In this section, we briefly describe the parallel implementation of event-based op-

tical flow application on the Tilera architecture. Figure. 4.9 depicts the high level

application architecture. The DVS vision sensor sends the events through Yarp

network. a Yarp module running on the host machine is responsible to receive the

events that are sent by the DVS sensor. This module continuously communicates

the received events to the Tilera processor and receives the computed flow from

Tilera. There are two ways to communicate with the Tilera processor: PCIe bus

and Ethernet ports. In our implementation, the communication with Tilera is

performed via PCIe bus. Finally, the host module provides the computed flows

on a Yarp port, so the computed flows can be used as input by other modules

(For example yarpview in Fig. 4.9).

1 If the distribute process becomes a bottleneck in our parallel application, the implementa-
tion of the distributor process and the associated circular queues can be modified later. These
modifications will not affect the other processes, since the producer-consumer pattern decouples
the processes.

90

4. Event-based Optical Flow

Host Platform
(conventional architecture)

Yarp Module

PCIe BusYarp Network

Vision Sensor

Tilera Processor

Tile Code

yarp view

Events

Velocity vectors

Events

Velocity vectors

Figure 4.9: Application general overview

In the following we discuss two important issues in parallel implementation

of event-based optical flow application on the Tilera architecture: host-tile com-

munication, and memory allocation on the Tilera architecture.

4.5.1 Host-tile communication

The Tilera PCIe user space communication API provides several communication

mechanisms, each suited for different usage model (for details see [89]). Among

all, we have chosen zero-copy command copy API which provides a reasonable

trade-off between simplicity and efficiency for our application. This API allows

programmer to send commands directly to PCIe driver’s scatter/gather engine by

writing to a Linux device file associated with a PCIe channel. Reading from the

device files returns a structure indicating the completion status of a previously

written commands. However, this API relies on execution of significant Linux

and hypervisor code (e.g. file operation and interrupts). Therefore, this data

transfer process is not efficient for packets smaller than 8 KB.

Our tests performed on the DVS sensor showed that in the high load condition

DVS sensor generates events with the rate of approximately 800,000 event per

second. According to [89], it takes 20 and 10 µs to send 16KB and 8KB of

data over PCIe channel, respectively. Since each event sent by the vision sensor

requires 8 bytes of data, data can be sent to the Tilera with the rate of 100 mega-

events per second. Therefore, the host-tile communication is not a bottleneck in

the application performance.

4.5.2 Memory allocation strategy on Tilera

In the Tilera architecture, as mentioned in section 4.3, the union of the L2 caches

serves as the distributed L3 cache. This has become possible by use of home tile

91

4. Event-based Optical Flow

mechanism. The home tile is a tile designated to maintain and track sharing and

coherence information for a particular physical address. In the Tilera architec-

ture, each physical address of memory is associated with a home tile. The Tilera

memory subsystem provides three different homing strategies: local homing, re-

mote homing, and hash-for-home. With the local homing strategy, the entire page

of memory is homed on the same tile that is accessing the memory. Therefore,

when an access to address P misses in the L2 cache, a request is directly sent to

DDR memory in order to retrieve the data. With the remote homing strategy,

the entire page of memory is homed on a different tile than the tile accessing the

data. In this scenario, when an access to address P misses in the L2 cache, a

request is sent to the home tile (L3 cache). If the data is present in the home tile,

then the request is serviced directly with the data from the home tile. If the data

is not present, a request is sent to memory and the memory controller services the

request. Finally, the hash-for-home strategy is very similar to the remote homing

strategy. The difference is that the entire page of memory is hashed across a set

of tiles within the system, at a cache line granularity (for more details see [83]).

The home tile strategy has an important impact on the data access time and

consequently on the overall application performance. The local homing strategy

is suitable for private data that would not benefit from using another core’s

cache as a backing L3 cache. The remote homing is suitable for shared memory

FIFOs with single consumer. By homing the FIFO data on the consuming tile,

the producer tiles can write directly to the consuming tile’s cache. Therefore,

the data structures can take advantage of two important principles: (1) loads are

faster when issued to data that is homed on the issuing tile, (2) stores are fire-and-

forget, i.e. storing to a remote cache has minimal performance impact because

the main processor does not have to wait for a read result to come back. Finally,

Hash-for-home enables an even traffic distribution through the on-chip networks,

and effectively balance the cache traffic across a set of tiles. Consequently it tends

to be the best for any data or instruction memory that is shared across multiple

threads or processes.

Therefore, in our parallel implementation, the remote homing strategy should

be used for the R2D, D2V, and V2S queues, while the local homing strategy

should be used for the private data of each process or subprocess.

92

4. Event-based Optical Flow

4.6 Results and performance of event-based op-

tical flow implementations

We have implemented the event-based optical flow algorithm [76] on both general

purpose processors(GPPs) and the Tilera architecture. In this section, first the

output of both optical flow implementations for some tests performed on iCub

humanoid robots are presented, then we discuss the performance of the two im-

plementations in terms of speed. In terms of optical flow accuracy, we relay on

the results presented in [76], i.e. we do not pursue this issue here.

Results of the GPP implementation of event-based optical

flow

The GPP implementation of event-based optical flow has been extensively tested

on the iCub humanoid robots and iKart mobile platform. In the following, the

output of the implemented algorithm in different situation and with various stim-

uli is presented.

Rotating circle. The stimulus is shown in Fig. 4.10(a). This stimulus was

rotating in front of the DVS vision sensor in a clockwise direction with fixed

angular velocity. Rotation of this circle triggers events in the two edges of the

black quadrant. Snapshots of the event-based optical flow output is presented

in Fig. 4.10(b)-4.10(d). Even if this is a simple stimuli, it can generate flow

vectors in many different directions and magnitudes. From the basic physics, it

is known that the flows which are closer to the center of the circle should have

smaller magnitudes than those which are close to the boundary of the circle. As

can be seen in Fig. 4.10, in the output of event-based optical flow algorithm, the

magnitude of flows increase from the center of the circle to the border.

iCub head movement. In this experiment, the environment is static and DVS

vision sensor generates events since the iCub robot turns its head to the right

and left as shown in Fig. 4.11(a). Field of view of iCub is shown in Fig. 4.11(b).

Figure 4.11(c)-4.11(e) present the output of the algorithm when the head turns

93

4. Event-based Optical Flow

(a) (b)

(c) (d)

Figure 4.10: Results of GPP implementation of optical flow for a clockwise ro-
tating circle

94

4. Event-based Optical Flow

to the right, while Fig. 4.11(f)-4.11(h) illustrate the output when the head turns

to the left. The magnitude of the flow vectors are almost of the same size, which

is consistent with the experiment setup, since the curtain and the human which

are in field of view of the iCub are almost in the same distance of the iCub and

iCub turns its head with constant velocity.

Human walking. This experiment presents the output of the event-based op-

tical flow when an human pass the iCub robot. In this experiment, the iCub head

does not move. Figure 4.12(a)-4.12(h) illustrate the output of the algorithm when

the human pass the iCub. As the human goes further, the number of events grad-

ually decreases. Less number of events lead to an inaccurate estimation of optical

flow. As can be seen in Fig. 4.12(h), at some point the computed flows does not

provide the correct information.

Application of event-based optical flow in robot obstacle

avoidance

The event-based optical flow implementation was exploited to avoid obstacle in

the robot navigation task. In this experiment, we have used a DVS camera

mounted on the iKart mobile platform. Knowing the movement and geometry

of the system, an velocity field model was built. This model was continuously

checked with the optical flow output. A difference between the model and optical

flow field indicates an object. Snapshots of the conducted experiments are pre-

sented in Fig. 4.13. As shown in Figure 4.13(a)-4.13(c), iKart platform is moving

that a human pass the robot (Fig. 4.13(d)-4.13(f)). The obstacle (the human) is

detected and the iKart stop moving (Fig. 4.13(g)-4.13(i)). Then, in ig. 4.13(j)-

4.13(m), iKart continues its movement by permission of human supervisor.

Results of the parallel implementation of event-based op-

tical flow on the Tilera architecture

In this section, we present the output of parallel event-based optical flow for the

same set of stimuli used to test the GPP implementation. Figure 4.14(a)-4.14(c)

95

4. Event-based Optical Flow

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4.11: Results of GPP implementation of optical flow when iCub turns its
head to the left and right

96

4. Event-based Optical Flow

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.12: Results of GPP implementation of optical flow when a haman passes
iCub

97

4. Event-based Optical Flow

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4.13: Application of event-based optical flow in robot obstacle avoidance
system

98

4. Event-based Optical Flow

present the output of the rotating circle with a black quadrant. Figure 4.14(d)-

4.14(f) present the output of the parallel optical flow algorithm when the icub

turns its head to the left and right. The output of the parallel algorithm for the

human passing the iCub are illustrated in Fig. 4.14(g)-4.14(i).

