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ABSTRACT

The field of robotics is moving increasingly toward applications in unstructured and non-stationary
human environments. These environments often cannot be foreseen in all relevant details and re-
quire therefore robots that are able to adapt to changing conditions and to learn from experience.
This thesis presents the incremental Random Fourier Regularized Least Squares and Sparse Spec-
trum Gaussian Process Regression algorithms that are targeted for use in this context. Contrary
to related work, the primary design objectives of these incremental learning methods are (1) a
theoretical foundation, (2) computational efficiency, and (3) practical convenience. Rather than
developing a novel algorithm from the ground up, the methods are based on the thoroughly stud-
ied Regularized Least Squares and Gaussian Process Regression algorithms, therefore ensuring a
solid theoretical foundation. Non-linearity and a bounded update complexity are achieved simul-
taneously by means of a finite dimensional random feature mapping that approximates a kernel
function. Furthermore, the computational cost for each update is predictable, allowing the meth-
ods to be used in real-time applications. Finally, their algorithmic simplicity and support for auto-
mated hyperparameter optimization ensures practical convenience when employing these methods
in practice.

Empirical validation on a number of synthetic and real-life sensorimotor learning problems con-
firms that the generalization performance of these methods is competitive with state of the art
batch learning algorithms and superior with respect to competing incremental algorithms. This
performance is maintained in the challenging situation of dependent sampling distributions, which
are common in learning problems that are grounded in the physical world. Moreover, their compu-
tational requirements are found to be significantly lower with respect to competing methods, such
that the methods are particularly advantageous for large scale learning or when limited computa-
tional resources are available. As additional empirical validation, a dynamics model learned by
means of incremental Sparse Spectrum Gaussian Process Regression is used to implement contact
detection for the arm of the iCub humanoid robot.
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NOTATION

z vector
Z matrix
zT,ZT transpose of vector z or matrix Z
x ∈ X input and input space
X matrix where each row is an input sample x
y,y ∈ Y scalar or vector output and output space
y,Y vector or matrix where each row is an output sample y or y
m number of (training) samples
n dimensionality of input space X
p dimensionality of output space Y
S set of m input-output pairs {(xi,yi)}mi=1

〈·, ·〉 inner product
‖·‖p p-norm, with p = 2 by default
f(·) ∈ F function and function space
k(·, ·) kernel function
K kernel matrix obtained by evaluating k for each pair of samples inX
HK reproducing kernel Hilbert space
φ(·) feature mapping
Φ design matrix obtained by evaluating φ on each sample inX
Z � 0 positive definite matrix
Z � 0 positive semidefinite matrix
I identity matrix
0 zero vector or matrix
ŷ predicted output
ε measurement error
e residual or prediction error y − ŷ
s2 predicted variance
L(·, ·) loss function
P(·) probability distribution
p(·) probability density
N
(
x|µ, σ2

)
Gaussian or normal distribution over x with mean µ and variance σ2

U(a, b) uniform distribution in the interval [a, b]

GP Gaussian process
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E[·] expected value of a random variable
V[·] variance of a random variable
R(·) risk functional
N natural numbers
R real numbers
O(·) asymptotic upper complexity bound
δij Kronecker delta, 1 if i = j and 0 otherwise
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ACRONYMS

ANN Artificial Neural Network

ARD Automatic Relevance Detection

ASE Asymmetric Squared Exponential

CUSUM cumulative sum control chart

DBN Deep Belief Network

DoF Degree of Freedom

ε-SVR ε-insensitive Support Vector Regression

GLR Generalized Likelihood Ratio

GMM Gaussian Mixture Model

GPR Gaussian Process Regression

i.i.d. independent and identically distributed

KM kernel method

KNN Kernel Nearest Neighbor

KRLS Kernel Regularized Least Squares

KRR Kernel Ridge Regression

LASSO least absolute shrinkage and selection operator

LGP Local Gaussian Processes

LSSVM Least Squares Support Vector Machine

LWPR Locally Weighted Projection Regression

LWR Locally Weighted Regression

MKL Multi Kernel Learning

nMSE normalized Mean Squared Error
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PAC probably approximately correct

RBD Rigid Body Dynamics

RBF Radial Base Function

RFRLS Random Fourier Regularized Least Squares

RFWR Receptive Field Weighted Regression

RKHS Reproducing Kernel Hilbert Space

RLS Regularized Least Squares

RN Regularization Network

RNEA Recursive Newton-Euler Algorithm

ROC receiver operating characteristic

SRM Structural Risk Minimization

SSGPR Sparse Spectrum Gaussian Process Regression

SVM Support Vector Machine

VC Vapnik-Chervonenkis

WGLR Window-Limited Generalized Likelihood Ratio
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INTRODUCTION 1
The field of robotics is increasingly moving toward applications beyond the traditional structured
environments such as manufacturing plants. The first robots have entered human environments and
it is expected that service robots will find use in applications ranging from domestic chores and
health care to entertainment and social companionship (for an essay on this topic, see Gates, 2007).
These human-centered applications require dexterous and safe robots that are able to solve un-
foreseen tasks autonomously in unstructured environments. The traditional approach to robotics,
consisting of precisely characterizing the robot, its environment, and the desired task, is rendered
infeasible in this novel setting. The field of robotics therefore faces significant challenges in the
development of a future generation of robots, both in terms of suitable mechanics and morphology,
as well autonomous and intelligent behavior.

A viable and arguably inevitable direction of research to obtain these goals is the study of robots
that are able to adapt to changing conditions and to learn from past experience. This strategy is
particularly apposite if the environment cannot be foreseen in all relevant details, either due to its
complexity or its non-stationarity. Learning mechanisms allow advanced robots to act successfully
under such adverse circumstances and have shown superior performance with respect to traditional
analytic approaches in a variety of applications. The field of machine learning deals with develop-
ing techniques and algorithms that help machines to “learn” from experience or, equivalently, to
infer knowledge from observations. It is therefore not surprising that there is a significant mutual
interest from the robotics and machine learning communities to jointly develop autonomous robots
using advanced learning techniques.

The subject of this thesis is at the interjunction of these two fields; more specifically, it presents
an incremental, non-linear, and computationally efficient learning algorithm for use in adaptive
robotics. The motivation and specific context for this algorithm are further described in the fol-
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(a) iCub (b) James

Figure 1.1: Two humanoid robots currently residing at the Italian Institute of Technology. The iCub has
been developed as part of the RobotCub project (Metta et al., 2006). James is a predecessor of the iCub,
originally developed at the Laboratory for Integrated Advanced Robotics of the University of Genoa.

lowing section. Subsequently, the approach is summarized in Section 1.2, with an emphasis on
its merits with respect to related work and the contributions for the fields of robotics and machine
learning. Finally, the organization of this thesis is outlined in Section 1.3

1.1 Learning and Adaptation in Robotics

Performing complicated tasks in unstructured human environments imposes strict requirements
on the design and operation of robots. Not only should robots be autonomous and dexterous,
in addition they should also operate safely by minimizing the possibility of inflicting damage
or injuring humans. The morphology, actuation, and perception of the robot is therefore to be
designed carefully to comply with these requirements. Typical design objectives include dexterous
hands for fine manipulation tasks, an appropriate size that allows reaching for objects without
restricting locomotion, and low weight to minimize impact when colliding with the environment.
A compelling line of thought is that robots employed in human-centered environments should
share the human morphology to a large extent. Figure 1.1 demonstrates two such robots in the
form of two state of the art humanoids operated at the Italian Institute of Technology. The iCub
robot is a full-body humanoid approximately the size of a 31

2 year old child with 53 Degrees of
Freedom (DoF) (Tsagarakis et al., 2007; Metta et al., 2010). Its 22-DoF predecessor James is an
upper torso humanoid roughly the size of a 10 year old boy (Jamone et al., 2006).

A consequence of the increasing mechanical complexity of these advanced robots is that they are
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significantly more complicated to describe and control using analytical means. This complexity is
not limited to the large number of DoF, but also regards the mechanical constructions required to
actuate the robot given the constraints on size, weight, and safety. The difficulty in controlling the
behavior of these robots is further amplified by the fact that human environments are unstructured
and non-stationary, and that the desired skill-set for the robot can often not be precisely anticipated.
Hence, the traditional approach of modeling the robot, its environment, and the desired tasks prior
to deployment is no longer feasible in this setting. A more realistic approach for successful opera-
tion with these uncertainties is to create autonomous robots that are able to continuously adapt their
behavior to the environment and learn from previous experience. This adaptation has to take place
while the robot is operating in the environment and should be time-efficient to ensure responsive
behavior. Inspired by psychological stages in human development, the paradigm of developmental
robotics goes even further by requiring robots to undergo multiple stages of autonomous mental
development to attain an increasingly sophisticated skill-set (Weng et al., 2001; Lungarella et al.,
2003).

The purpose of learning and adaptation is to allow robots to make accurate predictions in an un-
known environment. Accurate predictions of both the internal (i.e., its body) and external envi-
ronment (and interactions between these) are crucial for anticipatory behavior and skillful control.
Not surprisingly, machine learning techniques (see Figure 1.2 for an overview) are suitable candi-
dates to implement such predictive capabilities. In particular, we are interested in techniques that
are appropriate given the following properties of the robotics domain:

Accuracy: The quality of a prediction is measured to a large extent by its accuracy. More accurate
predictions simplify control and translate in increased task efficacy and efficiency. More-
over, generalization from earlier observations is required to obtain satisfactory predictions,
since it is unlikely that identical situations occur more than once.

Non-Stationarity: The physical world is not stationary and changes occur at various time scales.
This includes changes in the environment due to external actors or physical phenomena, as
well as internal changes in the body of the robot due to wear-and-tear, tool use, or environ-
mental influences.

Incremental Operation: Tasks, observations, and environmental changes can often not be antic-
ipated, and their occurrence and order are governed by the physical environment. It follows
that learning is necessarily an integral and continuous process during open-ended robot oper-
ation (i.e., online), which incrementally updates knowledge of both the internal and external
environment.

Autonomy: The robot and its learning process should be as autonomous as possible, thus requir-
ing a minimal amount of prior programming and human intervention during operation.

Efficiency: Timeliness is a secondary measure of the quality of predictions. Timely predictions
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Machine
Learning

Supervised
Learning

Classi-
fication

Regression

Unsupervised
Learning

Clustering

Dimen-
sionality

Reduction

Filtering
Reinforcement

Learning

Games

Control

Decision
Making

Figure 1.2: Overview of the primary paradigms within the field of machine learning. The context consid-
ered in this thesis is marked in blue.

are crucial for responsive behavior and dynamic interactions with the environment. In addi-
tion, efficiency is generally desired in order to make optimal use of the limited computational
resources of the robot.

A multitude of machine learning approaches have been used to allow learning in complex robot
systems, among which reinforcement learning and regression methods have found the most promi-
nent use. The topic of this thesis will therefore be constrained to (supervised) regression methods
that conform to abovementioned properties. It should be noted, however, that all primary machine
learning paradigms (cf. Figure 1.2) are to some extent relevant in the development of intelligent
robots that act autonomously in unstructured environments.

1.1.1 Model Learning

The limitation to regression problems might initially be perceived as rather restrictive. However,
regression is a fundamental technique for learning associations between motor actions and corre-
sponding sensory responses (i.e., sensorimotor learning). These associations are at the center of
action and perception of the robot and therefore a core component for the control and behavior of
robots. This is supported by the hypothesis that learning sensorimotor associations is among the
first stages in human development (Piaget, 1952). Two types of models are commonly learned,
namely forward and inverse models. Forward models predict the perceptual consequences as-
sociated with motor actions. For example, a forward kinematic model computes the (typically
Cartesian) position of a manipulator for a given joint configuration. In contrast, inverse models
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Figure 1.3: Position of the proximal force/torque sensor (indicated in red) in the left arm of the iCub
humanoid.

attempt to predict the action that results in desired perceptual changes. Following the earlier ex-
ample, an inverse kinematics model thus computes the joint configuration that is required to attain
a desired Cartesian position.

One class of internal models that will be used extensively in the experimental validation in Chap-
ter 5 is the robot dynamics. There are two primary reasons for prominently featuring this particular
type of internal model. First, the availability of (inverse) dynamics models is important for compli-
ant control and contact detection, which themselves are crucial techniques for safe robot operation
in human environments. Second, dynamics modeling is a well-posed supervised learning problem,
as opposed to kinematics, since the desired outputs can be measured directly using a force/torque
sensor. Figure 1.3 demonstrates a proximal force/torque sensor mounted in the arm of the iCub
humanoid. The relationship between manipulator configuration (i.e., joint positions, velocities,
and accelerations) and forces/torques can be described analytically using the Rigid Body Dynam-
ics (RBD) formula

τ = D(q)q̈ +C(q, q̇)q̈ + g(q) ,

where D, C and g are the inertial, Coriolis, and gravity terms, respectively (Spong et al., 2006;
Siciliano and Khatib, 2008). Despite being analytically correct, this formulation has limited ap-
plicability on real-life robots due to the difficulty of accurately determining the various kinematic
and dynamic parameters. Moreover, many modern lightweight robots (such as James and iCub)
have significant additional nonlinear dynamics beyond the RBD model, such as actuator dynamics
(e.g., due to gearboxes), routing of cables, and protective covers. Additional arguments to favor
learning over analytical modeling will be given in Section 2.8.
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1.2 Proposed Method and Contributions

The need for regression methods that can be used in the described setting has been acknowledged
in the robotics community and this has led to the development of a number of domain-appropriate
learning methods (e.g., Schaal and Atkeson, 1998; Vijayakumar et al., 2005; Nguyen-Tuong et al.,
2009). These methods typically involve comparatively complicated mechanisms to conform with
the domain specific properties and are less supported by theory than recent machine learning tech-
niques. A detailed treatment of these methods will follow in Section 3.3.

This thesis presents an alternative learning method that competes directly with these previous
methods. Contrary to previous work, this method has been developed (1) to conform directly with
the requirements outlined in the previous section, (2) using established and proven techniques, and
(3) to be convenient in practical use. The result is a learning method that combines efficient linear
learning algorithms with a kernel approximation for non-linearity. The contribution of this method
for the robotics and machine learning communities can be summarized as follows:

Theoretical Foundation: The method is based on established and rigorously studied methods,
rather than devising an entirely novel algorithm from the ground up. This theoretical foun-
dation ensures excellent generalization performance, convergence to an optimal solution
given sufficient observations, and numerical stability when implemented on finite-precision
hardware.

Computational Efficiency: The method improves over competing methods in terms of compu-
tational requirements (as measured in wall time) and is only rivaled by an analytical RBD
model when learning robot dynamics. Furthermore, the time and space complexity per up-
date are constant with respect to the number of observations and usage in a real-time setting
is feasible due to accurate predictability of the computational cost. In addition, fewer obser-
vations are required to attain satisfactory predictive accuracy.

Practical Convenience: An important property of the method is its algorithmic simplicity, which
signifies that it can be understood, implemented, and deployed easily. Moreover, the number
of hyperparameters is kept at a minimum and these can be tuned automatically using a
principled methodology. The tradeoff between computation and predictive accuracy can be
controlled directly using a single hyperparameter.

The relative merits of the method are validated empirically both in batch as well incremental set-
tings using synthetic and realistic robotic problems. Furthermore, the practical use of the method
is further emphasized by applying it for robotic contact detection using a learned dynamics model.
Although the method is presented primarily in a robotics context, it is by no means limited to this
specific context and can generally be used for incremental learning problems.
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1.3 Organization

The remainder of the thesis continues with a general introduction in the theory of machine learn-
ing and kernel methods in Chapter 2. The relationship between robotics and machine learning will
receive additional attention in its final section. Subsequently, an overview of state of the art incre-
mental learning methods is given in Chapter 3, which includes dedicated sections on incremental
kernel methods and learning techniques that have been presented primarily for use in robotics. The
proposed method is subsequently described in Chapter 4, which ends with a thorough discussion
on its properties and merits with respect to related work. The empirical validation is subdivided
in two sections; Chapter 5 contains comparative experiments on a number of synthetic and real
robotics datasets, while Chapter 6 describes how the proposed method can be used to successfully
implement contact detection on the iCub humanoid. Finally, conclusions and directions for future
work are given in Chapter 7.





MACHINE LEARNING

AND KERNEL METHODS 2
The field of machine learning is concerned with designing algorithms that allow computers to
evolve behavior based on empirical observations. A primary focus in the study of learning algo-
rithms is on generalization, namely the capacity to extend knowledge from past observations to
future behavior; much similar to the human capacity to generalize. For instance, a human is often
able to classify novel instances of objects in its environment by matching it with certain known
features of similar objects (e.g., structure, color, context, or functionality). Learning algorithms
aim to replicate this capacity in a computational sense.

Several frameworks have been proposed to formalize the learning problem from a theoretical
perspective. Among these are probably approximately correct (PAC) learning (Valiant, 1984),
Bayesian inference (MacKay, 2002), and statistical learning theory (Vapnik, 1995). The latter
framework, developed over the last four decades by Vapnik and others, was essential for the de-
velopment of the popular Support Vector Machines (SVMs) (Drucker et al., 1996). Another fun-
damental aspect of this learning method is the use of kernel functions, which implicitly map input
data onto a hypothetical, high dimensional feature space. The learning method is applied in this
feature space, such that non-linearity is obtained while avoiding a large computational overhead.
Although popularized within SVM, this technique can be used with various linear algorithms and
the resulting algorithms are collectively known as kernel methods (KMs). This class of algorithms
has gained considerable popularity within the machine learning community due to a rigorous the-
oretical foundation and excellent empirical performance (e.g., Schölkopf and Smola, 2001; Zhang
et al., 2007; Gijsberts et al., 2010a). However, despite this apparent success, there are both practi-
cal and theoretical concerns with respect to applications in (developmental) robotics. These regard
primarily the computational complexity of many kernel-based algorithms, their batch operation,
and violations of key assumptions of the theoretical learning framework.
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The first section of this chapter introduces the most relevant aspects of statistical learning the-
ory. These concepts are subsequently used as mathematical background throughout the remaining
sections. KMs are initially presented at the hand of the linear Regularized Least Squares (RLS)
algorithm in Section 2.2, after which kernel functions are introduction in Section 2.3. The kernel-
based variant of RLS is described in Section 2.4 together with some related methods (e.g., SVM).
Subsequently, a treatment of Gaussian Process Regression (GPR) is given in Section 2.5. Although
the latter algorithm is developed in a Bayesian framework, its functional form shows remarkable
similarities with RLS. Considerations for employing these methods in practice, such as kernel
selection and hyperparameter optimization, is covered in Section 2.6, followed by an example
learning scenario in Section 2.7. Finally, this chapter is concluded in Section 2.8 with a discussion
on practical and theoretical concerns with respect to the robotics application domain.

2.1 Learning Theory

In order to describe statistical learning theory, it is useful to formalize the learning process in math-
ematical terms. Suppose that we observe a process that generates an output y given a certain input
x, where each observation consists of an n-dimensional input x ∈ X ⊆ Rn and the corresponding
output y ∈ Y . In case Y denotes a discrete set of classes (e.g., Y ⊆ {−1, 1}), then the problem
is considered a classification problem (cf. Figure 1.2). However, in the following we will limit
ourselves to regression problems, such that Y ⊆ R. Let us assume that we have collected a finite
set of m observations, denoted as S = {(x1, y1) , . . . , (xm, ym)}. The goal in machine learning
is to use these observations to “learn” a function f : X 7→ Y , such that f(x) is a good approxima-
tion of the output y for an arbitrary input x. Obviously, in order to find such a function, we must
require that the collected observations are actually representative for possible future observations.
In statistical learning theory, this is guaranteed by requiring that the observations are independent
and identically distributed (i.i.d.) according to a fixed but unknown distribution P on X ×Y . This
joint distribution of inputs and outputs can be decomposed as P(y,x) = P(y|x)P(x). Note that
we may recognize two phases in the generation of samples: first, an input x is generated accord-
ing to the marginal (or prior) probability P(x); second, the corresponding output y is generated
according to the conditional probability P(y|x) given the input x. These probability distributions
imply that (1) we cannot control the generation process of the samples and (2) the mapping from
inputs to outputs is stochastic rather than deterministic.

Learning methods use these observations to produce a function that captures the relationship be-
tween inputs and outputs, or in formal terms X ×Y 7→ f . The approximation quality of a function
f is measured at the hand of a non-negative loss function L(y, f(x)), where x and y are implicitly
assumed to come from a single input-output pair. The optimal function f∗ can therefore be defined
as the one that minimizes the loss over the weighted space of inputs and outputs. In other words,
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we seek to find a function f that minimizes the expected risk (Vapnik, 1995), defined as

Rexp(f) =

∫
X×Y

L(y, f(x)) dP(y,x) . (2.1)

Direct minimization of this integral is infeasible, since the joint distribution P(y,x) is unknown.
The only available information regarding the process is the set of observations S . It may seem
reasonable to use the average loss on these observations instead

Remp(f) =
1

m

m∑
i=1

L(yi, f(xi)) , (2.2)

which is known as the empirical risk. However, direct optimization of the empirical risk is error
prone due to the finite number of samples. This can be understood by considering a function that
memorizes all samples in S and returns an arbitrary constant value for all other samples. Although
this function clearly minimizes the empirical risk in Equation (2.2), it will almost surely perform
poorly in terms of the expected risk in Equation (2.1). This phenomenon is known as overfitting,
in which a learning method produces a function that models the possibly noisy observations in S
too closely. As a result, the function does not generalize well on future (unseen) observations.

The problem of overfitting can be alleviated by restricting the optimization to a limited function
space F . This produces satisfactory results if F is chosen sufficiently small to prevent overfitting.
Unfortunately, identifying an appropriate space F requires intimate knowledge of P(y,x) and
generalization performance may suffer if F is chosen too restrictive. It is therefore more desirable
to choose F sufficiently large and to penalize “complex” functions, as demonstrated graphically
in Figure 2.1. In other words, we want to minimize the regularized risk functional

Rreg(f) = Remp(f) + λG(f) s.t. f ∈ F , (2.3)

whereG(f) is a regularizer that penalizes complex functions and λ is the a constant that regularizes
the tradeoff between both terms. There is a broad range of choices for the regularization term
G(f). As we will see later, different loss functions and regularization terms lead to different
learning methods. Two common choices for the regularization term are L1 and L2 regularization
(it is assumed that F is an inner product space), defined respectively as ‖f‖1 and ‖f‖22. The
former leads to sparse solutions, whereas the L2 norm promotes smoothness by penalizing wild
oscillations.

2.2 Regularized Least Squares

A compelling choice is to use the L2 norm for both the loss function and the regularization terms,
such that G(f) = ‖f‖2 and L(y, f(x)) = (y − f(x))2. Let us consider this configuration while
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Figure 2.1: Demonstration of overfitting and underfitting with respect to model complexity. The risk bound
is the sum of both the empirical risk and the complexity penalty.

constraining F to the set of linear functions of the form

f(x) = 〈w,x〉 , (2.4)

where w is a weight vector. Inserting the squared loss and L2 regularization in Equation (2.3)
results in a convex optimization problem of w, for which the objective function is given by

J(w, λ) =
λ

2
‖w‖2 +

1

2

m∑
i=1

(yi − f(xi))
2

=
λ

2
‖w‖2 +

1

2
‖y −Xw‖2 .

