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Summary

The increasing complexity of humanoid robots and their expected perfor-
mance in real dynamic environments demands an equally complex, autono-
mous and dynamic solution. The main goal of this thesis is to propose the
first steps toward the implementation of a dynamic and flexible cognitive
architecture founded on the enactive paradigm of cognition. The approach
is based on the strategic use of the tools provided by nonlinear dynamical
systems theory and will propose a novel way of controlling the behavior of
artificial agents. Coupled chaotic systems are also studied as a part of non-
linear dynamical systems theory due to the richness of their dynamics. The
thesis is grouped in two main parts (besides the Introduction): Part one
introduces the theoretical framework of our approach including a review of
neural networks with a special focus on recurrent configurations; Part two
describes two projects that implemented the theory studied in Part one.
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Introduction

Research in humanoid robotics dates back approximately 30 years and was
founded on a strong dualist view of human nature. On one hand, the body
of an agent1 has been controlled by using a 50-year-old tradition of control
theory that started with industrial automation at the beginning of the 1960s.
And on the other, the mind of an has been treated independently of its body
by using cognitivist approaches, which was a very promising area of research
that gave birth to what it is known as artificial intelligence.

Cognitivism is one of the two main paradigms of cognition and has been
relatively successful in solving task specific problems. This approach sees
cognition as a set of computations defined over symbols or representations of
the world; these representations are pre-designed by a human programmer
[62]. The main problems this approach has been and is still facing are due
to its dependency on the programmer’s knowledge of the world: the symbol
grounding problem, the frame problem, and the combinatorial problem [61].

The focus of the present thesis is on the enactive paradigm of cognition.
This paradigm sees cognition as a process of co-determination between the
environment and the agent. In other words, the agent constructs its reality
through the interaction with the world [61]. Therefore, in contrast with the
cognitivist approach, the mind can not be independent of the body and the
knowledge about the world is not predefined by the designer2.

Related work

Based on experimental results, several groups have suggested the presence of
nonlinear (chaotic) dynamics in the brain [16, 28, 7]. With little differences

1The term agent will represent in this book an artificial entity used for the simulation
of human behavior

2See [62] for a thorough study on cognitive systems.
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x INTRODUCTION

on the exact role of chaos, these results show a dynamic link between per-
ception and memory built within a nonlinear dynamic space. Even though
the different models derived from these studies have reported great improve-
ments when compared to conventional neural networks, a final mechanism
of actuation in the same dynamic terms is missing in all of them. In other
words, only perception and memory are being addressed in these models,
but they do not consider motor outputs as part of these dynamic systems; in
some cases they discretize the output space [19], thus loosing the efficiency
gained before.

On the other hand, several groups have focused their research in the
reflexive part of their agents [43, 33, 32, 49, 15]. In these models actuation
is performed without considering the history of the agent. These and other
groups have developed remarkable advances in adaptive behavior but, in
contrast with the previous group, only perception and actuation is being
addressed; thus leaving memory out of sensori-motor loop.

In the same way, nonlinear dynamical systems has found several followers
within Developmental Psychology [58, 2, 56]. Esther Thelen and Linda Smith
support, among others, a theory of ontogenetic development based on the
concepts of dynamic adaptation and flexibility found in dynamical systems.
According to them, cognitive agents can not be modeled as simple cause-
and-effect systems but as systems with a history that changes them over
time [58].

Current models of cognition make little or none use of nonlinear dynam-
ical systems theory. Most cognitive architectures belonging to the enactive
paradigm of cognition use modular versions of feed-forward neural networks
for classification and regression [9, 53, 10, 30]. This type of networks are
nonlinear static networks, i.e., a given input is associated with a given out-
put and remains in a steady state as long as the input remains the same.
This leads to a reduced memory capacity and a great dependence to the
quality of the training datasets. Other architectures like the Self-aware and
Self-effective (SASE) cognitive architecture [34], use statistics in the form of
Markov Decision Processes. Here again it is necessary to find other ways
for saving, addressing and retrieving memories which results in expensive
computation processes.
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Motivation

Modern and classical control theories have been the two frameworks applied
for controlling any kind of autonomous system. They have proved to be very
accurate and efficient inside industrial environments where machine and envi-
ronment can be modeled precisely since they work within fixed spaces. Even
though mobile and specially humanoid robotics are pushing us to reconsider
the usefulness of this approach in dynamic an unpredictable environments,
several state-of-the-art platforms keep using the traditional tools of control
theory. Albeit the exponential growth of computational power has helped
to deal with the expensive treatment of inverse kinematics/dynamics and
environment modeling of these systems, they fail every time they find a sit-
uation that demands fast reactions or motions that were not coded by the
programmer.

A dynamic, flexible and autonomous cognitive architecture is needed to-
day more than ever to get a better understanding of human nature. A system
based on nonlinear dynamical systems theory would be of great importance
for the study of areas such as epilepsy [21, 54], developmental psychology
[58, 2, 56], psychotherapy [46, 45], motor control [18, 12, 20], neurosciences
[17, 47, 59], and many others. At the same time, a cognitive architecture
like the one proposed here will be of great use for, but it will mainly try
to integrate several areas of scientific research like human-robot interaction,
imitation, motor control, computer vision, and machine learning. Each one
of them has demonstrated to be a complex subject and integrating them will
be a challenge on its own.

Objectives

The main goal of our research is to propose the first steps toward the creation
of a cognitive architecture that, using the mathematical tools from nonlinear
dynamical systems theory, integrates the information coming from sensors
with the information coming from an internal space (memory), and that
finally modulates the motor outputs inside a reflexive physical layer. The
major contribution of a system like the one proposed here is the possibility
of having a dynamic sensori-motor loop that includes history as a modulator
in the decision making step for the final motor behavior.

Among other advantages of working in specific chaotic regimes like chaotic
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itinerancy [60], with respect to non-recurrent neural networks, it is possible
to mention the dynamic retention of information, increased learning capa-
bilities, improved patter recognition, efficient search of memories, memories
can be represented by dynamic processes and not only as static patterns,
simultaneous process of learning and recalling [59].

The design and implementation of a completely autonomous dynamic
cognitive architecture will have its starting point in carrying out the proposed
thesis by achieving the following goals:

• Design and implementation of a reactive physical layer following the
approach of Pasemann and colleagues. Motor behaviors in their plat-
forms are created by either evolving recurrent neural networks [43] or,
whenever the input-output relationships are simple enough, by manu-
ally tuning excitatory and inhibitory connections [35].

• Depending on the experimental setup, a reflexive system will be de-
signed first by studying optimal configurations of recurrent neuromod-
ules. The properties of hysteresis found in recurrent neurons are of
special interest in the pre-processing of sensory signals and will be
studied and used carefully in the platforms.

• Once having an optimal reactive physical layer working, it will be time
for focusing in a higher level of processing incoming information. The
most important component in the ’mind’ of our system is a dynamic
memory and it will be necessary to study advantages and disadvantages
of different approaches.

• Long-term memories, life-long memory systems and on-line learning
has been mentioned as some of the main characteristics of all ap-
proaches studying chaotic dynamics for saving information, however
there has been no methodology reporting the implementation of these
ideas. From our point of view, a way of implementing these features
should be studied in parallel when designing an autonomous cognitive
architecture. After implementing a dynamic memory, we will focus on
the methodology for creating on-line and life-long memory processing.

• This same approach will be studied for different kinds of sensor infor-
mation; i.e., sound, visual, tactile, proprioceptive, etc. All of them will
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be integrated in the dynamics of the network, in other words, a mem-
ory of an event or a sequence of events will be created as an attractor
in this nonlinear dynamic space fed by different sources.

• Finally, it will be necessary to couple the higher level of information
processing with the physical layer. A methodology for modifying a
simple reactive behavior with the information gathered through time
and saved in the ’mind’ network will be designed and implemented.

Preprocessing of information has probed to be a difficult task for many
areas such as vision, sound, and proprioception; however it is expected that
the use of nonlinear dynamical systems theory will facilitate their integration.
This is on its own, another very important goal derived from the proposed
methodology.





Part I

The Theory behind Dynamical
Systems
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Chapter 1

Introduction

In this part of the book we will describe the basic theory behind the different
tools used in our attempt to create a more dynamic cognitive architecture.
The following section gives a very brief introduction to cognitive systems.
The rest of this introduction contains some basic definitions and notations
related to Nonlinear Dynamical Systems that will be studied in more detail in
Chapter 2. Neural Networks in their different configurations will be described
in Chapter 3 since they also form part of the powerful tools used in robotics
research.

1.1 Dynamical Systems

Anything that changes its state over time is consider a dynamic system. To
describe a dynamical system it is necessary to have access to its state and to
the function that defines how the system behaves as time flows.

State of a system

The state of system is defined as the value or values representing one or multi-
ple characteristics of the studied system e.g., position, velocity, temperature.
Throughout this book the following notation will be used for representing
the state of a dynamical system:

• A single number will be represented by a lowercase letter as in x1

• A vector will be represented by a bold lowercase letter as in x =

[
x1

x2

]

3



4 CHAPTER 1. INTRODUCTION

Transfer function

Dynamical systems evolve through time thanks to some specific function of
one or more variables that define the dimension of the system. As we can
imagine the more variables a phenomenon has the more complex dynamics it
will show. The transfer function, sometimes called evolution rule is defined
by differential equations, Eq.(1.1), when working with continuous time or by
difference equations, Eq.(1.2), when working with discrete time and in this
case the function is usually called a map or iterated map.

ẋ = f(α,x, t); α ∈ �,x ∈ �n, t ∈ �+. (1.1)

x(k + 1) = f(α,x(k), k); α ∈ �,x ∈ �n, k ∈ ℵ. (1.2)

A dynamical system is called deterministic when the function governing
its internal dynamics does not include random or noisy inputs or parameters.

1.2 Time

Time is the main motor in any dynamical system, it helps us to move to-
ward our future state starting from our present state. This motion through
different states can be analyze through two different glasses: continuous, a
smooth progress in time, or discrete, through periodic intervals of time.

Figure 1.1: Typical plots of one-dimensional functions: continuous time (left)
and discrete time (right).

Continuous

Differential equations are the mathematical form to describe any dynamical
system moving continuously in time. In this type of description, our variables
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depend on t which is a non-negative real number since we start our analysis
at time t = 0. Since t is changing continuously, differential equations can not
tell us what our state will be in the ’next’ instant, however they can help us
to know how our system is changing at a given instant, Fig. 1.1. Examples
of dynamical systems moving continuously in time are:

• An object thrown up into the air with gravity pulling it downward
continuously.

• The dynamics of pendulum problems in general.

• Electrical circuits.

• Chemical reactions.

• Electromagnetic flows.

Discrete

Discrete dynamical systems make use of difference equations for predicting
the state of a system at any given instant given the initial conditions (state
and parameters) and the rule or map that governs its dynamics. Analyz-
ing a system in discrete time has several advantages over differential equa-
tions, among others: difference equations reduce significantly the expensive
computational cost of differential equations especially for systems with large
dimensions, the mathematics of difference equations are much easier to ana-
lyze and follow, real-time autonomous agents work also in discrete time with
an integer number of sensors and actuators. Throughout this book we will
focus on discrete dynamical systems mainly. If it is true that most systems
in nature change continuously over time, in some cases it has much more
sense to analyze their behavior in periodic intervals of time. Some examples
of discrete dynamical systems are:

• Micro/Macro economics: financial markets, currency rates, savings,
etc.

• Climate change.

• Population growth and decay.





Chapter 2

Nonlinear Dynamical Systems

The theory of nonlinear dynamical systems tries to study and model all phys-
ical phenomena that go through spatial and temporal evolution. The range of
phenomena studied with this theory goes from simple pendulum analysis to
the motion of planets and celestial bodies, from chemical reactions to lasers
and telecommunications. During the last decades the spectrum of scientific
communities interested in nonlinear dynamical systems theory has become
wider, e.g. neurosciences, economics, sociology, biology, psychology; and
with them the theory has also grown significantly. The amount of knowledge
accumulated during the years is enormous and would require several books to
describe the whole scope of this theory. In this chapter will try to describe
the basic concepts and tools of the theory with a special focus on chaotic
dynamics since it is the angular stone where this thesis is based.

A dynamical system is said to be ’nonlinear’ when it can not be mathe-
matically described as the linear sum of its components, i.e. it includes terms
like products (x1x2), powers (x3), and functions of x (sinx, ex). Almost all
systems in nature behave nonlinearly and mathematical modeling of this type
of systems is often very difficult and in some cases impossible. One option is
to divide the problem in very small parts that behave linearly and find so-
lutions for them, the major drawback of this approach is that it can not see
changes of the dynamics at macro scales. Instead of trying to find exact solu-
tions for nonlinear problems it is much easier to study the long-term behavior
of the system and later focusing on interesting points of changing dynamics.
Throughout this chapter we will present several of the tools that are used to
understand the qualitative nature of nonlinear dynamical systems.

The following section presents the simplest case of nonlinear dynamical

7



8 CHAPTER 2. NONLINEAR DYNAMICAL SYSTEMS

systems, the linear case. By studying a linear function we will be able to
compare the difficulties encountered when trying to solve nonlinear problems
analytically. The other sections will focus on the road to chaos by period-
doubling starting from fixed points.

2.1 Linear Dynamical Systems

Linear dynamical systems could be considered as the simplest cases of non-
linear dynamical systems. This type of systems can be mathematically de-
scribed as the linear sum of its components, i.e. a combination of elements to
the first power only. It is always possible to find algebraic solutions for these
systems; unfortunately, in nature there are not many examples of dynamical
systems that behave linearly. To have a better picture of how they look and
how they can be analyzed, we will use the general form of a one-dimensional
function.

x(k + 1) = a0 + a1x(k); x, ai ∈ �, k ∈ ℵ. (2.1)

First, let’s consider the case when a0 = 0:

x(k + 1) = a1x(k);

x(1) = a1x(0);

x(2) = a1(a1x(0)) = a2
1x(0);

. . .

x(k) = ak
1x(0); (2.2)

As k goes to infinity, the dynamics of this system depends on the value
of constant a1 and can fall in one of the following cases:

1. For |a1| < 1, ak
1 → 0 as k → ∞ ⇒ x(k) → 0 as k → ∞; our variable is

attracted to zero as time goes by, Fig. 2.1a.