Performance comparison of GPP and Tilera implementa-

tions of event-based optical flow

To compare performance of the GPP and Tilera implementations of the event-

based optical flow in terms of speed, we have computed the throughput of both

systems for the rotating circle presented in Fig. 4.10(a). The throughput was

computed as the number of computed velocity events per second. The GPP

implementation was run on a 2.67 GHz Intel CoreTM i7-920 CPU which is of

the state of the art conventional processors, while the Tilera implementation

was run on 60 cores of a 860 MHz TilePro64 processor. Figure 4.15 compares the

throughput of the GPP and Tilera implementations. As can be seen the through-

put of the Tilera implementation is more than twice as the GPP implementation

throughput. It should be mentioned that the power consumption of the TilePro64

processor is between 15-22 watt while Intel Core i7-965 power consumption is 130

watt.

Impact of block size on the performance of the Tilera im-

plementation

As discussed in section 4.4.2, we have chosen the image plane decomposition

scheme for parallelization of the velocity process. In this scheme, the image

plane is partitioned into 2-D blocks, and one task is assigned to each block.

However, we have not discuss the appropriate block size so far. The size of the

2-D blocks determines the number of required velocity subprocesses and can have

a major impact on the performance. To investigate the impact of block size on

the performance of the system, the computation of optical flow was performed on

the same input but with different choices of block size. Figure 4.16 compares the

throughput of different runs of the Tilera implementation of event-based optical

99

4. Event-based Optical Flow

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.14: Results of Tilera implementation of event-based optical Flow

100

4. Event-based Optical Flow

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

5

Time

T
h
ro

u
g
h
p
u
t

 Tilera Implementation

GPP Implementation

Figure 4.15: The throughput of GPP and Tilera implementations of event-based
optical flow

flow algorithm for the rotation circle input (Fig. 4.10(a)) and the following block

sizes: 16 × 16 (64 velocity subprocesses), 16 × 32 (32 velocity subprocesses), 32

× 16 (32 velocity subprocesses) 32 × 32 (16 velocity subprocesses), 16 × 64 (16

velocity subprocesses) 64 × 16 (16 velocity subprocesses), and 64 × 64 (4 velocity

subprocesses).

The results illustrated in Fig. 4.16 indicate that by reducing the block size

and consequently increasing the number of velocity subprocesses, the throughput

increases. Moreover, as can be seen in Fig. 4.16 the throughput of the system

is almost the same for the following cases: (a) block sizes of 16 × 32 and 32

× 16 (i.e. 32 velocity subprocesses), and (b) block size of 32 × 32, 16 × 64,

and 64 × 16 (i.e. 16 velocity subprocesses). Thus, as long as the number of the

subprocesses does not change, the block size change does not have an impact on

the throughput.

Another important observation is that increasing the number of velocity sub-

processes from 16 to 32 results in 50 % increase in the system throughput, while

increasing the number of subprocesses from 32 to 64 leads to only 10% increase

101

4. Event-based Optical Flow

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

5

Time

T
h
ro

u
g
h
p
u
t

16x16 (64 subprocesses)

16x32 (32 subprocesses)

32x16 (32 subprocesses)

32x32 (16 subprocesses)

16x64 (16 subprocesses)

64x16 (16 subprocesses)

64x64 (4 subprocesses)

Figure 4.16: Impact of block size on throughput of Tilera implementation of
event-based optical flow

in throughput of the system. Since maximum of 60 cores on the Tilera archi-

tecture can be used to run user programs, by increasing the number of velocity

subprocesses more than the number of available cores, the cost of thread switch-

ing will increase. There are also other parallelization overheads such as storing

the boundary data for the velocity subprocesses. This trend in throughput in-

crease proves that a very fine grain computation is not suitable for our parallel

implementation on the Tilera architecture.

4.7 Summary

This chapter studies parallel formulation of an event-based optical flow algorithm

[76] as an example of event-based vision processing algorithms. Various decompo-

sition and mapping schemes were analyzed for an efficient parallel implementation

with minimum parallelization overhead on the Tilera MIMD architecture. It was

shown that a pipeline or producer-consumer model is the suitable choice for par-

102

4. Event-based Optical Flow

allel computation of event-based optical flow, and consequently the computation

was modeled in a four stage pipeline: receiving events, distributing events, com-

puting velocities, and sending the results back. Further decomposition of the

pipeline stages was discussed and it was shown that image-plane decomposition

is the most suitable scheme to exploit parallelism in velocity computing stage.

This scheme on one hand reduces inter-process communication overhead and on

the other hand saves computation and memory access time by exploiting tempo-

ral and spatial locality of events. A consequence of our parallelization strategy is

that we can use lock free single-producer single consumer circular queue for data

communication between stages of the pipeline.

The analyses undertaken in this chapter clearly shows that parallel formula-

tion of event-based vision applications may be more complicated than conven-

tional image processing tasks due to two reasons. First, commonly used data

decomposition scheme can lead to unbalance computation, and consequently in-

efficient parallelization. Second, due to the sparse nature of data, it is more

difficult to exploit the cache subsystem of computing platforms effectively, and

hence the memory communication overhead may increase.

Along with parallel formulation and implementation of event-based optical

flow on the Tilera MIMD architecture, a GPP implementation of even-based

optical flow was provided for the mobile iKart platform and iCub robot. Al-

though the GPP implementation compared with the Tilera implementation is

more limited in terms of computed event per second, it can provide satisfactory

performance for some applications. Actually, it has been successfully used in a

real-time obstacle avoidance system.

103

Chapter 5

Optical Flow Visual Cues for

Robot Navigation

5.1 Introduction

This chapter studies the application of the event-based optical flow, presented

in chapter 4, in obstacle avoidance for mobile robots and humanoids. Patterns

of optical flow contain information about self-motion, moving objects and 3-

dimensional (3D) structure of the environment. The optical flow information is,

therefore, very useful to guide a mobile robot through the environment. In fact,

in a translation motion through a static environment, the radial pattern of flows

depends only on the camera’s heading and is independent of the 3D structure

of the environment, while the magnitude of each flow vector depends on both

heading and depth and decrease quickly with distance1. Hence, the information

provided by optical flow can be used to perceive self-motion and estimate the

distance to obstacles in the environment.

Our proposed method for obstacle avoidance by using even-based optical flow

has two steps. The first step is to estimate focus of expansion (FOE) which

contains self-motion information, and then in the second step, the time to reach

an object, time-to contact2(TTC), is estimated.

1In a dynamic environment, the relative motion between camera and the scene defines the
direction of flows

2In the literature, it is also called time-to-impact or time-to-crash

104

5. Optical-flow based Obstacle Avoidance

The FOE represents the intersection of the camera translational velocity vec-

tor and the image plane, and plays a vital role in the extraction of information

from the optical flow. In frame-based paradigm, various methods have been used

to estimate the position of the FOE on the image plane and then TTC. The

first group known as feature based methods use corresponding features such as

points, lines, and curves between image frames to establish an estimation of the

motion and the 3D structure of the scene[90, 91]. These methods use the local

information from small regions, and consequently are error-prone. In addition,

finding correspondence features is a difficult task. The second group known as

motion field-based methods use optical flow information to approximate the mo-

tion and scene depth [92, 93, 94]. These methods usually solve a least square

minimization problem based on optical flow vectors and consequently are com-

putationally demanding. Finally, there are direct methods which are based on

the brightness-change constraint equation [95, 96] and estimate position of the

FOE by imposing more constraints such as depth-is-positive [97, 98, 99]. These

methods work efficiently only for pure translational movements, but not when

the movement involves rotational components.

An alternative approach to estimate TTC is based on the computation of

the first order derivatives of optical flow field, i.e. the curl, divergence, and

deformation components of the optical flow field. These methods usually use the

expected form of the flow field (e.g. by applying known filter to the optical flow

field) to estimate the TTC [100, 101, 102, 103, 104, 105, 106].

Besides, research in biology and neoroscience has shown the importance of

motion cues in perception of the environment and controlling the behavior in

different animal species and also humans [107, 108, 109]. For an extensive review

on how optical flow are extracted by visual cortex and how this information is

used to perceive self-motion and control behavior see [110].