Note that the bottom equation uses matrix notation by defining an m× n matrix of input samples
X = [x1, ...,xm]T and an m-dimensional vector of outputs y = [y1, ..., ym]T. Furthermore, the
additional factor 1

2 is solely for mathematical convenience and does not affect the optimal solution.
Setting the partial derivative of J with respect to w to zero, such that

∂J

∂w
= w

(
λI +XTX

)
−XTy = 0 ,

we obtain the optimal solution given by

arg min
w

J(w, λ) =
(
λI +XTX

)−1
XTy . (2.5)

Note that this system of linear equations is well-posed if λ > 0, thus guaranteeing a unique optimal
solution. It is therefore not surprising that this technique, known as Tikhonov regularization, was
originally proposed to improve conditioning of ill-posed linear systems of equations (Tikhonov
and Arsenin, 1977). Since then, the regularized optimization problem in Equation (2.5) has been
introduced in the statistical community as ridge regression (Hoerl and Kennard, 1970). An equiv-
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alent formulation with respect to Artificial Neural Networks (ANNs) is known as weight decay
(Hinton, 1989), while it has also been studied extensively within the framework of Regularization
Networks (RNs) (Poggio and Girosi, 1990; Girosi et al., 1993). In the remainder, this algorithm
will be referred to as (linear) RLS (following Rifkin et al., 2003), to emphasize (1) the link to both
regularization and the least squares method and (2) that it can and has been used successfully for
both regression and classification problems.

Obtaining the solution for Equation (2.5) requires solving an n-dimensional system of linear equa-
tions. As we will see in later chapters, explicit inversion of the covariance matrix

(
λI +XTX

)
is

usually not necessary. Regardless, the overall time complexity for training is cubic in the number
of input features and linear in the number of samples. Once an optimal weight vector w has been
found, the function in Equation (2.4) can be used to predict the output for a given input vector x. It
is clear from Equation (2.4) that the time complexity per prediction is linear in n and independent
of the number of training samples m.

The output variable y has thus far been assumed scalar for simplicity; however, it is relatively easy
to consider the case of a p-dimensional output vector y1 (Bishop, 2006, Section 3.1.5). Substi-
tuting the vector variant in Equation (2.4) and Equation (2.5), we observe that the weight vector
becomes an n×p weight matrixW , where each column contains the weight vector corresponding
to one of the p regression problems. The advantage of this formulation is of computational nature:
solving Equation (2.5) is dominated by inversion of the covariance matrix. Since this matrix does
not depend on the output variables, the inversion step can easily be “reused” to solve multiple
regression problems simultaneously at negligible additional cost. Obviously, a requirement is that
all problems share identical input variablesX and regularization parameter λ.

2.3 Kernel Trick

The set of linear functions is commonly too restrictive for real-life problems, which are often
found to be non-linear. A well-known approach to apply linear algorithms on non-linear problems
is to map the input features into a feature space. The input-output relation can consequently be
represented in linear form in this feature space. Let us consider a mapping function

φ : X 7→ H ,

where Hilbert space H is referred to as the feature space. Substituting mapping function φ in
Equation (2.4), we obtain

f(x) = 〈w, φ(x)〉 ,

1The distinction between using y to denote multiple outputs of a single sample or the scalar output of multiple
samples will be clear from context.
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and the optimal solution from Equation (2.5) becomes

arg min
w

J(w, λ) =
(
λI + ΦTΦ

)−1
ΦTy , (2.6)

where we defined (slightly abusing notation) the design matrix Φ = φ(X). In other words,
the algorithm operates explicitly in the feature space and consequently w ∈ H. Various types
of non-linear feature mappings, also known as basis functions, have been used in practice, such
as Radial Base Functions (RBFs), polynomial basis functions, splines, sigmoidal functions, and
Fourier bases (for details, see Bishop, 2006; Hastie et al., 2009, and references therein).

The time complexity of Equation (2.6) is cubic in the number of features and may therefore be
computationally infeasible if we choose a large number of basis functions. The kernel trick helps
to avoid this computational limitation and even allows linear methods to be applied in infinite
dimensional feature spaces. This kernel concept was originally introduced in the pattern recogni-
tion community by Aizerman et al. (1964), and subsequently popularized in the context of SVMs
(Boser et al., 1992; Cortes and Vapnik, 1995; Cristianini and Shawe-Taylor, 2000; Schölkopf and
Smola, 2001). In order to explain kernels, let us first consider the dual representation of the RLS
algorithm. The optimal solution in Equation (2.6) can be rewritten in terms of w as

w =
1

λ
ΦT (y −Φw) = ΦTα =

m∑
i=1

αiφ(xi) , (2.7)

showing that w can be rewritten as a linear combination of the training samples. It follows that
the m-dimensional coefficient vector α is given by

α =
1

λ
(y −Φw) = (K + λI)−1 y ,

where K = ΦΦT. The optimal solution for this dual representation therefore requires solving an
m-dimensional system of linear equations, as opposed to an n-dimensional system for the primal
formulation in Equation (2.5). Hence, this alternative formulation is computationally advantageous
for training if m < n. More importantly, however, is that the training data only occurs within
inner products. Note that the matrix K = ΦΦT can be described component-wise as Kij =

〈φ(xi), φ(xj)〉 and that the prediction function can be written as

f(x) = 〈w,x〉 =
〈
ΦTα, φ(x)

〉
=

m∑
i=1

αi 〈φ(xi), φ(x)〉 .

This leads to the key observation that only the inner product in H is required to compute the RLS
solution. The kernel trick “exploits” this observation by directly specifying a kernel function

k(xi,xj) = 〈φ(xi), φ(xj)〉H , (2.8)
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thus avoiding explicit mapping of the input samples into feature space. As a consequence, the
kernel is often considered as the object of primary interest, and its corresponding feature space is
only of secondary importance.

2.3.1 Admissible Kernels

A relevant question that arises is which functions k : X ×X 7→ R actually correspond to an inner
product in a feature spaceH. The answer is given by Mercer’s condition (Mercer, 1909), which in
short2 requires that∫

X×X
k(xi,xj)f(xi)f(xj) dxi dxj ≥ 0 for all f ∈ L2(X ) .

This condition is easier understood at the hand of a dataset of finite size. In this case the integral
reduces to a summation and we can write for any v ∈ Rm

vTKv =
m∑

i,j=1

vivjKi,j =
m∑

i,j=1

vivjk(xi,xj)

=

m∑
i,j=1

vivj 〈φ(xi), φ(xj)〉

=

〈
m∑
i=1

viφ(xi),

m∑
j=1

vjφ(xj)

〉

=

∥∥∥∥∥
m∑
i=1

viφ(xi)

∥∥∥∥∥
2

≥ 0 , (2.9)

from which we can conclude that the symmetric kernel matrix

K = [k(xi,xj)]
m
i,j=1 (2.10)

is positive semidefinite (denoted as K � 0). Consequently, the kernel matrix has non-negative
eigenvalues and a unique Cholesky factorization. Furthermore, the kernel function k is positive
semidefinite if it produces a positive semidefinite kernel matrix for any finite set xi ∈ X for
1 ≤ i ≤ m; this property will be used later on in Chapter 4. Kernels that satisfy this condition will
subsequently be referred to as admissible kernels, or simply kernels.

2A detailed and mathematically rigorous treatment of kernels is outside of the scope of this thesis; the interested
reader is therefore referred to one of many excellent textbooks on the subject (e.g., Cristianini and Shawe-Taylor, 2000;
Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004; Steinwart et al., 2009).
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2.3.2 Reproducing Kernel Hilbert Space

Given an admissible kernel k, we can construct a corresponding Hilbert space H. Recall that
the weight vector w is an element in the feature space. By combining Equation (2.7) and Equa-
tion (2.8) we can thus construct a feature space that contains w as

H =

{
m∑
i=1

αik(xi, ·) : m ∈ N,xi ∈ X , αi ∈ R, 1 ≤ i ≤ m

}
.

Note that this feature space is a set of points that are in fact functions, for which the dot indicates
the position of the argument of the function. Let f, g ∈ H, such that

f(x) =
m∑
i=1

αik(xi,x) and g(z) =
o∑
j=1

βik(zj ,x) = ,

then the inner product in this space is defined as

〈f, g〉 =
m∑
i=1

o∑
j=1

αiβik(xi, zj) =
m∑
i=1

αig(xi) =
o∑
j=1

βjf(zj) .

This demonstrates that 〈f, g〉 is real-valued, symmetric and bilinear. The final requirements to
satisfy the properties of an inner product is that

〈f, f〉 ≥ 0 for all f ∈ H ,

which can easily be proved since

〈f, f〉 =
m∑
i=1

m∑
j=1

αiαjk(xi,xj) = αTKα ≥ 0 using Equation (2.9) .

The feature space HK constructed in this manner is also referred to as the Reproducing Kernel
Hilbert Space (RKHS) corresponding to the kernel function k (Wahba, 1990). This terminology is
due to the reproducing property

〈f, k(x, ·)〉 =
m∑
i=1

αik(xi,x) = f(x) .

This property is an important characteristic of the kernel function k, as it guarantees that the kernel
is positive semidefinite. The interpretation of the feature mapping corresponding to an RKHS is
not entirely intuitive, as each input sample is turned into a function on the domain X . In other
words, each input sample is represented in the RKHS by its similarity with all other points in
the input space X . Regardless, it is important to realize that although there is a single RKHS
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corresponding to a kernel k, there may be other Hilbert and Euclidean spaces for which the kernel
k describes the inner product (e.g., see Section 4.1 for the polynomial kernel).

2.4 Kernel Regularized Least Squares

For completeness, let us fully iterate over the RLS algorithm when using kernel functions. In this
case, the prediction function is written as

f(x) =
m∑
i=1

αik(x,xi) = 〈α,k〉 , (2.11)

where k = [k(x,x1), · · · , k(x,xm)]T. The linear combination of kernel evaluations in Equa-
tion (2.11) will be referred to as the kernel expansion. The representer theorem, originally due to
Wahba (1990) and subsequently generalized by Schölkopf et al. (2001), guarantees that the opti-
mal solution in the possibly infinite dimensional RKHS can be expressed as a finite dimensional
kernel expansion. The optimal coefficients are then given by

α = (K + λI)−1 y , (2.12)

where the kernel matrix K is defined as in Equation (2.10). This algorithm is known under mul-
tiple names in the machine learning community. It was originally proposed by Saunders et al.
(1998) as Kernel Ridge Regression (KRR), though an identical algorithm has been studied in the
RN framework as well (see Evgeniou et al., 2000, and the references therein). The algorithm has
also been used for classification problems under the names RLS Classification (Rifkin et al., 2003)
and Proximal SVM (Fung and Mangasarian, 2001), which is an interesting choice as it uses the
squared loss function. Albeit controversial, the algorithm defined by Equation (2.11) and Equa-
tion (2.12) will subsequently be referred to Kernel Regularized Least Squares (KRLS) following
the earlier terminology of linear RLS. However, note that linear RLS is a special case of KRLS,
where the kernel k(xi,xj) is simply the inner product in the original input space 〈xi,xj〉.

2.4.1 Related Methods

The kernel trick can be applied to any algorithm for which the solution can be described in terms
of inner products. Departing from KRLS, several related KMs can be obtained by relatively minor
modifications to the optimization objective. For instance, the extension with an additional bias
term b in the predictions function, such that

f(x) =

m∑
i=1

αik(x,xi) + b ,
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is known as a Least Squares Support Vector Machine (LSSVM)3 (Suykens et al., 2002b). The
optimal solution is obtained by solving a system of m + 1 linear equations, where the bias term
accounts for the additional row and column. This LSSVM formulation is not equal to KRLS with
an additional constant term in the input dimension. In the latter case the bias term is regularized
(and thus driven to zero), while in the former case it is not.

The popular SVM is also closely related to KRLS and can be obtained by changing the loss func-
tion in Equation (2.2). In case of regression, the squared loss function L(y, f(x)) = (y − f(x))2

is replaced with the ε-insensitive loss

L(y, f(x)) = |y − f(x)|ε = max (|y − f(x)| − ε, 0) .

The interpretation of this loss function is that small deviations (i.e., up to ε) are tolerated, while
larger deviations are penalized in linear fashion. A consequence is that the kernel expansion be-
comes sparse, as only samples for which the error is larger than εwill result in non-zero coefficients
α. These samples are referred to as the support vectors and the algorithm is therefore known as ε-
insensitive Support Vector Regression (ε-SVR) (Drucker et al., 1996; Smola and Schölkopf, 2004).
In contrast, the squared loss used in KRLS and LSSVM is almost surely non-zero for all samples
and the kernel expansion will therefore include all training samples.

A similar sparsity property can be found in SVM for classification problems (Boser et al., 1992;
Burges, 1998), which uses the hinge loss

L(y, f(x)) = |1− yf(x)|+ = max (1− yf(x), 0) .

In this case, incorrect predictions as well as predictions that are “marginally” correct are penalized,
as the loss is non-zero if yf(x) < 1 (as opposed to yf(x) < 0). This particular loss function
forces SVM to maximize a margin between both classes. Analogous to the regression case, correct
predictions outside of this margin will have zero coefficients and can therefore safely be omitted
from the kernel expansion.

A different approach to enforce sparsity is by replacing the L2 regularizer with the L1 regularizer
in Equation (2.3). The latter is defined as ‖f‖1 and linearly penalizes non-zero components in
the weight vector w. This induces sparsity in the solution and effectively constitutes a form of
feature selection. Combined with the squared loss function, this method is known as least absolute
shrinkage and selection operator (LASSO) regression, proposed for the linear case by Tibshirani
(1996) and subsequently generalized to the kernel framework by Roth (2004). This approach to
sparsity may lead to problems if there are many correlated input features. In these cases, it may be
beneficial to combine the properties of L1 and L2 regularization. Examples thereof include bridge
regression (Fu, 1998), which uses the Lp norm as regularizer. This norm preserves sparsity if p is

3This could be considered a misnomer, as the algorithm shares more similarities with KRLS (or Kernel Ridge
Regression) than with Support Vector Machines.
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chosen only slightly larger than 1. Elastic nets, on the other hand, use a linear combination of L1

and L2 regularization (Zou and Hastie, 2005; Mol et al., 2009). The contribution of each term is
given by a predefined parameter β, such that the regularizes is written as (1− β) ‖f‖1 + β ‖f‖22.
The extreme cases β = 0 or β = 1 correspond to standard L1 and L2 regularization, respectively.

2.5 Gaussian Process Regression

Most statistical models can be considered both within the frequentist as well as the Bayesian ap-
proach. The KMs described thus far were formulated within the former paradigm. GPR, on the
other hand, is a closely related KM that approaches the learning problem from a Bayesian per-
spective (Rasmussen and Williams, 2005). The primary conceptual difference between frequentist
and Bayesian learning methods is that in the former paradigm one searches for a single unknown
prediction function f that underlies the observations. In contrast, Bayesian methods define a prob-
ability distribution over all prediction functions in a given function space F . An initial prior belief
of this distribution is formulated by the practitioner, which is subsequently refined based on the
evidence (i.e., the observed samples) to obtain a posterior belief.

Let us investigate the Bayesian approach at the hand of the generalized linear model (Bishop, 2006;
Rasmussen and Williams, 2005). In this model, we assume that the outputs can be described by a
linear model in the inputs4, where the observed outputs are possibly corrupted by noise. We can
thus write

y = 〈w,x〉+ ε ,

where it is assumed that the additive noise ε is i.i.d. and follows a Gaussian distribution with zero
mean and variance σ2n, such that ε ∼ N

(
0, σ2n

)
. Furthermore, it is assumed that the outputs y are

zero-mean5. The likelihood of the observed outputs given the input samples and the weight vector
can then be written as

p(y|w,X) = N
(
y|Xy, σ2nI

)
.

Furthermore, let us define a prior over the weight vector w as a multi-variate Gaussian with zero
mean and covariance matrix Σp, or

w ∼ N (0,Σp) .

This prior expresses our initial belief about the parameters before observing any samples. In the

4All equations in the treatment of the linear model can trivially be extended with a finite dimensional feature map
by replacing x with φ(x).

5This can be ensured by subtracting the sample mean or, alternatively, by appending an additional constant bias term
in the input representation.
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Bayesian framework, inference is based on the posterior distribution over the weight vector w,
given the observations X and y. Applying Bayes’ rule on the prior and likelihood, we obtain the
posterior (see Rasmussen and Williams, 2005)

p(w|X,y) =
p(y|w,X)p(w)

p(y|X)
(2.13)

∼ N
(
w
∣∣w̄ =

1

σ2n
A−1XTy,A−1

)
,

where the posterior covariance matrix

A =
1

σ2n
XTX + Σ−1p .

Note that we conveniently used the fact that the normalizing constant p(y|X) (i.e., the marginal
likelihood) is independent of w. Moreover, we observe that the mean prediction of this Bayesian
linear model is identical to the optimal RLS solution in Equation (2.5), provided that Σp = λ

σ2
n
I .

This is in fact no coincidence, since minimizing the squared loss in RLS results in a maximum
likelihood estimate, which coincides with the mean of the Gaussian maximum a posteriori estimate
of the Bayesian model. In other words, regularization in RLS is functionally equivalent to an
(implicit) prior on the weight vector w.

Model predictions are obtained by integrating over all possible w with respect to their posterior
distribution in Equation (2.13). In other words, rather than selecting one weight vector that de-
scribes the model (i.e., frequentist), we consider a distribution over all possible linear models. The
result is a predictive distribution, which in the linear model is given by

p(y|x,X,y) =

∫
p(y|x,w)p(w|X,y) dw

= N
(
y
∣∣ 1

σ2n
xTA−1XTy, xTA−1x

)
,

where (x, y) is an individual test sample, as opposed to the training data (X,y). Not surprisingly,
the mean of this predictive distribution coincides with the RLS prediction function.

2.5.1 Extension with Kernels

Generalization of the Bayesian linear model to the kernel framework follows similar lines as those
described for KRLS in Section 2.3. There are two equivalent interpretations, namely the weight
space view and the function space view (Rasmussen and Williams, 2005). The latter interpretation
will be explained here in more detail. Recall from the formulation of RKHSs (cf. Section 2.3.2)
that we replaced weight vector w with a function, such that the feature space is in fact a function
space. In the Bayesian interpretation, we thus perform inference directly in this function space.
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Using the fact that the weight prior is a zero-mean Gaussian with covariance matrix Σp, the mean
and variance of the prior in this function space are thus given by

E[f(·)] = E[〈w, φ(·)〉]

= E[w]Tφ(·)

= 0

and

E
[
f(·1)Tf(·2)

]
= E

[
〈w, φ(·1)〉T 〈w, φ(·2)〉

]
(2.14)

= φ(·1)TE
[
wwT

]
φ(·2)

= φ(·1)TΣpφ(·2) ,

where φ is the non-linear mapping and the dot indicates the position of the parameter. In other
words, the function values f(xi) and f(xj) are jointly Gaussian with mean 0 and covariance
φ(xi)

TΣpφ(xj) for any xi and xj . Noting that the covariance Σp is necessarily positive semidef-
inite, Equation (2.14) can be described in the form of the kernel function

k(xi,xj) =

〈
Σ

1
2
p φ(xi),Σ

1
2
p φ(xj)

〉
, (2.15)

where Σ
1
2
p is the square root of Σp. It is therefore common to interpret the kernel function as a

covariance function in the GPR framework. The distribution in this function space is a Gaussian
Process6, since it is jointly Gaussian for any finite number of inputs. Gaussian Processes can be
described entirely by its mean and covariance; in this case, the prior on the functions can therefore
be written as

f(x) ∼ GP(0, k(xi,xj)) .

The specification of the kernel function thus defines a distribution over functions, prior to observ-
ing any samples. Although important for understanding the approach, it is usually of limited use
to sample functions from this prior GP . Instead, we are interested in the posterior distribution
that incorporates knowledge from the training data. Given the m training samples (X,y) and an
individual test sample x, we can write the joint distribution as[

f(X)

f(x)

]
∼ N

(
0,

[
K + σ2nI k

kT k(x,x)

])
,

6A Gaussian Process GP is a collection of random variables, any finite number of which have a joint Gaussian
distribution.
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where K = [k(xi,xj)]
m
i,j=1 and k = [k(x,x1), · · · , k(x,xm)]T. Furthermore, f(X) should

be considered as latent variables, since only the noise corrupted outputs y are observed. This is
accounted for by adding the noise variance σ2n to the diagonal of the kernel matrix. The poste-
rior distribution can be obtained by conditioning the joint prior distribution on the observations.
An intuitive interpretation is that we restrict the joint distribution to only those functions that are
in agreement with the observations. After conditioning, the posterior distribution becomes (Ras-
mussen and Williams, 2005)

f(x)|x,X,y ∼ N
(
kT
(
K + σ2nI

)−1
y, k(x,x)− kT

(
K + σ2nI

)−1
k + σ2n

)
. (2.16)

The additional noise variance σ2n in the predictive variance is based on the reasonable assumption
that test samples (as well as training samples) are corrupted by noise. This additional term may
be omitted when test samples are known to be free of noise (e.g., synthetic datasets). Compar-
ing Equation (2.16) and Equation (2.12), we observe that the predictive mean of GPR is identical
to KRLS. This demonstrates again that regularization in the frequentist paradigm is equal to the
specification of a prior in the Bayesian paradigm. Regardless, there are two primary differences
between KRLS and GPR. First, GPR produces a predictive distribution rather than a point predic-
tion, and this distribution can be used to quantifies the uncertainty in the predictions. The second
advantage is that the Bayesian approach in GPR allows for principled ways of model selection, as
will be explained in more detail in the following section.

2.6 Hyperparameter Optimization

Thus far, we have seen how a number of learning methods are formulated and how these can be
extended to non-linear problems with kernel functions. An important practical concern has con-
veniently been ignored so far, namely, how to choose a kernel function and the hyperparameters
(e.g., λ in RLS or σn in GPR). The kernel function can be interpreted as a similarity measure of the
samples and its appropriate choice depends therefore strongly on the problem domain. Similarly,
hyperparameters are used to incorporate prior beliefs regarding what constitutes an appropriate
solution. For instance, the λ parameter in RLS regulates the desired level of smoothness of the
solution and its misspecification may lead to severe underfitting or overfitting. Consequently, the
generalization performance depends critically on our choice of kernel function and hyperparame-
ters.

2.6.1 Selecting the Kernel

A key property of KMs is that linear algorithms are performed in an implicit feature space. The
underlying assumption is that the problem is actually linear in the feature space induced by the
kernel. For this assumption to hold, it is necessary to select an appropriate kernel for the learning
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problem under consideration. Although this may seem as a daunting task, there are particular
kernels that have been shown to perform well on a wide variety of practical learning problems.
The two most commonly used families of kernels are polynomial and RBF kernels. The former,
(inhomogeneous) polynomial kernels, are of the form

k(xi,xj) = (R+ 〈xi,xj〉)d , (2.17)

for R ≥ 0 and degree d ∈ N+. The corresponding feature space is finite dimensional and con-
sists of all monomials up to the d-th degree, weighted according to a function of the constant R
(cf. Equation (4.1)). The special case R = 0 and d = 1 is referred to as the linear kernel and
corresponds to the inner product of the samples in the original input space. Clearly, increasing the
degree d also increases the capacity of the underlying learning method and may therefore result in
overfitting.

The class of RBF kernels is probably the most widely used in machine learning literature. Kernels
belonging to this family take the Gaussian form

k(xi,xj) = e−γ‖xi−xj‖
2

, (2.18)

where γ > 0 controls the bandwidth and thus the sensitivity of the similarity measure. A large
value of γ results in a diagonal kernel matrix and causes therefore severe overfitting. Conversely,
small values of γ reduce the capacity of the underlying learning method, which will therefore not
be able to fit the data. It can be shown that the RBF kernel corresponds to an infinite dimensional
feature space (Schölkopf and Smola, 2001). Both polynomial and RBF types of kernels yield
universal approximators; any training set can be learned without error (assuming noise-less obser-
vations), given sufficiently large degree or sufficiently small kernel width. Note, however, that this
should not be confused with these kernels being universally optimal.