2. For |a1| > 1, ak
1 → ∞ as k → ∞ ⇒ x(k) → ∞ as k → ∞. Unless our

initial value x(0) = 0, our variable becomes unstable and explodes to
infinity, Fig. 2.1b.

3. For a1 = 1, ak
1 = 1 ⇒ x(k) = x(0); our variable x remains constant on

its initial value as time goes by, Fig. 2.1c.
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4. For a1 = −1, x(0) = −x(1) = x(2) = −x(3) = x(4) . . .. Our variable
oscillates between a positive and a negative value of magnitude x0, Fig.
2.1d.

Finding fixed points and their stabilities by means of an analytical anal-
ysis gives us certain degree of confidence on our results. There is however
a much simpler way of finding fixed points and their behaviors: graphically.
The different plots in Fig. 2.1 are called cobweb plots and respond to a very
simple principle of graphical iteration. The studied function is plotted to-
gether with a bisector and starting with x(0) on the x-axis we draw a vertical
line from x(0) until hitting the function. Then a horizontal line is drawn until
reaching the bisector, a new vertical to the function, and a new horizontal
to the bisector, and so on. This kind of plot depicts the progress in time of
the iterations within the function, thus showing how stable or unstable our
fixed points are. Plots of activations versus time are also shown in each one
of the examples.

Next, considering the case when a0 �= 0:

x(k + 1) = a0 + a1x(k);

x(1) = a0 + a1x(0);

x(2) = a0 + a1x(1) = a0 + a1(a0 + a1x(0))

= a0 + a0a1 + a2
1x(0);

x(3) = a0 + a1x(2) = a0 + a1(a0 + a0a1 + a2
1x(0))

= a0 + a0a1 + a0a
2
1 + a3

1x(0);

. . .

x(k) = a0(1 + a1 + · · ·+ ak−2
1 + ak−1

1 ) + ak
1x(0); (2.3)

In order to further simplify the first term of the right-hand side of Eq.(2.3)
we multiply and divide the terms within parenthesis by (a − 1):
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Figure 2.1: A graphical method for finding fixed points and their stabilities
when a0 = 0 in Eq.(2.1)

a1 − 1

a1 − 1
(1 + a1 + · · ·+ ak−2

1 + ak−1
1 ) =

=
1

a1 − 1

[
(a1 − 1)1 + (a1 − 1)a1 + · · ·+ (a1 − 1)

ak
1

a2
1

+ (a1 − 1)
ak

1

a1

]
;

=
1

a1 − 1

[
a1 − 1 + a2

1 − a1 + · · ·+ ak
1

a1

− ak
1

a2
1

− ak
1

a1

+ ak
1

]
;

=
ak

1 − 1

a1 − 1
; (2.4)

↪→ x(k) =

{
a0

ak
1−1

a1−1
+ ak

1x(0); a1 �= 1

ka0 + x(0); a1 = 1
(2.5)
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Here again the value taken by a1 divides our analysis in four different
cases:

1. For |a1| < 1, ak
1 → 0 as k → ∞ ⇒ x(k) → a0

1−a1
; our system is attracted

to a constant value independent of x0, Fig. 2.2a.

2. For |a1| > 1, ak
1 → ∞ as k → ∞. Let’s reorganize Eq.(2.5) on ak to

analyze a bit further.

x(k) = a0
ak

1 − 1

a1 − 1
+ ak

1x(0) = ak
1

(
x(0) − a0

1 − a1

)
+

a0

1 − a1

In this case, the final behavior of our system depends on the value of
x(0): if x(0) = a0

1−a1
then our system remains constant at that value

forever, otherwise it becomes unstable and explodes to infinity, Fig.
2.2b.

3. For a1 = 1, the system will keep growing as k grows for any a0 �= 0; or
will remain at x(0) otherwise, Fig. 2.2c.

4. For a1 = −1, our variable oscillates between x0 and a0 − x(0), Fig.
2.2d.

Since the only effect of having a0 �= 0 is to shift our function away from the
origin, it is possible to see qualitatively similar dynamics than when a0 = 0.
It is only when a0 �= 0 and a1 = 1, Fig. 2.2c that the behavior changes from
the previous case, now all initial values are taken to +∞ if a0 > 0 or to −∞
if a0 < 0 unless x(0) = a0. When x(0) = a0, x(k) = x(0) for all cases.

2.2 Fixed points

When analyzing the example in the previous section we saw that for some
values of our parameters our system remained fixed (constant) in some spe-
cific value regardless of the initial value of x. In nonlinear dynamical system
we will usually find this type of attractors and we call them fixed points. In
a more strict mathematical sense we would say that a value x∗ is called a
fixed point if it satisfies f(x∗) = x∗.

In order to understand a bit more what the different attractors are and
how they can be analyzed, we will use a special function from the fam-
ily of quadratic maps, Eq.(2.6a). The logistic map, Eq.(2.6b), was studied
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Figure 2.2: A graphical method for finding fixed points and their stabilities
when a0 �= 0 in Eq.(2.1).

by the biologist Robert May as a model of population growth and is one
of the simplest and most used examples of one-dimensional discrete maps.
This second-order difference equation shows very rich and complex dynamics
through the parameter α that controls the nonlinearity of the system. In
order to keep the system bounded with normalized values, i.e. between 0
and 1, α takes values between 0 and 4. If α > 4 the system just blows up to
infinity very rapidly, if it is less than zero the system starts oscillating around
zero including negative numbers in the overall dynamics until a point where
it also explode to infinity.

x = a2x
2 + a1x + a0; ai, x ∈ �. (2.6a)

x = αx(1 − x); 0 < α < 4, 0 < x < 1. (2.6b)
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Figure 2.3: Fixed points representations: stable (left) and unstable (right).

The first step in our analysis is to find the fixed points of Eq.(2.6b). To
do this we have to find those values where f(x) = x

f(x) = αx(1 − x) = x → x(α(1 − x) − 1) = 0

↪→ x∗ =

{
0

1 − 1
α

Then we need to know how stable these points are. Fixed points come
in two different flavors, and in order to see their differences we can compare
them to being either a hill or a valley. If a ball is exactly at the top of
the hill it will remain there, but we know that even the slightest force in any
direction will make the ball roll over the hill and away from that steady point
where it was, Fig. 2.3, right. This kind of fixed point is called a repellor or
an unstable fixed point. On the other hand a ball resting at the bottom of
a valley will remain there or will go back there even if a temporary force
takes it out of its steady state, Fig. 2.3, left. This kind of point is called an
attractor or a stable fixed point.

The stability of a point in a discrete system is found analytically by
evaluating the first derivative of the function on that point, i.e. f ′(x∗). If
the absolute value of this evaluation is less than one, i.e. |f ′(x∗)| < 1 we say
the fixed point is stable, and if it is greater than one, i.e. |f ′(x∗)| > 1 we say
it is unstable.
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f ′(x) = α − 2αx (2.7)

↪→ |f ′(x∗)| =

{
α ; x∗ = 0

2 − α ; x∗ = 1 − 1
α

(2.8)

As we see, the stability of our map depends on the parameter α, and since
we have constrained α to be greater than 0 but less than 4 we can start by
saying that x∗ = 0 is an attractor when 0 < α < 1 and a repellor otherwise.
On the other hand, the point x∗ = 1 − 1/α will always be a negative value
for 0 < α < 1, hence not considered as part of the solution. In summary for
0 < α < 1 we have one single fixed point (x∗ = 0) and it is an attractor.

The second-order function of Eq.(2.6b) depicts a parabola with its vertex
located at x = 0.5 and height proportional to α: h = α/4, Fig. 2.4a. A
cobweb plot is used to show the stability of attractor x∗ = 0 by plotting
three different initial conditions, Fig 2.4b.
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Figure 2.4: A graphical method for finding fixed points and their stabilities.
0 < α < 1

A bifurcation1 occurs at α = 1 where x∗ = 0 becomes a repellor and
x∗ = 1 − 1/α an attractor. Figure 2.5 give some examples of the new points

1Bifurcation is the term given to sudden changes of the dynamics of a system when
varying its control parameters. It is not within the scope of this thesis to analyze dynamical
systems from the bifurcations point of view but to make use of stable states found around
these points. A whole body of research has been developed around the different types of
bifurcations found in nonlinear dynamical systems. The interested reader is suggested to
... [paper]
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of intersection between the logistic function and the bisector. This type
of bifurcation is called a tangent or saddle node bifurcation since it occurs
when the tangent to the function crosses the bisector. Three different initial
conditions are used to find the stability of the new fixed points, Fig. 2.5b.
It is possible to see that values close to x∗ = 0 are driven away with time
making it a repellor, all initial conditions are attracted to the newly created
fixed point at the crossing of both curves.
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Figure 2.5: A graphical method for finding fixed points and their stabilities.
Examples for 1 < α < 3.

2.3 Periodicity

The previous section gave us an initial analysis of fixed points found in the
logistic map and their stabilities for values below and above α = 1. However
the condition for having stability changes once again as α goes beyond 3
since |f ′(x∗)| > 1.

|f ′(x∗)|x∗=1− 1
α

= |2 − α| > 1, for α > 3 (2.9)

In order to better see what happens at this new bifurcation we will plot
the second iteration of our function. Figure 2.6 shows two plots for α = 2.8,
Fig. 2.6a and for α = 3.2, Fig. 2.6b. For 1 < α < 3, the second-iteration
curve has the same stable fixed point as the first-iteration curve. Once α
goes beyond 3, this fixed point looses stability and two new fixed points
are created when the tangent of the fourth-order function, second-iteration
curve, crosses the bisector curve. The main difference between these new
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fixed points and the studied in the previous section is that the function
does not settle down to just one of them as time increases but it alternates
between both on each time step. By doing so, an entirely new behavior is
created known as periodicity and the name given to this type of bifurcation
is period-doubling or pitchfork bifurcation.
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Figure 2.6: First and second-iteration plots of Logistic map.

In order to find the location of the new fixed points we need to follow the
same methodology as we did in the previous section, but in this case we will
work with a second-iteration function, i.e. f(f(x)), since the second fixed
point is located two steps ahead of our present state.

f(x) = αx(1 − x)

f(f(x)) = α(f(x))(1 − f(x)) = α(αx(1 − x))(1 − αx(1 − x))

= α2x(1 − x)(1 − αx(1 − x))

= −α3x4 + 2α3x3 − (α2 + α3)x2 + (α2 − 1)x (2.10)

Once again we use the condition to find the fixed points of a discrete
map, f(x) = x. Equation (2.10) should give us four roots or fixed points,
however we already know two solutions to this equation from the roots of the
first-iteration function, namely x∗ = 0 and x∗ = 1 − 1/α. We use these two
already known roots to further simplify Eq. (2.10):



2.3. PERIODICITY 17

f(f(x)) = x

− α3x4 + 2α3x3 − (α2 + α3)x2 + (α2 − 1)x = x

(−α3x3 + 2α3x2 − (α2 + α3)x + (α2 − 1))x = 0

− α3x3 + 2α3x2 − (α2 + α3)x + (α2 − 1) = 0 (2.11)

Dividing Eq. (2.11) by x − (1 − 1/α) we obtain:

−α3x2 + (α2 + α3)x − (α2 + α) = 0

→ x2 − α + 1

α
x − α + 1

α2
= 0

↪→ x∗
{

x∗
h = α+1+

√
α2−2α−3
2α

x∗
l = α+1−√

α2−2α−3
2α

(2.12)

These new solutions are defined only for α ≥ 3 and their stabilities could
be found by the same methodology as before, i.e. by evaluating the derivative
of the function on each solution:

|f ′(f(x))|x∗ = −4α3x3 + 6α3x2 − 2(α2 + α3)x + (α2 − 1) (2.13)

where

x∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x∗
1 = 0

x∗
2 = 1 − 1

α

x∗
3 = α+1+

√
α2−2α−3
2α

x∗
4 = α+1−√

α2−2α−3
2α

Finding the stability of these points by algebraic means becomes very
difficult already for a second-iterate function, not mentioning finding fixed
points and their stabilities for higher-order periods. The principle of graphi-
cal iteration and the power of simulations becomes very helpful at this point
allowing us to explore a wider space of the control parameter. By plotting
a limited number of initial conditions and their iterative progress within the
map, it is possible to find out how stable or unstable certain points are.
Figure 2.7 shows the behavior of our logistic map for three different initial
conditions when α > 3. The new fixed points pull any initial condition to-
ward them in an alternating pattern, thus becoming a limit cycle attractor,
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Fig. 2.7a. Plotting our function versus time gives a better picture of what
happens after a transient period, Fig. 2.7b. On the other hand, fixed point
x∗

1 = 0 is still a repellor since all orbits starting close to zero are still driven
away from it.
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Figure 2.7: Logistic map plots as a cobweb and in time for α = 3.2.

Finally, Fig. 2.8 shows two very close initial conditions and their long-
term behavior at fixed point x∗

2 = 1− 1/α. When the initial point is exactly
at 1 − 1/α the system stays fixed at that point, however any infinitesimal
variation from this point will make it lose stability and ultimately end up in
the limit cycle create by the attractor points x∗

3 and x∗
4. Hence we conclude

that fixed point x∗
2 has become a repellor for α > 3.
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Figure 2.8: Logistic map plots for α = 3.2, showing the lack of stability of
fixed point x∗

2 = 1 − 1
α
.

To study what happens for values of α > 3 we will introduce a new
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graphical tool that will simplify the rest of the analysis for any nonlinear
map. Figure 2.9 is called a bifurcation diagram and consists on, after getting
rid of transients, plotting as many random initial conditions as possible for
each value of the control parameter, Fig. 2.9a. This plot gives a much
more comprehensible picture of the whole dynamic space of the map being
studied. Figure 2.9b shows the following period-doubling bifurcation points
for the logistic map, giving us an immediate look into the dynamics of this
function in the periodic regime.
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Figure 2.9: Bifurcation diagram for the logistic map.