In the rest of this chapter, first our camera model and the velocity field for

a rigid body motion is reviewed in section 5.2. Then, our proposed algorithms

for locating FOE and then estimating TTC by exploiting the event-based optical

flow algorithm are described in section 5.3 and 5.4, respectively. The experimental

results are presented in section 5.5, and finally a summary of this chapter is given

in section 5.6.

105

5. Optical-flow based Obstacle Avoidance

Y

X

Z

y

x

tx

ty

tz

P
p o

ωz

ωy

ωx

Figure 5.1: Camera coordinate system

5.2 The velocity field

Consider a camera-centered coordinate system where the z-axis aligns with the

line of sight as shown in Fig. 5.1. If the camera moves with translational velocity

t = (tx, ty, tx) and rotational velocity ω = (ωx, ωy, ωz) around its origin, then, the

3D velocity of a world point, P = (X, Y, Z), is:

Ṗ = −t− ω × P, (5.1)

or, in components,

Ṗ =
dP

dt
=

 Ẋ

Ẏ

Ż

 = −

 tx

ty

tz

−
 ωyz − ωzy

ωzx− ωxz
ωxy − ωyx

 . (5.2)

Assume the world point P = (X, Y, Z) is projected onto the point p = (x, y)

on the image plane. Using Pinhole camera model, points P and p are related via

106

5. Optical-flow based Obstacle Avoidance

perspective projection, so

x = f
X

Z
, y = f

Y

Z
(5.3)

where f is the focal length of the camera 1. Temporal differentiation of image

coordinates results in the 2D motion field i.e. the velocity field induced in the

image plane:

ẋ =
ẊZ −XŻ

Z2
, ẏ =

Ẏ Z − Y Ż
Z2

. (5.4)

By substituting Ẋ and Ẏ from Eq. (5.2) into Eq. (5.4), the 2D motion filed,

ṗ, can be written as follows:

ṗ =
dp

dt
=

(
ẋ

ẏ

)
=

1

Z

(
xtz − tx
ytz − ty

)

+

(
xy −(x2 + 1) y

(y2 + 1) −xy −x

)ωxωy
ωz

 . (5.5)

For a pure translational motion, i.e. when ω = (0, 0, 0), from Eq. (5.5), the

velocity field at each point p can be written as

ṗ =

(
ẋ

ẏ

)
=
tz
Z

(
x− tx

tz

y − ty
tz

)
. (5.6)

As can be seen from Eq. (5.6), at location (tx/tz, ty/tz)
T the velocity field

is zero. This point indicates the position of the FOE. In addition, the variable

Z/tz is the time it takes for an object moving at constant velocity tz to cross the

distance Z, this represents TTC. Let τ and (xfoe, yfoe)
T denote TTC to world

point P and location of FOE on the image plane, respectively. Equation (5.6)

can be rewritten as:

ṗ =

(
ẋ

ẏ

)
=

1

τ

(
x− xfoe
y − yfoe

)
, (5.7)

1For sake of simplicity, we assume f = 1.

107

5. Optical-flow based Obstacle Avoidance

then,

τ =
d

‖ṗ‖
(5.8)

where d is the distance of point p to FOE on the image plane and ‖ṗ‖ is the

magnitude of velocity vector at point p.

The optical flow algorithm, presented in chapter 4, provides an estimation of

the velocity filed that can be used to compute ‖ṗ‖. In the following, we describe

the algorithm proposed to compute FOE.

5.3 Locating the focus of expansion

As mentioned above, FOE is the projection of translation motion of the camera on

the image plane, and in a pure translational movement, all the flow vectors diverge

from the FOE. Therefore, in principle, FOE could be obtained by triangulation

of two vectors in a radial flow pattern, as shown in Fig. 5.2(a). Obviously, such a

method would be vulnerable due to errors in optical flow computation. However,

since each computed flow provides an estimation of the FOE location, pooling

all of them allows to reduce the triangulation error. Considering the possible

errors in computation of flows, each flow indicates that FOE is located in an area

in the opposite direction of the flow and with a angle of φ in either directions

as shown in Fig. 5.2(b). In this figure, the two flow vectors V1 and V2 indicate

that FOE is located in area A1 and A2, respectively. Consequently, the FOE

would be located in the intersection of A1 and A2 areas. Considering more flow

vectors from different part of the image will reduce the search space and lead to

an estimation of the FOE position.

More formally, to estimate FOE position an image called FOE-image is built.

FOE-image has the same size of the image plane, and each pixel (x, y) of the

FOE-image represents the probability of the FOE being located on the corre-

sponding pixel (x, y) of the image plane. The values of FOE-image pixels are

updated according to the computed flow vectors using a leaky integration model.

By exploiting the redundancy in the flow vectors and integrating many flow vec-

tors, the patch of the FOE-image with the maximum value represents the FOE

108

5. Optical-flow based Obstacle Avoidance

V2

V1

FOE

(a)

V2

V1

A1

A2

φ φ
φ

φ

(b)

Figure 5.2: (a) In principle, FOE can be calculated by triangulation of two vectors
in the velocity field (b) Each optical flow vector indicates that FOE is located in
a certain area of the image plane

position.

In an event-based formulation, each velocity vector is represented by an or-

dered 5-tuple v(x, y, t, vx, vy): the first three elements, x, y and t, represents the

event e(x, y, t) generated by the sensor, and (vx, vy)
T is the velocity vector com-

puted upon arrival of this event. The FOE-image map is updated in short time

intervals of ∆t in two steps as follows:

1. the values are gradually decreased over time as follows:

FOE-image(n,m) =FOE-image(n,m)

∗ e(−λ∆T(n,m)) ∀(n,m) ∈ FOE-image, (5.9)

where λ is the leak rate and ∆T is calculated according to the last update

time of each pixel.

2. then, for each velocity event vi arrived in ∆t, the corresponding set of pixels,

Ai (see Fig. 5.2(b)) are indicated and the value of these pixels in the FOE-

image are increased, i.e. for each vi(xi, yi, ti, vxi , vyi) the Ai is indicated by

109

5. Optical-flow based Obstacle Avoidance

using (vxi , vyi) and then

FOE-image(n,m) = FOE-image(n,m) + c, ∀(n,m) ∈ Ai, (5.10)

where c is a constant value.

Then, after each update of FOE-image, the patch of FOE-image with the

maximum value is found. Let (xm, ym)T denotes the center of the patch with

maximum value on FOE-image. Finally, the new position of the FOE is computed

by applying a low-pass filter as follows:(
xfoe

yfoe

)
=

(
xfoe

yfoe

)
+ α

((
xm

ym

)
−

(
xfoe

yfoe

))
, (5.11)

where α is a constant.

Algorithm 4 describes the computation of FOE. A snapshot of FOE-image

taken form our algorithm running on a sequence is shown in Figure 5.3. The

X and Y axes indicate the position of pixels on the image plane, and the FOE

probability represents the FOE-image. This image shows that the search space

for the FOE is reduced by integrating enough flow vectors form different part of

the image, and then, with high probability, the patch with the maximum value

represents the position of the FOE.

Algorithm 4 Focus of Expansion

For all the velocity events arrived in ∆t

1. Update the FOE-image using Leaky integration model according to Eq. (5.9) and (5.10)

2. Locate (xm, ym), the patch of visual field with maximum value

3. Shift the FOE position toward the maximum patch using Eq. (5.11)

5.4 Estimation of time-to-contact

As discussed in section 5.2, in a pure translational motion, knowing the position

of FOE and the flow vectors, it is possible to estimate TTC by using Eq. (5.8) at

110

5. Optical-flow based Obstacle Avoidance

Figure 5.3: A snapshot of the FOE-image

each pixel.

To compute TTC, an image called object-map with the same size of the image

plane is built. Each pixel (x, y) of the object-map represents the TTC to the

corresponding pixel (x, y) of the image plane. In the event-based formulation,

the object-map is updated in time intervals of ∆t similar to the FOE-image. To

update the object-map, for each velocity vector vi that arrives in the time interval,

the TTC at pixel (xi, yi) is computed using Eq. (5.8). Then, the pixels which has

not updated for a long time are set to unknown. Finally, a spatial low-pass filter

is applied to the object-map image.

Algorithm 5 summarize the computation of TTC.