The RBF kernel in Equation (2.18) is isotropic and assigns an equal weight to all n input dimen-
sions. In practical settings, it is therefore often necessary to scale the input dimensions to reflect
the relative importance of the input features. This preprocessing step can be integrated in the
definition of the kernel to form an anisotropic RBF kernel, such that

k(xi,xj) = e−
1
2
(xi−xj)TM(xi−xj) , (2.19)

where M is typically an n × n diagonal matrix with Mii = `−2i and `i > 0 for 1 ≤ i ≤ n.
The vector of characteristic length scales ` describe both the overall bandwidth and the relative
importance of each input dimension, and may even be used to cancel out irrelevant dimensions
(i.e., `i → ∞). Optimization of these length scales therefore constitutes a form of Automatic
Relevance Detection (ARD) (MacKay, 1995). Unfortunately, a consequence is that the number of
kernel parameters increases from 1 to n. Within the GPR framework this kernel is also known as
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the Asymmetric Squared Exponential (ASE) covariance function and written as7

k(xi,xj) = σ2f e
− 1

2
(xi−xj)TM(xi−xj) . (2.20)

The additional factor σf denotes the signal variance (or amplitude), such that the signal to noise
ratio is given by σf

σn
. This ratio corresponds is functionally identical to the regularization parameter

λ in RLS. Considering both noise terms separately, however, is relevant in GPR for the variance
estimation.

An interesting corollary of the characterization of kernel functions in Section 2.3.1 is that certain
operations can be shown to preserve admissibility (i.e., positive semidefiniteness). For instance,
this holds for linear combinations as well as products of kernels (Shawe-Taylor and Cristianini,
2004). In other words, these operations manipulate and combine simple kernels to obtain more
complex and (hopefully) better fitting composite kernels. Recently, this had led to an increas-
ing interest in so-called Multi Kernel Learning (MKL) (Lanckriet et al., 2004; Sonnenburg et al.,
2006; Gijsberts et al., 2010a; Orabona et al., 2010). Moreover, kernel functions need not be re-
stricted to vectorial inputs and special kernels have been designed for diverse objects and structures
(Shawe-Taylor and Cristianini, 2004). Examples thereof include string kernels for text classifica-
tion (Joachims, 1998; Lodhi et al., 2002) or DNA barcoding (Sonnenburg et al., 2007), graph
kernels for drug discovery or web data mining (Vishwanathan et al., 2010), and even kernels mod-
eling the response of the visual cortex (Smale et al., 2010).

2.6.2 Hyperparameter Optimization

Complementary to the kernel function, hyperparameters pose an important mechanism to include
prior knowledge of the problem domain in the learning algorithm. Examples of these hyperpa-
rameters include the regularization parameter λ and the kernel parameters (e.g., the bandwidth
γ). Optimization of these parameters is commonly known as model selection or simply hyperpa-
rameter optimization. Unfortunately, while most learning algorithms are specifically formulated
to result in a convex optimization problem, the hyperparameter optimization problem is typically
non-convex and characterized by multiple local minima.

The most common approach to hyperparameter optimization is to empirically evaluate the per-
formance of a predefined number of configurations using cross validation. In cross validation,
an independent subset of the observations is used to estimate the expected risk of a model. A
particularly common combination is to discretize hyperparameters on a grid and to estimate the
performance using 10-fold cross validation. However, this strategy is likely to be suboptimal,
since the discretization is often coarse due to computational limitations. Furthermore, optimizing
the parameters of a larger number of hyperparameters (e.g., an anisotropic RBF kernel with n

7Commonly in GPR literature, the noise variance is described as part of the kernel using an additional σ2
nδij term,

with δij being Kronecker’s delta. It is omitted here for coherency with the overall treatment of KMs.
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parameters) is computationally infeasible, since grid search scales exponentially with the number
of hyperparameters. Several approaches have been proposed to alleviate this problem to a cer-
tain extent. These include gradient based optimization schemes (Cristianini et al., 1999; Chapelle
et al., 2002; Keerthi et al., 2007), which require the kernel function and performance validation
measure to be differentiable. More generic is the application of optimization methods that do not
require gradients, such as Pattern Search (Momma and Bennett, 2002), Evolutionary Algorithms
(Friedrichs and Igel, 2004; Lessmann et al., 2006; Gijsberts et al., 2010a), or Particle Swarm Op-
timization (Escalante et al., 2009).

2.6.3 Marginal Likelihood Optimization

The approaches explained thus far attempt to minimize an estimate of the generalization error.
Bayesian methods offer an alternative approach, as these allow to describe the relationship be-
tween the observations in the hyperparameters in probabilistic terms. Following a full Bayesian
treatment, one should place a prior on the hyperparameters and integrate them out, or

p(y|X) =

∫
p(y|X,θ)p(θ) dθ , (2.21)

where θ is a vector containing the hyperparameters and p(θ) is appropriately referred to as a
hyperprior. Evaluation of the integral in Equation (2.21), however, is often found to be intractable
in practice (Bishop, 2006; Rasmussen and Williams, 2005). As an approximation, we may discard
the hyperprior and instead optimize the marginal likelihood

p(y|X,θ) =

∫
p(y|X,w)p(w|θ) dw ,

also known as the evidence. This approximation for second level inference8 is known as evidence
approximation (MacKay, 1992), empirical Bayes, or type II maximum likelihood (see Bishop,
2006, and references therein). For regression problems, this likelihood is given by

p(y|X,θ) = N
(
y|0,XΣpX

T + σ2nI
)
,

where we recognize that XΣpX
T is in fact the kernel matrix K for the linear kernel (cf. Equa-

tion (2.15)). It follows that we can equivalently write

p(y|X,θ) = N
(
y|0,K + σ2nI

)
.

Model selection in this Bayesian framework therefore equates to finding the hyperparameter con-
figuration that maximizes the marginal likelihood. For practical reasons, however, it is more con-

8In this naming scheme, optimization of the weight vector w or kernel coefficients α is referred to as first level
inference.



26 CHAPTER 2. MACHINE LEARNING AND KERNEL METHODS

venient to minimize the negative log marginal likelihood. The optimization problem thus becomes

arg min
θ

1

2
K̃−1y +

1

2
ln det K̃ +

m

2
ln 2π , (2.22)

where K̃ =
(
K + σ2nI

)
. The corresponding partial derivatives with respect to each hyperparam-

eter θ is given by

− ∂

∂θ
ln p(y|X,θ) = −1

2
tr

((
ααT − K̃−1

) ∂K̃
∂θ

)
,

where α = K̃−1y. The resulting minimization problem can be optimized using standard gradient
based optimization routines, although the optimization problem is not convex and different starting
points may lead to different local optima. Nonetheless, a practical advantage of evidence based
hyperparameter optimization is that is scales well with the number of hyperparameters, as opposed
to grid search. Furthermore, the marginal likelihood automatically incorporates a tradeoff between
model fit and model complexity (Rasmussen and Williams, 2005; MacKay, 1999). This can be
observed in Equation (2.22), where the first term measures data fit and the second term penalizes
model complexity. Consequently, the risk of overfitting (or underfitting) is relatively low.

2.7 Example: Learning Inverse Dynamics

The popularity of KMs can be explained by their solid theoretical foundation and excellent per-
formance on many practical problems. These include applications in fields as diverse as computer
vision (e.g., Comaniciu et al., 2003; Lampert, 2009), bio-informatics (e.g., Saigo et al., 2004;
Schölkopf et al., 2004), text categorization (e.g., Joachims, 1998; Silva and Ribeiro, 2009), and
robotics (e.g., Rani et al., 2006; Nguyen-Tuong et al., 2008b; Gijsberts et al., 2010b). In this sec-
tion, a comparison with other methods on the problem of modeling manipulator dynamics (i.e., a
regression problem) demonstrates that kernel-based methods can indeed result in significant per-
formance gains.

As explained previously in Section 1.1.1, modeling inverse dynamics is relevant for a number of
tasks, such as compliant robot control, zero gravity control, and contact detection. The dynamics
can often be described using an analytical model of the Rigid Body Dynamics (RBD), assuming
that both kinematic and dynamic parameters are known or identifiable with high accuracy. How-
ever, the accuracy of these analytical models is limited in practice by potential non-linear effects
that are not explicitly taking into account in the model. Supervised machine learning approaches
constitute a viable alternative to analytical modeling, as these attempt to learn all dependencies
that are present in the observations. Fumagalli et al. compare an analytical RBD model with two
learning methods, namely LSSVM and a feedforward ANN (Haykin, 1994; Hagan and Menhaj,
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Figure 2.2: Test error with respect to the number of training samples for LSSVM, ANN, and RBD when
predicting the internal dynamics of James.

1994), for the estimation of internal forces and torques in the arm of the humanoid robot James9

(cf. Section 1.1).

A large dataset was collected from the robot and subsequently randomly subsampled in training,
validation, and test sets. Figure 2.2 demonstrates the test error when varying the number of training
samples. As can be seen clearly, the analytical model does not benefit from an increased number
of samples. The explanation is that this model uses observations exclusively for parameter iden-
tification. The data-driven learning methods, on the other hand, improve drastically when more
observations are available. LSSVM in particular shows superior performance and outperforms the
analytical model even when trained on less than 100 samples. The ANN method requires much
more training samples to attain performance similar to LSSVM, although both methods eventually
converge to similar performance given a sufficient amount of training samples (cf. 5000 training
samples).

2.8 Machine Learning for Robotics

The successful application of LSSVM in the previous section marks the benefits of learning ap-
proaches with respect to analytical models. This is an interesting result, as one might expect that
analytical models describe the underlying model perfectly and should therefore always be supe-
rior. However, a problem that should not be underestimated is that these models are idealized. For
example, let us consider the RBD model from the previous section, which describes the forces
and torques given a manipulator configuration described in terms of joint angles, positions, and
velocities. This analytical model assumes the following:

• absence of friction, backlash, and deformability;

9Section 5.3 contains a more detailed description of this learning problem.
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• perfect identification of kinematic and dynamic parameters;

• noise-free and perfectly synchronized sensor and encoder measurements.

Unfortunately, these assumptions are often found to be overly optimistic in modern complex
robots. Although the individual impact of violating any of the assumptions may be limited, the
combination of violating multiple assumptions will result in significant deviations between the ide-
alized and observed response. Supervised learning methods are much less susceptible to this type
of errors, as they construct a model based on actual observations of the underlying phenomenon
rather than an idealized abstraction thereof.

Learning methods are usually easy to employ on practical problems and only require limited prior
knowledge as compared to analytical models. Nonetheless, the methods as described in this chap-
ter are not appropriate for the robotics paradigm as outlined in Chapter 1. In that section, the
approach to robot learning was specified as incremental (or sequential) in nature and possibly
open-ended. Conversely, the KMs in this chapter are so-called batch learning methods, which
train on the entire set of observations in a single pass. The trained model can subsequently be used
to predict the output values for unlabeled observations. In other words, training and testing are
therefore distinct phases in the batch learning paradigm. Incorporating additional observations to
a trained model requires retraining a model on both previous and new observations, and is therefore
computationally prohibitive.

Moreover, a consequence of the kernel trick is that the solution is described as a linear combination
of kernel evaluations with respect to (a subset of) the training data (i.e., the kernel expansion).
The size of the solution is thus directly related to the number of training observations. Even for
SVM, which is explicitly formulated to produce sparse solutions, it can be shown that the size
of the kernel expansion is bounded from below by a linear function in the size of the training set
(Steinwart, 2003). Increasing prediction times as more training data becomes available effectively
rules out the possibility of open-ended learning, which requires both the temporal and spatial
complexity of each learning step to be constant10 (i.e., O(1)).

A last remark regards typical assumptions in learning theory on the observations, such as i.i.d. or
Gaussianity assumptions. In effect, also these assumptions are often violated in realistic applica-
tions and this is particularly evident in domains that are grounded in the physical world. Successive
observations in many robotic problems (e.g., the earlier dynamics problem) are inherently depen-
dent and possibly non-stationary. The problem of generalization in this difficult non-i.i.d. setting
is unfortunately still an open research question in machine learning. Nonetheless, there are recent
theoretical results that prove that generalization is possible if the i.i.d. assumption is weakened
(e.g., Pan and Xiao, 2009). Not surprisingly, these results indicate that dependent observations
contain less information than i.i.d. observations. Intuitively, it seems therefore a reasonable ap-
proach to (1) use the maximum amount of training data to deal with dependence and (2) use the

10If not, the problem will become computationally intractable at some point.
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most recent data available to react to non-stationarity of the distribution11. In other words, this
argument is in favor of incremental learning approaches that incorporate all available information
and adapt continuously to react to potential changes.

11It is implicitly assumed that distribution changes are either gradual or infrequent.
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The previous chapter identified two primary obstacles for applying standard kernel methods in the
considered robotics paradigm, namely (1) a linear increase of the prediction time with respect to
the number of training samples and (2) the inability to incrementally update a solution as new
observations become available. Multiple approaches have been proposed that target either one or
both of these problems. Regarding the linear increase of the kernel expansion, a common strategy
is to replace the kernel matrix with a reduced rank approximation. As a result, the kernel expansion
is described in terms of a sparse subset of the training samples.

Incrementally updating a solution on arrival of new observations is related to reducing the com-
plexity of kernel methods (KMs), as both techniques are typically required to scale these methods
to problems that are too large to solve in a single batch. Another justification for incremental up-
dating is given by problems in which the data arrives sequentially by nature, which are common in
(developmental) robotics. Although the term “incremental” is preferred in this thesis, similar con-
cepts are known under various terms in other fields, such as stream learning (in data mining, e.g.,
Gaber et al., 2005), recursive updates (in adaptive filtering, e.g., Sayed, 2008), or simply online
learning (e.g., Kivinen et al., 2004).

In this chapter, an overview is given of related work in overcoming these two obstacles. Various
techniques to limit the kernel expansion are explained in Section 3.1, after which approaches to
incremental updates of KMs follow in Section 3.2. This latter section includes online algorithms
that are developed in the regret minimization framework. Finally, a number of incremental regres-
sion algorithms that have been targeted particularly for use within the field of robotics is presented
in Section 3.3.



32 CHAPTER 3. RELATED WORK

3.1 Limiting the Kernel Expansion

The solution in KMs is described in terms of a weighted summation of kernel evaluations with
respect to the training data. An obvious approach to reduce this linear complexity is to limit the
expansion to only a subset of the training samples. In this strategy, a main concern is the appro-
priate selection of this subset, referred to as the active set or support set, such that the impact on
the prediction function is minimal. Different criteria can be used to this extent, such as removing
samples corresponding to near-zero coefficients (Suykens et al., 2002a) or taking unbiased random
subsamples (Lee and Mangasarian, 2001). Alternatively, Downs et al. (2002) propose to project
linear dependent samples onto each other in order to sparsify the solution of a Support Vector
Machine (SVM) without loss of accuracy. Their argument is that linear dependent samples can be
described completely in terms of the remaining samples and can therefore safely be omitted from
the kernel expansion. To verify whether a new input sample x is linearly dependent with respect
to the original m samples, we can write1

‖δ‖2 = min
d

∥∥∥∥∥
m∑
i=1

diφ(xi)− φ(x)

∥∥∥∥∥
2

(3.1)

= min
d

 m∑
i,j=1

didjk(xi,xj)− 2
m∑
i=1

dik(xi,x) + k(x,x)

 ≤ ν ,

where ν regulates the desired approximation accuracy. The optimal coefficients d can subse-
quently be used to project the sample on the remaining training samples. In case of exact linear
dependence (ν = 0), the sparse solution produces identical results with respect to the original
kernel expansion, while approximate linear dependence (ν > 0) induces more sparsity at the cost
of accuracy. Nonetheless, these reduction methods require a full solution to be computed first and
therefore aim to reduce prediction time while increasing training time.

In most situations it is desirable to reduce the training complexity as well, to allow KMs to scale
to large datasets. A key concept in KMs is that training samples enter the algorithm only through
their entries in the kernel matrix. The strategy in most reduction approaches is therefore to target
the kernel matrix K directly and replace it with a low-rank approximation. This approximation
generally takes the form

K̃ = GGT ≈K ,

or similarly

K̃ = GWGT ≈K ,

1There are more efficient procedures to verify linear dependence within the entire training set at once.
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where G is a rectangular m × l matrix, W is a square l × l matrix, and l < m indicates the
reduced rank. The optimal solution and the prediction function can subsequently be described
more efficiently in terms of vector and matrix products with G and W , rather than using the full
rank matrix K. Note that in this formulation all samples are used during training, although only
a subset of them is used to describe the solution. Several techniques have been used to implement
these low-rank decompositions (Quiñonero-Candela and Rasmussen, 2005), such as the Nyström
method (Williams and Seeger, 2001; Zhang et al., 2008), randomized singular value decomposi-
tion (Drineas and Mahoney, 2005), or incomplete Cholesky decomposition (Fine and Scheinberg,
2002; Bach and Jordan, 2005). Furthermore, there are various strategies to select the active set of l
samples, such as unbiased uniform sampling (Williams and Seeger, 2001), greedy posterior max-
imization (Smola and Bartlett, 2001), maximum information gain (Seeger et al., 2003), matching
pursuit (Keerthi et al., 2006), or using likelihood optimization in Bayesian frameworks (Titsias,
2009). Interestingly, Snelson and Ghahramani (2006) lift the typical restriction that the active set
is a subset of the training samples and allow for so-called pseudo-inputs to be optimized. The
time and space complexity for training low-rank approximations is typically O

(
ml2

)
and O(ml),

respectively, such that significant gains can be expected if l� m.

The Core Vector Machine follows an entirely different approach, as it approximates an SVM by re-
ducing it to a minimum enclosing ball problem in feature space (Tsang et al., 2005a, 2006, 2005b,
2007). Subsequently, an efficient algorithm is employed to find a (1 + ε)-approximation2 for the
latter problem (Bădoiu and Clarkson, 2008), which by virtue of the reduction translates to an ap-
proximate solution for the SVM problem. Similar to the previous approaches, the time complexity
of this algorithm is linear in the number of training samples. More interestingly, however, is that
the size of the kernel expansion only depends on the desired accuracy ε and not on the number of
training samples.

3.2 Incremental Methods

The strategies to reduce the kernel expansion described in the previous section require all samples
to be available during training. Furthermore, once an optimal solution is obtained, it cannot readily
be extended with additional training samples. Several strategies have been proposed to update
solutions incrementally without the need to completely retrain the model. These methods can
roughly be subdivided in three primary categories. The first category of incremental procedures
performs an exact update routine to obtain the batch solution after adding (or removing) a training
sample (e.g., Cauwenberghs and Poggio, 2001; Martin, 2002; Ma et al., 2003; Liang and Li, 2009).
Not surprisingly, the size of the resulting kernel expansion is identical to the batch solution and the
time complexity for each update is O

(
m2
)
. The advantage of these procedures is that the exact

2The radius of the approximate solution to the minimum enclosing ball problem is guaranteed to be (1 + ε) times
the true optimal radius; ε > 0 is typically chosen very small (e.g., 1 · 10−6).
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batch solution is obtained after each individual update. However, these procedures are not suitable
for large scale problems due to high computational requirements.

In the second category of algorithms this high update complexity is alleviated by computing ap-
proximate updates. A popular algorithm in this class is LASVM (Bordes et al., 2005), which
is closely related to the Sequential Minimal Optimization procedure for batch training of SVMs
(Platt, 1999). At each iteration, the algorithms seeks to add and remove samples from the active
set by optimizing the coefficients of a pair of samples. First, the “process” subroutine attempts to
insert an input sample in the kernel expansion using a direction search. This subroutine therefore
involves at least one input sample that is currently not in the active set, which is typically the newly
arrived sample in an online setting. The subsequent “reprocess” subroutine selects again a pair of
inputs samples and potentially eliminates these from the active set by verifying if their weight co-
efficients can be set to zero. Although the solution is not identical to the SVM solution at each time
step, it can be shown that LASVM converges to the SVM solution in the limit. Empirical results
suggest that competitive performance can be achieved after only a single pass over the training
data (Bordes et al., 2005), though this requires the samples to arrive in randomized order.

The size of the kernel expansion in LASVM scales linearly with the number of training sam-
ples, despite regular removal of samples from the active set. This problem can be alleviated by
projecting approximate linear dependent samples onto each other, as described in Equation (3.1).
In Sparse Online Greedy ε-insensitive Support Vector Regression (ε-SVR) (Engel et al., 2002),
this measure is used in the context of an approximate SVM for regression (Vijayakumar and Wu,
1999), while Kernel Recursive Least Squares uses the same technique to incrementally compute a
kernel-based least squares solution with restricted kernel expansion (Engel et al., 2004). A simi-
lar method is used in a Bayesian context by Csató and Opper (2002) to formulate Sparse Online
Gaussian Process Regression, although in this method the linear dependence measure is subse-
quently multiplied with a likelihood-dependent term for the sample. Assuming a compact input
space X , it can be proved that the approximate linear dependence condition with ν > 0 leads to
a bounded kernel expansion (e.g., Engel et al., 2004). However, its exact size (and therefore com-
putational requirements) are data-dependent and cannot be computed a priori. Csató and Opper
(2002) therefore impose a strict upper bound on the size of the kernel expansion; once this limit
is reached, a sample is forcefully projected on the remaining samples. Ranganathan and Yang
(2008), on the other hand, propose Online Sparse3 Gaussian Process Regression, in which the
computational complexity is constrained by sparse matrix calculations and by removing the oldest
sample once a predefined budget has been reached. Regardless, all these methods combine the
desirable properties of incremental processing of incoming training samples and a bounded kernel
expansion.

3Note the different ordering of “sparse” and “online”.
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3.2.1 Online Learning with Regret Minimization

The third and last category consists of online algorithms developed in the regret minimization
framework (Littlestone, 1988; Vovk et al., 2005; Cesa-Bianchi and Lugosi, 2006). This framework
considers an online learning scenario, in which the learning method adapts its hypothesis (i.e., the
prediction function) at each time step. Given an initial hypothesis f0 in some function space F ,
the following steps are performed for 1 ≤ t ≤ T :

1. the environment presents an input sample xt;

2. the learner responds with ŷt = ft−1(xt);

3. the environment presents the corresponding output yt;

4. the learner incurs a loss L(yt, ŷt) and updates its hypothesis accordingly to ft.