From these plots it is easy to see the values that any initial condition
will take on the long term depending only on the value of α. Previously we
chose three different initial conditions to see the behavior of the logistic map
in Fig. 2.7, we can see the 2-cycle obtain in those figures represented in the
bifurcation map at α = 3.2. In the same way as it happened before, the
increase of α will bring us new period-doubling bifurcations, thus creating
limit cycles of periods 2, 4, 8, 16, etc. Figure 2.10a depicts the return map of
our function, it shows the activations points only and not the cobweb lines as
before, in this way it is much easier easier to see the different periods formed
after the transients. Figure 2.10b shows a window of activations in time for
limit cycles of periods 2, 4, 8, and 16.

2.4 Chaos

The previous sections showed us how rich dynamics can be obtained from a
very simple equation such as the logistic map, Eq(2.6b). Starting from any
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Figure 2.10: Bifurcation diagram for the logistic map.

point in our space, and depending on the value of our control parameter,
we were able to decrease to zero, stay at constant values, or oscillate with
different periods at a steady state. However, Fig. 2.9a shows a much more
complex area to the right of our period-doubling tree, starting from some-
where around x ≈ 3.569945 . . ., the Feigenbaum point2. The Feigenbaum
point marks the end of the period-doubling tree and the beginning of Chaos,
the richest and most difficult of all regimes in a nonlinear dynamical system.

After decades of research in chaos theory it is still difficult to find a univer-
sal definition of chaos or methodology to study and describe a chaotic system.
Nevertheless most authors agree in some key properties of chaotic systems
grouped in the following sentence. Chaos is the part of Nonlinear Dynamical
Systems Theory that studies the aperiodic long-term behavior of systems
governed by deterministic rules that exhibit sensitive dependence on
initial conditions.

To better understand these and other properties of chaotic systems we
will make use of simulations of the logistic map for values of α greater than
the Feigenbaum point. Aperiodic long-term behavior means that there are
trajectories that do not settle down to constant, periodic or quasi-periodic
values as time goes to infinity, Fig. 2.11. As mentioned in the introduction
of this thesis, deterministic rules are those free of noisy or random inputs or

2The Feigenbaum constant, δ = 4.6692 . . ., was discover by physicist Mitchel Feigen-
baum in October of 1975 and is obtained as the relationship between the distance between
two successive bifurcation points. This constant can be found not only in primitive math-
ematical models but also in real physical phenomena, a property known as universality.
See M.J.Feigenbaum blabla...
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Figure 2.11: Simulation of the Logistic map for α = 4. Plotting 500 activa-
tions after 5000 time steps, no periodic dynamics are found.

parameters; the nonlinearity of the system is created by the internal dynamics
alone. Finally, sensitivity to initial conditions refers to the property of a
system where any arbitrarily small interval of initial values will be enlarged
significantly with each iteration, Fig 2.12. In other words, the error of two
nearby trajectories will have the same magnitude as the signal itself after few
iterations, Fig 2.12b.
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Figure 2.12: Simulation of the Logistic map for α = 4. Plotting two ini-
tial conditions separated by 1e − 10. In a chaotic system this difference is
amplified exponentially fast.

Chaos has two other central properties which are usually not mention in
most textbooks: mixing and dense periodic orbits. A system is said to
show mixing behavior when any point within an arbitrarily small subinter-
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val of the state space, eventually reaches points in another arbitrarily small
subinterval of the same space; in other words, we can get everywhere from
anywhere. Besides sensitivity to initial conditions and mixing behavior, the
existence of a dense set of unstable periodic orbits (UPO) is the other nec-
essary condition for validating the presence of chaos. Within the chaotic
regime, trajectories will not settle down to a single periodic orbit but will
wander in a sequence of close approaches to these orbits.

So far we have been using the logistic map, Eq. (2.14a) to show that
although simple this equation is rich with a great variety of dynamics. Other
examples of one-dimensional discrete maps that present the kind of behaviors
we have been studying so far, including chaotic dynamics are: shift map, Eq.
(2.14c); tent map, Eq. (2.14d); sine map, Eq. (2.14b). Examples of two-
dimensional chaotic maps are: the tent map, Eq. (2.14e); the tent map, Eq.
(2.14f).

f(x) = αx(1 − x) (2.14a)

f(x) = αsin(πx) (2.14b)

f(x) = 2x, mod(1) (2.14c)

f(x) =

{
αx, 0.0 ≤ x ≤ 0.5

α(1 − x), 0.5 < x ≤ 1.0
(2.14d)

f(x) = f

(
x1

x2

)
=

(
x2 + 1 − αx2

1

βx1

)
(2.14e)

f(x) = f

(
x1

x2

)
=

(−βx2 + αx1 − x3
1

x1

)
(2.14f)

Strange attractors

In the previous sections very simple kinds of attractors representing constant
values (fixed points), and periodic oscillations (limits cycles) were studied.
Within chaotic regimes some dynamical systems form very distinctive long
term patterns called strange attractors. The shape of these kinds of attractors
repeats over and over regardless of the initial conditions of the system. This is
a surprising condition since we already saw how sensitive to initial conditions
a chaotic system is, Fig. 2.12b. We would think that two different initial
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conditions would create completely different patterns in the long term since
already during the first few steps they diverge exponentially, but the surprise
comes when analyzing the long term behavior of these orbits: both stay
bounded within a very distinctive basin of attraction. Figure 2.13 shows two
of the most known strange attractors, both of them are continuous three-
dimensional functions: Lorenz, Fig. 2.13a; and Rössler, Fig. 2.13b.
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Figure 2.13: Strange attractors.

Strange attractors do not only challenge the notion of sensitivity to initial
conditions but present other interesting properties like those of fractals and
mixing behavior. Both, strange attractors and chaos have received a lot of
attention during the last decades but they are still in their infancy when
trying to find a definite mathematical description. Even so, their popularity
is not only among mathematicians and physic scientists but for people in
neural sciences, sociology or psychology to name a few.

Intermittency

Another very interesting property of chaotic systems that we will make use
in this thesis is intermittency. Intermittency could be seen as the alternation
of almost periodic dynamics and chaotic dynamics. When looking more
carefully into some regions of the chaotic regime it is possible to find periodic
windows that interrupt the chaotic behavior of the system for certain values
of the control parameter, Fig. 2.14a. At the beginning of these windows it is
possible to find values of the control parameter for which the system seems
undecided between behaving periodically or chaotically, Fig. 2.14b.
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Figure 2.14: Periodic windows within the chaotic regime of the logistic map
contain points where chaos and periodic behavior interrupt each other.

2.5 Summary

In this chapter we have studied the most basic concepts related to nonlinear
dynamical system theory. All possible dynamics present in the generic form
of linear functions were analyzed in the first section of this chapter. Solu-
tions were found both algebraically and graphically. As we saw, some specific
initial conditions drove this system to either stay constant, oscillate or blow
away as time grows but always in a linear way. The following sections made
use nonlinear functions to study those dynamics in more detail. In specific, a
well known discrete nonlinear function was used to show the different behav-
iors that are possible to obtain by simple iterations. Section 2.2 studied the
simplest case of long term behaviors presented in the linear case, fixed points.
Section 2.3 focused on oscillatory dynamics of different periods and finally
Sections 2.4 studied the most interesting and rich of all behaviors, Chaos.

Chaos theory is sometimes studied as an independent subject and has
accumulated a great amount of studies and followers. It is not within the
scope of this thesis to present all the concepts and tools used in Chaos theory
since it would require a much larger amount of space and time, but to know
the general ideas behind the dynamics of these kinds of systems. Those
characteristics and tools of nonlinear dynamical systems studied so far are
the ones that we will use when designing autonomous dynamics agents. In the
following chapter we will come back to chaotic behaviors when studying some
configurations of neural networks capable of generating nonlinear dynamics.



Chapter 3

Neural Networks

Neural Networks, both biological and artificial, have been studied for several
decades and are a highly interdisciplinary topic difficult to describe in just
one chapter of a book. A survey on general-purpose computation with neu-
ral networks done by Š́ıma&Orponen, [63] gives a general taxonomy on this
topic, recreated in the following list. For our purposes a very simple classifi-
cation of artificial neural networks based only on their architecture, and an
introduction on their biological origin will be presented in this chapter.

25
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3.1 Biological Neural Networks

The human brain is an extremely complex and sophisticated system that
unlike any other organ, it performs thousands of functions simultaneously.
It has been studied for several centuries at all scales and it does not seem
likely that we will ever understand it completely. The smallest scale in the
human brain for information processing is at the level of neurons. Neurons
are the core component of the brain and in more general terms of the central
nervous system (brain and spinal cord). However is in the brain where we
will find most of them, an average of 100 billion; moreover the number of
neurons in a person does not stay constant. There are several types of neurons
depending on their function, size and location in the body, however a common
characteristic of most of these cells is their tree like structure, Fig. 3.1.
They receive signals from other neurons through their dendrites and after
integrating all signals in the soma or body of the cell, they give their response
through their axon. In average, each neuron has 1000 connections or synapses
and convert electrical signals to chemical and back to electrical again. Finally
this response could be either excitatory or inhibitory.

Figure 3.1: Diagram of a neuron.

Even though the speed of response of each neuron is just of a few milisec-
onds, the brain in its whole is infinitely more powerful, robust and adapt-
able than any digital computer. The main reason for this advantage in the
human-machine battle is the greater connectivity of its processing units, it is
a superb parallel computer. Indeed computers reaching record speeds on the
teraFLOPS (1012 FLoating Operations Per Second) perform worse than,
for example a 5-year-old child when recognizing a face or coordinating move-
ments.
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Based on the structure and function of a biological neuron, a mathe-
matical model of an artificial neuron was born, the perceptron Fig. 3.2. It
consists of an input vector with their connection weights, a transfer func-
tion applied to the weighted summation of all inputs, and the output, yk =
f(x) = f(

∑
xiωi + bk).

Figure 3.2: Model of a neuron.

yk = f(x, ω)

= f

(
n∑

i=0

xiωi + bk

)
(3.1)

The transfer function f(.) is usually chosen such that the output yk re-
mains bounded between −1 and +1 (bipolar) or between 0 and +1 (unipolar).
Equation (3.2) contains four different examples of transfer functions: the step
(also known as heaviside or hard limiter) function, Eq. (3.2a); piecewise-
linear or saturated-linear, Eq. (3.2b); standard (logistic) sigmoid, Eq. (3.2c);
gaussian, Eq. (3.2d).

f(v) =

{
1, v ≥ 0

−1, v < 0
(3.2a)

f(v) =

⎧⎪⎨
⎪⎩

1, v ≥ 0.5

v, −0.5 < v < 0.5

−1, v ≤ −0.5

(3.2b)

f(v) =
1

1 + e−x
(3.2c)

f(v) = e−
x2

2σ2 (3.2d)
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Perceptrons are able to solve linearly separable problems only whereas a
network of neurons have proved to find steady solutions for nonlinear prob-
lems.

3.2 Feedforward Networks

The general structure of feedforward neural network consists of signals that
flow in one direction from n input neurons toward m output neurons, Fig.
3.3. All other nodes in between are called hidden neurons. The notation for
a synaptic weight going from neuron i toward neuron j is ωji.

Input
Layer Hidden Layer

Output
Layer

�n �m

Figure 3.3: Diagram of the structure of a general feedforward neural network.

This type of networks have been successfully applied in regression prob-
lems like statistical estimation, optimization and control theory; as well as in
classification problems like pattern recognition, image analysis and decision
making.

The key point in any application of this type of network is the methodol-
ogy used to change the values of the synapses, i.e. the amount of influence of
one neuron over the other. This process is called learning and in general it can
be classified in two different paradigms: supervised and unsupervised. Some
authors differentiate also between unsupervised learning and reinforcement
learning. The main difference between supervised or unsupervised learning
is that in the former there is an a priori knowledge of the output whereas
for the later this information is not available.
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Feedforward neural networks are being used in a broad range of practical
applications and probably 90% of them use supervised learning algorithms.
They have shown excellent results on tasks where the goal is to stimate the
best option from a pre-defined set of solutions. In other words, supervised
learning performs best with problems that have a finite number of solutions
and the system has been trained with a large number of possible inputs for
obtaining those solutions. This is not the case in some areas of, for example
cognitive robotics where it is not possible to pre-define a set of solutions
from dynamic environments. For instance, what would be the best sequence
of movements if a walking robot trips and needs to protect the head? or
can an agent trained with a limited number of classes propose the use of an
object from certain class to be used as a member from another class?

3.3 Recurrent Networks

The structure of feedforward neural networks started with the model of a
biological neuron but the structure per se is not biologically plausible. The
main characteristic in biological neural networks is feedback. As mentioned
earlier, the brain is an extremely complex system where millions of neurons
have thousands of connections that, in their majority, does not follow a single
direction but create cyclic circuits.

A network of neurons that presents feedback among its units is called a
recurrent neural network, Fig. 3.4. There are several consequences of having
connections going in two directions but in general we would say that the
network could become unstable and present complex dynamics like the ones
studied in the previous chapter, i.e. oscillations and chaos. Having a richer
range of dynamics is both a positive and a negative characteristic of this
type of networks. The positive side of a having single system containing
not only steady states but periodic and chaotic dynamics as well is their
potential for generalization, being able to solve different types of problems
and include a larger space of inputs in their solutions. However, this constant
change of states that could become unstable for certain conditions is also a
negative property when trying to design solutions for the kind of applications
engineers are used to work with. Specific tasks require in most cases specific,
stable and accurate solutions and that is why feedforward networks are the
ideal approach.

One of the most used configurations of recurrent nets is the one proposed
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Figure 3.4: Two different representations of a recurrent neural network.