Algorithm 5 Time-to-Contact

For all the velocity events arrived in ∆t

1. Update the object-map with new arrived events using Eq. (5.8)

2. Reset the old values

3. Apply an average filter over n ∗ n neighborhoods

111

5. Optical-flow based Obstacle Avoidance

(a) (b)

Figure 5.4: (a) Experiment Setup (b) The experiment environment

5.5 Experiments and results

To test the proposed algorithms for computation of the FOE and TTC using

event-based visual sensor (algorithm 4 and algorithm 5), we have used a set

up presented in Fig. 5.4(a), where the DVS128 vision sensor was installed on the

iKart platform. In this experiment, the iKart was moved in a lab-like environment

towards an object with a chessboard-like front as shown in Fig. 5.4(b). The results

of running our algorithms on the captured sequence are presented in Fig. 5.5(a)-

5.5(e). The color map is shown is Fig. 5.5(f). The red color represents the

smallest value for TTC. Figure 5.5(a)-5.5(e) show snapshot of the object map as

the camera is moving towards the chessboard and getting closer to it, the red

circle also represents FOE. It can be seen in Fig. 5.5(a)-5.5(e), that the general

trend of TTC is decreasing.

Figure 5.5(a) shows objects in different dept and the computed TTC is con-

sistent with the relative depth of the object: the chair in the left side of the image

is the closest object and is red, the chair in the right side of the image is further

and is green, and the chessboard which is the furthest object is blue. On the

other hand, as can be seen in Fig. 5.5(c) and Fig. 5.5(d), the computed TTC

for different parts of the chessboard are sometimes different. Actually, the points

which are further form the FOE seems to have a smaller TTC. The reason is that

112

5. Optical-flow based Obstacle Avoidance

the distance to FOE is reduced while the magnitudes of optical flow for those

parts have not decreased with the same ratio. Any improvement in accuracy

of magnitude of optical flow will lead to more accurate estimation of TTC. In

addition, other visual cues especially knowing that a set of events belong to the

same object can improve TTC estimation.

Figure 5.6 represents the TTC estimation as the camera moves closer to the

chessboard object. The values presented in this plot are computed by taking the

average of the estimated TTC in a fixed patch of visual field every 10 ms. From

the beginning to the end of the sequence, chessboard is the only object projected

on this patch of visual field. The plot shows a decreasing trend which is consistent

with the theory and the experiment set up.

Computation of FOE in outdoor environment

In this part, we present the output of algorithm 4 for locating FOE on a sequence

captured form DVS128 vision sensor installed on a car, while the car was driving

in the city in the normal day light condition. The advantage of using this se-

quence is that we can see how the algorithm behaves in real outdoor situations.

Figure 5.7 presents snapshots of the sequence and the estimation of FOE by al-

gorithm 4 when the car was driving in a street with trees in both sides of the

street, and the DVS128 sensor, therefore, provided enough number of events to

compute FOE. In Figure 5.7, left Images are reconstruction of scene (by accumu-

lating received events), and right images show the output of FOE algorithm. The

green and red circles represent the patch of FOE-image with maximum value and

estimated location of FOE, respectively. Figure 5.8 presents the optical flow for

the corresponding scenes. Figure 5.7(h) shows that the green and red circles have

converged to the same location. Actually, in this part of the sequence, the green

and red circles converge to the same location after a short time, and stay at the

same position as long as the car is driving in the same direction. In this part of

the sequence, there are objects in different part of the scene and they cause many

optical flows in different part of the visual field, consequently the algorithm 4 can

provide a stable and accurate estimation of the FOE position.

Figure 5.9 shows the computed FOE and optical flow when car is turning to

113

5. Optical-flow based Obstacle Avoidance

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: (a)-(e) Snapshots of the Object-map in a translational movement
towards a chessboard object (d) the color bar: red indicates smaller value of
TTC

114

5. Optical-flow based Obstacle Avoidance

0 200 400 600 800 1000 1200
210

215

220

225

230

235

240

245

250

255

Sequence

T
im
e−
to
−
C
on
ta
ct

Figure 5.6: Computed TTC to the chessboard object as the camera gets closer
to the object. The TTC values on are relative and do not represent real values

the left. The FOE is not defined for a rotational movement. However, algorithm 4

estimates that the FOE is located in the left side of visual field, since most flows

are directed to the right. In other words, the output of algorithm 4 is not valid

when the movement involves rotational components.

5.6 Summary

This chapter presents the estimation of FOE and TTC for a moving event-based

vision sensor by exploiting the event-based optical flow algorithm presented in

chapter 4. The FOE is computed by pooling the information provided by all

the flow vectors computed in fixed time intervals. Our experimental results show

that the estimation of FOE can be pretty accurate if enough number of events

are provided by the vision sensor. The FOE estimation can be used to estimate

the relative distances in the world and, hence, to reconstruct the 3D structure of

the world. In addition, as shown in this chapter, FOE can be used to estimate

TTC and, hence, to control movements especially avoiding obstacles.

115

5. Optical-flow based Obstacle Avoidance

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.7: Driving car sequence: street snapshots and FOE estimation

116

5. Optical-flow based Obstacle Avoidance

(a) (b)

(c) (d)

Figure 5.8: Driving car sequence: computed optical flow

117

5. Optical-flow based Obstacle Avoidance

(a) (b)

Figure 5.9: Car turning left: FOE and optical flow

The proposed algorithm to compute the FOE only exploits the direction of

computed flows, while to compute TTC the magnitudes of flows are also required.

Therefore, computation of FOE is still accurate even if the optical flow algorithms

does not provide a very accurate estimation of the flow magnitudes. The results

presented in this chapter show that our algorithms work in real world situations.

However, the computation of TTC is vulnerable to the errors of optical flow

magnitudes. Consequently, more accurate optical flow algorithms results in a

more accurate estimation of TTC. Another approach to improve estimation of

TTC is to exploit other visual cues such as event clustering information.

118

Chapter 6

Conclusions and Future Work

6.1 Overview

Mobile robots and humanoids represent an emerging and challenging example

of embedded computing applications. On one hand, in order to achieve a large

degree of autonomy and intelligent behavior, these systems require a very sig-

nificant computational capability to perform a wide variety of complex tasks,

some of them with real-time constraints. On the other hand, they are severely

limited in terms of size, weight, and particularly power consumption of their

embedded computing system since they should carry their own power supply.

Moreover, since these systems need to implement a wide variety of applications,

their computing systems should provide programmability and adaptability of a

general purpose platform. Programmability allows a single platform to support

multiple applications, while adaptability shows the capability of the architecture

to maintain efficiency even if the core computational characteristics of the ap-

plications change. Hence, their computing system should address three issues:

computational efficiency1, programmability, and adaptability [111].

This thesis has followed two approaches to provide low-power, lightweight,

high performance computing architectures for mobile robots and humanoids:

• exploiting new emerging parallel architectures which provide both high com-

putational capability and low-power consumption, and

1 Computational efficiency represents the computation power in terms of power budget, i.e.
performance per watt

119

• extracting and processing only important data by using emerging bio-inspired

sensors such as DVS vision sensor.

Considering the three parameters mentioned above, computational efficiency,

programmability, and adaptability, we proposed a low-power high performance

vision architecture for mobile robots and humanoids which includes CSX SIMD

and Tilera MIMD architectures. The estimated power consumption of such ar-

chitecture is about 50 watt, while the peck performance is over 96 GFLOPs and

144 GOPs.

Toward the objective of this thesis, several parallel and event-based algorithms

has been developed which can be classified as follows:

• parallelization of low-level image processing task on the CSX SIMD archi-

tecture

• parallelization of middle and high-level image processing tasks on the CSX

SIMD architecture

• parallelization of event-based vision applications on the Tilera MIMD ar-

chitecture

• even-based vision processing for mobile robots navigation

Currently there is a lot emphasis on the use of FPGAs and GPGPUs to

achieve higher performance for image processing applications. In this research,

various image processing algorithms with different computational characteristics

have been implemented on our proposed parallel architecture. The results pre-

sented in chapter 2 and 3 indicates that the proposed vision architecture provides

higher level of programmability, adaptability, and computational efficiency com-

paring with both FPGAs and GPGPUs. Although compared with GPGPU, our

proposed architecture may provide lower computational performance for some

application such as HOG-based human detection, but it provides a significantly

better relative performance per watt.

The results presented in this thesis can indeed further motivate the investi-

gation and application of emerging highly parallel, low power, SIMD and MIMD

architectures for mobile robots and humanoids.

120

Moreover, the studies undertaken and the proposed solutions for parallel for-

mulation and implementation of low, intermediate, and high-level image pro-

cessing tasks on the CSX architecture (presented in chapter 2 and 3) along with

parallel implementation of event-based optical flow algorithm on the Tilera archi-

tecture (chapter 4) can be exploited for implementation of other image processing

tasks with similar computational characteristics.