Note that there are no restrictions on the distribution of the data. This paradigm is explained as
competing with a set of experts, which is typically chosen as the set of all possible functions in F .
The goal of a learning algorithm is to produce a sequence of functions f1, . . . , fT that minimizes
the cumulative regret with respect to the best expert (i.e., the best fixed hypothesis) in retrospect.
The cumulative regret can thus be defined as

RT =
T∑
t=1

L(yt, ft(xt))−min
f∈F

T∑
t=1

L(yt, f(xt)) ,

which is the difference between the cumulative loss of the learning algorithm and the cumulative
loss of the optimal fixed prediction function. This difference captures how much better the learning
algorithms could have performed if it would have followed the advice of the best expert, therefore
explaining the terminology “regret”. Intuitively, regret minimization seems closely related to risk
minimization as described in Section 2.1. Under certain conditions, the cumulative regret can
indeed be linked with generalization performance in terms of expected risk (Littlestone, 1989;
Cesa-Bianchi et al., 2004; Zhang, 2005; Cesa-Bianchi and Gentile, 2008; Kakade and Tewari,
2009). One might expect that the final prediction function fT (i.e., the one that depends on the
entire sequence of T samples) is also the one that optimizes the risk. However, this is often not the
case and so-called “online-to-batch” conversions are required to convert the sequence f1, . . . , fT
into a single prediction function f with low risk. An intuitive explanation is that the sequence of
hypotheses produced by the algorithm depends on the data and is therefore subject to variance. A
typical online-to-batch conversion in case of independent and identically distributed (i.i.d.) sam-
pling it therefore to return the average hypothesis f̄ (Cesa-Bianchi and Gentile, 2008).
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Various online4 learning methods have been proposed and analyzed within the regret minimization
framework. A significant part of these algorithms are closely related to the original perceptron al-
gorithm and its kernel-based variant (Rosenblatt, 1958; Freund and Schapire, 1999). Inspired by
SVM, a typical modification of the perceptron is to enforce a large margin (Shalev-Shwartz and
Singer, 2005; Crammer et al., 2006). The problem of an increasing kernel expansion is prominent
in this type of algorithms, as each update usually involves adding a sample to the active set. Sev-
eral variants have therefore been proposed to limit the size of the kernel expansion, for instance by
removing a sample at random (Cavallanti et al., 2007), removing the oldest sample in the active
set (Dekel et al., 2008; Kivinen et al., 2004), or by projecting samples using approximate linear
dependence (Orabona et al., 2009). Another approach is to remove the sample that remains rec-
ognized with the largest margin (Crammer et al., 2004). This margin can be viewed as an indirect
estimate of the impact of the removal on the overall performance of the hyperplane. Instead, one
might also opt to remove the sample that results in the least increase in misclassification rate of (a
subset of) the samples seen thus far (Weston et al., 2005).

A number of regret minimization algorithms are directly derived from batch methods (e.g., SVM)
and perform a stochastic optimization step of the corresponding objective function for each new
sample (Kivinen et al., 2004; Smale and Yao, 2006; Vishwanathan et al., 2006). For example,
the NORMA algorithm optimizes a regularized KM with convex loss function using stochastic
gradient descent (for details, see Kivinen et al., 2004). Each update consists of adding the sample
to the kernel expansion with an appropriate coefficient, such that at time step t

Xt :=

[
XT
t−1
xT
t

]
and αt :=

[
(1− ηtλ)αt−1

−ηt∂L(yt, f(xt))

]
,

where η < 1
λ is the learning rate. Like many other online learning algorithms, these update rules

are easy to implement and extremely efficient. Given i.i.d. sampling, it can be shown that this
method converges to the batch solution in the limit. However, the convergence rate is strongly
dependent on the i.i.d. assumption; violation of this assumption will result in considerably slower
convergence, if at all.

A final note is that regret minimization algorithms are presented in this section as being distinct
from other incremental algorithms. However, this distinction is foremost based on whether the
algorithm has been proposed and analyzed primarily within the regret minimization or risk min-
imization framework. These frameworks are not mutually exclusive and algorithms can be ana-
lyzed within both frameworks. A primary example of such an algorithm is Kernel Regularized
Least Squares (KRLS) (and therefore also Regularized Least Squares (RLS)), which has been
studied in either framework. More detailed treatment of these results will follow in Section 4.4.

4Online learning has become synonymous with learning in the regret minimization framework. To avoid confusion,
the term “online” will therefore strictly refer to algorithms developed and analyzed within this framework, while the
term “incremental” will be used in a more broad sense for algorithms that learn one sample at a time.
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3.3 Methods Proposed for Robotics

The importance of incremental and computationally efficient regression methods has been ac-
knowledged early on in the robotics community. In effect, this has led to the development of a
number of methods targeted specifically for use in this application domain. One of the first meth-
ods that gained widespread acceptance is Receptive Field Weighted Regression (RFWR) proposed
by Schaal and Atkeson (1998). RFWR is an incremental Locally Weighted Regression (LWR)
variant, in which the function under consideration is approximated by piecewise linear models.
The predicted output is then given by a weighted summation of the individual contributions of
these local models (i.e., the receptive fields), much like in the mixture of experts approach (e.g.,
Jacobs et al., 1991). For K receptive fields, the prediction function is written as

f(x) =
1

Z

K∑
i=1

ai(x)fi(x) ,

where Z is a normalization factor defined as Z =
∑K

i=1 ai(x) and ai(x) indicates the level of
activation of the i-th receptive field with respect to an input x. Typically, ai(x) is chosen such
that each receptive field is active only within a localized region of the input space. The canonical
example of an activation function that implements this localization is the Radial Base Function
(RBF) given by

ai(x) = e−
1
2
(x−ci)TDi(x−ci) ,

where ci is the center of the receptive field andDi is a positive definite distance matrix. The local
prediction functions fi, on the other hand, are simple linear regression models

fi(x) = wT
i (x− ci) + bi ,

where wi are the linear weight coefficients and bi is a bias term. Each receptive field is thus es-
sentially described by a center ci, a distance matrix Di, and the model parameters wi and bi. An
example of receptive fields with diagonal distance matrices covering a 2-dimensional input space
is demonstrated in Figure 3.1. In the incremental paradigm, an incoming sample is assigned to the
receptive field with maximum activation, which then uses the sample to update its local model.
Once a receptive field has seen enough inputs, its distance matrix D is optimized using an incre-
mental gradient descent based on stochastic leave-one-out cross validation (for details, see Schaal
and Atkeson, 1998; Vijayakumar et al., 2005). Conversely, new receptive fields are allocated as
needed if existing receptive fields are not activated sufficiently, as determined using a minimum
activation threshold agen. The number of receptive fields that will be allocated therefore depends
on this threshold, the input space X , and the complexity of the function (through adaptations to
the distance matrices Di). Furthermore, it follows from the well-known curse of dimensionality
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Figure 3.1: Example of receptive fields in RFWR and LWPR on the Cross 2D dataset (cf. Section 5.1).

that the number of receptive fields scales exponentially with the input dimensionality (Duda et al.,
2001). This exponential increase is alleviated to some extent in Locally Weighted Projection Re-
gression (LWPR) (Vijayakumar et al., 2005), which uses Partial Least Squares in the local models
to reduce the impact of redundant and irrelevant input dimensions (Wold et al., 2001). This im-
provement has led LWPR to gain significant popularity for use in incremental robotics learning
problems. Since LWPR can be considered a generalization of RFWR, references to LWPR in the
following will refer implicitly both to LWPR and RFWR.

At this point it is important to stress the fundamental difference between LWPR and KMs: the latter
methods perform global linear regression in an implicit high-dimensional feature space, whereas
the former method combines individual linear regression models that operate within a (small)
region of the original input space. An intrinsic property of LWPR is that learning takes place at
two levels, namely (1) finding an appropriate structuring of the input space and (2) fitting linear
models to each subspace. This interplay between both levels of learning is governed using a
large number of hyperparameters, among which the initial distance matrix, the initial learning rate
and meta learning rate, activation thresholds for receptive field creation and pruning, a projection
threshold for PLS, and a penalty term preventing infinite shrinkage of the receptive fields.

LWPR can achieve similar generalization performance as KMs in ideal conditions, although this
requires considerable efforts tuning a large number of hyperparameters. Furthermore, it typically
needs a large number of training samples to achieve this performance. In most empirical valida-
tions, the performance therefore lacks behind methods such as Gaussian Process Regression (GPR)
and ε-SVR, while requiring more involvement on part of the practitioner. Nguyen-Tuong et al.
(2009) propose Local Gaussian Processes (LGP) in an attempt to improve the accuracy of LWPR
by replacing the linear models with GPR models. Fewer receptive fields are necessary in this ap-
proach, as GPR models are more complex than linear models and can therefore accurately model a
larger region of the input space. A nearly identical approach has been proposed by Schneider and
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Ertel (2010), the primary difference being that they employ a variant of GPR with a heteroskedas-
tic noise model (Kersting et al., 2007). Nonetheless, the performance of both approaches is still
inferior with respect to a global GPR and the only advantage is a reduction in computational re-
quirements.

Several other approaches have been proposed for incremental learning in robotics, among which
Sparse Incremental ε-SVR and Sparse Incremental GPR (Nguyen-Tuong and Peters, 2010, 2011,
respectively). Both methods are incremental KMs with a bounded kernel expansion due to approx-
imate linear dependence projection and an additional fixed budget constraint. Aside from minor
differences, these two methods can be considered identical to respectively Sparse Online Greedy
ε-SVR and Sparse Online GPR (cf. Section 3.2). Furthermore, Cederborg et al. (2010) propose to
use a Gaussian Mixture Model (GMM) (Ghahramani and Jordan, 1994) applied within the LWR
framework. In this method, predictions are obtained by training a GMM on a small number of
training samples in the vicinity of the test sample.

Surprisingly for methods that are proposed for incremental and real-time learning, the computa-
tional complexity in all these methods is described in subjective terms (e.g., “efficient”) rather than
formal terms (e.g., asymptotic complexity or an explicit upper bound). It is important to realize
that localization does not necessarily decrease complexity, as the problem of an increasing kernel
expansion is essentially identical to an increasing number of local models. Although this increase
can be bounded in the latter case using adequate measures (e.g., agen < 1 andD > 0), in practice
it may still cause computational intractability in case of a large number of samples. Furthermore,
there is little theoretical justification for these methods and there are no known generalization or
regret bounds.





ALGORITHM 4
The previous chapter identified a number of incremental kernel methods (KMs) that satisfy the
requirement of a bounded time and space complexity. The common aspect of most of these meth-
ods is that growth of the kernel expansion is restricted using an additional sparsification procedure
on top of a standard incremental KM. Typically, this procedure introduces a significant computa-
tional overhead and additional hyperparameters that may not be trivial to tune (e.g., the measure
of linear dependence ν). Furthermore, in many of these methods (including Locally Weighted
Projection Regression (LWPR)) it is difficult to exactly quantify the computational cost a priori,
which is inconvenient when employed in a strict real-time environment. This can be circumvented
by imposing a fixed budget for the kernel expansion, though this requires an additional selection
procedure to explicitly remove training data.

In this chapter, an alternative algorithm is proposed that attempts to avoid these drawbacks. The
crucial realization is that the kernel trick and the representer theorem are at the core of the prob-
lem. As noted by Shawe-Taylor and Cristianini (2004), a key property that is required of a kernel
function for an application is that its evaluation should require significantly less computation than
would be needed for explicit evaluation of the corresponding feature mapping. This is unlikely in
case of a large or potentially infinite number of training samples. It is therefore computationally
advantageous to avoid the kernel machinery and its consequences by performing the feature map-
ping explicitly. Unfortunately, for some kernels (e.g., the Radial Base Function (RBF) kernel) this
feature mapping is infinite dimensional and therefore computationally intractable.

Rahimi and Recht (2008a) demonstrate many kernel functions can be approximated to any arbi-
trary accuracy using a finite dimensional random feature mapping. Though this technique has
originally been proposed for large scale batch learning, it can be applied with any given KM.
The contribution of this thesis is to combine this kernel approximation with incremental variants
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of Regularized Least Squares (RLS) and Gaussian Process Regression (GPR). The advantages
of these particular base learning algorithms are (1) the availability of exact update routines with
constant time and space complexity, (2) a solid theoretical and empirical foundation, and (3) ease
of implementation and use. The latter argument holds in particular for GPR, since it provides a
predictive variance and hyperparameters can be tuned automatically using log marginal likelihood
optimization.

A treatment of the random finite dimensional approximation of kernels is given in Section 4.1,
which presents the technique in the perspective of RLS. Section 4.2 continues along this line
and applies the kernel approximation within a Bayesian framework in the form of GPR. The
incremental variants of both algorithms are subsequently discussed in Section 4.3, after which this
chapter is concluded with an in-depth discussion of the overall method in Section 4.4.

4.1 Approximating Kernels using Random Features

As mentioned, the kernel expansion is only strictly necessary in absence of a finite dimensional
representation of the feature space of a given kernel. If such a representation exists, however, it
can be advantageous to avoid the kernel machinery by explicitly mapping the samples in this finite
dimensional feature space. An example is the polynomial kernel from Equation (2.17), which
corresponds to a finite dimensional vector containing all possible monomials up to a given degree
(Shawe-Taylor and Cristianini, 2004). The exact formulation of this feature mapping is

k(xi,xj) = (R+ 〈xi,xj〉)d (4.1)

=
d∑
s=0

(
d

s

)
Rd−s 〈xi,xj〉s ∈ R(n+dd ) .

This mapping becomes computationally infeasible when either the degree d or the original input
dimensionality n is moderately large. Regardless, considerable gains can be made in application
domains where the number of samples exceeds the dimensionality of the mapping. Consider
for instance open-ended learning problems of relatively low dimensionality (e.g., learning robot
dynamics or kinematics).

Explicit computation of the feature mapping for the RBF kernel is intractable, since the corre-
sponding feature space is infinite dimensional. However, Rahimi and Recht (2008a) demonstrate
that the RBF kernel (and other shift invariant kernels) can be approximated to an arbitrary precision
using a finite dimensional random feature mapping. Their approach utilizes Bochner’s theorem,
which relates positive definite functions, among which admissible kernels functions, to Fourier
transforms using a finite Borel measure:

Theorem 4.1 (Bochner, 1933). A function k on Rd is the Fourier transform of a finite positive
Borel measure µ if and only if it is positive definite and continuous.
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The relevance of Bochner’s theorem has been acknowledged in the context of Regularization Net-
works (RNs) as early as Girosi et al. (1993), and this work has subsequently been extended to the
kernel framework by Smola et al. (1998). In short, this theorem states that shift-invariant kernel
functions k(xi,xj) = k(xi − xj) can be described as the Fourier transform of a unique measure
µ. Consequently, if µ is a proper probability density function1, then the kernel can be estimated
by randomly sampling features according to µ (e.g., Shawe-Taylor and Cristianini, 2004, Chap-
ter 9.7). Combining both these techniques, we can write

k(xi − xj) =

∫
Rd
e−iω

T(xi−xj)µ(ω) dω

= Eω
[
e−iω

T(xi−xj)
]

iff
∫
µ(ω) dω = 1

= Eω
[
cos
(
ωT (xi − xj)

)]
as k(·), µ(ω) ∈ Rd

= Eω
[
cos
(
ωTxi

)
cos
(
ωTxj

)
+ sin

(
ωTxi

)
sin
(
ωTxj

)]
= Eω

[
zω(xi)

Tzω(xj)
]
,

where

zω(x) =
[
cos
(
ωTx

)
, sin

(
ωTx

)]T
. (4.2)

In other words, the inner product 〈zω(xi), zω(xj)〉 gives an unbiased estimate of any shift invariant
kernel k(xi,xj), given that the spectral frequency ω is drawn according to its corresponding
measure µ. The feature mapping zω(x) in Equation (4.2) can be interpreted as a projection of x
on the random direction ω and subsequently wrapping this line on the unit circle in R2. Given a
kernel function, the corresponding probability density function µ can be obtained by computing
its inverse Fourier transform. For instance, the probability density function for the isotropic RBF
kernel is Gaussian and it suffices to sample ω ∼ N (0, 2γI). An example of a 1-dimensional RBF
kernel and its approximation using these random Fourier features is shown in Figure 4.1.

The variance of the approximation can be lowered arbitrarily by averaging multiple features zω,
where each instance has an individual frequency ω drawn at random from µ. Given D random
projections, we can thus write

k(xi,xj) = E

[
1

D

D∑
d=1

zωd(xi)
Tzωd(xj)

]
,

where ωd ∼ µ(ω) for 1 ≤ d ≤ D. Similarly, by concatenating multiple random features and

1The measure can be scaled to ensure that this is the case.
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Figure 4.1: Example of the 1-dimensional RBF kernel with γ = 1 and an approximation thereof using 250
random features.

integrating the normalization term, such that

φ(x) =
1√
D

[
zω1(x)T, · · · , zωD(x)T

]T
, (4.3)

we obtain a random feature mapping φ : X 7→ R2D for which k(xi,xj) ≈ 〈φ(xi), φ(xj)〉 for
sufficiently large D. The exact convergence can be bounded as follows:

Claim 4.2 (Rahimi and Recht, 2008a). Given that X is a compact subspace of Rn with diameter
diam (X ), then for the mapping φ defined in Equation (4.3), we have

P

(
sup

xi,xj∈X
|〈φ(xi), φ(xj)〉 − k(xi,xj)| ≥ ε

)
≤ 28

(
σµ diam (X )

ε

)2

e
− Dε2

4(n+2) ,

where σ2µ = Eµ[〈ω,ω〉] is the second moment of the Fourier transform of k.

This demonstrates that the absolute deviation between 〈φ(xi), φ(xj)〉 and k(xi,xj) converges
exponentially fast in D. Moreover, the kernel can be approximated with constant probability to
any arbitrary precision by choosing D sufficiently large.

There are alternative mappings that satisfy k(xi,xj) = Eω
[
zω(xi)

Tzω(xj)
]
. One such example

is given by

zω,β(x) =
√

2 cos
(
ωTx+ β

)
, (4.4)

where the frequencies ω ∼ µ(ω) and the phases β ∼ U(−π, π) (Rahimi and Recht, 2008a,b).
An advantage of this alternative formulation is a reduced dimensionality as compared to Equa-
tion (4.2). When used in the normalized feature map defined in Equation (4.3), the resulting di-
mensionality will be D rather than 2D. Depending on the underlying learning method, this more
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parsimonious representation can result in significant computational savings.

Any linear learning algorithm can employ these random features when substituting the original
input matrix X for the design matrix Φ = φ(X), where φ is as in Equation (4.3). Given the
random features in Equation (4.4), the optimal D-dimensional weight vector w for RLS from
Equation (2.5) is thus

w =
(
λI + ΦTΦ

)−1
ΦTy ,

and the corresponding prediction function is

f(x) = 〈w, φ(x)〉 .

The time and space complexity for training are O
(
mD2

)
and O(mD), respectively, while the

time complexity for predictions is O(D) and therefore independent of the number of training
samples. In the following, the combination of RLS with random Fourier features will be referred
to as Random Fourier Regularized Least Squares (RFRLS), where a possible superscript (e.g.,
RFRLS100) is used to explicitly denote the number of features D.

4.2 Sparse Spectrum Gaussian Process Regression

As could be expected from the similarity of RLS and GPR, approximation of the kernel (or covari-
ance) function using random features can be applied within the context of GPR. This particular use
has been investigated recently2 by Lázaro-Gredilla et al. (2010) under the name Sparse Spectrum
Gaussian Process Regression (SSGPR). Similar to RLS, applying the kernel approximation with
GPR corresponds to explicitly applying the feature mapping φ, rather than formulating the prob-
lem in terms of kernel evaluations. Recall that the linear variant of GPR is given by the generalized
Bayesian linear model from Section 2.5. Replacing x with φ(x) and simplifying with respect to
σn results in the predictive posterior

p(y|x,X,y) = N
(
φ(x)TA−1ΦTy, σ2n

(
1 + φ(x)TA−1φ(x)

))
,

where Φ = φ(X) and

A = ΦTΦ + σ2nI , (4.5)

where we assumed for simplicity that the weight prior Σp is diagonal. Furthermore, the predictive
variance has an additional term σ2n to compensate for noise present in the labels of the test samples.
In case of the popular anisotropic RBF kernel from Equation (2.19), the feature mapping is given

2An earlier technical report implies that Lázaro-Gredilla et al. (2007) discovered this technique independently from
Rahimi and Recht.
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by

φ(x) =
σf√
D

[
sin
(〈
ωT
1 ,x

〉)
, cos

(〈
ωT
1 ,x

〉)
, · · · , sin

(〈
ωT
D,x

〉)
, cos

(〈
ωT
D,x

〉)]T
, (4.6)

where the frequenciesω ∼ N (0,M). It is common thatM is a diagonal matrix with diag (M) =[
`21, . . . , `

2
n

]
, such that it suffices to draw ω from a standard normal distribution N (0, 1) and sub-

sequently scale these by `. Note that this feature mapping explicitly uses the original mapping
from Equation (4.2), as opposed to the more parsimonious alternative in Equation (4.4). Although
both representations give an unbiased estimate of the kernel, Bayesian inference is different in
both cases. The problem lies in the fact that the cosine in Equation (4.4) includes a phase β that
cannot easily be integrated out, as required for a full Bayesian treatment (Lázaro-Gredilla et al.,
2010).

Two main advantages of standard GPR over Kernel Regularized Least Squares (KRLS) are the
availability of predictive variances and convenient hyperparameter optimization using the marginal
likelihood. These advantages apply equally well in the comparison between SSGPR and RFRLS.
In case of the former, the negative log marginal likelihood is given by

− ln p(y|X,θ) =
1

2σ2n

(
yTy − yTΦA−1ΦTy

)
+

1

2
ln detA− D

2
lnσ2n +

m

2
ln 2πσ2n ,

whereA is as defined in Equation (4.5). Interestingly, considering the spectral frequencies ωd for
1 ≤ d ≤ D as parameters rather than constants, these can be optimized using the log marginal
likelihood as well. Noting that the distribution of the spectral frequencies is closely related to the
kernel via the measure µ, it is clear that optimizing these frequencies equates to tuning the kernel
function to the data. Although this may result in highly efficient and sparse models, there are two
disadvantages to optimization of the frequencies. First, it departs from the original motivation
of approximating shift invariant kernel functions and there are no longer guarantees in terms of
approximation errors with respect to the kernel equivalent. Second, the number of tunable hyper-
parameters increases from n+ 2 (in case of the anisotropic RBF kernel) to n+ 2 +Dn, therefore
drastically increasing the risk of overfitting in case of a limited number of training samples.

4.3 Efficient Incremental Updates

Both RFRLS and SSGPR have demonstrated promising results for large scale batch learning.
Regardless, the application domain under consideration in this thesis is the incremental learning
setting. To this extent, the choice of RLS and GPR as base algorithms was not incidental, since
these algorithm allows efficient and exact updates of the solution using well-known linear algebra
results. This is demonstrated at the hand of RFRLS, although the procedure is nearly identical for
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SSGPR due to their functional similarity. Recall that the optimal solution in RFRLS is given by

w =
(
λI + ΦTΦ

)−1
ΦTy = A−1b , (4.7)

where the solution is conveniently decomposed in terms of a D ×D matrixA = λI + ΦTΦ and
a D-dimensional vector b = ΦTy. Arrival of a new sample (xt, yt) at time step t can thus be
described as

Φt =

[
Φt−1

φt

]
and yt =

[
yt−1

yt

]
,

where φt = φ(xt). Integrating these update rules, the matrix A in Equation (4.7) can be formu-
lated recursively as

At = λI + ΦT
t Φt

= λI + ΦT
t−1Φt−1 + φtφ

T
t

= At−1 + φtφ
T
t ,

from which we can conclude that each additional training sample constitutes a rank-1 update.
Similarly, the update of vector b can be described recursively as

bt = ΦT
t yt

= ΦT
t−1yt−1 + φtyt

= bt−1 + φtyt .

Due to these recursive update rules it is no longer necessary to store previous samples in memory,
instead onlyAt and bt are required at each time step. However, the above formulation requires an
explicit inversion of At at each update, causing the time complexity to be in O

(
D3
)
. This time

complexity can be reduced by directly updating the inverse of A, which is known as Recursive
Least Squares in the field of signal processing (Sayed, 2008). A straightforward method to perform
a rank-1 update of the inverse of a matrix is the Sherman–Morrison formula (Hager, 1989), such
that

A−1t =
(
λI + ΦTΦ

)−1
=
(
At−1 + φtφ

T
t

)−1
= A−1t−1 −

A−1t−1φφ
TA−1t−1

1 + φTA−1t−1φ
.