Figure 3.5: Possible outcomes from a retrieval trial in a Hopfield network.

by John Hopfield in 1982, Fig. 3.4. A Hopfield network works as an asso-
ciative memory and more specifically as a content addressable memory, i.e.
it can recall a memorized pattern given a distorted version of it. In order to
guarantee the convergence to local minima, i.e. the memorized patterns, a
Hopfield network requires its connections to be symmetric (ωij = ωji) and
that no unit has a connection to itself (ωii = 0). Even though the conver-
gence to local minima is guaranteed by fulfilling these conditions, there is no
guarantee that one of those minima is a memorized pattern. In practice we
will see that the retrieved patterns are either the desired outcome, a reversed
memory, a combination of memories, or just some other minimum with no
correlation to the saved memories, Fig. 3.5.

Following Hopfield’s work a vast body of research has been devoted to
improve the drawbacks presented in the original version of this type of net-
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works. Several algorithms have been proposed for cleaning the output space
of spurious memories. Some others have gone beyond the learning and re-
trieving of a single set of patterns (auto-associativity), it has been proposed
the association of patterns from several sets (hetero-associativity). With
these achievements is now possible to talk about episodic memories since the
presentation of a pattern, also for noisy or incomplete patterns, can induce
the retrieval of a sequence of memories.

However a lot of work still needs to be done, specially for real-time on-
line learning since most of the proposed algorithms assume the existence of
training sets to be used in offline learning stages before the actual use of
the system in real applications. This is not compatible with the concept of
cognition since such methodology will surely limit the sensori-motor space of
any agent in real environments.

Pasemann’s neuromodules

Hopfield’s model constrains the dynamics of the network by having sym-
metric connections and avoiding self-interactions. Biological neurons, on the
other hand, are known to have self-connections both for excitatory and in-
hibitory neurons. Moreover, biological neural networks have rarely sym-
metric connections. More biological plausible models of recurrent neural
networks were developed from the work of Amari [5, 6], Aihara [3], and
Pasemann [38, 39, 40].

A model of the simplest case, namely a single unit with self-interaction
and external inputs, Fig. 3.6, is described by Eq. (3.3). This neuro-module
[38] has no restrictions on whether the self-connection ω has a positive (exci-
tatory) or a negative (inhibitory) value and the sigmoidal transfer function,
Eq. (3.2c) is chosen to active the state of the neuron. An external input
together with its bias (θ) are also responsible of the final behavior of the
neuron.

x(t + 1) = θ + ωf(x(t)) (3.3)

In contrast with the convergent dynamics of conventional neural net-
works, e.g. McCulloch-Pitts model, a single unit with recurrent connection
is capable of obtaining interesting dynamics like bi-stable states (hysteresis
effect, Fig. 3.7 II) and period-2 oscillations (Fig. 3.7 III) besides the steady
responses of fixed points (Fig. 3.7 I).
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Figure 3.6: Diagram of a single recurrent neuron.
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Figure 3.7: Bifurcation diagram for a single recurrent neuron.

Pasemann later continued with the study of the dynamics of two and
more neuro-modules with recurrent connections [41, 42]. In the two-neuron
network there are six parameters that can be modified, Eq. (3.5), Fig. 3.8.
Depending on their values it is possible to obtain all different kinds of attrac-
tors: fixed points, periodicity, quasi-periodicity, and chaos. Different types
of hysteresis and harmonic oscillators can be created with a pair of recurrent
neurons.
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x1(t + 1) = θ1 + ω11f(x1(t)) + ω12f(x2(t)) (3.4)

x2(t + 1) = θ2 + ω22f(x2(t)) + ω21f(x1(t)) (3.5)

Figure 3.8: Diagram of two coupled recurrent neuron.

Hysteresis effects can be used as obstacle avoidance controllers, bi-stable
fixed points, or short-term memory devices. Having the possibility of creating
harmonic oscillators from a couple of neurons allows us to work with central
pattern generators from the same circuitry, Fig. 3.9a.

Kaneko’s Coupled Maps

Coupled Map Lattices (CML) and Globally Coupled Maps (GCM), were
introduced by Kunihiko Kaneko in the middle of the 1980’s as an alternative
for the study of spatiotemporal chaos [27]. In short, this kind of dynamical
systems use discrete partial difference equations to study the evolution of a
process described by discrete steps in space and time but with continuous
states. Equations (3.6) and (3.7) describe the dynamics of CML and GCM
respectively.

xi(n + 1) = (1 − ε)f(xi(n)) +
ε

2
{f(xi+1(n)) + f(xi−1(n))} (3.6)

xi(n + 1) = (1 − ε)f(xi(n)) +
ε

N

N∑
j=1

f(xj(n)) (3.7)

Where xi(n) is a variable at discrete time step n at lattice point i and
represents a set of field variables which could be temperature, position mea-
surements, velocities, etc. Function f(.) can be any chaotic mapping like the
ones studied in the previous chapter, Eq. 2.14. There are two parameters: α
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Figure 3.9: A minimal chaotic neuro-module, plots of two of the different
dynamics that a two-neuron recurrent network is capable of: harmonic oscil-
lator (top row) and chaos (bottom row).

controlling the level of chaoticity of the system and ε controlling the coupling
level among neighboring elements. The state of each element is defined by
its previous state and: by an average of its nearest neighbors in the case of
CMLs, or by an average of the states of all the elements in the network in
the case of GCM. In other words, while each node in a CML interact with
specific points within the lattice, Fig. 3.10a, each of the nodes in a Globally
Coupled Map (GCM) interact with all the others, Fig. 3.10b.

Due to the chaotic nature of the system, it is possible to see one of the
main properties of chaotic systems: two slightly different initial conditions
amplify their difference through time. On the other hand, the system tries
to synchronize the activations of all its chaotic elements by coupling them.
In between these two states of complete chaos and complete synchronization,
interesting states emerge like the formation of clusters oscillating in different
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(a) CML (b) GCM

Figure 3.10: Diagrams of coupled maps.

phases and amplitudes.
Both of these categories have been thoroughly studied during the last

two decades with researchers trying to describe them both qualitatively and
quantitatively. The effects of varying both chaoticity and the coupling fac-
tor in stand-alone CML and GCM systems were studied meticulously by
Kaneko’s group in the late 90’s [24, 25]. Approximate phase diagrams were
sketched covering the entire spectrum of synchronization among the inter-
acting chaotic elements of a network.

The study of dynamically varying the connections among the elements
in a GCM was done by Ito and Kaneko [26, 22]. The model is described
by the set of equations in (3.8). The first equation correspond to a GCM,
where f represents a chaotic map; (3.8b) updates each unit’s connections
coming from other units in the network; and (3.8c) specifies the hebbian rule
governing the relationship between all units.

xi
n = f

(
(1 − ε)xi

n−1 + ε
N∑

j=1

wij
n xj

n−1

)
, (3.8a)

wij
n+1 =

[
1 + δg

(
xi

n, xj
n

)]
wij

n∑N
j=1

[
1 + δg

(
xi

n, xj
n

)]
wij

n

, (3.8b)

g(x, y) = 1 − 2 |x − y| (3.8c)

In (3.8b), δ represents the degree of plasticity of the connections and
ranges from 0 to 1. The weights wij in (3.8b) refer to the influence from
unit j going into unit i. All self-connections were set to 0; and the initial
condition for all remaining connections are equal to 1/(N − 1), N being the
number of chaotic units.
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3.4 Summary

The research on artificial neural networks has been a mayor topic for more
than 50 years. In this chapter we have described the most important parts
of this subject but with an extra focus on those networks that give us the
possibility to include in a single system both convergent and non-convergent
dynamics. Feedforward neural networks are by far the most used models
for finding stable solutions in a wide variety of problems, including specific
tasks related to human cognition. However we argue that the dynamics
present in recurrent neural networks give us the freedom we need to replicate
the complex range of human behaviors in a more general sense. Hopfield
networks were introduced in their original form but a large body of research
can be found based on this model. The applications of this model and their
variations have focused on the development of associative memories mainly.
A more biological plausible model was introduced with the work of Pasemann
and colleagues. The neurons in this model are simple enough to track their
dynamics analytically and at the same time contain the rich dynamics of
the whole spectrum of nonlinear dynamical systems. This model has been
used successfully in robotic applications and kept its close relationship to
the biological counterpart. Finally, the work of Kaneko was resumed at the
end of the chapter. Although this model has no biological inspiration, it has
provided the scientific community with important findings about the power
of recurrent networks. In the second part of this book, we will be able to use
this type of networks in a very practical application.



Part II

Applications in Robotics
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Chapter 4

Visual-motor behaviors

This chapter is based on the following publications which can be found in
Appendix B.

1. B. Durán, G. Metta and G. Sandini. Emergence of smooth pursuit
using chaos . In Proceedings of the First International Conference on
Self-Organizing and Self-Adaptive Systems. July, 2007. pp: 269-272.
Boston, MA. (2007)

2. B. Durán, G. Metta and G. Sandini. Towards a chaotic smooth pur-
suit. In Proceedings of the IEEE-RAS 7th International Conference on
Humanoid Robots. December 2007. Pittsburg, PA. (To be published).

3. B. Durán, Y. Kuniyoshi and G. Sandini. Eyes-neck coordination using
chaos. Springer Tracts in Advanced Robotics, vol. 44, pp. 83 - 92.
(2008).

4.1 Introduction

The study of nonlinear dynamical systems and chaos has a long history,
however real applications that make direct use of chaos theory have not been
fully developed. The purpose of this research is to demonstrate the feasibility
of using coupled chaotic systems [27] within the area of cognitive develop-
mental robotics. Based on the model of behavior emergence introduced by
Kuniyoshi et al. [32], we study the coordination of multiple degrees of free-
dom in humanoid robots.

39
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The task of tracking an object has been fully studied and many solutions
presented before. Based either in position errors or velocity mismatches,
some approaches try to control the activation of motors by means of ro-
bust PID controllers [37, 8, 11], while others base their controllers in fuzzy
logic [4] or neural networks [31]. In any case, the common methodology in
these approaches is to compute expensive Jacobian and kinematic expressions
thinking in all the possible circumstances the system could encounter.

All these works comprehend the state of the art in motor control for
tracking systems; therefore it would not be necessary to develop new solu-
tions. However, the tracking problem represented the simplest test bed for
the study of coupled chaotic systems, both in a simulated environment and
for its implementation in a real platform. Our approach differs from pre-
vious work mainly in two aspects: first, our system does not need to deal
with complex equations of kinematics and dynamics; second, the main goal
behind our research is not to improve the performance of existing algorithms
but, through our experiments, start building the basis of a dynamic model
for motion emergence that embrace as a single entity body and environment.
Following Esther Thelen and Linda Smith’s suggestion that “action and cog-
nition are also emergent and not designed” [58], another equally important
goal of this research is the possibility of having new insights about how the
coordination of multiple degrees of freedom emerges in human infants.

4.2 Coupled Chaotic Systems

A network of elements whose activation is defined by a chaotic map receives
the name of Coupled Chaotic Systems. Depending on the level of interaction
among their elements, it is possible to classify them in systems of local or
global interaction. These two type of systems were studied in Chapter 3 as
one type of recurrent neural networks with chaotic maps as transfer functions.

A Model for Behavior Emergence

The states of each of the elements in a GCM, or a CML, depend only in the
internal dynamics of these systems; they are not influenced in any moment
by an external force. When taking these concepts to a robotic application
it is necessary to think of a way for including the environment within the
dynamics of the system.
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Figure 4.1: Body-environment interaction through coupled chaotic fields

The model used in this project is based on the approach followed by
Kuniyoshi and Suzuki [32]. The main idea behind this model is to make use of
the freedom given by the chaoticity of the system; and, on the other hand, the
limitations imposed by the synchronization of all the elements. Their model
uses both, the local interaction (CML) and the global interaction (GCM) but
with the environment as the external force influencing the internal dynamics
of the network. In our case, only GCM was used since no extra benefit was
seen when including CML as well; nevertheless the overall approach is the
same, Fig. 4.1. Each one of the blocks containing “chaotic” elements and
their relationship constitute the core of the system and it is defined by (4.1).

ui
n = f

{
si

n−1 + ε1(s̄n−1 − si
n−1) + ε2

(
si+1

n−1 + si−1
n−1

2
− si

n−1

)}
(4.1a)

mi
n = Gu(u

i
n + Ou) (4.1b)

si
n = Gs(r

i
n + Os) (4.1c)

Where f(.) in (4.1a) is any chaotic function with values between −1
and +1 since both sensor readings and motor activations are represented
by positive and negative values. For this purpose a different version of the
logistic map was chosen and was given by f(x) = 1− αx2. Equations (4.1b)
and (4.1c) help us to adjust the values from the chaotic field, here m is the
output applied to each motor, s and u are inputs and outputs respectively
of the chaotic field block, and r is the raw value coming from the sensors.
Finally, Gu, Gr, Ou, and Or are gains and offsets of the sensors and motors
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respectively; these values are applied in the same magnitude to all elements
in the system.

4.3 Methodology

On a human-like robotic head, a tracking behavior involves the coordination
of multiple degrees of freedom. In order to simplify this problem and to have
an initial feeling on how feasible would be to implement a control based on
coupled chaotic functions, a single eye tracking was decided to be the first
challenge in this project. A single eye tracking behavior involves two degrees
of freedom (DOF) in a robotic platform; once this first step was completed,
a three DOF tracking was performed involving two eyes, and finally a five
DOF tracking with the motion of the neck. In all cases a simulation and
implementation of the algorithms was performed on a robotic platform.

Simulation

To simulate the dynamics of the real platform, a virtual environment called
Webots was used [1]. This software is based on the Open Dynamics En-
gine libraries for reasonably accurate physics simulation such as the effect
of gravity and friction. The time step for the simulations was fixed to 32
milliseconds and the experiments were done without the influence of gravity
and with a minimum value of friction.

Each joint is also modeled by a spring and a damper, trying to replicate
the physical characteristics of real muscles. A virtual camera mounted in
front of the eye gives the visual input needed for modulating the chaotic
field. The width and height were fixed to 32 x 32 pixels with a field of
view of 0.5 radians. It is assumed that values of saliency are obtained from
other visual components. One of these values to be tracked was simulated
by a black circular shape moving on a white screen, Fig. 4.2b. The initial
conditions were defined by having the object out of the field of view of the eye
and generating a circular motion from zero to a maximum speed, and slowing
down to zero again for two cycles, then changing direction for another two
cycles of zero to maximum speed and so on. This motion was used as a basic
test for the robustness of the system.