6.2 Conclusions

Low-level image processing on CSX SIMD architecture

Parallel computation of several dense stereo vision algorithms and Harris corner

detector (HCD) algorithm, as representative examples of low-level image pro-

cessing tasks, on the CSX SIMD architecture was studied. It was shown that the

row-cyclic data decomposition scheme is the most efficient data decomposition

scheme for data parallel computation of low-level image processing algorithms

such as the SSD-based stereo vision and its variants and HCD. It was also shown

that, by devising a careful strategy, it is possible to significantly reduce the mem-

ory communication overhead by almost fully overlapping computation and com-

munication. In addition to an efficient parallelization, exploitation of the vector

processing capability of the PEs was a key for achieving a better performance.

The comparison of our results with the similar works in the literature demon-

strated that our implementation provides a much better computational efficiency

than GPGPUs and Cell processor. ASICs and FPGAs implementations can pro-

vide good absolute computational performance and computational efficiency for

low-level image processing tasks. However, CSX architecture provides a much

higher degree of programmability and adaptability compared to ASICs and FP-

GAs. The experimental results, presented in this chapter, clearly indicate that

the CSX architecture is indeed a good candidate for achieving low-power high

performance capability for low-level image processing tasks.

121

Intermediate and high-level image processing on CSX SIMD

architecture

Parallel computation of HOG-based human detection, as an representative ex-

ample of intermediate and high-level image processing tasks, on the CSX SIMD

architecture was studied. For parallel computation of HOG-based object detec-

tion, the main challenges were on one hand, complex data dependency pattern,

varying granularity (pixel, cell, block, and detection window), and especially the

need for multi-scale computation and on the other hand small size of PEs’ mem-

ories in the CSX architecture. A detailed analysis of multi-level computational

structure of the HOG descriptors showed that the choice of block level grain

size for parallel implementation is the most efficient in terms of reducing the

redundancy in the computation and communication. A consequence of our par-

allelization strategy is that regular operations are performed for all blocks by all

PEs. Taking advantage of this regularity, it was shown that efficient multi-scale

computation on a fixed number of PEs can be mapped as the solution of a 2D

strip packing problem. Other intermediate or high level image processing tasks

especially object detection algorithms share similarities with HOG-based object

detection in terms of computation needs. The solution proposed in this chapter

can be exploited for parallel formulation and implementation of those tasks.

The parallel implementation of HOG-based human detection on GPGPU has

been studied [72, 73]. Compared with GPGPU, we achieved a slightly lower

computational performance but a significantly better relative computational ef-

ficiency (performance per watt). Our computational performance can be further

increased by deploying multiple CSX architectures. As discussed in chapter 2,

the performance increases almost linearly by using more CSX cores.

Asynchronous event-based optical flow: GPP and mas-

sively parallel implementations

Parallel formulation of an event-based optical flow algorithm [76] as an example

of event-based vision processing algorithms was studied. The computation was

122

modeled in a pipeline (producer-consumer) manner, where the producers and

consumers communicate through single-producer single consumer circular queues.

The pipeline has four stages: receiving events, distributing events, computing

velocities, and sending the results back. Further decomposition of the pipeline

stages was discussed and it was shown that image-plane decomposition is the

most suitable scheme to exploit parallelism in velocity computing stage. This

scheme on one hand reduces inter-process communication overhead and on the

other hand saves computation and memory access time by exploiting temporal

and spatial locality of events.

The analyses undertaken for parallel formulation of event-based optical flow

demonstrates that parallelization of event-based vision applications may be more

complicated than conventional image processing tasks due to two reasons. First,

commonly used data decomposition scheme can lead to unbalance computation,

and consequently inefficient parallelization. Second, due to the sparse nature of

data, it is more difficult to exploit the cache subsystem of computing platforms

effectively, and hence the memory communication overhead may increase.

Along with parallel formulation and implementation of event-based optical

flow on the Tilera MIMD architecture, a GPP implementation of even-based

optical flow was provided for the mobile iKart platform and iCub robot. Al-

though the GPP implementation compared with the parallel implementation is

more limited in terms of computed event per second, it can provide satisfactory

performance for some real-time applications, and it he been successfully used in

a real-time obstacle avoidance system.

Event-based algorithms for obstacle avoidance

Event-based algorithms to estimate FOE and TTC for a moving event-based

vision sensor were proposed. These algorithms exploits the information provided

by the event-based optical flow algorithm presented in chapter 4. The proposed

algorithm to compute the FOE only exploits the direction of computed flows,

while to compute TTC the magnitudes of flows are also required. Therefore,

computation of FOE is still accurate even if the optical flow algorithms does not

provide an accurate estimation of the flow magnitudes. The results presented in

123

this chapter show that our algorithms work in real world situations. However,

the computation of TTC is vulnerable to the errors of optical flow magnitudes.

6.3 Future work

Parallel implementation of intermediate and high level im-

age processing algorithms on the Tilera architecture

Chapter 3 studied parallel implementation of HOG-based human detection as an

example of intermediate and high level image processing tasks on the CSX ar-

chitecture. Although, the computation is complex for an SIMD implementation,

we have shown that by choosing the right size of granularity and regularizing

the operation, it is possible to achieve high performance on the CSX SIMD ar-

chitecture. One of the main bottleneck in computation of HOG-based human

detection on CSX architecture was the memory communication overhead in the

SVM evaluation step.

Tilera MIMD architecture provides higher adaptability than CSX SIMD archi-

tecture. This allows a wider choice for parallel formulation and implementation

of HOG-based human detection and other similar image processing tasks on the

Tilera MIMD architecture. A future work should consider parallel implemen-

tation of HOG-based human detection on the Tilera MIMD architecture. Such

study would be necessary to understand which architecture is more suitable for

low-power high performance implementation of intermediate and high level image

processing tasks widely used in robotics such as object detection.

Studies on parallel formulation of other event-based algo-

rithms

The parallel implementation of event-based optical flow algorithm on Tilera

MIMD architecture was presented in chapter 4. Since the event-based DVS vision

sensor provides a sparse and asynchronous stream of events in output, it might

124

seem that event based decomposition is the best strategy to exploit parallelism

in event-based vision algorithms. However, as discussed in chapter 4, such tech-

niques can increase memory communication overhead significantly since it cannot

benefit from spatial and temporal locality assumption used in cache subsystem

of computing platforms. On the other hand, as also discussed in chapter 4, an

image-plane decomposition scheme (the commonly used techniques for distribut-

ing images in conventional parallel image processing) can lead to unbalance com-

putation. The solutions proposed for parallel formulation of event-based optical

flow can be exploited for parallel implementation of other event-based algorithms

which are similar to the optical flow algorithm in terms of computational charac-

teristics. However, future work on parallel implementation of other event-based

algorithms (e.g. the FOE algorithm presented in this thesis, or the algorithms

proposed in [112, 113]) would be advantageous to shed more light on exploiting

parallelism for event-based vision processing tasks.

Integrating DVS and conventional frame-based cameras for

mobile robot tasks

Chapter 4 and 5 present the research work undertaken to use DVS vision sensor

for optical flow based navigation task to reduce computational cost. While the

DVS vision sensor is beneficial in some aspects, it has its own limitations. One

important limitation is the rather limited resolution. The other limitation is that

it does not provide any color information. As mentioned in chapter 5, using other

visual cues could improve our estimation of TTC. A future work would be to use

conventional frame-based cameras to provide higher level information about the

scene and integrate this information with the event-based processing to achieve

more accurate algorithms.

125

References

[1] ClearSpeed Technology, “ClearSpeed Whitepaper: CSX Processor Archi-

tecture,” tech. rep., 2007. viii, 10, 13, 22, 23, 24, 29

[2] Tilera Corporation., “Tile Processor User Architecture Manual (Doc. No.