Updating the inverse of the matrixA reduces the time complexity of adding a sample to an existing
model to O

(
D2
)

and only requires the D ×D inverse matrix A−1t and D-dimensional vector bt
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to be stored in memory. The recursion is complete by setting the initial configuration A−10 = 1
λI

and b0 = 0.

The simplicity and recursive nature of this update procedure has made it very popular for many
applications. The main disadvantage of explicitly updating the inverse matrix is sensitivity to
roundoff errors (e.g., Björck, 1996, Section 3.1). This problem can be alleviated to large extent by
updating the Cholesky factor of A instead (Golub and Loan, 1996; Björck, 1996), known as the
QR algorithm in the field of adaptive filtering (Sayed, 2008, Section 35.2). Let us define the upper
triangular Cholesky factorR that satisfies for each time step t

At = RT
t Rt .

Note that Rt is full rank and guaranteed to be unique, since A � 0 for λ > 0. Following earlier
notation, we are interested in the rank-1 update problem

RT
t Rt = At

= At−1 + φtφ
T
t

= RT
t−1Rt−1 + φtφ

T
t ,

where the initial matrixR0 =
√
λI . This equates to the problem of findingRt given the previous

Cholesky factorRt−1 and the new training sample φt. This special form3 of rank-1 update can be
computed by reformulating the problem as

RT
t Rt = RT

t−1Rt−1 + φtφ
T
t

= R̃T
t−1R̃t−1 ,

where the temporary (D + 1)×D matrix

R̃t−1 =

[
Rt−1

φT
t

]
.

Considering thatRt−1 is upper triangular, the matrix R̃t−1 can be illustrated as
r r r r

0 r r r

0 0 r r

0 0 0 r

φ φ φ φ

 ,

3A more general problem is updating a QR-decomposition with a rank-1 matrix uvT, for which algorithms can be
found in Golub and Loan (1996) or Björck (1996).
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where the dimensionality of D = 4 is chosen solely for demonstration. It follows that the updated
Cholesky factor Rt can be obtained by introducing zeros in the last row of R̃t−1. A standard
technique to introduce zeros in a matrix is using Givens rotations (Golub and Loan, 1996; Björck,
1996), which perform a rotation in the plane spanned by two coordinate axes. In this case, a total of
D rotations are needed to zero the elements in the last row, where each rotation concerns the plane
(D + 1, i) for 1 ≤ i ≤ D. The last row subsequently contains zeros and can be removed from
the matrix R̃t−1, such that the updated D × D Cholesky factor Rt remains. The weight vector
wt can then be obtained using a back and forward substitution. Although updating the Cholesky
factor and subsequently solving for w might seem elaborate, the time and space complexity is
identical to rank-1 updates of the inverse matrix. The computational cost in absolute sense is also
closely related, such that incremental updates of the Cholesky factor should be preferred without
exceptions due to its increased numerical stability.

We may observe that the regularization parameter λ is only taken into account in the initial ma-
trix R0 (or A0) and does not enter in subsequent updates. The effect of regularization therefore
decreases with an increasing number of training samples. However, note that the role of regulariza-
tion is to prevent singularity of the covariance matrix by increasing its eigenvalues (Lo Gerfo et al.,
2008). This is primarily needed in the initial stage of the algorithm when Φ is not full column-
rank. Subsequent rank-1 updates increase the smallest eigenvalue of R (known as the interlacing
theorem, Horn and Johnson, 1986; Björck, 1996), therefore reducing the need for regularization in
later stages. Another perspective is to consider regularization as a measure to prevent overfitting.
A more intuitive argument from this perspective is that overfitting is less likely as the number of
training samples increases.

4.4 Discussion

The approximate KMs described in this chapter compete directly with earlier methods, some of
which were described previously in Section 3. An essential property of the proposed incremental
methods is that a linear increase of the kernel expansion is explicitly avoided due to a finite dimen-
sional approximation of the kernel function. This approach is fundamentally different from earlier
methods, which attempt to approximate the kernel expansion rather than the kernel function. De-
noting the desired “full” expansion as

f(·) =
m∑
i

αik(xi, ·) ,
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the sparse approximation of the kernel expansion is given by an alternative active set and coeffi-
cients α̃, such that

f̃(·) =
m̃∑
i

α̃ik(xi, ·) ≈ f(·) ,

where typically m̃� m. In contrast, approximation of the kernel function can be described as4

f̃(·) =
m∑
i

α̃ik̃(xi, ·) ≈ f(·) ,

where the kernel k̃ is obtained using randomization. In other words, the kernel function and there-
fore the optimization problem itself is approximated rather than the solution. Although the differ-
ence is subtle, this has significant theoretical and practical consequences. First, the approximate
kernel k̃ is a kernel function in its own right and it follows that RFRLS and SSGPR are standard
KMs. As such, a wealth of theoretical results for linear and kernel RLS or GPR are directly appli-
cable to the methods described here. These results include generalization bounds (e.g., Cucker and
Zhou, 2007; Sun and Wu, 2008), stability bounds (e.g., Bousquet and Elisseeff, 2002; Mohri and
Rostamizadeh, 2010), learning rates (e.g., Caponnetto and Vito, 2007), as well as regret bounds
(e.g., Cesa-Bianchi and Lugosi, 2006; Kakade et al., 2006; Zhdanov and Kalnishkan, 2010). Sec-
ond, due to the finite dimensionality of the feature mapping it is no longer necessary to utilize the
kernel trick. This has a significant impact on the time and space complexity of the algorithms and
enables incremental and open-ended learning without additional control mechanisms (e.g., sample
removal).

Although methods that use a random feature mapping are KMs in their own right, their approx-
imation of shift invariant kernels is relevant. In essence, the random feature mapping applies
a Johnson-Lindenstrauss-type5 projection from the kernel induced Reproducing Kernel Hilbert
Space (RKHS) into a D-dimensional random Hilbert space, or equivalently HK → RD (Johnson
and Lindenstrauss, 1984). The Johnson-Lindenstrauss lemma states that a set of points in a high-
dimensional space can be embedded into a space of much lower dimension in such a way that
distances between the points are nearly preserved. This approximation technique is further justi-
fied by the fact that the random Hilbert space RD is dense in the RKHS of the kernel (Rahimi and
Recht, 2008b). Claim 4.2 already demonstrated that the inner product using the feature mapping
converges to the kernel product for each x ∈ X . Moreover, it can be shown that the maximum de-
viation between RFRLS converges to KRLS asO

(
1√
D

)
(Rahimi and Recht, 2008b, Theorem 3.2),

as demonstrated empirically in Figure 4.2. Given that the update procedure from Section 4.3 is

4Although this form is equivalent (cf. Section 2.3), the alternative form f̃(·) = 〈w, φ(·)〉 is computationally more
efficient in the setting considered in this thesis.

5The original Johnson-Lindenstrauss lemma concerns finite dimensional Euclidean spaces, although it is possible to
extend the theory to infinite dimensional Hilbert spaces (Biau et al., 2008).
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Figure 4.2: Convergence of the maximum error between k and 〈φ, φ〉 over a set of samples with respect to
the number of random features D.

exact, it follows that incremental RFRLS produces at each time step a close approximation of
batch KRLS trained on all samples observed thus far. Consequently, a single pass over the sam-
ples is sufficient and, unlike incremental methods such as stochastic gradient descent, the internal
ordering of the samples is irrelevant.

A disadvantage of the described methods is that they are not deterministic due to random ini-
tialization of the spectral frequencies. However, randomization is commonly a computationally
cheap alternative to optimization (see e.g., Motwani and Raghavan, 1995; Mitzenmacher and Up-
fal, 2005) and randomized algorithms and projections have been used previously in machine learn-
ing in general and KMs in particular (e.g., Achlioptas et al., 2002; Fradkin and Madigan, 2003;
Blum, 2006; Balcan et al., 2006; Arriaga and Vempala, 2006). Though the weights w and the
spectral frequencies ωi for 1 ≤ i ≤ D could be optimized jointly during training, this results in an
identical approximation rate at significantly higher computational cost (Rahimi and Recht, 2008b).
An alternative perspective along these lines is to consider these methods as a network with a layer
of random neurons (or basis functions), to some extent similar to Extreme Learning Machines
(Huang et al., 2006) or Reservoir Computing (Lukoševičius and Jaeger, 2009). In our particular
case, however, the hidden neurons are restricted to trigonometric activation functions and the sam-
pling distribution for their frequencies is automatically given due to the relation with the kernel
function via Bochner’s Theorem (cf. Section 4.1). Furthermore, increasing the number of hidden
neurons typically causes an increased risk of overfitting in many neural network models. This is
not the case in RFRLS and SSGPR, as these methods prevent overfitting by controlling the model
complexity either using Tikhonov regularization or a weight prior, respectively. Increasing the
number of hidden neurons (i.e., increasing D) therefore improves the quality of the approximation
with limited risk of overfitting.

Versatility is another key feature of the proposed methods, as they can be be used both for re-
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Algorithm 4.1 Incremental RFRLS with isotropic RBF kernel
Require: λ > 0, γ > 0, n > 0, D > 0

1: R←
√
λID×D

2: w ← 0D×1

3: b← 0D×1

4: Ω ∼ N
(

0, (2γ)2
)
D×n

5: β ∼ U(−π, π)
D×1

6: for all (x, y) do
7: φ←

√
2
D cos (Ωx+ β) // Equation (4.4)

8: ŷ ← 〈w,φ〉
9: b← b+ φy

10: R← CHOLESKYUPDATE(R,φ)
11: w ← R\

(
RT\b

)
12: yield ŷ
13: end for

gression as well as classification tasks. Though not considered in this thesis, the KRLS algorithm
has shown competitive classification performance with respect to state of the art methods such as
Support Vector Machine (SVM) (e.g., Rifkin et al., 2003; Rahimi and Recht, 2008a). Furthermore,
the algorithm can be trained both in a batch as well as an incremental setting, and initial batch so-
lutions can be subsequently be refined with incremental updates. This aspect is particularly useful
for “bootstrapping” an initial model using a batch of training samples, prior to deployment in an
incremental setting. The entire training set can be processed in a single time efficient step, con-
trary to competing methods that require multiple passes over the training samples to obtain a stable
model. It is therefore not required to perform multiple passes over an training set. Furthermore,
the feature mapping can easily be extended with additional features, for instance to include bias or
trend compensation terms.

The pseudocode for incremental RFRLS and SSGPR is demonstrated in Algorithm 4.1 and Algo-
rithm 4.2, respectively. The procedure to update the Cholesky factor was described in Section 4.3.
In particular, note the simplicity of these algorithms as compared to algorithms such as LWPR.
More so than a mere matter of aesthetics, complicated algorithms are typically harder to com-
prehend, implement, and apply in practice (for compelling arguments, see Helwig et al., 2010).
Arguably, this holds in particular for LWPR, which is often found cumbersome in practical use
due to the difficulty of tuning a large number of non-intuitive hyperparameters. In contrast, the
methods from this chapter are easy to implement using standard linear algebra routines and require
only a small number of intuitive hyperparameters to be configured. Moreover, in case of SSGPR,
all hyperparameters (exceptD, for obvious reasons) can be tuned automatically using log marginal
likelihood optimization. In short, minimal effort is required on part of the practitioner to obtain
satisfactory generalization performance.

Many competing algorithms erroneously claim to be “real-time”, often intending that these algo-
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Algorithm 4.2 Incremental SSGPR with anisotropic RBF kernel
Require: σn > 0, σf > 0,M � 0, D > 0

1: R← σnI2D×2D

2: w ← 02D×1

3: b← 02D×1

4: Ω ∼ N (0,M)
D×n

5: for all (x, y) do

6: φ← σf√
D

[
cos (Ωx)T, sin (Ωx)T

]T
// Equation (4.6)

7: ŷ ← 〈w,φ〉
8: v ← RT\φ
9: s2 ← σ2n (1 + 〈v,v〉)

10: b← b+ φy
11: R← CHOLESKYUPDATE(R,φ)
12: w ← R\

(
RT\b

)
13: yield

(
ŷ, s2

)
14: end for

rithms make predictions quickly. This is a common misconception, since more important than
being fast, real-time algorithms should be predictable (Buttazzo, 1997). The computational cost of
each update in RFRLS and SSGPR, on the other hand, is both bounded (i.e., O(1)) as well as pre-
dictable. The number of operations required for each update is quantified in Table 4.16. Note that
the number of operations depends primarily on D and remains constant regardless of the number
of training samples. In this aspect, the methods proposed here compare favorably to all algorithms
described previously in Section 3.2, such as LWPR and Local Gaussian Processes (LGP). The
exact computational cost can be controlled directly by varying the number of random features D,
which trades computation for approximation accuracy. Tuning this parameter is therefore an effec-
tive and direct manner to optimize the generalization performance given domain specific timing
constraints. Consequently, the methods are suited for real-time use (in the strict meaning of the
term) and could potentially be employed in resource constrained environments (e.g., microcon-
trollers). In contrast, the maximum computational cost of most other methods (e.g., LWPR or
LGP) depends on the distribution of the data and cannot be fixed with certainty within predefined
timing constraints7.

6The operation counts do not include overhead due to control routines (e.g., looping) and may vary slightly depend-
ing on the particular implementation.

7Theoretical bounds will almost surely be too loose for practical use, while empirical estimation is both tedious and
inherently inaccurate.
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Table 4.1: Typical operation counts for the update procedure of incremental SSGPR as described in Algo-
rithm 4.2.

line # ∗/÷ +/− sin / cos
√

abs

6 Dn+ 2D Dn 2D
7 2D 2D
8 4D2 4D2 − 2D
9 2D + 1 2D + 1

10 2D 2D
11 8D2 + 8D 4D2 2D 4D
12 4D2 + 2D 4D2 − 2D

16D2 +D (n+ 18) + 1 12D2 +D (n+ 2) + 1 2D 2D 4D
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TIMING PERFORMANCE 5
The proposed incremental learning methods have advantageous theoretical properties over existing
methods, such as convergence proofs and a constant time and space complexity for model updates
and predictions. Additional benefits with regard to employing the methods in practice should not
be underestimated either. In particular, the interpretation of the hyperparameters is straightfor-
ward and they can be optimized using a principled procedure that scales well with the number
of parameters. In this chapter, these claims are evaluated experimentally in terms of generaliza-
tion performance, computational requirements, and practicality. The focus in these experiments
is the comparison with Locally Weighted Projection Regression (LWPR) and Gaussian Process
Regression (GPR). The former method has been used extensively in the robotics community for
incremental learning tasks and it is of interest to investigate whether RFRLS and SSGPR are valid
alternatives in this application domain. The comparison with GPR, on the other hand, serves as
a reference, since both proposed methods – and in particular SSGPR – approximate its general-
ization performance in the limit. Additionally, this comparison also allows investigation of the
advantage of incremental learning over batch solutions such as GPR in realistic learning settings.
In such problems, a perfect correlation between training and test data cannot simply be assumed,
and incremental learning may therefore have advantages.

A set of three synthetic regression problems is used in Section 5.1 to investigate the behavior of
Sparse Spectrum Gaussian Process Regression (SSGPR) with an increasing number of redundant
and irrelevant input dimensions. These problems have been used previously for the empirical val-
idation of LWPR and GPR (Vijayakumar et al., 2005). Subsequently, the performance of Random
Fourier Regularized Least Squares (RFRLS) is compared in a batch setting with a host of com-
peting methods on three robot dynamics datasets of medium size. The corresponding results,
presented in Section 5.2, have been published previously by Gijsberts and Metta (2011). Finally,
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in Section 5.3, incremental SSGPR is tested on a number of large dynamics datasets. These exper-
iments demonstrate the generalization performance of this method and the relative advantages of
continuous incremental learning over batch models.

5.1 Synthetic Dataset

The first experiment evaluates SSGPR with a varying number of random features on the synthetic
Cross datasets, previously used by Vijayakumar et al. (2005) to evaluate the generalization perfor-
mance and scaling behavior of LWPR. There are three variants of this dataset, where the latter two
are constructed by the first with redundant and irrelevant input features. In the base Cross 2D, data
is generated according to a two-dimensional function

f(x) = max
{
e−10x

2
1 , e−50x

2
2 , 1.25e−5(x

2
1+x

2
2)
}

.

As seen in Figure 5.1, this function is characterized by a mixture of areas of both low and high
curvature. As claimed by Vijayakumar et al., this high variability makes the function interesting
for evaluating generalization performance of learning methods. Low complexity algorithms tend
to have difficulties to accurately capture the non-linearities in high curvature regions, in contract to
high complexity models that overfit on the regions of low curvature. In Cross 10D, eight constant
features are added to the input space by applying a random 10-dimensional rotation matrix, effec-
tively causing a high degree of redundancy in the input space. For the third variant (Cross 20D),
the input space of Cross 10D is extended with an additional ten irrelevant input features, each of
which consists of N

(
0, 0.052

)
random noise. In all three cases, the training data consists of 500

randomly drawn samples, corrupted by N
(
0, 0.12

)
random noise. The 1681 test samples, on the

other hand, are noiseless and distributed uniformly on a 41×41 grid in the unit square of the input
space.

5.1.1 Experimental Setup

The synthetic datasets are used as a benchmark to compare SSGPR with LWPR and GPR. For
the former competing method, the initial distance metric init D, learning rate init alpha, and meta
learning rate meta rate hyperparameters are optimized greedily using a derivative of the procedure
described in the supplementary documentation1. Additionally, the activation threshold for adding
local models w gen is set to 0.2 and the threshold for adding new projects add threshold is set
to 0.9, as per suggestion of Vijayakumar et al. (2005). The measure used to select the optimal
configuration is the average one-step-ahead squared error over a total of 200 epochs, each of
which consists of a random permutation of the 500 training samples. The final generalization

1http://www.ipab.inf.ed.ac.uk/slmc/software/lwpr/lwpr_doc.pdf

http://www.ipab.inf.ed.ac.uk/slmc/software/lwpr/lwpr_doc.pdf


5.1. SYNTHETIC DATASET 57

−1
−0.5

0
0.5

1 −1

0

1

0

1

Figure 5.1: Plot of the synthetic Cross 2D problem.

performance instead is measured in terms of the normalized Mean Squared Error (nMSE), defined
as the squared error on the test set divided by the variance of the target outputs.

The hyperparameters of GPR are optimized using log marginal likelihood maximization (cf. Sec-
tion 2.6). Automatic Relevance Detection (ARD) is employed by means of the Asymmetric
Squared Exponential (ASE) function, such that the tunable hyperparameters of GPR and the kernel
are σn, σf , and n characteristic length-scales (i.e., one for each of the input features). As initial
hyperparameter configuration, σn and σf are set to 0.25 and 1 times the standard deviation of the
target outputs, respectively, and `i is initialized to twice the range of the i-th input dimension for
1 ≤ i ≤ n. The mean of the training outputs is used as offset to ensure a zero-mean Gaussian
process. SSGPR is used in a nearly identical setup, the only difference being an additional boolean
indicating whether or not the spectral frequencies are optimized. If this is not the case, then the
tunable hyperparameters are identical to those for GPR. If the frequencies are instead optimized,
however, then the number of tunable parameters increases drastically with an additional D × n
hyperparameters. Parameter D, denoting the number of sparse spectrum features, is configured by
the user a priori and not subject to optimization.

5.1.2 Results

The results shown in Figure 5.2 demonstrate good generalization performance for GPR, achiev-
ing an nMSE of approximately 0.02 on all three datasets. We can conclude that GPR with ASE
kernel remains effective also in case of redundant and irrelevant input features. As expected in
case of SSGPR with “fixed” spectral frequencies, increasing the number of sparse spectrum fea-
tures improves the approximation and therefore the generalization performance in nearly all cases.
Interestingly, however, the method requires more random features to obtain satisfactory perfor-
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Figure 5.2: Test error for SSGPR with respect to the number of sparse spectrum features on three variants
of the Cross dataset. For the sparse spectrum features, the results show when (a) the frequencies are fixed
and (b) the frequencies are optimized with the other hyperparameters. In both cases, the reported results
are the average over 25 runs, with error bars indicating one standard deviation. The test error of GPR is
reported as a reference; since this error is nearly identical on all three datasets it is reported only once.

mance with Cross 2D than with the higher dimensional variants. This may be explained by the
small number of tunable hyperparameters in the two-dimensional case, which makes it harder to
effectively tune the model to the data. Increasing the number of random features, however, is an
adequate measure to alleviate this issue.

The generalization performance of SSGPR in case of tuned spectral frequencies is impressive
on the Cross 2D and Cross 10D datasets, noting that a mere 25 random features are sufficient
to achieve competitive results. However, the opposite is true in case of Cross 20D, for which
the performance is significantly inferior with respect to the competing methods. These large test
errors in combination with near-zero training errors indicate overfitting of the model to the data,
as observed as well by Lázaro-Gredilla et al. (2010) on a selected number of datasets. This is
easily understood considering the large number of tunable hyperparameters. In case of 25 random
features the number of hyperparameters is already over 500, which is larger than the actual number
of training samples. This number increases to over 8000 when D = 400. Optimizing such a large
number of parameters is error prone, especially given the large fraction of hyperparameters related
to irrelevant input features.

The results of LWPR can be seen in Figure 5.3. Although it proved impossible to replicate the
results reported by (Vijayakumar et al., 2005)2, we clearly see that an increasing number of input
dimensions has a detrimental effect on the convergence rate and final performance. LWPR ulti-

2This may be due to unreported parameter settings by Vijayakumar et al., or due to the fact that here we consider a
single random instance of the dataset.
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Figure 5.3: Convergence of the test error for LWPR with an increasing number of reiterations of the training
samples.

mately attains similar performance to GPR and SSGPR on the Cross 2D and Cross 10D datasets,
although it requires a large number of iterations over the training samples. Conversely, the two
latter methods require only a single pass on the training data. This is a strong indicator of low
sample complexity of LWPR, as will be confirmed in the incremental experiments in Figure 5.3.
Additionally, hyperparameter optimization for LWPR is significantly more involved than for GPR
and SSGPR, requiring “trial-and-error” tuning of multiple parameters. Moreover, for several of
the hyperparameters there is no intuitive understanding of modifications will affect generalization
performance. All of these issues have severe implications for the practicality of the algorithm.

5.2 Batch Learning of Inverse Dynamics

Besides performance on synthetic datasets, it is relevant to evaluate performance on realistic
robotics datasets. To this extent, several experiments have been conducted to evaluate the per-
formance of RFRLS in a batch setting on the task of learning inverse manipulator dynamics (Gi-
jsberts and Metta, 2011). The three datasets, collected from a Simulated Sarcos arm, a real Sarcos
arm, and a Barrett WAM, share an identical 7-DoF manipulator configuration with a torque sensor
placed in each individual joint3. A compelling reason for using these exact datasets is that they
have been used previously in the robotics community, such that RFRLS can directly be compared
to a number of state-of-art learning methods (Nguyen-Tuong et al., 2008a, 2009). Additionally,
these datasets consist of considerably more samples than the earlier synthetic datasets (cf. Ta-
ble 5.1), allowing evaluation of the scaling properties of the methods. For all datasets, the manip-
ulator was programmed to perform a periodic motion, during which samples were collected at a
rate of approximately 500 Hz. Training and test sets were obtained by subsampling the resulting

3The authors are grateful to Nguyen-Tuong et al. for sharing these datasets.
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Table 5.1: Datasets used for the batch dynamics experiments.