The input to the system is given by the difference between the center of
the observed object within the field of view and the position of the center of
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Figure 4.2: Simulation setup for visual tracking experiments with coupled
chaotic systems.

the eye, for both the vertical and horizontal motions Fig. 4.2a. The outputs
from the chaotic field are fed as torques to the motors after applying the
respective offset and gain.

The methodology for tuning the gains and offsets was done by approxi-
mating the average of the raw output from the logistic map toward a zero
average of the motor activation values. In other words, offsets and gains
should be chosen in such a way that the activations from the logistic map
oscillate around zero. The simulation worked with the following offsets and
gains: Gu = 1.5, Gs = 1.0, Ou = −0.92, and Os = −0.2, for α = 1.95 and
ε = 0.1.

Implementation

The results from the simulation gave us enough confidence to implement this
algorithm in a real platform. As mentioned before, the algorithm governing
the dynamics for this part of the project was the original version of a globally
coupled map, Eq. (3.7,4.2). The modified version from Kuniyoshi [32] was
also tested in this part of the research but, since this version contains local
couplings, it was necessary to consider the order of the chaotic units within
the network. Whereas using global connections only, the system was much
simpler to understand and design and no extra benefit or effect was observed
when adding local couplings.



44 CHAPTER 4. VISUAL-MOTOR BEHAVIORS
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The gains and offsets had to be modified compared to those in the sim-
ulation, mainly for two reasons. First, the implementation differs from the
simulation in that the outputs of the chaotic field are fed as speed values into
the motors of the head, whereas in the simulation they are used as torques.
Second, the values representing mass, inertia, friction and gravity are dif-
ferent in both frameworks. Therefore, different values of gains and offsets
needed to be found using the same methodology as before. The offsets and
gains were fixed to: Gu = 25.0, Ou = 0.0, Gs = 1.0, and Os = −0.8; α = 1.9,
and ε = 0.1.

A copy of the iCub’s head from the RobotCub project [48] was built to
test all of our experiments. The following sections describe the software and
hardware of this platform.

Hardware

The head has six degrees of freedom: yaw, pitch and roll for the neck, a single
pitch motion for both eyes and independent yaw motors for each eye. DC-
micromotors are used for moving the different joints; each motor contains an
incremental encoder that provides the position of the joint at any time, Fig.
4.3. All motors and sensors are controlled by a group of DSP chips which
channel data over a CAN bus to a computer in charge of iCub’s high-level
behavioral control [48].

Software

Due to the large amount of sensori-motor information generated within the
platform the iCub’s software was configured to run in parallel on a distributed
system of computers. An open-source framework for robotics named YARP
(Yet Another Robot Platform) was used for the implementation of the al-
gorithms. The main features of YARP are: support for inter-process com-
munication, image processing, and a class hierarchy to code reuse across
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Figure 4.3: Picture of the experimental setup.

different hardware platforms [36]. The programming language in YARP is
C++; however, a set of libraries has been developed to allow other programs,
like Matlab, access YARP.

It is important to mention that the focus of this project is not the ex-
traction of saliencies from moving images, which is in itself a hard problem
in computer vision. A tracking algorithm already implemented and available
from the YARP repository was used as the visual component in charge of
providing us with the horizontal and vertical coordinates of a moving object.
With this information we focus our efforts on the motor control problem.

4.4 Results

Two Degrees of Freedom

In the two-degrees of freedom case the left eye of the simulator and the
physical platform were used for the experiments, Fig. 4.4. The relative
positions of the objects within the image was used as the value that modifies
the position of the motors before entering the coupled fields.

Simulation

The trajectory followed by the virtual eye can be observed in Fig. 4.5. The
first reaction, once the object has entered into the eyes’s field of view, is to
move toward the object. As we can see, the adaptation to the path of motion
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is immediate, there are no overshooting oscillations.
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Figure 4.5: Trajectory of the center of the eye (α=1.95, ε=0.1)

Even though both motors are trying to follow the object as smoothly as
possible, a small trembling was observed specially at the maximum angle
allowed in each direction. This trembling seems to be directly influenced by
the physical characteristic of the hardware, in this case the simulated mass,
inertia and friction of the eye. Note that there is no way of discerning the
moments where the object is not moving or moving at full speed, this tell us
how adaptive the system is to the changes in the environment.

Fig. 4.6 shows the root squared error of the whole system through time.
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Figure 4.6: Motion of target and eye through time

The overshooting observed at the beginning of the plot is the result of the
object entering into the field of view of the eye; in less than one second, the
system adapts to the recent change in the environment. Once the eye keeps
track of the object, this error is always between 0.0 and 0.08 radians which
is an almost zero deviation for our smooth pursuit task.

The “smooth pursuit”-kind of motion was tested using different values
of α (chaoticity factor) and ε (coupling factor). However when either α
was lower than 0.1 or ε greater than 0.35 the system performs inconsistent
movements, sometimes trying to follow the object and sometimes trying to
escape from it. Fig. 4.7 shows the behavior of the ’eye’ for α = 0.1 and ε =
0.2.

Implementation

Since it is not possible to quantify the motion of the target with respect
to an absolute coordinate system, considering that the eye is also a moving
framework, the motion of the eye as well as a reference of how the target is
moving with respect to the motion of the eye is shown in Fig. (4.8). The
target was moved in all possible directions and also with different speeds. It
is possible to observe that the target is always within sight of the camera also
when the physical limits of the robot are at their maximum. This plot shows
how adaptive the system is, since it keeps track of the target independently of
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Figure 4.7: Trajectory of the center of the eye (α = 0.1, ε = 0.2)

the direction or acceleration of the target. This can be seen in the smoothness
of the motion when compared to several rapid changes in the environment.

The position of the target with respect to the center of the eye could
be analyzed as an error of the performance of this approach, Fig. (4.9).
However, it should be consider that the target was moved several times until
reaching the mechanical constraints where the hardware is not allowed to
continue the pursuit, thus increasing this ’difference’ in positions up to 60%
w.r.t. the position of the center of the eye. When working within the area far
from the maximums, these errors were kept under 10% w.r.t. to the position
of the eye.

When plotting the return map of this coupled chaotic system, Fig. (4.10),
we observe the values of both chaotic units following the characteristic curve
of a logistic map. The lack of activation values in the positive side of the
plane is due to the offset applied to the raw sensors.

Five Degrees of Freedom

It is now time to couple the motion of the neck to the motion on both eyes.
Only 2 degrees of freedom from the neck were added, pitch and yaw; mainly
because the roll motion is not directly related to the visual information given
by the tracking algorithm. In total 5 degrees of freedom will be actuated,
leaving static the roll joint of the neck.

Again, each camera provides two quantities: the position of the target
in each camera in vertical and horizontal directions. These values modify
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Figure 4.8: Motion of the eye in the iCub’s head.
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Figure 4.9: Motion of left eye and target w.r.t. center of eye in the iCub’s
head.
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Figure 4.10: Returning maps for both chaotic units: yaw (left) and pitch
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the position of each motor; thus generating a coupled chaotic system with 6
logistic maps, Fig. (4.11). Offsets and gains were kept the same as in the
implementation of the 2-DOF case.
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Neck roll 
(NR)

Neck yaw 
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Left eye 
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Figure 4.11: iCub’s sensorimotor diagram, 5dof actuation.

Implementation

The motion of both eyes and the motion of the head is shown in Fig. (4.12).
This plot shows the motion of the eyes relative to the head and the motion of
the head relative to its fixed position; it also helps us to see the coordination
between eyes and neck. The target was moved in random directions and at
different speeds. Since the joints of the neck give approximately an extra
60 degrees on each side and on each direction, an object can be tracked in
a wider space. It was also observed an increase of the tracking speed; the
motors in the neck help the motors in the eyes to follow in a faster way the
tracking object, especially in the yaw direction.

Even though the tracking in the pitch direction works very well, it was
observed a strong influence of the weight of the head when moving the head
up or down. This can be more easily appreciated in Fig. (4.13), while the
position of the object does not exceed the previous 60% of distance from
the center of the eye in the horizontal direction, the position of the object
in the vertical direction was almost 80% when reaching one of the physical
constraints. In all cases we observe a coordination of motion not only between
eyes, but now with the respective degrees of freedom of the neck.
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Figure 4.14: Return maps for all chaotic units.

Finally, the return maps of the different chaotic units show the same
almost linear behavior observed on the simulation and implementation in
the 2-DOF case, Fig. 4.14. However, in this case we can observe a saturation
of values in the limits of the vertical motion. This values represent the
nonlinearities found when all pitch motors reach their maximum torques
when trying to keep up the the tracking task.

Neural Development

In order to study the influence of the environment in the development of
connections within the network we use the approach followed by Ito and
Kaneko [26, 22] for adaptive coupled maps. The model is described by the
set of equations (3.8). Here the main idea is to start with a globally coupled
map where all units are connected to all the others by weak synapses. The
goal is to study the development of each of the connections within the network
as time pass by.

The results of these experiments showed the development of weak and
strong connections among the chaotic units depending on the level of in-
teraction they have through time, Fig. 4.15. Even though all connections
start with the same value the system takes only a few time steps to separate
in groups of strong and weak connections. A very interesting observation
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Figure 4.15: Development of connections in time.

from this plot is that after approximately 500 steps, the connections arriving
to any unit oscillate around the middle of the permitted strength. Extreme
cases are with pitch units in each eye LP and RP which develop a very strong
influence from the pitch motion of the neck NP but a zero influence from one
to another. Yaw units develop a more balanced influence in their network,
oscillating always around 0.5.

In Fig. 4.16 the matrix of connections is presented in 6 different moments;
whereas Fig. 4.17 shows the diagram of connections at time step 1 and
time step 3500. At time step 3500 the system has entered in an almost
fully developed state where its internal connections vary very little. In the
end, each unit is influenced by no more than two other units within the
whole network. As expected, two independent sub networks emerge after
approximately 20 seconds. In one side all chaotic units fed by yaw motions
strengthen their connections while weakening those toward and from ‘pitch’
units; and the same happens with those units fed by pitch motions when
compared to ‘yaw’ units.

4.5 Summary

A very simple experiment for demonstrating the feasibility of applying cou-
pled chaotic systems in the area of cognitive developmental robotics has been
shown in this project. Tracking an object moving in front of a camera has
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been solved in several ways previously, from using very simple trigonometric
solutions to advanced control algorithms. However, this task represented the
simplest test bed for the study of emergence of a reactive behavior in a real
platform. A virtual setup consisting of only two rotational joints and a cam-
era was created to replicate the sensori-motor configuration of a real eye. We
have demonstrated that, once the object enters the field of view, this input is
enough for the self-organization of the controller that generates the torques
applied to each of the joints of our devices. No learning or specific coding of
the task is needed, which results in a very fast reactive behavior.

By playing with the values of α (chaoticity factor) and ε (coupling factor)
we saw that a smooth pursuit behavior can change to other ’non-tracking’
patterns like following during some time and escaping from the target in some
others, or a simple avoidance behavior similar to the way animals protect
their eyes when being flashed by a bright light. This very simple action tells
us that other visual behaviors can be achieved without much effort from the
designing part to simulate specific cognitive actions.

The implementation of this algorithm in a real platform was straight
forward. A copy of the iCub’s head, a 6 DOF robotic platform part of the
RobotCub project [48], was used with only minor changes in offsets and gains
with respect to the simulation experiments. The tracking algorithm used in
the implementation was taken from the YARP repository [36]. The control
algorithm was tested by changing both the chaoticity of the system and the
coupling among its elements. In both cases, simulation and implementation,
the smooth pursuit behavior emerges when the system is highly chaotic and
there is a weak coupling among its elements.

The experience obtained in previous experiments with the simulation and
implementation of a single eye tracking [A.1] gave us enough confidence to in-
crease the complexity of our model. Experiments were performed for two-eye
(3 DOF) and eyes-neck (5 DOF) coordination problems with fixed parame-
ters [A.2]; as well as the development of connections in eye-neck coordination
[A.3]. A very simple Hebbian rule was used to study the development of
connections within the core of the system, a globally coupled map. From
normalized initial connections we saw them changing through time, restruc-
turing the ’brain’ according to the experiences with the environment. In the
final stage, two independent sub networks were formed, one containing yaw-
related chaotic units only and the other pitch-related chaotic units only. The
smooth pursuit behavior emerged also during this process.





Chapter 5

Dynamic Field Theory

5.1 Introduction

Developmental Psychology is one of the main areas of scientific research from
where cognitive robotics has been taking inspiration during the last decade.
It studies the psychological changes that occur in human beings through
their lives, being the first stages of infant development the most interesting
for cognitive robotics. Among the most important works within this area,
the one followed by Esther Thelen and Linda Smith [58] has been of great
interest not only for psychologists but mathematicians and roboticists as
well. The main reason for this multidisciplinary interest in their approach
is based on their choice of nonlinear dynamical systems theory to explain
the different paradigms found in infant development. According to Thelen
and Smith, the different behaviors found in adult people are the result of
actions that are not influenced by the dynamic responses to the environment
only but have a strong component of previous experiences as well. They see
human development as a landscape with an infinite number of valleys that
represent different behaviors being created and reshaped continuously, Fig.
5.1. As time pass by, the previous ’history’ in the formation of these valleys
influences strongly their current tendencies and create in some cases deep
and stable behaviors.

The formation of cognitive behaviors could be described in most cases
by what is known as habituation. Habituation is the process by which the
responses to certain stimulus vary less and less with each repetition of the
experience during time. The mathematical model adopted by Thelen and col-

57
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Figure 5.1: Schematics of an ontogenetic landscape for locomotion, from
Thelen&Smith[58].

leagues for replicating this kind of behavior is called Dynamic Field Theory,
[51].