UG101),” tech. rep., 2011. viii, 77, 78, 79, 80

[3] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. Lee, “A case study of mobile robot’s

energy consumption and conservation techniques,” in IEEE International

Conference on Robotics and Automation (ICRA’05), pp. 492–497, IEEE,

2005. 2, 4

[4] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 128 120dB 15us Latency

Asynchronous Temporal Contrast Vision Sensor,” IEEE Journal of Solid

State Circuits, vol. 43, no. 2, pp. 566–576, 2008. 2, 14

[5] Mars Exploration Rover, “Mars Exploration Rover Mission,” 2013. 2

[6] I. Ieropoulos, C. Melhuish, and J. Greenman, “Artificial metabolism: to-

wards true energetic autonomy in artificial life,” Advances in Artificial Life,

pp. 792–799, 2003. 2, 3

[7] I. Ieropoulos, C. Melhuish, J. Greenman, and I. Horsfiel, “EcoBot-II: An

artificial agent with a natural metabolism,” International Journal of Ad-

vanced Robotic Systems, pp. 295–300, Dec. 2005. 2, 3

[8] I. Ieropoulos, J. Greenman, C. Melhuish, and I. Horsfield, “EcoBot-III: a

robot with guts,” in Fellermann, H., Dörr, M., Hanczyc, M., Laursen,

126

REFERENCES

L., Maurer, S., Merkle, D., Monnard, P., Stoy, K. and Rasmussen, S.,

eds. Artificial Life XII, pp. 733–740, Massachusetts Institute of Technology

Press, 2010. 3

[9] W. G. Walter, “An imitation of life,” Scientific American, vol. 182, no. 5,

pp. 42–45, 1950. 3

[10] Y. Hada and S. Yuta, “Robust navigation and battery re-charging system

for long term activity of autonomous mobile robot,” Proceedings of the 9th

International Conference on Advanced Robotics, pp. 297–302, 1999. 3

[11] M. C. Silverman, D. Nies, B. Jung, and G. S. Sukhatme, “Staying alive: A

docking station for autonomous robot recharging,” in IEEE International

Conference on Robotics and Automation (ICRA’02), pp. 1050–1055, 2002.

3

[12] S. Oh, A. Zelinsky, and K. Taylor, “Autonomous battery recharging for

indoor mobile robots,” Proceedings of the australian conference on Robotics

and Automation, 2000. 3

[13] IRobot, “iRobot Roomba Vacuum Cleaning Robot - Overview,” 2012. 3

[14] Adept MobileRobots, “MobileRobots Charging Options,” 2012. 3

[15] P. Zebrowski and R. T. Vaughan, “Recharging robot teams: A tanker ap-

proach,” in IEEE International Conference on Robotics and Automation

(ICRA’05), pp. 803 – 810, 2005. 3

[16] T. D. Ngo, H. Raposo, and H. Schioler, “Potentially distributable energy:

Towards energy autonomy in large population of mobile robots,” in IEEE

International Symposium on Computational Intelligence in Robotics and

Automation (CIRA’07), pp. 206–211, 2007. 3

[17] A. Barili, M. Ceresa, and C. Parisi, “Energy-saving motion control for an

autonomous mobile robot,” in IEEE International Symposium on Industrial

Electronics (ISIE’95), pp. 674–676 vol.2, 1995. 4

127

REFERENCES

[18] F. Yamasaki, K. Hosoda, and M. Asada, “An energy consumption based

control for humanoid walking,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS’02), pp. 2473–2477, 2002. 4

[19] S. Michaud, A. Schneider, R. Bertrand, P. Lamon, R. Siegwart, M. Van

Winnendael, and A. Schiele, “SOLERO: Solar powered exploration rover,”

Proceedings of the 7th ESA Workshop on Advanced Space Technologies for

Robotics and Automation, 2002. 4

[20] Z. Sun and J. Reif, “On energy-minimizing paths on terrains for a mo-

bile robot,” in IEEE International Conference on Robotics and Automation

(ICRA’03), pp. 3782–3788, 2003. 4

[21] T. Wang, B. Wang, and H. Wei, “Staying-alive and energy-efficient path

planning for mobile robots,” in American Control Conference, pp. 868–873,

2008. 4

[22] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. Lee, “Energy-efficient motion plan-

ning for mobile robots,” in IEEE International Conference on Robotics and

Automation (ICRA’04), pp. 4344–4349 Vol.5, IEEE, 2004. 4

[23] J. Liu, P. H. Chou, N. Bagherzadeh, and F. Kurdahi, “Power-aware schedul-

ing under timing constraints for mission-critical embedded systems,” in Pro-

ceedings of the 38th annual conference on Design automation, (New York,

New York, USA), pp. 840–845, ACM Press, June 2001. 4

[24] “An Open Source Cognitive humanoid Robotic Platform,” 2013. 5

[25] T. Delbruck, “Frame-free dynamic digital vision,” Proceedings of Intl.

Symp. on Secure-Life Electronics, Advanced Electronics for Quality Life

and Society, pp. 21–26, 2008. 5, 88

[26] J. Held, J. Bautista, and S. Koehl, “From a Few Cores to Many: A Tera-

Scale Computing Research Overview,” tech. rep., Research at Intel, White

Paper, 2006. 7

[27] G. A. Bekey, Autonomous Robots. The MIT Press, 2005. 7

128

REFERENCES

[28] B. Catanzaro, A. Fox, K. Keutzer, and D. Patterson, “Ubiquitous parallel

computing from Berkeley, Illinois, and Stanford,” Micro, IEEE, vol. 30,

no. 2, pp. 41–55, 2010. 7

[29] M. Kistler, M. Perrone, and F. Petrini, “Cell Multiprocessor Communica-

tion Network: Built for Speed,” Micro IEEE, vol. 26, pp. 10–23, May 2006.

9

[30] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,

M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-Chip In-

terconnection Architecture of the Tile Processor,” Micro IEEE, vol. 27,

pp. 15–31, Sept. 2007. 10, 13

[31] J. Nickolls and W. J. Dally, “The GPU Computing Era,” Micro, IEEE,

vol. 30, pp. 56–69, Mar. 2010. 11

[32] NVIDIA Corporation, “NVIDIAs Next Generation CUDA Compute Archi-

tecture: Fermi,” tech. rep., 2009. 11

[33] T. Gollisch and M. Meister, “Eye smarter than scientists believed: neural

computations in circuits of the retina,” Neuron, vol. 65, no. 2, pp. 150–164,

2010. 13

[34] P. Ruedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P. Burgi, S. Gyger, and