#joints output #train #test

Simulated Sarcos 7 τ × 7 14904 5520
Sarcos 7 τ × 7 13922 5569
Barrett 7 τ × 7 13572 5000

dataset at regular intervals.

5.2.1 Experimental Setup

Data preprocessing and hyperparameter selection often has a profound effect on the performance
of learning methods. In case of learning manipulator dynamics, it is crucial to properly scale the
input features when using an (isotropic) Radial Base Function (RBF) kernel, as to avoid large ac-
celeration features to dominate lower-valued position features. It is therefore desirable to divide
all input features by a characteristic length scale `i > 0 for 1 ≤ i ≤ n, as is done in the ASE
kernel. However, the discriminative nature of RFRLS prevents direct optimization of the hyperpa-
rameters using the log marginal likelihood. Empirical optimization using grid-search, on the other
hand, scales exponentially with the number of hyperparameters and is therefore computationally
prohibitive when using a large number of hyperparameters. The regularization tradeoff λ and the
characteristic length scales can, however, be optimized indirectly exploiting the similarity between
GPR and RFRLS. Log marginal likelihood maximization is used to optimize the hyperparameters
of a “proxy” GPR trained on a random subset of 2000 training samples using the ASE kernel (cf.
Equation (2.20)) The locally optimal hyperparameters for this “proxy” are subsequently converted
to Kernel Regularized Least Squares (KRLS) and RFRLS with isotropic RBF kernel by scaling
each i-th input feature by `−1i for 1 ≤ i ≤ n, and setting λ = σ2n/σ

2
f and γ = 1

2 .

The dynamics datasets have multiple outputs and, ideally, a distinct model with corresponding op-
timal hyperparameters should used for each output dimension. Preliminary experiments, however,
showed that all outputs share similar dependencies on hyperparameters. In other words, configu-
rations that perform well for one output are also likely to perform well on the other outputs. This
is not surprising, since the outputs are measured in identical physical quantities and units of mea-
surement (i.e., torque in N m). The computational cost of our method can therefore be reduced
significantly by sharing a single hyperparameter configuration for all outputs. In this case, we
compute a single kernel or covariance matrix, which is subsequently used to solve multiple weight
vectors concurrently (i.e., one for each output) at negligible additional cost. For RFRLS, the gain
in computation time could be used to improve prediction accuracy by increasing the number of
random features. From the optimal hyperparameter configurations for each output, the configu-
ration with the lowest mean error as measured using cross validation on the remaining training
samples is selected. Identical configurations were used both for KRLS and RFRLS.
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5.2.2 Generalization Performance

The experimental comparison on the Simulated Sarcos, Sarcos, and Barrett datasets is based on
earlier published work by Nguyen-Tuong et al. (2009). Their results for LWPR, GPR, and Local
Gaussian Processes (LGP) are used as a benchmark4 and identical experiments were performed
with batch RFRLS using 500, 1000, and 2000 random Fourier features (i.e., parameter D). KRLS
is included as an additional reference method, since it is an (approximate) upper bound on the
generalization performance of RFRLS. A minor deviation from the experimental setup described
previously is that for RFRLS500 on the Barrett dataset the results using optimal hyperparameter
configurations for each distinct output are reported. With this limited number of random features,
results using a shared hyperparameter configuration for all outputs were unsatisfactory.

The test nMSEs reported in Figure 5.4 show that, contrary to our expectations, KRLS often out-
performs GPR by a significant margin. These two methods are functionally identical and can be
expected to show similar performance. These deviations indicate that different hyperparameter
configurations were used, which can be explained by different starting configurations combined
with the non-convexity of the marginal likelihood optimization problem. Hence, we have to be
cautious when interpreting the comparative results on these datasets with respect to generalization
performance. The comparison between KRLS and RFRLS, both trained using identical hyper-
parameters, remains valid and gives an indication of the approximation error of RFRLS. As ex-
pected, the performance of RFRLS steadily improves as the number of random features increases
for all datasets. Furthermore, RFRLS1000 is often sufficient to obtain satisfactory predictions on
all datasets. RFRLS500, on the other hand, performs poorly on the Barrett dataset, despite using a
distinct hyperparameter configuration for each degree of freedom. In this case, RFRLS1000 with a
shared hyperparameter configuration is more accurate and requires less overall time for prediction.

The minimal prediction errors of KRLS in general are due to training and test sets being sub-
sampled interleavingly from the same motion, causing a strong correlation between both sets.
Combined with noise filtering and dense sampling, it is inevitable that there is a nearly identical
training sample for each test sample. This is clearly demonstrated in Figure 5.5, which contains
a subset of the union of training and test samples for the Barrett dataset. The high similarity be-
tween both subsets and the absence of noise signifies that there is virtually no risk of overfitting
for these datasets. To investigate this issue further, additional experiments were performed using
Kernel Nearest Neighbor (1-KNN) (Yu et al., 2002). This method is commonly used for classi-
fication problems and simply returns the label associated with the most similar training sample
as predicted output. Consequently, the performance of 1-KNN is critically dependent on strong
similarity between training and test distributions, dense sampling, and noise-free outputs. Also
1-KNN, when used with the same kernel as KRLS, outperforms previously published results in
nearly all cases. This confirms that the similarity between training and test samples is very high

4Published results for other methods are comparable to the considered methods and have been left out for concise-
ness.
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Figure 5.4: Prediction error per degree of freedom for the (a) Simulated Sarcos, (b) Sarcos, and (c) Barrett
datasets. The results for GPR, LGP, and LWPR are taken from Nguyen-Tuong et al. (2009). The mean error
over 25 runs is reported for RFRLS with D ∈ {500, 1000, 2000}, whereas error bars mark a distance of one
standard deviation. Note that in some cases the prediction errors for KRLS and 1-KNN are very close to
zero and therefore barely noticeable.
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Figure 5.5: Combination of initial training and test samples for the Barrett dataset, after adjustment for
different sampling intervals. The figure is restricted to the first joint angle q1 and joint torque τ1, since all
input features and outputs show identical behavior.

and small predictions errors therefore do not necessarily indicate good generalization performance
on these datasets.

5.2.3 Computational Requirements

The second quantitative measure for comparison is the computational performance of all meth-
ods. Figure 5.6 shows the prediction times of the various methods when increasing the number of
training samples. Note that the timing results for GPR, LWPR, and LGP were measured on dif-
ferent hardware and, consequently, may vary up to a constant factor when compared to the timing
results for KRLS, 1-KNN, and RFRLS. Nonetheless, Figure 5.6 shows that the prediction times
of the exact kernel methods (i.e., GPR, KRLS, 1-KNN) scale linearly with the number of training
samples. Both LWPR and LGP scale sublinearly, though still outperformed by RFRLS due to its
constant time complexity. Furthermore, also in absolute sense the prediction times of RFRLS are
impressive, measuring from approximately 80 µs to 200 µs for respectively 500 and 2000 random
features. Combined with the prediction results from Figure 5.4, we can confirm that parameter
D effectively trades computation for prediction accuracy. This property is particularly useful for
real-time control, as it allows to maximize accuracy given strict timing constraints.

5.3 Incremental Learning of Inverse Dynamics

The previous experiments evaluated the performance of SSGPR and RFRLS in a batch learning
context. Although this setting is useful to analyze and compare generalization performance, the
primary interest in this thesis is their performance for incremental (or online) learning. The advan-
tages of incremental learning over batch learning were detailed in Section 2.8. In short, incremen-
tal learning allows scaling to very large numbers of samples as well as adaptation to changing con-
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ditions. The methods are evaluated in this incremental scenario using the three dynamics datasets
listed in Table 5.2. These datasets are an order of magnitude larger than the previous datasets and
describe several minutes up to over an hour of continuous operation of a robot. The first dataset is
a larger variant of the Sarcos dataset5, whereas the second and third datasets consider robot arms
of four Degrees of Freedom (DoF)6. In this latter configuration, a single force/torque sensor is
mounted in the upper arm, positioned just below the shoulder joints, as can be seen in Figure 1.3.
These datasets were obtained from the upper torso humanoid James and the full body iCub hu-
manoid (cf. Section 1.1). Fumagalli et al. have previously used the James dataset for a comparison
between learning methods and an analytical Rigid Body Dynamics (RBD) model, as described in
Section 2.7. For both datasets, the end effector was moved to random Cartesian coordinates in the
robot’s workspace at constant intervals, while samples were collected at a frequency of roughly
50 Hz. Joint velocities (accelerations) are computed using (double) numerical differentiation of
the joint positions.

The objective of these experiments is twofold. The first aim is to demonstrate the performance of
SSGPR when applied incrementally on large datasets. In order to have a sufficiently large number
of test samples, the traditional subdivision of training and test set of the Sarcos dataset has been
reversed. For the James and iCub datasets, the first 15000 samples are reserved for training and
hyperparameter tuning, whereas the remaining samples are used to test both generalization perfor-
mance and computational efficiency. The secondary aim of these experiments is to experimentally
verify the benefit of incremental learning in general in a realistic learning scenario.

5This dataset can be downloaded from http://www.gaussianprocess.org/gpml/data/.
6We limit ourselves to the shoulder and elbow joints; the actual robot arms have more than four Degrees of Freedom.

http://www.gaussianprocess.org/gpml/data/
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Table 5.2: Datasets used for the incremental dynamics experiments.

#joints output #train #test

Sarcos 7 τ × 7 4449 44484
James 4 [F, τ ]x,y,z 15000 195977
iCub 4 [F, τ ]x,y,z 15000 72850

5.3.1 Experimental Setup

The experimental setup resembles the setup for the synthetic datasets as explained in Section 5.1.1
and SSGPR is again compared directly with LWPR and GPR. However, the number of sparse
spectrum features is limited to a maximum of D = 200 and optimization of the spectral frequen-
cies (i.e., “non-fixed”) is only done when the number of random features is less than 100. The
sole purpose of these limitations is to contain the computational requirements of these large scale
experiments within reasonable margins. Another notable difference in the setup is that hyperpa-
rameter optimization for LWPR is based on 5 epochs of the training data, as opposed to 200 for the
synthetic datasets. This modification is justified by the vast increase of number of training samples
for these experiments. Lastly, the number of training samples for hyperparameter optimization of
GPR is limited to a random subset of 5000 samples for the James and iCub datasets. Due to the
random subsampling and large number of samples, this restriction is not expected to have a signif-
icant effect on the results. After hyperparameter optimization, the GPR is nonetheless trained on
the full training set of 15000 samples.

The interpretation of training and test set is slightly different for the incremental methods, as in this
setting there is no clear separation between training and test samples. At each time step, a sample
is initially used for testing and the method is subsequently allowed to update its model using the
target output (i.e., training). The abovementioned training sets are used solely for hyperparameter
optimization in case of LWPR and SSGPR, after which the models are reset while retaining the
hyperparameter configuration. This methodology allows us to observe the error convergence of
the methods on the test set from an initial zero state.

Multiple output models were learned congruently in RFRLS using a shared set of hyperparameters,
as explained in Section 5.2.1. This strategy cannot be applied to GPR or SSGPR, in particular with
respect to the James and iCub datasets. The reason is that for these datasets the outputs regard two
different physical quantities, namely forces (N) and torques (N m). The absolute magnitude and
range of the torques is significantly smaller than the forces and, more importantly, their (absolute)
level of noise is smaller as well. Noise parameter σn relates directly to the magnitude of this
(Gaussian) noise and can therefore not be shared between torque and force outputs. Contrary to
RFRLS, a realistic approximation of σn is crucial for GPR and SSGPR in order to accurately
estimate the predictive variance. For these reasons, separate models are trained for outputs with
distinct physical quantities. As a result, all 7 outputs of the Sarcos dataset are learned using a



66 CHAPTER 5. GENERALIZATION AND TIMING PERFORMANCE

single model, whereas two models are trained for each of the James and iCub datasets (i.e., one for
forces and one for torques). During hyperparameter optimization, the log marginal likelihood and
its gradient over all outputs are taken as the sum of the same quantities for the individual outputs.

Furthermore, an analytical RBD model is included in the experiments for the iCub dataset as
additional reference method7. This model uses the Recursive Newton-Euler Algorithm (RNEA)
to compute the inverse dynamics given a manipulator configuration (Featherstone, 2007; Siciliano
and Khatib, 2008). Inclusion of this analytical model allows us not only to compare the learning
methods with respect to each other, but also to compare learned models with respect to analytical
solutions in terms of predictive accuracy and computational requirements. Several reasons why
learned models may be preferred over analytical ones were mentioned previously in Section 2.8.
Although no learning is required for this model, the initial 15000 training samples are used to
calibrate the offset of the sensor.

5.3.2 Generalization Performance

The generalization performance for these experiments is quantified by the nMSE calculated over
the one-step-ahead (or recursive) predictions. Figure 5.7 shows the convergence of the average
error with respect to an increasing number of test samples for the two reference methods and
SSGPR with 200 sparse spectrum features. This instance has been selected for comparison as
it showed significant improvement over other instances with fewer random features. This can
be verified in Table 5.3, which lists the average error over all test samples for all considered
instances of SSGPR and the competing reference methods. The results in Figure 5.7 show that
SSGPR converges within only hundreds of samples and maintains generalization performance
that is similar to GPR. Furthermore, SSGPR50 with optimized frequencies improves further on
these results on a subset of the outputs, although it is outperformed by SSGPR200 with fixed
frequencies on the remaining output dimensions. In any case, these results show that a relatively
limited number of random features are sufficient to obtain satisfactory generalization performance
on this dataset. LWPR, on the other hand, is characterized by slow convergence and requires a
large amount of training samples. After the entire test set of nearly 45000 samples its performance
lacks significantly with respect to GPR and SSGPR.

The behavior of LWPR on the James dataset is similar to the Sarcos dataset. Error convergence is
again slow with respect to the other methods and the final performance is significantly worse. The
comparison between GPR and SSGPR, however, is significantly different from the Sarcos dataset.
SSGPR200 outperforms GPR after less than 1000 test samples and obtains significantly better final
performance for all outputs. The different results on these two datasets can be contributed to the
different sampling strategies. As mentioned previously, the Sarcos dataset is split in training and
test sets by subsampling the total dataset at different intervals. Consequently, there is a strong

7The analytical model for the iCub dynamics is implemented in the iDyn software library, for more information see
http://eris.liralab.it/wiki/IDyn.

http://eris.liralab.it/wiki/IDyn
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Figure 5.7: Convergence of the average one-step-ahead prediction error of GPR, LWPR, and SSGPR200

methods on the Sarcos dataset. The results for SSGPR200 are the average error over 25 randomized runs.
The standard deviation over the various runs is negligible and error bars are therefore omitted for clarity.
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correspondence between both subsets. For the James dataset, on the other hand, the training set
consists of the first 15000 samples of the total dataset. The presence of temporal dependencies will
cause a divergence in the probability distribution of training and test set, such that training data
is no longer completely representative for subsequent test data (cf. Section 2.8). This is evident
from the fact that the average error of GPR actually increases over time. Incremental methods
are much less affected by this divergence, since by nature any test data subsequently becomes
training data as well. This ability to adapt to changes significantly improves online generalization
performance on this dataset, demonstrated by the fact that even LWPR outperforms GPR in one
case (cf. Figure 5.8f).

Figure 5.9 shows the generalization performance on the iCub dataset, which are similar to the re-
sults on the James dataset. This is not surprising, given the fact that James and iCub share the same
manipulator configuration and both datasets were collected and subsampled in identical manner.
There are some notable differences, however. Firstly, the force and torque measurements for James
are filtered on the sensor, whereas these measurements are unfiltered for iCub. The desired outputs
in case of the former robot are therefore inherently less noisy, evidenced by nMSEs that are nearly
an order of magnitude smaller than for iCub. Secondly, 50 random features are sufficient to ob-
tain satisfactory performance on the iCub dataset using SSGPR. Increasing the number of random
features further only results in a marginal improvement of the prediction error (cf. Table 5.3).
Figure 5.10 shows an extract of the three torque measurements and the corresponding predictive
mean and variance of SSGPR50. We can verify visually that, despite the low number of sparse
spectrum features, the method accurately predicts the sensor measurements and that the predictive
variance is a reasonable estimate of the true data variance.

The analytical RBD model demonstrates acceptable performance with respect to the learned mod-
els. It consistently outperforms LWPR, although LWPR has not yet reached stable performance at
the end of the dataset. Interestingly, RBD demonstrates better predictive performance than GPR
for two of the six outputs (i.e., F2 and F3). An advantage of the analytical model is that it in-
corporates knowledge of the entire input domain, whereas the learned GPR model is restricted
to information present in the training data. SSGPR, however, utilizes all available samples for
training and shows superior performance over all competing methods.

5.3.3 Compensation for Sensor Drift

An interesting observation in Figure 5.9 is that the force predictions of the non-adaptive GPR and
RBD models deteriorate over time. In case of GPR, one might argue that this is due to a discrep-
ancy between training and test data. However, this does not explain why torque predictions do not
suffer from the same problem, nor does it account for the fact that we observe identical behavior
for the analytical RBD model. A more reasonable explanation is sensor drift for the force mea-
surements due to unmodeled variables (e.g., temperature or electromagnetic interference). Further
insight in this problem is given by Figure 5.11, which shows the average one-step-ahead (or re-
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Figure 5.8: Convergence of the average one-step-ahead prediction error of GPR, LWPR, and SSGPR200

methods on the James dataset. The results for SSGPR200 are the average error over 25 randomized runs.
The standard deviation over the various runs is negligible and error bars are therefore omitted for clarity.
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methods on the iCub dataset. The results for SSGPR50 are the average error over 25 randomized runs. The
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Figure 5.10: Extract of the three torque measurements (denoted with crosses) and the predictive mean
and variance of SSGPR50 on the iCub dataset. The dashed lines denote a confidence interval of twice the
standard deviation.

cursive) residuals for the considered methods. The sensor drift eventually causes GPR and RBD
to underestimate forces up to an extent of approximately 1 N. A similar effect is observable for
SSGPR50, although much less profound due to continuous model adjustments. We can see in
Figure 5.12 that the residuals approximately follow a normal distribution with non-zero mean for
force predictions, while the distribution of residuals for torque predictions is centered around zero.

This constant offset of the residuals biases any direct comparison between the dynamics model
and sensor measurements, and is therefore not desirable. Although it is arguable that the sensor is
at fault rather than the models, the sensor measurements often form the ground truth in compar-
isons. It thus necessary that the models make predictions in the reference frame of the (inaccurate)
sensor, rather than in terms of accurate but unmeasurable physical quantities. In regression meth-
ods, (sensor) drift can be compensated for using a trend model. Given the nature of the drift as
observed in Figure 5.11, it seems appropriate to model the drift using a linear factor. Extension of
SSGPR with an additional linear term is straightforward by extending the feature map φ(·) from



5.3. INCREMENTAL LEARNING OF INVERSE DYNAMICS 73

0 20000 40000 60000

−0.40

−0.20

0.00

0.20

0.40

# Samples

A
ve

ra
ge

R
es

id
ua

l[
N
]

GPR LWPR

SSGPR50 RBD

(a) Fx

0 20000 40000 60000
−0.02

−0.01

0.00

0.01

0.02

# Samples
A

ve
ra

ge
R

es
id

ua
l[

N
m
]

GPR LWPR

SSGPR50 RBD

(b) τx

0 20000 40000 60000

−0.40

−0.20

0.00

0.20

0.40

# Samples

A
ve

ra
ge

R
es

id
ua

l[
N
]

(c) Fy

0 20000 40000 60000
−0.02

−0.01

0.00

0.01

0.02

# Samples

A
ve

ra
ge

R
es

id
ua

l[
N

m
]

(d) τy

0 20000 40000 60000
−1.00

−0.50

0.00

0.50

1.00

# Samples

A
ve

ra
ge

R
es

id
ua

l[
N
]

(e) Fz

0 20000 40000 60000
−0.02

−0.01

0.00

0.01

0.02

# Samples

A
ve

ra
ge

R
es

id
ua

l[
N

m
]

(f) τz

Figure 5.11: Average one-step-ahead residual with respect to the number of samples of GPR, LWPR, and
SSGPR50 on the iCub dataset. The results for SSGPR50 are the average error over 25 randomized runs.
Note the different limits of the y-axis for the various plots.
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Figure 5.12: Histogram of the residuals for SSGPR50 on the iCub dataset. The red line indicates a Gaussian
distribution with the specified mean and variance.

Equation (4.6) with an additional sample index t, such that

φ(x) =
σf√
D

[
sin
(〈
ωT
1 ,x

〉)
, cos

(〈
ωT
1 ,x

〉)
, · · · , sin

(〈
ωT
D,x

〉)
, cos

(〈
ωT
D,x

〉)
, t
]T

.

The average residuals of SSGPR50 with the linear trend model are shown in Figure 5.13. As
we can see, the method is effective at compensating for most of the sensor drift, keeping the
average residual close to zero over the whole dataset. The effect of drift compensation is also
noticeable in terms of nMSE, in case of SSGPR50 the prediction errors are reduced by 20% to
25% (cf. Table 5.1). The linearity assumption on the drift may seem as a very strong assumption,
however, SSGPR continuously adapts the corresponding regression coefficient in order to adjust
for non-linear drift behavior. In absence of drift the regression coefficient is driven to zero and
trend compensation will effectively be disabled. One disadvantage, however, is the requirement to
continuously adjust the corresponding regression coefficient. If the model is not updated regularly,
then small deviations in the estimation of this coefficient will cause increasingly large prediction
errors due to the increasing time index t.
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Figure 5.13: Average one-step-ahead residual with respect to the number of samples of SSGPR50 on the
iCub dataset when using a linear trend for drift compensation. The presented results are the average error
over 25 randomized runs. Note the different limits of the y-axis for the various plots.
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5.3.4 Computational Requirements

Applications utilizing predicted robot dynamics are commonly characterized by (hard) real-time
constraints. Model predictions do not only have to be accurate, but should also be computed within
a timely fashion to be useful. For example, in case of James and iCub humanoids, the F/T sensor is
measured at an interval of around 50 Hz. Prediction times over 20 ms are therefore unacceptable,
as these are based on outdated information. For incremental methods, the time spent for a single
sample not only includes a the prediction time, but also the subsequent model update. Figure 5.14
shows the per-sample timing for LWPR and SSGPR with respect to the number of test samples on
all three datasets. The constant prediction times of GPR and RBD have been included as reference.

As described in Section 4.4, the timing of SSGPR remains perfectly stable over time, making this
method suitable for use in real-time control loops. Furthermore, the time spent on each sample
ranges from approximately 250 µs for 25 to 1.5 ms for 200 sparse spectrum features, respectively.
We can therefore conclude that the computational requirements of incremental SSGPR are minimal
and well within the target limit of 20 ms. A common argument for analytical models is their
apparent efficiency. However, the RBD model is only marginally faster than SSGPR25 on the iCub
dataset8. Combined with the superior predictive accuracy of SSGPR25 (cf. Table 5.2), there is
little reason to prefer the analytical RBD model over a learned SSGPR solution.

Although efficient with a small number of samples, the per-sample timings of LWPR are charac-
terized by a steep increase. Not only do these exceed 20 ms in some cases, the unpredictability
of the computational requirements make LWPR unsuitable for real-time usage. In Figure 5.14c,
for instance, the prediction times seem to have stabilized after approximately 80000 samples, only
to start increasing again around 150000 samples. In Figure 5.15, we observe an O

(
x0.76

)
scaling

behavior of LWPR on the entire iCub dataset as calculated using an empirical estimate (Gold-
smith et al., 2007). The timing behavior of LWPR could be controlled by tuning the thresholds
for creation and removal of receptive fields. In an extreme case, for instance, the model could
guarantee O(1) scaling by disabling the creation of new receptive fields. However, this tuning
is cumbersome and will likely have a negative effect on generalization performance. Moreover,
the exact balance between creation and removal of receptive fields is data-dependent and further
assumptions on the data will be necessary to make formal guarantees. SSGPR, on the other hand,
hasO(1) scaling “by design” and scales asO

(
n2
)

with respect to the number of inputs (controlled
directly by the hyperparameter D). The computational requirements are therefore predictable for
any given parameter configuration.