This chapter describes the main characteristics of dynamic fields and show
the results of its implementation in a classical infant paradigm known as the
A-not-B error paradigm. A previous implementation of this paradigm was
done by Gregor Schöner and colleagues using a khepera robot. A very simple
sensori-motor loop was used to implement the dynamic fields in this robotic
platform and simulate the typical response of infants in this paradigm. In our
case, the implementation was done on a more human-like robotic platform,
iCub’s upper body; making use of its stereo vision and arms movements to
implement the reaching motion performed by infants.

5.2 Dynamic Field Theory

Dynamic Field Theory is a mathematical framework based on the concepts of
Dynamical Systems and the guidelines from Neurophysiology. In this theory,
fields could be seen as populations of neurons and their activations as the
continuous responses to external stimuli. A field has the same structure of
a recurrent neural network and were studied first by Amari [6] as a class of
bi-stable neural networks. They could be compared to globally coupled maps
since all units influence each other in some degree, global inhibition. But they
could also be seen as coupled map lattices since close neighbor units have
a stronger influence than far neighbors, local excitation. Global inhibition
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Figure 5.2: Typical activations in a dynamics field, from Schöner[50].

and local excitation are the two types of interactions among field sites x and
having them embedded in the dynamics of the system allow the generation
of single peaks of activation, Fig. 5.2.

The units of representation in DFT are the peaks of activation along
the dimension being studied [50]. A dimension represents any perceptual
feature, movement or cognitive decision, e.g. position, orientation, color,
speed. Besides global and local interactions, the dynamics of a field depend
also on inputs coming from external sources. In the absence of external
inputs an stable ”off” state is usually found as the resting position of a
field. External inputs add lifting forces to this ”off” state, and if sufficiently
strong for trespassing the zero-point threshold, they bring the system into
an unstable condition where local excitation and global inhibition will decide
the new final stable state.

Local and global interactions are an implicit mechanism for sensor fusion
and decision making. Local excitation makes neighboring field sites gain force
once the input has become larger than the resting level of the field, moreover
stabilizes the newly formed peaks against gradual decay. On the other hand,
global inhibition makes that a strong input in a field site suppresses the
activation of weaker input in another site, the weaker the input the less
inhibitory influence will have on other field sites. As a result, the competition
that exists among different inputs is dynamically computed with the help of
these two types of interactions [50].

In DFT it is assumed that the different changes in the activations of the
field occur continuously in time. Therefore, the different models that follow
this theory are defined by differential equations, e.g. u̇(x, t) = f [u(x′, t)].
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Where u represents the activation field and the brackets defines a function
of any field site x′ and not just on field site x, [14]. The mathematical
formulation of a single layer neural field is defined by a differential equation
that describes the rate of change of each unit in the field, Eq. (5.1a). The
four main components of this equation are a linear decay term −u, a constant
resting level h < 0 that fixes the overall level of activation, the inputs to
the field S that may contain both task and/or specific inputs shaped by
a gaussian filter Eq. (5.1b), and finally a convolution term between the
interaction kernel Eq. (5.1d) and a sigmoidal transfer function Eq. (5.1c)
integrated over the whole field.

τ u̇(x, t) = −u(x, t) + h + S(x, t) +

∫
w(x− x′)f [u(x′, t)]dx′ (5.1a)

S(x) = C exp

[−(x − x′)2

2σ2
s

]
(5.1b)

f(u) =
1

1 + exp[−β(u − u0)]
(5.1c)

w(x − x′) = we exp

[−(x − x′)2

2σ2
w

]
− wi (5.1d)

A single layer dynamic neural field contains 8 different parameters that
need to be tuned up, Eq. 5.1. First, parameter τ specifies the time scale
over which the field gradually builds up or decay. As mentioned before,
the resting level h defines the threshold required by the inputs to activate
the field. External inputs S are shaped as gaussian bells therefore we need
to specify their strength C and width σs. The sigmoidal transfer function
f(.) is defined by a single parameter β that specifies its steepness. Finally,
interaction kernel w works as the connection matrix of a recurrent neural
network which weights are defined by a gaussian function of width σw, a
local excitatory strength given by we and a global inhibitory level given by
wi.

The parameter space is able to generate a rich range of dynamics go-
ing from monostable and oscillatory behaviors to saturated activation fields.
However, mono-stability and bi-stability are the most useful scenarios when
trying to replicate human behavior. A system is said to be mono-stable
when the only attractor is the sub-zero resting state in the absence or after
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the application of an input. A system may also present a bi-stability condi-
tion when, besides the sub-zero attractor, a self-stabilized peak remains after
the input has vanished. The property of dynamic neural fields to sustain an
activation peak in the absence of input is used as a working memory.

Dynamic Field Theory also studies the different configurations that could
be created by grouping several fields and the possibility of having multi-
dimensional fields. Fields may represent excitatory or inhibitory neural pop-
ulations as well as long-term memory layers; for example, Simmering et al.
[55] created a five-layer structure to study spatial-cognition. Bi-dimensional
fields have been created to study visuo-spatial cognition where DFT pro-
vides an elegant solution to the “binding problem” [23]. Other applications
of DFT include motor planning [14], saccadic eye movements [29, 64], infant
perseverative reaching [57].

5.3 The “A-not-B” paradigm

The “A-not-B” error is an infant paradigm first studied by Jean Piaget in
1954 [44]. It could be described as a game designed to study the emergence
of the concept “object” in infants between 7 and 12 months-of-age. Infants
at this age present a partial knowledge of the location of a toy hidden at one
of two locations [57]. They search repetitively for an object at a previously
visited location, even though they see the desired object vanishing at another
location.

Since Piaget’s first description, this experiment has been repeated count-
less times and in different variations. Many different explanations has been
proposed among developmental psychologists, thus reflecting the little con-
sensus about the origin of this error. Thelen et al. [57] proposed an elegant
modeling of this paradigm based on dynamic field theory, this approach will
be the guideline for the implementation in our robotic platform.

The classic version of the A-not-B hiding task goes as follows [13]. Two
marked locations (distinctive from the background) are presented to the in-
fant. A few training trials consist of showing and hiding a small and attractive
toy behind location ’A’, after a delay the infant is allowed to reach and grab
the toy from any of the two locations being ’A’ the usual choice. However it
is common to find experiments where the infant goes to location ’B’ during
these training trials. Following this training process the toy is shown and
hidden behind location ’B’ and again after the respective delay the infant
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is allowed to reach for one of the two locations. The ’A-not-B’ error occurs
when the reaching goes to location ’A’ instead of ’B’, Fig. 5.3.

Figure 5.3: Graphical representation of the hiding task experiment and its
results.

5.4 Methodology

The hiding task deals with the location of objects in front of an agent, there-
fore a single dimension representing orientation was used. A one-dimensional
neural field Eq. (5.2a) together with a memory trace field, Eq. (5.2b) were
used as the core of the model for the ’A-not-B’ error experiments, Eq. 5.2.
The memory layer was active only when two conditions were fulfilled: the
main layer was active (ux > 0), and a ’go signal’ was set to ’on’, Eq. 5.2d.
This layer includes two parameters in charge of controlling how fast memories
are built (λbuild) and how fast these memories decay (λdecay). The interaction
kernel for the main field wxx(x− x′) was given by Eq. 5.1d described in Sec-
tion 5.2. The connection weights from the memory layer onto the main layer
wxm(x − x′) were also computed through an interaction kernel of gaussian
type, Eq. 5.2c.
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Layers:

τ u̇x(x, t) = −ux(x, t) + h + S(x, t) +

∫
wxx(x − x′)f [ux(x

′, t)]dx′

+

∫
wxm(x − x′)f [um(x′, t)]dx′

(5.2a)

τ u̇m(x, t) = [−um(x, t) + f [ux(x, t)]]

× [λbuildΘ(ux(x, t)) + λdecay(1 − Θ(ux(x, t)))]
(5.2b)

Kernels:

wxx(x − x′) = Ce exp

[−(x − x′)2

2σ2
e

]
− Ci exp

[−(x − x′)2

2σ2
e

]
− Gi

wxm(x − x′) = Cm exp

[−(x − x′)2

2σ2
m

]
wφ(x) = −Cφ x exp

[−2σ2
φ(x − x′

i)
2
]

(5.2c)

Activation function for memory layer:

Θ(u(x)) =

∫
θ(u(x′))dx′; θ(u(x′)) =

{
1, u(x′) > 0

0, otherwise
(5.2d)

Inputs:

S(x, t) = Stask(x) + Sspec(x, t) →
Stask(x) = CAB

[
exp

[−(x − x′
A)2

2σ2
s

]
+ exp

[−(x − x′
B)2

2σ2
s

]]

Sspec(x) = Ci exp

[−(x − x′
i)

2

2σ2
s

]
; i ∈ {A, B} (5.2e)

Output:

φ̇(x) =
∑

ux(x, t) � wφ(x) (5.2f)

The input the the system is given by the sum of two terms representing
the task and the specific input, Eq. (5.2e). The task input has two constant
gaussian bells through all the experiment whereas the specific input changes
its amplitude and position according to the trial, i.e. location ’A’ or ’B’.
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Finally, the output to the motors was taken as the sum of the point-to-
point multiplication between the activation layer and an attracting kernel,
Eq. (5.2f). The output kernel wφ dynamically computes the location and
amplitude of the signal that activates the motor; a positive activation of φ̇
performs an action in one direction, a negative value performs the action in
the opposite direction. The speed of motion is controlled by the steepness of
the attracting area in the output kernel σφ.

Hardware

The iCub platform [48] was the physical layer where all of our experiments
on DFT were implemented. Seven degrees-of-freedom (DOF) were actuated:
5DOF in the head (yaw and pitch for the neck, a single pitch motion for both
eyes and independent yaw motors for each eye) and 2DOF in the shoulders,
Fig. 5.4. The other degrees of freedom were blocked for these experiments.
Three different Blade units were used in order to handle image analysis,
motor control and dynamic fields respectively.

The task panel itself was simulated inside a computer screen in front of
the robot. Two small rectangles representing the lids (task input) behind
which the object would be hidden (specific input). Since the task deals only
with the location of an object and not with the differentiation of lids and
toys, the object itself was simulated by a rectangle of larger size than the lid
but with the same color. The major advantage of simulating the ’A-not-B’
panel and ’toy’ in this way was the possibility of adapting the ’objects’ to
those sizes and colors better detected by the color segmentation algorithm
depending on the room’s luminance.

Software

The set of equations described above contains around 20 different parameters
to be tuned. Most of these parameters remain constant and are easy to define,
however some others produce important changes in the overall dynamics of
the system. In order to have a ’live’ feeling of the behavior of the fields
when changing these parameters a graphical interface was implemented using
Matlab1. Figure 5.5 shows screen shots of the two interfaces designed for an

1This code was an adaptation of the Interactive Dynamic Field Simulator written by
Sebastian Schneegans, Ruhr-Universitaet Bochum, 2008.
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Figure 5.4: Schematics of the experimental setup for the hiding task.

interactive simulation of the ’A-not-B’ error task. Besides the parameters
described previously, a local level of noise was added to the dynamics of the
system. Two different sets of kernels representing the behavior of young and
older infants were preset in the interface, however the user is also able to
specify his/her own parameters.

For the implementation in the robotic platform, the same open-source
framework used in the previous chapter was used in these experiments. The
algorithms were implemented in C++ with the same parameters used in
the simulation. Whenever a ’go-signal’ was present, the activations of the
main layer actuated the motors in the shoulders to simulate a reaching be-
havior. A color tracking algorithm was implemented in YARP using the
Intel R©Integrated Performance Primitive Libraries version 5.3. The eyes were
at all times focused in the middle point between locations ’A’ and ’B’, in this
way the task input to the field was given by two colored rectangles in front
of the robot at each side of the middle point. Specific inputs were created
by increasing the size of the rectangles whenever an ’A’ or ’B’ trial was per-
formed. Thus, the values of Eq. (5.2e): Ci ∈ A, B were given by the number
of pixels at position ’A’ or ’B’, and the values for xi, i ∈ {A, B} were given
by the center of the blobs in the image.



66 CHAPTER 5. DYNAMIC FIELD THEORY

Figure 5.5: Screen shot of the field’s simulator for the ’A-not-B’ task.

Model Parameters

For comparison purposes two different sets of parameters were used in these
experiments: the kind of response found in young infants when performing
the hiding task was compared to the ’normal’ behavior of adults or older
children in the same task, Table 5.1.

The interaction kernels wxx for both infants and adults was designed
following the spatial precision hypothesis, [52]. This hypothesis states that
the spatial precision of neural interactions becomes more precise and more
stable over development. This development is represented by two factors: the
increasing sharpness and strength of local excitatory interactions controlled
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Parameters Ce σe Ci σi Cm σm Cs σs Cq σq

Infants 11.0 5.0 0.0 10.0 4.0 5.0 7.0 5.0 0.04 1.0
Adults 21.0 5.0 10.0 10.0 4.0 5.0 0.7 5.0 0.04 1.0

Parameters Cφ σφ τ λbuild λdecay β h Gi

Infants 1.0 0.03 20 104 404 10.0 -5.0 -0.65
Adults 1.0 0.03 20 104 404 10.0 -5.0 -0.95

Table 5.1: Parameters for the DFT model of the ’A-not-B’ error paradigm
found in young infants and for the control case of adults responses.

by σe and Ce respectively, and by the strengthening of lateral inhibitions
controlled by Ci and σi. Figure 5.6a shows the interaction kernels wxx created
with these parameters as well as the output kernel used to obtain the motor
response, Fig. 5.6b.

(a) Interaction kernels wxx for in-
fants and adults.

(b) Output kernel wφ.

Figure 5.6: Plots of the kernels used in the DFT model of the ’A-not-B’ error
paradigm, Eq. (5.2c).
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5.5 Results

In this section we present the results of the implementation of the model
described by Eq. (5.2) with the conditions presented in Table 5.1.