P. Nussbaum, “A 128x128 pixel 120-dB dynamic-range vision-sensor chip

for image contrast and orientation extraction,” IEEE Journal of Solid-State

Circuits, vol. 38, no. 12, pp. 2325 – 2333, 2003. 14

[35] K. A. Zaghloul and K. Boahen, “Optic nerve signals in a neuromorphic chip

II: Testing and results.,” IEEE transactions on bio-medical engineering,

vol. 51, pp. 667–675, Apr. 2004. 14

[36] U. Mallik, M. Clapp, E. Choi, G. Cauwenberghs, and R. Etienne-

Cummings, “Temporal change threshold detection imager,” in IEEE In-

ternational Solid-State Circuits Conference (ISSCC), Digest of Technical

Papers, pp. 362–363, IEEE, 2005. 14

129

REFERENCES

[37] E. Culurciello and A. G. Andreou, “CMOS image sensors for sensor net-

works,” Analog Integrated Circuits and Signal Processing, vol. 49, no. 1,

pp. 39–51, 2006. 14

[38] “An Holonomic Mobile Platform for iCub Humanoid Robot,” 2013. 16

[39] ClearSpeed Technology, “Advance e710 Board,” 2013. 16

[40] Tilera Corporation., “TILExpress-20G Card,” 2013. 17

[41] N. Kehtarnavaz and M. Gamadia, “Real-Time Image and Video Process-

ing: From Research to Reality,” Synthesis Lectures on Image, Video, and

Multimedia Processing, vol. 2, pp. 1–108, Jan. 2006. 21

[42] ClearSpeed Technology, CSX600 Hardware Programming Manual. Clear-

Speed, www.clearspeed.com, Jan. 2008. 22

[43] ClearSpeed Technology, CSX600/CSX700 Instruction Set Reference Man-

ual No. 06-RM-1137 Revision: 4.A. ClearSpeed, www.clearspeed.com,

Aug. 2008. 23

[44] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation of Dense Two-

Frame Stereo Correspondence Algorithms,” International Journal of Com-

puter Vision, vol. 47, no. 1-3, pp. 7–42, 2002. 25, 44

[45] W. Van Der Mark and D. M. Gavrila, “Real-time dense stereo for intelli-

gent vehicles,” IEEE Transactions on Intelligent Transportation Systems,

vol. 7(1), pp. 38–50, 2006. 25, 26, 29, 44, 46, 47

[46] L. Di Stefano, M. Marchionni, and S. Mattoccia, “A PC-based real-time

stereo vision system,” Journal of Machine Graphics & Vision, vol. 13, no. 3,

pp. 197–220, 2004. 25, 26

[47] B. McCullagh, “Real-Time Disparity Map Computation Using The Cell

Broadband Engine,” Journal of Real-Time Image Processing, vol. 7, pp. 87–

93, Feb. 2012. 26, 46, 47

130

REFERENCES

[48] R. Yang and M. Pollefeys, “A Versatile Stereo Implementation On Com-

modity Graphics Hardware,” Journal of Real-Time Imaging, vol. 11, pp. 7–

18, Feb. 2005. 26, 46, 47

[49] K. Zhu, M. Butenuth, and P. D’Angelo, “Comparison Of Dense Stereo

Using CUDA,” in Workshop of Computer Vision on GPUs (CVGPU) in

Conjucntion with ECCV, 2010. 26, 46, 47

[50] N. Chang, T.-M. Lin, T.-H. Tsai, Y.-C. Tseng, and T.-S. Chang, “Real-

Time DSP Implementation on Local Stereo Matching,” in IEEE Interna-

tional Conference on Multimedia and Expo, pp. 2090–2093, IEEE, July

2007. 26, 47

[51] Y. Jia, X. Zhang, M. Li, and L. An, “A Miniature Stereo Vision Machine

(MSVM-III) For Dense Disparity Mapping,” in Proceedings of the 17th

International Conference on Pattern Recognition (ICPR’04), pp. 728–731

Vol.1, IEEE, 2004. 26

[52] C. Georgoulas and I. Andreadis, “A Real-Time Fuzzy Hardware Structure

For Disparity Map Computation,” Journal of Real-Time Image Processing,

vol. 6, pp. 257–273, Mar. 2011. 26

[53] J. Woodfill, G. Gordon, and R. Buck, “Tyzx DeepSea High Speed Stereo Vi-

sion System,” in Conference on Computer Vision and Pattern Recognition

Workshop (CVPRW’04), pp. 41–45, 2004. 26, 46, 47

[54] M. Kuhn, S. Moser, O. Isler, F. Gurkaynak, A. Burg, N. Felber, H. Kaeslin,

and W. Fichtner, “Efficient ASIC Implementation Of A Real-Time Depth

Mapping Stereo Vision System,” in IEEE 46th Midwest Symposium on Cir-

cuits and Systems, vol. 3, pp. 1478–1481 Vol. 3, IEEE, 2003. 26

[55] K. Ambrosch, W. Kubinger, M. Humenberger, and A. Steininger, “Hard-

ware Implementation Of An SAD Based Stereo Vision Algorithm,” in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR’07),

pp. 1–6, IEEE, June 2007. 27, 46, 47

131

REFERENCES

[56] H. Hirschmüller, P. R. Innocent, and J. Garibaldi, “Real-time correlation-

based stereo vision with reduced border errors,” International Journal of

Computer Vision, vol. 47(1), pp. 229–249, 2002. 28, 29

[57] C. Soviany, Embedding data and task parallelism in image processing appli-

cations. PhD thesis, Delft University of Technology, 2003. 30

[58] ClearSpeed Technology, Visual Profiler. Document No.06-RM-1136 Revi-

sion:4.B., 2008. 40

[59] D. Scharstein and R. Szeliski, “Middlebury Stereo Vision Page,” 2012. 44,

47

[60] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM

Computing Surveys, vol. 38, no. 4, p. 13, 2006. 47

[61] P. M. Roth and M. Winter, “Survey of appearance-based methods for object

recognition,” Tech. Rep. ICG-TR-01/08, Inst. for Computer Graphics and

Vision, Graz University of Technology, 2008. 47

[62] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” in

4th Alvey Vision Conference, pp. 147–151, 1988. 47, 48

[63] L. Teixeira, W. Celes, and M. Gattass, “Accelerated Corner-Detector Algo-

rithms,” in 19th British Machine Vision Conference(BMVC ’08), pp. 625–

634, Springer-Verlag, 2008. 48, 54

[64] T. Saidani, L. Lacassagne, S. Bouaziz, and T. M. Khan, “Parallelization

strategies for the points of interests algorithm on the cell processor,” in

5th International symposium on Parallel and Distributed Processing and

Applications (ISPA’07), pp. 104–112, 2007. 48

[65] B. Dietrich, “Design and Implementation of an FPGA-based Stereo Vision

System for the {E}ye{B}ot {M6}.” University of Western Australia, 2009.

48, 54

[66] C.-C. Cheng, C.-H. Lin, C.-T. Li, S. C. Chang, and L.-G. Chen, “{iVisual}:
an intelligent visual sensor SoC with 2790fps CMOS image sensor and

132

REFERENCES

205GOPS/W vision processor,” in 45th annual Design Automation Con-

ference(DAC ’08), pp. 90–95, ACM, 2008. 48, 54

[67] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human De-

tection,” in Proc. International Conference on Computer Vision and Pat-

tern Recognition ({CVPR}’05) - Volume 1, pp. 886–893, June 2005. 56, 57,

58, 60

[68] D. G. Lowe, “Object Recognition from Local Scale-Invariant Features,” in

Proceedings of the International Conference on Computer Vision (ICCV

’99), Vol. 2, pp. 1150–1157, IEEE Computer Society, 1999. 56

[69] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast Human

Detection Using a Cascade of Histograms of Oriented Gradients,”

in Proc. International Conference on Computer Vision and Pattern

Recognition({CVPR}’06)-Volume 2, pp. 1491–1498, June 2006. 57

[70] W. Zhang, G. Zelinsky, and D. Samaras, “Real-time Accurate Object Detec-

tion using Multiple Resolutions,” in Proc. IEEE International Conference

on Computer Vision({ICCV}’07), pp. 1–8, Oct. 2007. 57

[71] T. P. Cao, G. Deng, and D. Mulligan, “Implementation of Real-time Pedes-

trian Detection on FPGA,” in 23rd International Conference on Image and

Vision Computing New Zealand({IVCNZ}’08), pp. 1–6, Nov. 2008. 57

[72] C. Wojek, G. Dorkó, A. Schulz, and B. Schiele, “Sliding-Windows for Rapid

Object Class Localization: A Parallel Technique,” in Proc. of the 30th

DAGM symposium on Pattern Recognition, pp. 71–81, June 2008. 57, 72,

122

[73] V. Prisacariu and I. Reid, “fast HOG - a real-time GPU implementation

of HOG,” Tech. Rep. 2310/09, Department of Engineering Science, Oxford

University, 2009. 57, 72, 122

[74] N. DALAL, Finding People in Images and Videos. PhD thesis, National

Polytechnic Institute of Grenoble, July 2006. 58, 61

133

REFERENCES

[75] N. Ntene and J. H. van Vuuren, “A Survey and Comparison of Guillotine

Heuristics for the 2D Oriented Offline Strip Packing Problem,” Discrete

Optimization, pp. 174–188, 2009. 68, 69

[76] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Srinivasan,

“Asynchronous Frameless Event-Based Optical Flow,” Neural Networks,

vol. 27, pp. 32–7, Mar. 2012. 74, 75, 76, 93, 102, 122

[77] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical

flow techniques,” International Journal of Computer Vision, vol. 12, pp. 43–

77, Feb. 1994. 74

[78] D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation and

their principles,” in Conference on Computer Vision and Pattern Recogni-

tion (CVPR’10), pp. 2432–2439, IEEE, June 2010. 74

[79] M. Fleury, A. Clark, and A. Downton, “Evaluating optical-flow algorithms

on a parallel machine,” Image and Vision Computing, vol. 19, pp. 131–143,

Feb. 2001. 74

[80] B. K. Horn and B. G. Schunck, “Determining Optical Flow,” Artificial

Intelligence, vol. 17, pp. 185–203, Aug. 1981. 75

[81] B. Lucas and T. Kanade, “An Iterative Image Registration Technique With

An Application to Stereo Vision,” in Proceedings of the 7th international

joint conference on artificial intelligence (IJCAI’81), pp. 674–679, 1981. 75,

76

[82] H.-H. Nagel, “On Change Detection And Displacement Vector Estimation

in Image Sequences,” Pattern Recognition Letters, vol. 1, pp. 55–59, Oct.

1982. 75

[83] Tilera Corporation., “Programming The Tile Processor (Doc. No. UG205),”

tech. rep., 2012. 79, 92

[84] A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction to Parallel

Computing (2nd Edition). Addison-Wesley, 2003. 80, 86

134

REFERENCES

[85] D. Ungar and S. S. Adams, “Harnessing Emergence For Manycore Program-

ming,” in Proceedings of the ACM international conference companion on

Object oriented programming systems languages and applications compan-

ion - SPLASH ’10, pp. 19–26, ACM Press, Oct. 2010. 83

[86] L. Lamport, “How to Make a Multiprocessor Computer That Correctly Ex-

ecutes Multiprocess Programs,” IEEE Transactions on Computers, vol. C-

28, pp. 690–691, Sept. 1979. 83

[87] L. Lamport, “Concurrent Reading and Writing,” Communications of the

ACM, vol. 20, pp. 806–811, Nov. 1977. 83

[88] L. Higham and J. Kawash, “Critical sections and producer/consumer

queues in weak memory systems,” in Proceedings of the 1997 Interna-

tional Symposium on Parallel Architectures, Algorithms and Networks (I-

SPAN’97), pp. 56–63, IEEE Comput. Soc, 1997. 83

[89] Tilera Corporation., “PCIE User Space Communication API (Doc. No.