8This comparison is not entirely fair: the RBD model is implemented entirely in C++, while the SSGPR model is
partially implemented in Python.
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Figure 5.14: Sample time with respect to the number of training samples. The results for GPR and RBD
only include the prediction time, whereas the timing for LWPR and SSGPR also includes the model update.
Note that the y-axis is in log scale and that data for RBD is only available for the iCub dataset.
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Figure 5.15: Per-sample update time of LWPR with respect to the number of samples for the force compo-
nents of the iCub dataset. The red line indicates the empirical estimate of the complexity obtained by fitting
an exponential curve to the measurements. Note the log scale on the y-axis.

5.4 Incremental Learning of the Visual Location of the Hand

The last experiment concerns learning the association between head and arm posture, and the
corresponding visual response. This particular sensorimotor mapping is useful for a number of
robotic tasks (see Natale et al., 2007, and references therein), such as gaze control or visually
guided reaching and grasping. The forward model of this association can be defined as

f : {qarm, qhead} 7→ I ,

where qarm ∈ R7 contains joint angles for all 7 DoF of the arm and qhead ∈ R6 describes both
the neck (i.e., pitch, roll, and yaw) and eye configuration (i.e., common tilt, common version, and
vergence). Furthermore, the image representation I =

{
uleft, vleft, uright, vright

}
∈ N4 contains the

(approximate) horizontal and vertical coordinates of the center of the hand in the left and right
image planes.

Obtaining the inverse model f−1 : I 7→ {qarm, qhead} is typically more interesting from a practical
perspective, since it computes the action required to drive the robot to a desired image represen-
tation I. However, there are multiple joint configurations that result in the same image represen-
tation, which is due to redundancy in the DoF in advanced humanoid robots. It follows that the
mapping function f is not bijective and thus not invertible, which in return signifies that construct-
ing the inverse mapping f−1 is an ill-posed learning problem. Although well-posedness can be
enforced by imposing additional constraints on the solution (e.g., see Lopes and Santos-Victor,
2006), the primary interest in this work is to compare learning methods and the forward learning
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Figure 5.16: Extract of the visual coordinates of the iCub hand during the first four epochs of the data
collection procedure. Note that the robot is controlled to center the hand in the visual frames of both eyes,
explaining convergence to 160 and 120 pixels for the horizontal and vertical axes, respectively.

problem is therefore considered in the following.

A total of 37476 samples were collected from the iCub humanoid, subdivided over 429 epochs.
In each epoch, the hand is first moved to a random Cartesian position, after which the head and
eyes are controlled to center the hand in both left and right image planes of 320× 240 pixels each.
During this procedure, one of the wrist joints is activated to repeatedly shake the hand from left to
right. These relatively small movements allow visual localization of the hand using independent
motion detection. Figure 5.16 demonstrates the convergence of the u and v coordinates in the first
four epochs. We observe that consecutive samples are strongly correlated due to the described
data collection methodology. Furthermore, imperfect localization of the hand in the image frames
causes a relatively high level of noise and in some occasions erroneous output labels (cf. sam-
ples 20 to 30 for uright and vright). These complications are interesting from a machine learning
perspective, since it allows evaluation of learning methods under particularly difficult conditions.

5.4.1 Experimental Setup

Similar to the previous experiments, the aim of these experiments is to compare the performance
of SSGPR and LWPR when learning the forward sensorimotor model incrementally. The exper-
imental setup is therefore identical to the the one described in Section 5.3.1. The first 10000

samples are designated as the training set, while the remaining 27476 samples are used for testing.
As previously, the incremental learning methods use the training samples only for hyperparameter
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optimization, while batch GPR predicts the test set after being trained on the training set. Based
on performance results in preliminary experiments, the considered number of sparse spectrum fea-
tures is chosen as D ∈ {200, 500, 1000}. Furthermore, the trivial function f(xt) = yt−1, which
simply returns as prediction the revealed output of the previous sample, is used as an additional
reference method. Given the similarity of successive samples, this sequential function constitutes
a more realistic benchmark than predicting the mean of the training outputs (i.e., an nMSE of
approximately 1).

5.4.2 Results

Figure 5.17 demonstrates the generalization performance of the considered methods for the four
output coordinates. These results clearly confirm the inherent difficulty for learning methods on
this dataset. In particular, we observe that GPR performs poorly in all cases with a final nMSE
that ranges approximately from 0.4 to 1.5. This leads to the conclusion that the 10000 training
samples contain highly redundant information and are not sufficient to construct a satisfactory
model. Although LWPR outperforms GPR for three out of four outputs, its performance is still
significantly worse than the reference method that predicts the previous outputs. This inability to
compete with a trivial predictor ascertains that using LWPR to learn this dataset is not justified by
any means.

The results are more positive for incremental SSGPR, which demonstrates stable and superior
performance for all outputs. In the most economic configuration of 200 sparse spectrum features,
its performance is roughly similar to the reference method. Increasing the number of features to
D = 500 or D = 1000, however, causes a significant improvement in learning performance. In
these cases, SSGPR unequivocally outperforms the reference method, demonstrating that learn-
ing is advantageous on this dataset. Moreover, this result confirms that the incremental SSGPR
learning method can be used successfully in the challenging setting of highly dependent and noisy
data.
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Figure 5.17: Convergence of the average one-step-ahead prediction error of the considered methods when
predicting the visual location of the hand. The results for SSGPR are the average error over 25 random-
ized runs and the corresponding standard deviation is indicated with error bars for SSGPR200. In case of
SSGPR500 and SSGPR1000, the standard deviation is negligible and error bars are therefore omitted for
clarity.





CONTACT DETECTION 6
One useful application of inverse dynamics models is to detect contact situations. Given a predic-
tion of the internal dynamics, the robot can infer a contact situation by comparing this prediction
with the current sensor measurement. The difference between these two quantities is ideally zero
if there is no external force acting on the manipulator. Conversely, any deviation indicates an
external force exerted on the robot by the environment. In practice, the relationship between resid-
uals and external forces is complicated by the presence of prediction errors. Inaccuracies of both
the sensor measurement and the regression model are likely to cause non-zero residuals even in
absence of external forces. The primary difficulty of contact detection is therefore the ability to
distinguish between prediction errors and true changes in the dynamics model due to contact situa-
tions. Note that in the following we strictly consider the problem of classifying contact situations;
exact quantification or localization of external forces is not within the scope of this thesis.

Statistical tests for change detection can be used to make informed decisions whether to classify
non-zero residuals as true contact situations. Detection of changes in the underlying model can
be approximated efficiently using reasonable assumptions on the distribution of the residuals and
a fixed window of comparison. A contact situations is predicted when a likelihood ratio exceeds
a predefined threshold, at which point updates to the model are suspended until the statistic drops
below the threshold again. The exact procedure is explained in detail in Section 6.1. Subsequently,
the procedure is demonstrated on a variant of the synthetic Cross 2D dataset, which has been
extended to four different output regimes. These regimes are alternately activated by means of a
probabilistic finite-state automaton. This chapter is concluded in Section 6.3, which presents the
experimental validation of this procedure on the task of detecting external forces exerted on the
right arm of the iCub humanoid.
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6.1 Window-Limited Generalized Likelihood Ratio

The online change detection problem is to quickly detect abrupt changes in a stream of observed
random variables. At an unknown change time tc, a density parameter θ of these variables changes
from θ0 to θ1. The goal is to promptly detect this transition, while keeping the number of false
alarms at a minimum. Two well-known statistical tests that can be used for this particular problem
are the cumulative sum control chart (CUSUM) (Page, 1954; Basseville and Nikiforov, 1993) and
Generalized Likelihood Ratio (GLR) tests (Lorden, 1971; Basseville and Nikiforov, 1993). Both
these procedures are based on the likelihood ratio between the null hypothesis H0 : θ = θ0 and
change hypothesis H1 : θ = θ1, the primary difference being the availability of prior information
on θ1. In contrast to GLR, the CUSUM procedure assumes that the parameter θ1 after change is
known a priori. Given that external forces on a robot manipulator cannot be quantified a priori,
in the following we concentrate on the GLR procedure as described by Basseville and Nikiforov
(1993).

At the core of the GLR procedure is the log-likelihood ratio, for a variable z defined as

s(z) = ln
pθ1(z)

pθ0(z)
.

Noting that Eθ0 [s] < 0 and Eθ1 [s] > 0, it follows that a change in the parameter θ is reflected as a
change in the sign of the mean value of s. For a finite sequence of observations zi for j ≥ i ≥ t,
we can define analogously

Sj:t =
t∑
i=j

s(zi) .

The unknown change time tc can subsequently be approximated by finding the index j at which
this ratio is at a maximum. However, this ratio cannot be evaluated without further information,
since the parameter after change θ1 is unknown as well. The standard statistical approach is to
replace θ1 with a maximum likelihood estimate, yielding the double optimization problem

gt = max
1≤j≤t

sup
θ1

Sj:t .

This formulation allows the definition of a decision function indicating whether a change has
occurred, i.e.,

dt =

gt if gt ≥ h

0 otherwise
, (6.1)

where h is a predefined activation threshold. The corresponding predicted change time (i.e, the
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alarm time) can then easily be defined as

ta = min {t : dt > 0} .

The maximum likelihood estimate of θ1 is carried out for each possible change time 1 ≤ tc ≤ t

and cannot be computed recursively, causing the computational requirements of the GLR test to
grow with respect to the number of observations. This growth can be alleviated by restricting
the procedure to a moving window of length M (i.e., the M most recent observations), which
is known as Window-Limited Generalized Likelihood Ratio (WGLR) (Appel and Brandt, 1983;
Capizzi, 2001). Incorporating this restriction in the maximization of the change time yields

gt = max
t−M<j≤t

sup
θ1

Sj:t .

The underlying idea is that older observations are less relevant, since earlier changes are likely to
have already been detected.

For our particular application of contact detection using a multi-variate regression model, the sen-
sor measurements can be described as a combination of the model predictions ŷ = E[f(x)], the
Gaussian measurement noise ε, and a possible external disturbance Υ. Therefore, for any given
time step t

yt = ŷt + εt + Υ(t, tc) ,

where the p-dimensional Υ(t, tc) is an unknown additive change. The contact problem can thus
be formalized as testing for the alternative hypothesis H1 : Υ1(t, tc) 6= 0 for t ≥ tc, as opposed
to the no-contact situation H0 : Υ0(t, tc) = 0 for t < tc. The alternative hypothesis cannot be
tested directly, since both the magnitude and direction of Υ are unknown. However, assuming
that the model predictions are accurate under the no-change condition, the additive change Υ is
reflected directly in the recursive residuals et = yt − ŷt. Let us consider the recursive residuals
standardized by the predicted standard deviation (Brown et al., 1975)

u =

[
e1
s1
, . . . ,

ep
sp

]
,

and assume these to be independent and distributed according to u ∼ N (0, I) (recall the stan-
dardization). The relevant test thus becomes to detect a deviation from zero in the standardized
residuals u, indicating consistent prediction errors by the model and therefore a likely contact
situation. In practice, however, it is convenient to not strictly require the residuals to be zero, but
instead to allow for a margin on the conditions of the null hypothesisH0 and alternative hypothesis
H1. Incorporating an upper bound a for the no-change condition θ0 and a lower bound b for the
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magnitude of change, the detection problem becomes

θ(t) =

θ : (θ − θ0)T (θ − θ0) = ‖θ‖2 ≤ a2 when t < tc

θ : (θ − θ0)T (θ − θ0) = ‖θ‖2 ≥ b2 when t ≥ tc
,

where a < b and θ0 = 0. The corresponding log-likelihood ratio of the GLR test is then

Sj:t = ln
sup‖θ‖≥b

∏t
j=1 pθ(uj)

sup‖θ‖≤a
∏t
j=1 pθ(uj)

.

This can be rewritten as (Basseville and Nikiforov, 1993, Section 7.2.1.7)

2

t− j + 1
Sj:t =


− (‖ūj:t‖ − b)2 when ‖ūj:t‖ < a

− (‖ūj:t‖ − b)2 + (‖ūj:t‖ − a)2 when a ≤‖ūj:t‖ ≤ b
+ (‖ūj:t‖ − a)2 when ‖ūj:t‖ > b

,

where ūj:t denotes a p-dimensional vector of the average standardized residuals from time steps j
to t.

It is important to note that the problem under consideration is actually slightly more involved than
the standard change detection problem. In case of the latter, is suffices to raise an alarm as soon
as a change is detected. The behavior after change is unspecified and depends strongly on the
desired task. For instance, change detection can be used to detect faulty sensors, such that an
alarm signifies the necessity to replace the sensor. In the problem domain considered in this thesis,
an alarm indicates a deviation from the base model and thus the (predicted) presence of an external
force. However, the GLR test is repeated continuously for each individual time step (i.e., sample)
regardless of the state, in order to detect not only the presence but also the duration of a contact
situation. Given the presumption that small deviations cannot be detected instantaneously, this
prediction strategy only works if the change persists over multiple time steps. In the following,
the adversarial setting in which individual samples are generated according to different models is
therefore explicitly excluded.

Restricting the log-likelihood ratio to a window of fixed length will reduce detectability of small
external forces, and the assumption of an additive change with a static profile may not be entirely
representative for contact situations. Consequently, the described procedure will not be statistically
optimal in this problem domain. However, as we will see in the following sections, the procedure
is computationally efficient and produces satisfactory results on both the synthetic and manipulator
contact datasets.
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6.2 Synthetic Dataset

The purpose of an initial experiment using a synthetic dataset is to evaluate the method in a con-
trolled setting, in which the labeled data is unambiguously available. This dataset, subsequently
referred to as Change-Point Cross 2D, extends the synthetic Cross 2D dataset from Section 5.1
with three additional output functions (i.e., regimes). These alternative regimes are variations of
the “base” regime, obtained respectively by means of an additive change, a different configuration
of the function constants, and a rotation of the input space. Furthermore, in Change-Point Cross
2D, the input samples are no longer chosen at random from a uniform distribution. Instead, a
dependent sequence of 2-dimensional inputs is generated using the inverse Fourier transform of
an increasing sequence disturbed by Gaussian noise. As a result, this sequence describes a smooth
trajectory within the input space and is therefore representative of a typical trajectory in joint space
of a robotic manipulator.

In more detail, the variations for the alternative regimes are given by a parameterization of the
output function f . Given a tuple of parameters

ζ = (a,R, c) ,

where a is a vector of four coefficients, R is a rotation matrix, and c is an additive bias term. The
corresponding output function given ζ is defined as

f(x; ζ) = max
{
ea1(Rx)

2
1 , ea2(Rx)

2
2 , a3e

a4((Rx)21+(Rx)22)
}

+ c .

Note that the different regimes are characterized by a change in the conditional output distribution
Pζ(y|x), whereas the prior distribution P(x) is constant over all regimes. The transitions between
these regimes are governed by the Probabilistic Finite-State Automaton (Paz, 1971) shown in
Figure 6.1. Note that alternative regimes are always preceded and succeeded by the base regime;
direct transitions from one alternative regime to another are not considered. Additionally, all
alternative regimes are equally likely to be selected and transition probabilities are such that a
regime typically lasts for multiple time steps. The parameter tuples corresponding to the base
regime q0 and the alternative regimes q1, q2, and q3 are

q0 : ζ =
(

[−10,−50, 1.25,−5.0]T , I, 0
)

q1 : ζ =
(

[−10,−50, 1.25,−5.0]T , I, 0.1
)

q2 : ζ =
(

[−10,−50, 1.25,−1.5]T , I, 0
)

q3 : ζ =

(
[−10,−50, 1.25,−5.0]T ,

[
cos π6 − sin π

6

sin π
6 cos π6

]
, 0

)
.

The first alternative regime (i.e., q1, as shown in Figure 6.2b), differs from the base regime by a
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Figure 6.1: Overview of the Probabilistic Finite-State Automaton used to create the synthetic dataset.

Table 6.1: Number of occurrences and samples for the four regimes in the considered instance of the
Change-Point Cross 2D dataset.

regime #occurrences #samples %samples

q0 32 3570 71.40%
q1 11 454 9.08%
q2 8 365 7.30%
q3 12 611 12.22%

63 5000 100.00%

constant additive term of 0.1. Consequently, the effect of the regime change on the output value is
invariant with respect to the input space. In Figure 6.2c-d, we can observe that this is not the case
for the second and third alternatives. These regimes are obtained by a modification of a coefficient
and a counter clockwise rotation of the input space by 30◦, respectively. The difference between
these regimes and the base regime varies with respect to the input space, such that regime changes
may not be reflected consistently in the output distribution.

As shown in Figure 6.3, the Change-Point Cross 2D dataset consists of in total 6000 samples, all
of which are corrupted by N

(
0, 0.12

)
random noise. Of these 6000 samples, an initial 1000 are

fixed to the base regime q0 to allow the learning algorithm to obtain a reliable base model prior
to possible regime changes. Subsequently, the remaining 5000 samples are generated using the
automaton from Figure 6.1. As we can see in Table 6.1, approximately 70% of these are generated
according to the base regime.
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Figure 6.2: The four output regimes considered for the Change-Point Cross 2D problem.
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Figure 6.3: Sequence of the selected regimes for the Change-Point Cross 2D dataset. The first 1000 samples
are fixed to the base regime q0.
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6.2.1 Experimental Setup

The experiments are formulated as an online sequential change detection problem. The learning
method is incremental SSGPR50 with non-fixed spectral points, which demonstrated an excellent
trade-off between computational requirements and generalization performance on the Cross 2D
dataset in Section 5.1.2. Hyperparameter optimization is performed on the initial 1000 training
samples, using a setup that is identical to the experiments in Chapter 5. A model of the base regime
is obtained by (incrementally) training Sparse Spectrum Gaussian Process Regression (SSGPR) on
the initial 1000 training samples, after which SSGPR continues updating on the remaining 5000

test samples. Though the learning method receives all samples (i.e., both training and test) in a
single pass, subsequent analysis for the change detection problem is restricted to the latter 5000

test samples.

Change detection is performed using WGLR as explained in Section 6.1. The problem of interest
is a binary classification problem, namely, whether or not the base regime is active. Although
the regime state is known exactly throughout the entire dataset, explicit annotation of the regimes
by the algorithm (e.g., discriminating q1 versus q2) is not considered. The binary predictions of
WGLR are therefore limited to the decision function dt in Equation (6.1), where the final measure
used to calculate classification errors is given by dt > 0. Furthermore, in order to minimize
contamination of the base model, only samples that are classified as belonging to the base regime
are used for model updates of SSGPR.

A number of configurations is used to investigate the sensitivity of WGLR to parameter configu-
rations. Firstly, the bounds on θ0 and θ1 are chosen such that a ∈ {0, 0.25, 0.5} and b ∈ {0.5, 1},
where a < b. The effect of the window length on the predictive accuracy is tested using four
different window lengths, namely M ∈ {10, 20, 50, 100}. Lastly, the threshold h is chosen from
a wide range of values h ∈ {0.5, 1, 2, 5, 10, 20, 50}. The subset formed by the first 2000 test sam-
ples, henceforth referred to as the validation set, is used to prevent overfitting of the parameters to
the test data when comparing the classification errors of different configurations.

6.2.2 Results

The predictions of non-base regimes using different configurations of WGLR are primarily an-
alyzed at the hand of receiver operating characteristic (ROC)-curves. These curves capture the
transition from exclusively predicting negative values to exclusively predicting positive values. In
the former case, the rate of false positives will necessarily be 0, at the cost of a true positive rate
of 0 as well (i.e., no positive sample is predicted as such). Conversely, in the latter extreme, both
the false and true positive rate will necessarily be 1. With respect to the problem setting under
consideration, the output labels are chosen positive when an alternative regime is active, whereas
a negative sample equates to the base regime being active. The rate of false positive and negatives
is regulated by varying the threshold h.



6.3. ONLINE MANIPULATOR CONTACT DETECTION 91

Figure 6.4 shows four ROC-curves corresponding to the different window lengths, each of which
contains the results for five different configurations of a and b. It is clearly observable that varying
a and b only has a minor effect on the predictions. This property is desirable in practice, as
it indicates that the predictive accuracy is not sensitive to (minor) variations of these parameters.
Further insight is given by the fact that varying the parameter bounds has a similar effect as varying
the threshold h, since both affect the discrimination threshold. With regard to the window length,
we observe that the effect of increasing the window length is twofold. Firstly, an increased window
length initially causes a slightly higher rate of false positives. Consider M = 100: in this case a
true positive rate of, for instance, 0.5 causes more false positives with respect to smaller window
lengths. The reason is that older regime changes will continue to “resonate” longer when using
larger windows. However, this observation is eventually reversed, as is evident from the fact that
M = 100 suffers less false positives for a desired true positive rate of 0.9 and higher. The optimal
window length will therefore depend on the respective cost of false positives and negatives given
the application domain.

Assuming equal cost for false positives and false negatives, the optimal configuration as measured
on the validation subset obtains an average classification error of 14.05%± 0.77% on the total test
set. Although this error may not seem impressive at first sight, we have to consider that regime
changes are detected indirectly through the residuals of SSGPR over a dependent sequence of
samples. Additionally, regime changes can often only be detected reliably after multiple samples,
causing WGLR to make prediction errors in the mean while. The output corresponding to the
decision function dt for the optimal parameter configuration is shown in Figure 6.5. As can be
verified, WGLR is generally successful at detecting the alternative regimes, particularly if the
regime lasts for a larger number of time steps.

6.3 Online Manipulator Contact Detection

The primary interest of this chapter is to investigate the performance of WGLR on the problem
of contact detection of a robotic manipulator using a learned dynamics model. To this extent,
a dynamics dataset has been collected from the iCub humanoid in similar manner to the earlier
iCub dataset from Section 5.3. However, while the original iCub dataset was obtained without
any external disturbances, in the Disturbed iCub dataset a number of external forces of increasing
magnitude is applied to the manipulator over a total runtime of 100000 samples. The purpose
of these disturbances is to simulate prolonged contact situations, such as grasping and holding
an object. The first 10000 samples are not subject to any disturbances and therefore reserved for
hyperparameter optimization and initial training of the base regime (i.e., without disturbance).

A total of six different disturbances are considered, as demonstrated in Table 6.2. The first type
is a manually applied disturbance, characterized by a highly dynamic profile and large forces and
torques. The five remaining disturbances are obtained by (manually) attaching calibrated weights
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(c) M = 50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

Tr
ue

po
si

tiv
e

ra
te

(d) M = 100

Figure 6.4: ROC-Curves for WGLR on the Change-Point Cross 2D dataset using five different configu-
rations of a and b and window lengths M ∈ {10, 20, 50, 100}. The curves are obtained by varying the
threshold h and represent the mean of 25 runs of SSGPR50 with non-fixed spectral points. Points close to
the origin are exemplary for high thresholds, whereas points close to the right-top corner typically indicate
a low threshold.
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Figure 6.5: Non-base regimes of the Change-Point Cross 2D dataset as predicted using WGLR with con-
figuration a = 0, b = 0.5, M = 20, and h = 5, which resulted in the lowest binary classification error on
the validation subset. Note that the output values of dt are capped at 40 for visualization purposes.