Young infants

First, the kind of behavior found in infants between 7 and 12 months-of-
age was simulated and implemented. Infants at this age show repeatedly
the ’A-not-B’ type of error described in Section 5.3. Figure 5.7 shows the
evolution of both the main activation layer and the memory traces left when
the reaching behavior is allowed.

Figure 5.7: The ’A-not-B’ task performed by an ’infant’ agent. Top row: 3D
and top views of the main activation layer. Bottom row: 3D and top views
of the memory layer.

The model is able to simulate the same kind of results found in human
infants. When presenting the visual stimulus at location ’B’, the point-
ing/reaching action goes back to location ’A’. Memory traces are created
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only when a motor activation is present, in turn the main layer will get an
extra influence in those locations were the memory layer has values larger
than zero. In this way a primitive way of expectation is created.

A single experiment consists on 3 training trials with the purpose of build-
ing a motor habituation at the ’A’ location, and one testing trial. Each trial
is composed of two parts separated by a 3 seconds delay: a visual stimulation
where the ’toy’ is showed and a motor activation where the robot is allowed
to ’point/reach’. Further ’B’ trials will end up activating location ’A’ with
the consequence of creating a higher memory trace at this location. Thus,
a motor habituation is created at one location. The only way of breaking
this habit is to wait for an internal decrease of these memory traces due to
the effect of the memory decay term controlled by λdecay. Depending on the
experiment this value can be changed to induce a faster or slower ’forgetting’
effect.

The model is able to replicate the spontaneous errors reported by ’A-not-
B’ experimenters. Spontaneous errors are described as the selection of ’B’
location when showing an object at ’A’ in the training stage. These type of
errors are replicated by the DFT model when adding noise to the dynamics
of the system.

Adult control

Several trials in both locations were performed continuously in order to test
the response of ’adult’ conditions, Fig. 5.8. Three ’A’ trials were performed
in a row before testing the response of ’B’ locations. Then two trials at loca-
tion ’B’ gave successful responses and the creation of the respective memory
traces. Trials at locations ’A’ and ’B’ were performed in single or multiple
groups each to test the performance of the system. Only one ’A’ trial is pre-
sented here due to the lack of space, however all trials went to their correct
locations.

The plots depicting the memory layer in this experiment allow us to have
a better look at the effect of λdecay. This term represents the rate of decay
of memories through time and the designer should decide how fast an old
experience remains present. During a ’B’ trial, the memory trace left by ’A’
experiences starts its decay, this effect is better seen in the bottom left plot
of Fig. 5.8.
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Figure 5.8: The ’A-not-B’ task performed by an ’older’ agent. Top row: 3D
and top views of the main activation layer. Bottom row: 3D and top views
of the memory layer.

5.6 Summary

The goal of this project was to introduce the dynamic field theory and by
making use of this approach, replicate the type of responses found in 7 to
12 month-old infants in a humanoid robot when performing the ’A-not-B’
error paradigm. Both, the basic concepts of dynamic field theory and a brief
description of the ’A-not-B task were introduced in this chapter. The iCub
platform helped us to implement a well studied human behavior through an
approach that is based completely in dynamical systems and neurophysiology.

Dynamic Field Theory has demonstrated to be capable of linking neural
computation to real human behaviors. Even though it is still under develop-
ment, this theory models in very elegant ways human paradigms that have
been difficult to replicate with other approaches. This mathematical model
embed in its dynamics very important and useful properties. The hysteresis
property of bi-stable regimes implement a short-term memory, and long-
term memories are created as field traces that feed-back past experiences.
The way of seeing the world and its variables in terms of dimensions let us
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have implicit mechanisms for sensor fusion and decision making problems.
The large number of parameters becomes as usual one of the bigger chal-

lenges for most mathematical models. A single layer neural field with memory
traces has already more than 20 parameters to be tuned. However in DFT,
few experiences with the way fields work give the designer the feeling of which
parameters create the most important dynamics. This reduces enormously
the size of the parameter space.





Chapter 6

Conclusions

Nonlinear dynamical systems theory and the enactive paradigm of cognitive
systems are the basis of our approach to cognition. The first part of this
document studied the most important concepts of dynamical systems and
their close relationship with neural networks, both biological and artificial.
In the second part, practical applications of the theory were investigated
both in simulations and implementation on real robotic platforms.

In the introduction of this thesis we argued that traditional approaches
for controlling the behavior of artificial entities are based on the point of
view of the designers. Consequently, unexpected circumstances at the mo-
ment of solving a task make these systems to either halt or continue with
their programs without considering the new information. This is a crucial
point for our proposal of a new dynamic, flexible and autonomous way of
understanding and implementing human behaviors in robotic platforms.

Dynamical systems theory was our answer for a dynamic world. Dynam-
ical systems theory let us see the body of an agent and the environment as
two parts of single dynamic and continuous flow of information in a dynamic
world. The body of an agent represents the apex of this world where in-
formation is condensed in their simplest forms (stable states, fixed points)
through the use of sensors and motors. The further we go into the inner
world of an agent or out into the environment the more complex dynamics
will be found. With this in mind we could create the concept of a chaotic
cognitive architecture for artificial agents where more complex attractors are
created through the fusion of simpler stable states.

Any human behavior could be described by the integration of three big
components interacting continuously among them. An input block: Different
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kinds of information are acquired through specific types of sensors installed
in the physical layer (hardware) of an agent. An output block: Constitutes
the set of devices, also part of the physical layer, used by the agent for the
generation of specific actions within the environment; i.e. motors, displays,
speakers. And finally, a ’mind’ block: A more complex system made up of
several parts but all belonging to a software layer (mindware); i.e. short and
long term memories, emotions, attention cycles, decision making.

Input and output blocks were studied in our embodied approach to cog-
nition. Since the main objective of this research is the simulation of human
behaviors, a humanoid platform was the ideal tool for this purpose. In our
experiments we had the opportunity to work with the iCub platform from
the RobotCub project. This open source project gave us the possibility to
test a novel control approach for the input/output blocks based on coupled
chaotic systems. The study of visuo-motor behaviors in Chapter 4 showed
the feasibility of applying nonlinear dynamical systems theory, and specif-
ically, chaotic systems for controlling the input/output blocks of a robotic
platform. What could be seen as a self-organizing recurrent neural network
with chaotic maps as transfer functions worked as a reactive physical layer ca-
pable of simulating basic visuo-motor behaviors such as tracking, avoidance,
and mixed reactions between those two opposites.

The strategic use of tools provided by dynamical systems theory, showed
that neither the agent nor the environment require to be modeled since these
two parts are seen as nonlinear systems; moreover, the way of solving a task
is not specified in advance, as compared with the traditional control approach
where the agent is told the steps to follow for solving a task or for overcoming
certain problems. In short, if both approaches still need to know what to do,
nonlinear dynamical systems theory free us from knowing how to solve a task;
thus overcoming the slow or none reactions to unexpected circumstances in
dynamic environments found in traditional control models.

The study of the mindware was the main focus of Chapter 5. Dynamic
Field Theory was our choice for the simulation of higher level cognitive func-
tions due to the different successful applications in developmental psychology.
This theory has proved to have the potential to link neurophysiological stud-
ies with real human behaviors in a dynamic way. The most attractive prop-
erties of this approach are its implicit mechanisms for sensor fusion, decision
making and dynamic way of building short- and long-term memories.

The ’A-not-B’ error paradigm has been studied by developmental psychol-
ogists as a prove of a very elementary form of cognition. This game designed
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to test the emergence of the concept ’object’on infants between 7 and 12
months of age was modeled by DFT and implemented in the iCub platform.
The model replicates the same responses found in infants and adults when
faced with this kind of task. This approach showed us a new novel, powerful
and dynamic way of implementing a human behavior in a robotic platform:
motor habituation.

Further research is needed for DFT to replicate more complex human
behaviors. In this approach fields represent static spaces that could take
different shapes depending on the different experiences with the environment.
However, most of the experiences in a time-space world are sequences of
actions that can or can not be periodic. Periodic sequences are used in many
human activities like walking, breathing, pattern recognition, etc.
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Abstract

The task of tracking an object has been fully studied
and many solutions presented before. However, it is
a perfect test bed for the study of a novel model using
Coupled Chaos Systems. Once an object appears in
front of a camera, we demonstrate that the visual input
is enough for the self-organization of the torques applied
to each of the axes controlling the motion of a simulated
eye. No learning or specific coding of the task is needed
beforehand, which results in a very fast adaptation to
perturbations.

1. Introduction

The research in modern humanoid robotics dates
back approximately 30 years when the Bio-engineering
group of Waseda University started the WABOT
project. Some years later, Honda initiated their re-
search, the result of which is one of the state-of-the-art
humanoids of our time, ASIMO. Most of today’s hu-
manoid platforms follow a 50-year-old tradition of con-
trol theory that started with Industrial Automation at
the beginning of the 1960s. Control theory gives us dif-
ferent tools for designing and evaluating the algorithms
that will realize a desired motion or force application
[2]. It is at this point where the problems start for the
humanoids of the future.

In an industrial environment we are able to specify
within centimeters, distances, area of motion, speed
and acceleration of different links, force and torques,
etc. But what happens when we want to move beyond
this fixed framework? A more adaptive and flexible
theory is needed when thinking of ’controlling’ a de-
vice that is supposed to move within an ever-changing
environment.

The study of nonlinear dynamics and chaos also has
a long history; however, real applications that make
direct use of chaos theory have not been fully devel-
oped. The purpose of this research is to demonstrate

the feasibility of using coupled chaotic systems in a
more realistic application by taking the model of be-
havior emergence introduced by Kuniyoshi et al. [8]
within the area of humanoid robotics.

The task of smooth pursuit has been solved in many
different and more accurate ways than the one pre-
sented here. However, this task presents a very simple
and attractive challenge to use as test bed for coupled
chaotic systems. Another interesting point to be con-
sidered is the notion of emergence and self-organization
that characterize these systems. In fact, it is exactly
at this point where a link between chaos and biological
systems can be found. It would not be strange to think
that this reactive-emergent kind of behavior generated
by coupled chaos has its counterpart in the biological
nervous system.

Walter Freeman and colleagues have done an exten-
sive research on the dynamics found in EEG waves from
the mammalian olfactory system [3]. He has demon-
strated the existence of chaotic dynamics during per-
ception at a mesoscopic level, which refers to the level
in between the analysis of single neurons (microscopic)
and the activity of whole brain areas (macroscopic).
Since it has been shown that nature uses chaos to self-
organize the information coming from our senses, we
may assume that chaos is also used to organize our
muscular responses. With this in mind a simple ex-
periment of self-organizing behavior is studied in this
project by using coupled chaotic systems.

The next section describes the basics of coupled
chaotic systems together with the model of behavior
emergence proposed in [8]. Next, a description of the
setup used for smooth pursuit is presented together
with the quantitative analysis of the experiment; and,
finally, we present the conclusions and guidelines for
future work.

2. Coupled Chaotic Systems

A network of elements whose activation is defined
by a chaotic map receives the name of Coupled Chaotic



Systems. Depending on the level of interaction among
their elements, it is possible to classify them in systems
of local or global interaction.

2.1 Coupled Map Lattices (CML)

CML were introduced by Kaneko in the middle of
the 1980’s as an alternative to the study of spatiotem-
poral chaos [7]. In short, this kind of dynamical sys-
tems uses discrete partial difference equations to study
the evolution of a process described by discrete steps
in space and time but with continuous states. Eq. (1)
describes the dynamics of CML, whereas Eq. (2) rep-
resents the logistic map used in this work.

xi
n = (1 − ε)f(xi

n−1) +
ε

2
{f(xi+1

n−1) + f(xi−1
n−1)} (1)

f(x) = 1 − αx2 (2)

Where xi
n is a variable at discrete time step n and

a lattice point i. x represents a set of field variables
which could be temperature, position measurements,
velocities, etc. There are two parameters: α controlling
the level of chaoticity of the system and ε controlling
the coupling level among neighboring elements.

2.2 Globally Coupled Maps (GCM)

These kinds of maps were also introduced by Kaneko
and represent a network of chaotic elements with inter-
actions among all of them. While CML interact with
specific points within the lattice, each of the nodes in
a Globally Coupled Map (GCM) interact with all the
others, Eq (3). Due to the chaotic nature of the sys-
tem, specified by α, it is possible to see one of the main
properties of chaotic systems: two slightly different ini-
tial conditions amplify its difference through time. On
the other hand, ε tries to synchronize the activations
of all these chaotic elements by coupling them. In be-
tween these two states of complete chaos and complete
synchronization, interesting states emerge like the for-
mation of clusters oscillating in different phases and
amplitudes.

xi
n = (1 − ε)f(xi

n−1) +
ε

N

N∑
j=1

f(xj
n−1) (3)

Both of these categories have been thoroughly stud-
ied during the last two decades with researchers trying
to describe them both qualitatively and quantitatively.
The effects of varying both chaoticity and the coupling
factor in stand-alone CML and GCM systems were
studied meticulously by Kaneko’s group in the late 90’s

[6, 5]. Approximate phase diagrams were sketched cov-
ering the entire spectrum of synchronization among the
interacting chaotic elements of a network.

2.3 Coupled Chaotic Fields

The model used in this project is based on the ap-
proach followed by Kuniyoshi and Suzuki [8]. The main
idea behind this model is to make use of all those inter-
esting states mentioned before that emerge when cou-
pling chaotic elements and, in this case, the sensory
information modified by the environment. This model
uses both, the local interaction (CML) and the global
interaction (GCM). The system is depicted in Fig. 1.

Figure 1. Body-environment interaction
through coupled chaotic fields

Each one of the blocks containing “chaotic” elements
and their relationship constitutes the core of the system
and it is defined by Eq. (4) and (5). The function f
represents the logistic map , Eq. (2).

ui
n = f

{
si

n−1 + ε1(s̄n−1 − si
n−1)

+ ε2

(
si+1

n−1 + si−1
n−1

2
− si

n−1

)} (4)

mi
n = Gu(ui

n + Ou)

si
n = Gs(ri

n + Os)
(5)

Where m is the torque applied to each joint, s and u
are inputs and outputs respectively of the chaotic field
block, and r is the raw value coming from the plant.
Finally, Gu, Gs, Ou, and Os are gains and offsets of
the sensors and motors in the body of the plant; these
values are applied in the same magnitude to all the
elements of the system.