UG218),” tech. rep., 2011. 91

[90] R. Jain, “Direct computation of the focus of expansion,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. PAMI-5, pp. 58–64, Jan.

1983. 105

[91] L. Dron, “The multiscale veto model: a two-stage analog network for edge

detection and image reconstruction,” International Journal of Computer

Vision, vol. 11, pp. 45–61, Aug. 1993. 105

[92] A. R. Bruss and B. K. Horn, “Passive navigation,” Computer Vision,

Graphics, and Image Processing, vol. 21, pp. 3–20, Jan. 1983. 105

[93] R. Sharma and Y. Aloimonos, “Early detection of independent motion from

active control of normal image flow patterns.,” IEEE Transactions on Sys-

tems, Man, and Cybernetics. Part B, vol. 26, pp. 42–52, Jan. 1996. 105

[94] D. Sazbon, H. Rotstein, and E. Rivlin, “Finding the focus of expansion and

estimating range using optical flow images and a matched filter,” Machine

Vision and Applications, vol. 15, pp. 229–236, Oct. 2004. 105

135

REFERENCES

[95] B. K. P. Horn and E. J. Weldon, “Direct methods for recovering motion,”

International Journal of Computer Vision, vol. 2, pp. 51–76, June 1988.

105

[96] S. Negahdaripour and B. K. P. Horn, “Direct passive navigation,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9,

pp. 168–176, Jan. 1987. 105

[97] S. Negahdaripour and B. K. Horn, “A direct method for locating the focus

of expansion,” Computer Vision, Graphics, and Image Processing, vol. 46,

pp. 303–326, June 1989. 105

[98] S. Negahdaripour and V. Ganesan, “Simple direct computation of the FOE

with confidence measures,” in EEE Conference on Computer Vision and

Pattern Recognition (CVPR’92), pp. 228–235, IEEE Comput. Soc. Press,

1992. 105

[99] I. S. McQuirk, B. K. Horn, H.-S. Lee, and J. L. Wyatt Jr., “Estimating

the focus of expansion in analog VLSI,” International Journal of Computer

Vision, vol. 28, no. 3, pp. 261–277, 1998. 105

[100] R. Nelson and J. Aloimonos, “Obstacle avoidance using flow field diver-

gence,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 11, no. 10, pp. 1102–1106, 1989. 105

[101] N. Ancona and T. Poggio, “Optical flow from 1D correlation: Application

to a simple time-to-crash detector,” in 4th International Conference on

Computer Vision, pp. 209–214, IEEE Computer Society Press, 1993. 105

[102] F. Meyer, “Time-to-collision from first-order models of the motion field,”

IEEE Transactions on Robotics and Automation, vol. 10, no. 6, pp. 792–798,

1994. 105

[103] R. Cipolla and A. Blake, “Image divergence and deformation from closed

curves,” International journal of Robotics Research, vol. 16, pp. 77–96, 1997.

105

136

REFERENCES

[104] D. Coombs, M. Herman, and M. Nashman, “Real-time obstacle avoidance

using central flow divergence, and peripheral flow,” IEEE Transactions on

Robotics and Automation, vol. 14, no. 1, pp. 49–59, 1998. 105

[105] T. Camus, D. Coombs, and M. Herman, “Real-time single-workstation ob-

stacle avoidance using only wide-field flow divergence,” in International

Conference on Pattern Recognition, vol. 3, pp. 323–330, IEEE, 1996. 105

[106] S. Lakshmanan, N. Ramarathnam, and T. Yeo, “A side collision awareness

method,” in IEEE 2002 Intelligent Vehicle Symposium, vol. 2, pp. 640–645,

IEEE, 2002. 105

[107] W. Schiff, J. Caviness, and J. Gibson, “Persistent fear responses in rhesus

monkeys to the optical stimulus of looming,” Science, vol. 136, pp. 982–983,

1962. 105

[108] D. Lee, “A theory of visual control of braking based on information about

time-to-collision,” Perception, vol. 5, no. 4, pp. 437–459, 1976. 105

[109] M. V. Srinivasan, S. W. Zhang, J. S. Chahl, E. Barth, and S. Venkatesh,

“How honeybees make grazing landings on flat surfaces,” Biological Cyber-

netics, vol. 83, pp. 171–183, Aug. 2000. 105

[110] W. Warren, “The state of flow,” High-level motion processing, pp. 315–358,

1998. 105

[111] M. Woh, S. Mahlke, T. Mudge, and C. Chakrabarti, “Mobile supercomput-

ers for the next-generation cell phone,” IEEE Computer, vol. 43, pp. 81–85,

Jan. 2010. 119

[112] J. A. Perez-Carrasco, B. Acha, C. Serrano, L. Camunas-Mesa, T. Serrano-

Gotarredona, and B. Linares-Barranco, “Fast vision through frameless

event-based sensing and convolutional processing: application to texture

recognition.,” IEEE transactions on neural networks, vol. 21, pp. 609–20,

Apr. 2010. 125

137

REFERENCES

[113] S. Schraml, A. N. Belbachir, N. Milosevic, and P. Schon, “Dynamic stereo

vision system for real-time tracking,” in Proceedings of 2010 IEEE Inter-

national Symposium on Circuits and Systems, pp. 1409–1412, IEEE, May

2010. 125

138

	Contents
	List of Figures
	1 Introduction
	1.1 Problem of robot autonomy
	1.1.1 Energy autonomy in the literature

	1.2 Research framework
	1.2.1 Trends in microprocessor design
	1.2.1.1 Parallel architectures & state of the art processors

	1.2.2 Low-power high performance vision architecture
	1.2.3 Bio-inspired asynchronous even-based vision sensor

	1.3 Robot setup
	1.4 Layout of the thesis

	2 Low Level Image Processing ON CSX SIMD Architecture
	2.1 Introduction
	2.2 The CSX 700 architecture
	2.3 Parallel implementation of dense stereo vision algorithms
	2.3.1 Background and related works
	2.3.2 Overview of target stereo vision algorithms
	2.3.3 Data decomposition
	2.3.3.1 Comparison of data decomposition schemes

	2.3.4 Proposed parallel implementation
	2.3.4.1 SSD algorithm
	2.3.4.2 Multiple window algorithm
	2.3.4.3 Left-right check algorithm

	2.3.5 Results and performance of parallel implementations
	2.3.5.1 SSD algorithm
	2.3.5.2 Multiple window algorithm
	2.3.5.3 Left-right check algorithm
	2.3.5.4 Disparity map output
	2.3.5.5 Comparison with published results

	2.4 Parallel implementation of Harris corner detector
	2.4.1 The Harris corner detector algorithm
	2.4.2 Appropriate data decomposition scheme
	2.4.3 Proposed parallel implementation
	2.4.4 Results and performance of parallel implementation

	2.5 Summary

	3 Implementation of Human Detection on CSX SIMD architecture
	3.1 Introduction
	3.2 HoG descriptor and object detection
	3.3 Parallel formulation and implementation of HOG-based Human detection
	3.3.1 One scale computation
	3.3.2 Multi-scale computation
	3.3.2.1 Image Downscaling
	3.3.2.2 Multi-Scale Optimization Problem

	3.4 Results and Performance of Parallel Implementation
	3.5 Summary

	4 Asynchronous Parallel Event-based Optical Flow
	4.1 Introduction
	4.2 Event-based optical flow algorithm
	4.3 Tilera Architecture
	4.4 Parallel Formulation
	4.4.1 The concurrent data structures
	4.4.2 Velocity computation
	4.4.3 Event distribution

	4.5 The application architecture and implementation overview
	4.5.1 Host-tile communication
	4.5.2 Memory allocation strategy on Tilera

	4.6 Results and performance of event-based optical flow implementations
	4.7 Summary

	5 Optical Flow Visual Cues for Robot Navigation
	5.1 Introduction
	5.2 The velocity field
	5.3 Locating the focus of expansion
	5.4 Estimation of time-to-contact
	5.5 Experiments and results
	5.6 Summary

	6 Conclusions and Future Work
	6.1 Overview
	6.2 Conclusions
	6.3 Future work

	References