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

# Training Samples

No Contact Manual Disturbance 20 g 50 g 100 g 200 g 300 g

Figure 6.6: Sequence of disturbances for the Disturbed iCub dataset. The first 10000 samples are free of
any kind of disturbances.

to the end effector, where the weights are chosen from 20 g, 50 g, 100 g, 200 g, and 300 g. This
range of weights is chosen such that the lightest is likely to be undetectable, while the heaviest
have a profound impact on the dynamics model and can therefore be detected easily. Note that
adding 20 g to the end effector equates to a small additional force of approximately 0.2 N. The
corresponding torque varies with the arm configuration, although it can easily be upper bounded at
0.1 N m given the limited arm length of the iCub humanoid. Each disturbance lasts between 10 s
and 100 s, or respectively 500 and 5000 samples. The exact starting time and length of each regime
is unknown, due to the obvious difficulty of manually attaching a weight to a moving manipulator
within a 20 ms time frame. Figure 6.6 shows the various regimes applied within the dataset.

6.3.1 Experimental Setup

The setup used for the Disturbed iCub dataset is similar to the setup as described in Section 6.2.1.
However, a wider range of bound parameters and thresholds is considered, with a ∈ {0, 0.5, 1, 2}
and b ∈ {0.5, 1, 2, 4, 8}, where a < b, and h ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500}. The con-
sidered window lengths are identical, namely M ∈ {10, 20, 50, 100}. The validation subset is
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Table 6.2: Number of occurrences and samples for the seven regimes in the Disturbed iCub dataset.

regime #occurrences #samples %samples

No contact 19 52500 58.33%
Manual disturbance 4 3500 3.89%
20 g 3 6000 6.67%
50 g 3 6000 6.67%
100 g 3 6000 6.67%
200 g 3 6000 6.67%
300 g 2 10000 11.11%

37 90000 100.00%

composed of the first 12500 test samples, which include one iteration of the first five disturbances
(cf. Figure 6.6).

The learning method in this case is SSGPR50 with fixed spectral points, which has shown good
performance on the original iCub dataset (cf. Section 5.3.2). Ideally, change detection would be
based on the force measurements, as these are invariant to the arm configuration. However, as
we observed in Section 5.3.3, the force measurements are subject to drift and the force residu-
als are therefore a much less reliable indicator for change. The drift compensation presented in
Section 5.3.3 cannot be applied to alleviate this problem, since model updates are temporarily
suspended for the duration of (detected) contact situations. Nonetheless, preliminary experiments
confirm that residuals of the torque predictions show superior performance for change detection.
In the following we will therefore limit our attention to the torque residuals.

6.3.2 Results

The ROC-curves for a subset of the considered parameter configurations are shown in Figure 6.4.
We observe a similar pattern as for the synthetic Change-Point Cross 2D dataset, namely that the
performance is not very sensitive to the configuration of bounds a and b, and that increasing the
window size does not significantly improve the results. Furthermore, WGLR has difficulties to ob-
tain true positive rates higher than approximately 80% for all window lengths, the primary reason
being that the 20 g disturbance is very difficult to detect. Given that this disturbance accounts for
16% of all non-base samples, it is clear that increasing the true positive rate above 84% will con-
sequently result in a large number of false positives. The same effect is present, though to a lesser
extent, for the 50 g disturbance. The difficulty of correctly detecting these two minor disturbances
explains the apparent “crossover” point around 75% to 80% true positive rate.

A simple per-sample threshold approach is included as reference. This method predicts changes
using the residuals on an individual sample, and is emulated using WGLR by setting M = 1 and
a = b = 0. It is clear from Figure 6.4 that WGLR approaches using a larger window length show
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Figure 6.7: ROC-Curves for WGLR on the Disturbed iCub dataset using five different configurations of a
and b and window lengths M ∈ {10, 20, 50, 100}. The curves are obtained by varying the threshold h. The
per-sample threshold method is included as benchmark and marked with dashed black lines. Points close to
the origin are exemplary for high thresholds, whereas points close to the right-top corner typically indicate
a low threshold.
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Table 6.3: Detection rates per regime for three different parameter configurations on 90000 test samples of
the Disturbed iCub dataset. The configuration described in column (a) is a = 0, b = 4,M = 100, h = 100,
whereas column (b) corresponds to a per-sample threshold approach emulated with parameters a = 0, b =
0,M = 1, h = 5. Lastly, column (c) is obtained using parameters a = 0.5, b = 8,M = 10, h = 20
and maximizes detection rates while restricting the false negative rate to 1%. The bottom line indicates
the overall accuracy for each configuration. The reported results are averaged over 25 runs and indicate a
variation of one standard deviation.

detection rate (%)
regime (a) (b) (c)

No contact 89.56 (± 0.73) 88.51 (± 0.52) 99.02 (± 0.26)

Manual disturbance 96.05 (± 0.03) 94.17 (± 0.37) 93.40 (± 0.61)

20 g 4.27 (± 1.95) 10.55 (± 1.31) 1.28 (± 0.91)

50 g 72.40 (± 3.03) 35.00 (± 0.94) 1.05 (± 0.26)

100 g 88.68 (± 2.91) 73.21 (± 1.45) 49.25 (± 1.19)

200 g 98.46 (± 0.13) 97.60 (± 0.59) 95.55 (± 1.48)

300 g 98.49 (± 0.13) 98.26 (± 0.16) 97.62 (± 0.39)

84.51 (± 0.61) 80.64 (± 0.32) 82.05 (± 0.23)

superior detection rates. In order to investigate the exact differences further, we limit our attention
to three exemplary configurations. The first is given by a = 0, b = 4, M = 100, and h = 100,
which resulted in the lowest classification error on the validation set. The second configuration is
a per-sample threshold approach given by parameters a = 0, b = 0, M = 1, and h = 5. In this
case, the threshold h is chosen such that the false positive rate is close to the same rate of the first
configuration. The third and last configuration uses parameters a = 0.5 ,b = 8, M = 10, and
h = 20, and maximizes change detection rates, while respecting an upper limit of 1% on the false
positive rate. The individual detection rates on the 90000 test samples for all three configurations
are shown in Table 6.3, respectively. The results in columns (a) and (b) confirm that WGLR shows
superior performance with respect to the simple threshold approach. Although the false positive
rate is similar in both cases, the detection rates of nearly all types of disturbances are much higher
in case of WGLR (cf. Table 6.3a). This is particularly evident for the 50 g disturbance, for which
WGLR attains a detection rate more than twice as high as the per-sample threshold approach.

Unsurprisingly, the results in column (c) demonstrate that reduction of the false negative rate leads
to inferior detection rates of all disturbances. Nonetheless, the manual, 200 g, and 300 g distur-
bances can still be detected reliably. In contrast, only half of the samples that were disturbed with
an additional 100 g weight are still detected as such, while 20 g and 50 g weights are proven unde-
tectable. The task dependent balance between false positives and negatives is primarily regulated
using lower bound b and threshold h. Changing these parameters has an immediate impact in
WGLR, therefore allowing changes to be made during runtime to obtain the desired tradeoff.

An interesting observation in Table 6.3a is that the recognition rate of the 20 g disturbance is
actually lower than the false positive rate (i.e., 8.79%). This is a strong indication that the samples
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Figure 6.8: Non-base regimes of the Disturbed iCub dataset as predicted using WGLR with configuration
a = 0, b = 4, M = 100, and h = 100, which resulted in the lowest binary classification error on the
validation subset. Note that the output values of dt are capped at 2000 for visualization purposes.

that result in a false positive error (i.e., samples that are erroneously detected as disturbance)
are not evenly spread throughout the dataset. The predictions obtained using the corresponding
configuration, shown in Figure 6.8, confirm that false positives indeed tend to occur in batches
rather than as single instances. Consider for instance t ≈ 15000, t ≈ 79500, or t ≈ 97000; around
these time steps, a series of samples is erroneously classified as non-base regime. The exact reason
for this behavior is unknown, although it seems that the cause is rather external (e.g., faulty sensor
measurements) than true prediction errors of the contact detection procedure. Regardless, the
predictions in Figure 6.8 generally seem to give a reliable indication of the manual disturbance
and additional weights of more than 50 g. The case of a disturbance of 20 g, on the other hand, is
proven to be undetectable, while 50 g is around the crossover point.
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Sensorimotor anticipation is important for safe and efficient operation of robots in unstructured and
non-stationary human environments. This thesis presented incremental variants of the Random
Fourier Regularized Least Squares (RFRLS) and Sparse Spectrum Gaussian Process Regression
(SSGPR) regression methods that allow sensorimotor associations to be learned during robot oper-
ation. The design objectives of these incremental learning methods were (1) a theoretical founda-
tion, (2) computational efficiency, and (3) practical convenience. Rather than developing a novel
algorithm from the ground up, the methods are based on the thoroughly studied Regularized Least
Squares (RLS) and Gaussian Process Regression (GPR) algorithms, therefore ensuring a solid
theoretical foundation. Extension of these linear methods with a kernel approximation is essential
for generalization performance on non-linear problems as well as computational complexity. The
typical linear dependency of standard kernel methods (KMs) on the number of training samples
is avoided by explicitly performing a finite-dimensional feature mapping. Consequently, efficient
and exact incremental update routines can be used and, contrary to related work, no additional
mechanisms are required to constrain computational requirements. This bounded update com-
plexity facilitates open-ended learning as well as use in a (hard) real-time setting. Employment
in resource constrained environments, such as embedded systems, is further facilitated by the
algorithmic simplicity of the approach. As a consequence, the methods are easily understood, im-
plemented, and deployed in practice. Other features that contribute to practical convenience are a
limited number of hyperparameters and, in case of incremental SSGPR, a principled methodology
(i.e., likelihood optimization) to optimize these hyperparameters automatically. Furthermore, a
single hyperparameter controls the dimensionality of the feature mapping and therefore the trade-
off between computational cost and predictive accuracy, such that generalization performance can
easily be maximized while conforming to domain specific timing constraints.
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A number of synthetic and real robot dynamics datasets were used to evaluate the empirical perfor-
mance of the proposed methods with respect to current state of the art. An initial set of experiments
demonstrates that RFRLS is competitive in terms of generalization performance in a batch learn-
ing setting, while the computational efficiency is significantly superior in absolute sense as well
as in terms of scaling behavior. The most important experimental contribution of this thesis is
the comparison of incremental SSGPR with Locally Weighted Projection Regression (LWPR) and
batch GPR on a series of large scale manipulator dynamics data sets. These experiments demon-
strate that incremental SSGPR significantly outperforms LWPR in terms of predictive accuracy
as well as computational requirements. In addition, it outperforms an analytical Rigid Body Dy-
namics (RBD) model by several factors in terms of predictive accuracy, while having comparable
computational requirements (less than 1 ms per update). This demonstrates both the benefit of
learned sensorimotor models over analytical solutions as well as the computational efficiency of
the proposed method. Furthermore, batch GPR was inferior in this realistic learning setting, in
which an initial subset of the samples was used for training and the remaining samples were used
for testing.

The relevant interpretation of this result is that incremental learning poses significant advantages
when samples cannot be assumed independent and identically distributed (i.i.d.). In the considered
dynamics learning setting, subsequent samples are almost surely dependent and possibly subject
to concept drift. Incremental learning methods have significant advantages in this setting, as they
use a maximum amount of training data and adapt continuously to changes in the environment.
Further experimentation on the problem of learning the mapping from head and arm posture to
the visual localization of the hand confirms these findings. The samples for this problem are
highly dependent due to the data collection methodology. Both GPR and LWPR perform poorly
on this problem and are unable to compete with a trivial reference method. Incremental SSGPR,
on the other hand, handles this adverse learning condition adequately, evidenced by the fact that it
outperforms the reference method by a significant margin.

In the final part of this thesis, a dynamics model obtained using learning was used for contact
detection on the iCub humanoid robot. External forces exerted on the manipulator result in de-
viations between measured dynamics and those predicted by the model. Consequently, contact
situations are characterized by a change in the predictive accuracy of the learning method. The
proposed approach uses incremental SSGPR to learn the dynamics model and a Window-Limited
Generalized Likelihood Ratio (WGLR) method to detect changes in the distribution of the resid-
uals. Empirical validation using real-life data from the iCub humanoid suggests that weights of
100 g mounted at the end effector can reliably be detected using this approach.
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7.1 Future Work

The emphasis in this thesis was the development of an incremental learning method for use in
robotic learning problems. There are a number of interesting directions for future work. Within
the application domain of robotics, it would be interesting to further investigate the use of these
methods in the context of model-based reinforcement learning (Sutton and Barto, 1998). Incre-
mental SSGPR could be particularly useful in this setting, due to the availability of a predictive
variance. This measure of uncertainty in the predictions can effectively be used as guidance for ac-
tive learning and the tradeoff between exploration versus exploitation, as demonstrated previously
using related learning methods (Strehl and Littman, 2008; Li and Littman, 2010). With respect to
the study of autonomously acting and developing robots, this is closely related to the concept of
intrinsic motivation (Hart and Grupen, 2010; Oudeyer et al., 2010). Regardless, although robotics
applications have been emphasized in this thesis, the proposed methods are by no means limited to
this application domain. In future work, it would be interesting to investigate their performance in
other application domains that are incremental by nature, such as time series modeling (Hamilton,
1994; Fan and Yao, 2003) and adaptive filtering (Haykin, 2001; Sayed, 2008; Liu et al., 2010).

There are several standing challenges for future work regarding technical properties of the algo-
rithms. Though hyperparameters can be tuned in SSGPR using log marginal likelihood, this re-
quires collection of an initial batch of training samples. An interesting and useful extension would
therefore be to investigate whether hyperparameter optimization can be performed “online”, that
is during operation of the algorithm. This is not as straightforward as it may initially seem, since
adapting the hyperparameters invalidates all knowledge learned thus far. It is therefore required to
either change the configuration gradually (and accepting a limited detrimental effect of changes)
or to retrain completely after changes using previous samples stored in memory. Furthermore, it
would be interesting to see whether recent extensions of KMs in general and GPR in particular
could be integrated in incremental SSGPR, while respecting its original design objectives. These
extensions include dependent multi-output learning1 (Micchelli and Pontil, 2005; Evgeniou et al.,
2005; Boyle and Frean, 2005; Bonilla et al., 2008; Alvarez and Lawrence, 2009), heteroskedastic
noise models (Le et al., 2005; Kersting et al., 2007), and Bayesian change point detection (Turner
et al., 2009; Saatçi et al., 2010). A primary difficulty in the integration of these extensions is the
requirement of incremental operation with bounded time and space complexity.

1In this thesis, multiple outputs were learned concurrently by assuming independence among them.





BIBLIOGRAPHY

Achlioptas, D., McSherry, F., & Schölkopf, B. (2002). Sampling techniques for kernel methods.
In: Advances in Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, & Z.
Ghahramani, ed., pages 335–342. MIT Press.

Aizerman, M. A., Braverman, E. M., & Rozoner, L. I. (1964). Theoretical foundations of the
potential function method in pattern recognition learning. Automation and Remote Control,
25:821–837.

Alvarez, M. & Lawrence, N. D. (2009). Sparse convolved gaussian processes for multi-output
regression. In: Advances in Neural Information Processing Systems 21, D. Koller, D. Schuur-
mans, Y. Bengio, & L. Bottou, ed., pages 57–64. MIT Press.

Anderson, E., Bai, Z., Bischof, C. H., Blackford, S., Demmel, J., Dongarra, J. J., Croz, J. D.,
Hammarling, S., Greenbaum, A., McKenney, A., & Sorensen, D. C. (1999). LAPACK Users’
Guide, (third ed.). Society for Industrial and Applied Mathematics.

Appel, U. & Brandt, A. V. (1983). Adaptive sequential segmentation of piecewise stationary time
series. Information Sciences, 29(1):27–56. Institute of Electrical and Electronics Engineers
Workshop ’Applied Time Series Analysis’.

Arriaga, R. I. & Vempala, S. (2006). An algorithmic theory of learning: Robust concepts and
random projection. Machine Learning, 63:161–182.

Bach, F. R. & Jordan, M. I. (2005). Predictive low-rank decomposition for kernel methods. In:
Proceedings of the 22nd International Conference on Machine Learning, ICML ’05, pages 33–
40. ACM.

Balcan, M.-F., Blum, A., & Vempala, S. (2006). Kernels as features: On kernels, margins, and
low-dimensional mappings. Machine Learning, 65:79–94.

Basseville, M. & Nikiforov, I. V. (1993). Detection of abrupt changes: theory and application.
Prentice-Hall, Inc.

Biau, G., Devroye, L., & Lugosi, G. (2008). On the performance of clustering in hilbert spaces.
IEEE Transactions on Information Theory, 54(2):781–790.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer-Verlag New York,
Inc.



104 BIBLIOGRAPHY

Björck, Å. (1996). Numerical Methods for Least Squares Problems. SIAM.

Blum, A. (2006). Random projection, margins, kernels, and feature-selection. In: Workshop on
Subspace, Latent Structure and Feature Selection (SLSFS 2005), C. Saunders, M. Grobelnik,
S. R. Gunn, & J. Shawe-Taylor, ed., volume 3940, pages 52–68. Springer.

Bochner, S. (1933). Monotone funktionen, stieltjessche integrale und harmonische analyse. Math-
ematische Annalen, 108:378–410. 10.1007/BF01452844.

Bonilla, E., Chai, K. M., & Williams, C. (2008). Multi-task gaussian process prediction. In:
Advances in Neural Information Processing Systems 20, J. Platt, D. Koller, Y. Singer, & S.
Roweis, ed., pages 153–160. MIT Press.

Bordes, A., Ertekin, S., Weston, J., & Bottou, L. (2005). Fast kernel classifiers with online and
active learning. Journal of Machine Learning Research, 6:1579–1619.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin
classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory,
COLT ’92, pages 144–152. ACM.

Bousquet, O. & Elisseeff, A. (2002). Stability and generalization. Journal of Machine Learning
Research, 2:499–526.

Boyle, P. & Frean, M. (2005). Dependent gaussian processes. In: Advances in Neural Information
Processing Systems 17, L. K. Saul, Y. Weiss, & L. Bottou, ed., pages 217–224. MIT Press.

Brown, R. L., Durbin, J., & Evans, J. M. (1975). Techniques for testing the constancy of regression
relationships over time. Journal of the Royal Statistical Society. Series B (Methodological),
37(2):149–192.
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IMPLEMENTATION A
The majority of the results presented in this thesis have been obtained using a custom unified
Python framework. The primary motivation for this framework is to provide an environment that
allows

1. rapid prototyping and implementation of algorithms;

2. flexible design of experiments; and

3. high computational performance and efficiency on large scale experiments.

Python is an appropriate language to addressed these requirements, being an advanced and modern
programming language supported by a large and comprehensive standard library (i.e., “batteries in-
cluded”). Furthermore, the NumPy and SciPy packages add support for linear algebra and generic
scientific computing (Oliphant, 2006; Jones et al., 2001, respectively). Overall efficiency can be
obtained by implementing critical components in efficient C or Fortran extensions, as is common
in NumPy and SciPy. A detailed treatment of the design of this framework is outside the scope of
this thesis. Nonetheless, the following sections present technical details that are relevant for the
experimental results as presented in Chapter 5.

A.1 Technical Details

A.1.1 Gaussian Process Regression and Kernel Regularized Least Squares

The framework contains implementations of Gaussian Process Regression (GPR) and Kernel Reg-
ularized Least Squares (KRLS) using the Cholesky factor of the kernel matrix (for details, see
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Algorithm 2.1 in Rasmussen and Williams, 2005). Although these methods are relatively easy to
implement (in contrast to, e.g., Support Vector Machines), there are a number of important techni-
cal details to ensure high performance. Linear algebra operations, such as matrix-vector products
or computing the Cholesky factor, are performed efficiently by linking NumPy to the ATLAS li-
brary for linear algebra (Whaley and Petitet, 2005). Furthermore, the significant looping overhead
of Python when performing a large number of kernel evaluations (e.g., to construct the kernel
matrix) is avoided by means of a custom (threaded) C extension for all kernel related operations.
Significant savings in memory usage are achieved by performing linear algebra routines “in-place”
when appropriate.

A.1.2 Incremental Random Fourier Regularized Least Squares and Sparse Spec-
trum Gaussian Process Regression

The pseudocode for incremental Random Fourier Regularized Least Squares (RFRLS) and Sparse
Spectrum Gaussian Process Regression (SSGPR) can be translated nearly one-to-one to Python
code, as demonstrated in Algorithm A.1 in case of SSGPR. The dgetrs and dpotrs rou-
tines are implemented in LAPACK (Anderson et al., 1999) and accessible in Python through the
scipy.linalg.flapack wrapper module in SciPy1. Conversely, the dchud routine (im-
plementing rank-1 Cholesky updates) is not implemented in LAPACK or SciPy. LINPACK, the
predecessor of LAPACK, however, contains an implementation of dchud in Fortran (Dongarra
et al., 1979). This implementation has been made accessible from Python using the F2PY Fortran
to Python interface builder (Peterson, 2009).

A.1.3 Locally Weighted Projection Regression

Implementing the complicated Locally Weighted Projection Regression (LWPR) algorithm is te-
dious and error-prone, hence the reference implementation has been used for all presented ex-
periments (Klanke et al., 2008). This implementation is distributed with Python extensions and
can therefore easily be integrated in the above-mentioned framework. Furthermore, the library is
accessed through an additional wrapper layer that implements the common interface used in the
Python framework.

A.2 Hardware and Library Configuration

Unless indicated otherwise, all experiments were performed in double precision using the Gentoo
GNU/Linux operating system running on a standard Intel R© CoreTM2 Quad Q9550 processor (cf.
2.83 GHz) with 4 GiB of installed memory. The installed versions of NumPy of SciPy were 1.5.1

1Alternatively, one could use scipy.linalg.lu solve and scipy.linalg.cho solve.
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Algorithm A.1 Algorithm 4.2 annotated with corresponding Python code.

Require: σn > 0, σf > 0, ` > 0, D > 0,diag
(
M− 1

2

)
= l2

1: R← σnI2D×2D R = sigma n * identity(2*D)

2: w ← 02D×1 w = zeros(2*D)

3: b← 02D×1 b = zeros(2*D)

4: Ω ∼ N (0,M)
D×n O = randn(D, n) / ell

5: for all (x, y) do for x, y in fetch sample():

6: φ← σf√
D

[
cos (Ωx)T, sin (Ωx)T

]T
nf = sigma f / sqrt(D)

Ox = dot(O, x)

phi = nf * vstack((sin(Ox), cos(Ox)))

7: ŷ ← 〈w,φ〉 y hat = dot(phi, w)

8: v ← RT\φ v = dgetrs(R, arange(2*D), phi, 1, 0)

9: s2 ← σ2n (1 + 〈v,v〉) s2 = sigma n**2 * (1 + dot(v,v))

10: b← b+ φy b += phi * y

11: R← CHOLESKYUPDATE(R,φ) R = dchud(R, phi)

12: w ← R\
(
RT\b

)
w = dpotrs(R, b)

13: yield
(
ŷ, s2

)
14: end for

and 0.9.0, respectively. For computational efficiency, these libraries were linked against threaded
variants of version 3.9.23 of the ATLAS library. The use of threading is primarily beneficial
in case of batch GPR and KRLS. In case of incremental RFRLS and SSGPR, the overhead of
parallel execution outweighs the computational gains. It is therefore safe to assume that these
methods utilize only a single core in practice.
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