3 A virtual eye

The virtual eye was created using two rotational
joints, one perpendicular to the other in order to simu-
late the “pan” and “tilt” motions of a real eye, Fig. 2.
Each joint is also modeled by a spring and a damper,
trying to replicate the physical characteristics of real
muscles. These two motors are actuating the virtual
eye as the motion created by the main four muscles in
biological eyes.

Figure 2. Biological eye and its virtual coun-
terpart for the experiment

A virtual camera mounted in front of the eye gives
the visual input needed for modulating the chaotic
field. The width and height were fixed to 32 x 32 pix-
els with a field of view of 0.5 radians. It is assumed
that values of saliency are obtained from other visual
components. One of these values to be tracked was
simulated by a black circular shape moving on a white
screen, Fig. 3. Even though the trajectory followed
by the object is circular all the time, it accelerates and
decelerates several times to provide a basic test for the
robustness of the system.

Figure 3. Screenshot of the virtual setup

The time step for the simulations was fixed to 32
milliseconds and the experiments were done without
the influence of gravity and with a minimum value of
friction. The offsets and gains were fixed to Gu=1.5,
Gs=1.0, Ou=-0.92, and Os=-0.2. The input to the
system is given by the difference between the center of
the observed object within the field of view and the

position of the center of the eye, for both the vertical
and horizontal motions, Fig. 4. The outputs from the
chaotic field are fed to the motors after applying the
respective offset and gain.

Figure 4. Geometric description for inputs to
the chaotic system

The trajectory followed by our virtual eye can be
observed in Fig. 5. The first reaction, once the object
has entered into the eyes’s field of view, is to move
toward the object. As we can see, the adaptation to the
path of motion is immediate, there are no overshooting
oscillations like the ones normally encountered in a PID
controller.

Fig. 6 shows the orientation of the motors through
time. Even though both motors are trying to follow
the object as smoothly as possible, a small trembling
was observed specially at the maximum angle allowed
in each direction. This trembling seems to be directly
influenced by the physical characteristic of the hard-
ware. Note that the synchronization of both motors
remains also during those moments when the object
slows down and change direction (aprox. 4 seconds).
Another important information from this plot is the
short time elapsed until it reaches this “steady” state.
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In less than one second, the system adapts to the recent
change in the environment.

The “smooth pursuit”-kind of motion was tested us-
ing different values of α (chaoticity factor) and ε (cou-
pling factor). However when either α was lower than
1.0 or ε greater than 0.3 the system performs inconsis-
tent movements, sometimes trying to follow the object
and sometimes trying to escape from it. Fig. 7 shows
the behavior of the ’eye’ for α = 0.1 and ε = 0.2. A
more in-depth study on the effects of varying these two
parameters, α and ε, would be very difficult because of
the local and global interaction of elements at the same
time; moreover, every observation would change from
time to time due to the ever changing influence of the
environment.
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4 Conclusions and Future work

A very simple experiment for demonstrating the fea-
sibility of applying coupled chaos systems in humanoid
robotics has been introduced in this project. Tracking

an object moving in front of a camera has previously
been solved in several different ways, from using very
simple trigonometric solutions to advanced control al-
gorithms. However, this task was simple enough to use
it in the emergence of a reactive behavior that could
have a better understanding in Neural Sciences.

According to neurosciences, all behavior is mediated
by the central nervous system (brain and spinal cord)
which is separate but functionally interconnected with
the peripheral nervous system (continuous stream of
sensory information about the environment). Simply
put, the major difference between voluntary and reflex-
ive movements is the intervention or not of the central
nervous system [4]. In practice, it is not possible to
separate the modulation signals coming from the brain
into the muscles of our eyes. But according to the re-
sults of this experiment, we could speculate that visual
tracking is just a reactive behavior given a saliency
in our visual field. These saliencies are the necessary
modulations given by our central nervous system and
its areas of emotions, experiences, needs, etc.

Future work involves the coordination of motion
with two eyes and finally the emergence of coordinated
motion between eyes and head. The simulation envi-
ronment saves a substantial amount of time and re-
sources for these types of experiments; however, a no-
table amount of that saved time is dedicated only to
tuning the physical parameters in these simulated envi-
ronments. Most of the software for robotics simulation
still creates instabilities influencing the way the algo-
rithms are supposed to work. Therefore, an iCub head
from the RobotCub project is being developed to test
this and future experiments in a real environment [1].
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Abstract— Real autonomous systems are very difficult to
design, mainly due to the ever changing conditions of the
environments where they are supposed to work. In the area
of humanoid robotics these difficulties are increased not only
because of the complexity of their mechanical structure, above
all because they are supposed to work under the same dynamic
conditions as we humans do. Our approach for the creation
of real autonomy in artificial systems is based on the use of
nonlinear dynamical systems. The purpose of this research is
to demonstrate the feasibility of using coupled chaotic systems
within the area of cognitive developmental robotics.

In our quest towards the design and implementation of a
real self-adaptive autonomous cognitive architecture, we have
decided to start with a simple application that will tell us how
appropriate this approach can be for humanoid robots. Once
an object appears in front of a camera, we demonstrate that
the visual input is enough for the self-organization of the axes
controlling the motion of a single eye, both in a virtual and
a real platform. No learning or specific coding of the task is
needed, which results in a very fast adaptation and robustness to
perturbations. Another equally important goal of this research is
the possibility of having new insights about how the coordination
of multiple degrees of freedom emerges in human infants.

I. INTRODUCTION

Most of today’s humanoid platforms follow an almost

50-year-old tradition of control theory that started with the

industrial automation at the beginning of the 1960s. The

methodology followed by this approach is based on modeling

as precise as possible both the plant and the controller;

and filtering or processing as noise the different unexpected

circumstances that could occur during the operation of the

system. This approach has worked pretty well when the system

is in a fixed framework and the environmental conditions are

known and controlled; however, this will not be the case for

humanoid robots of the future. It is absolutely necessary to

start working on a different approach if we want to design

and build systems that move and act in the same kind of

dynamic environments where humans move and act. A more

adaptive and flexible theory is needed in order to ’control’

a device that is supposed to move within an ever-changing

environment. These are our first steps towards the design and

implementation of a real autonomous cognitive architecture

based on nonlinear dynamical systems.

Although the study of nonlinear dynamical systems and

chaos has also a long history, real applications that make

direct use of chaos theory have not been fully developed. The

purpose of this research is to demonstrate the feasibility of

using coupled chaotic systems [1] within the area of cognitive

developmental robotics. Based on the model of behavior

emergence introduced by Kuniyoshi et al. [2], we study the

coordination of multiple degrees of freedom in humanoid

robots.

The task of tracking an object has been fully studied and

many solutions presented before. Based either in position

errors or velocity mismatches, some approaches try to control

the activation of motors by means of robust PID controllers

[3], [4], [5], while others base their controllers in fuzzy

logic [6] or neural networks [7]. In any case, the common

methodology in these approaches is to compute expensive

Jacobian and kinematic expressions thinking in all the possible

circumstances the system could encounter.

All these works comprehend the state of the art in mo-

tor control for tracking systems; therefore it would not be

necessary to develop new solutions. However, this problem

represented the simplest test bed for the study of coupled

chaotic systems, both in a simulated environment and for its

implementation in a real platform. Another equally important

goal of this research is the possibility of having new insights

about how the coordination of multiple degrees of freedom

emerges in human infants.

According to neurosciences, all behavior is mediated by

the central nervous system (brain and spinal cord) which is

separated but functionally interconnected with the peripheral

nervous system (continuous stream of sensory information

about the environment). Simply put, the major difference

between voluntary and reflexive movements is the intervention

or not of the central nervous system [8]. In practice, it is not

possible to separate the modulation signals coming from the

brain into the muscles of our eyes. But according to the results

of this experiment, we could speculate that visual tracking is

just a reactive behavior given a saliency in our visual field.

These saliencies are the necessary modulations given by our

central nervous system and its areas of emotions, experiences,

needs, etc.

The next section describes the basics of coupled chaotic

systems together with the model of behavior emergence pro-

posed in [2]. In section III a description of the simulation setup

used for smooth pursuit is presented together with the results.

Section IV presents the physical platform and results of the

implementation of this approach; and, finally, conclusions and

guidelines for future work are summarized in section V.
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II. COUPLED CHAOTIC SYSTEMS

A. Introduction to chaos

The word ’chaos’ has been used to represent a part of

nonlinear dynamical systems theory that deals with the unpre-

dictable behavior of a system governed by deterministic rules,

[9]. It is often easier to understand what chaos is through the

examples found in almost all the areas of sciences studying

nature: it can be found in the way the weather changes every

year (Lorentz); in the way the planets and all other celestial

objects influence each other and move in space (Poincaré);

in the dynamics of population grow (May); the turbulence

generated in fluid systems (Libchaber); etc.

One of the most common, and probably the simplest,

deterministic rule that generates chaos is the logistic map, Eq.

(1). This second-order difference equation was studied by the

biologist Robert May as a model of population growth. In

this equation, the parameter α controls the nonlinearity of the

system. In order to keep the system bounded between 0 and

1, α takes values between 0 and 2, Fig. (1).

f(xn) = 1 − αx2
n−1 (1)

A stand-alone logistic map (internal feedback without ex-

ternal influences) stabilizes in an specific behavior depending

on its initial condition and the value of α. This very simple

rule can generate fixed points, Fig. 2a; periodic oscillations of

period two (Fig. 2b), period four (Fig. 2c); and following the

period doubling path until reaching a chaotic behavior, Fig.

2d.

B. Coupled Map Lattices (CML)

CML were introduced by Kunihiko Kaneko in the middle

of the 1980’s as an alternative for the study of spatiotemporal

chaos [1]. In short, this kind of dynamical systems use

discrete partial difference equations to study the evolution of

a process described by discrete steps in space and time but

with continuous states. Equation (2) describes the dynamics

of CML, whereas Eq. (1) represents the logistic map used in

this work.
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Fig. 2. Logistic map, different outputs depending on α

xi
n = (1 − ε)f(xi

n−1) +
ε

2
{f(xi+1

n−1) + f(xi−1
n−1)} (2)

Where xi
n is a variable at discrete time step n and a lattice

point i. x represents a set of field variables which could be

temperature, position measurements, velocities, etc. There are

two parameters: α controlling the level of chaoticity of the

system and ε controlling the coupling level among neighbor

elements.

C. Globally Coupled Maps (GCM)

These kinds of maps were also introduced by Kaneko and

represent a network of chaotic elements with interactions

among all of them. While CML interact with specific points

within the lattice, each of the nodes in a Globally Coupled

Map (GCM) interacts with all the others, Eq (3). Due to the

chaotic nature of the system, specified by α, it is possible

to see one of the main properties of chaotic systems: two

slightly different initial conditions amplify their difference

through time. On the other hand, ε tries to synchronize the

activations of all these chaotic elements by coupling them.

In between these two states of complete chaos and complete

synchronization, interesting states emerge like the formation

of clusters oscillating in different phases and amplitudes.

xi
n = (1 − ε)f(xi

n−1) +
ε

N

N∑
j=1

f(xj
n−1) (3)

During the last two decades, these two categories have

been the subjects of thorough investigation with the aim of

describing them both qualitatively and quantitatively. The ef-

fects of varying both, chaoticity and coupling factor, in stand-

alone CML and GCM systems were studied meticulously by

Kaneko’s group in the late 1990’s [10], [11]. Approximate

phase diagrams were sketched covering the whole spectrum

of synchronization among the interacting chaotic elements of

a network.
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D. Coupled Chaotic Fields

The model used in this project is based on the approach

followed by Kuniyoshi and Suzuki [2]. The main idea behind

this model is to make use of the freedom given by the

chaoticity of the system; and, on the other hand, the limitations

imposed by the synchronization of all the elements. It is

being used both, the local interaction (CML) and the global

interaction (GCM). The system is depicted in Fig. 3. Each

one of the blocks containing “Chaotic” elements and their

relationship constitute the core of the system and it is defined

by Eq. (4) and (5). The function f represents the logistic map,

Eq. (1).

ui
n = f

{
si

n−1 + ε1(s̄n−1 − si
n−1)

+ ε2

(
si+1

n−1 − si−1
n−1

2
− si

n−1

)} (4)

mi
n = Gu(ui

n + Ou)

si
n = Gs(ri

n + Os)
(5)

Where m is the output applied to each motor, s and u are

inputs and outputs respectively of the chaotic field block, and

r is the raw value coming from the sensors. Finally, Gu, Gr,

Ou, and Or are gains and offsets of the sensors and motors

respectively; these values are applied in the same magnitude

to all the elements of the system.

III. SIMULATION

A. Software

To simulate the dynamics of an artificial eye, a virtual

environment named Webots has been used [12]. This software

is based on the Open Dynamics Engine libraries for reasonably

accurate physics simulation such as the effect of gravity

and friction. The time step for the simulations was fixed to

32 milliseconds and the experiments were done without the

influence of gravity and with a minimum value of friction.

Fig. 4. Biological eye and its virtual counterpart for the experiment

Fig. 5. Screenshot of the virtual setup

B. The setup

The virtual eye was created using two rotational joints, one

perpendicular to the other in order to simulate the “yaw” and

“pitch” motions of a real eye, Fig. 4. Each joint is also modeled

by a spring and a damper, trying to replicate the physical

characteristics of real muscles. These two motors are actuating

the virtual eye in the same way as the main four muscles do

in biological eyes.

A virtual camera mounted in front of the eye gives the visual

input needed for modulating the chaotic field. The width and

height were fixed to 32 x 32 pixels with a field of view of 0.5

radians. It is assumed that values of saliency are obtained from

other visual components. One of these values to be tracked was

simulated by a black circular shape moving on a white screen,

Fig. 5. The initial conditions were defined by having the object

out of the field of view of the eye and generating a circular

motion from zero to a maximum speed, and slowing down to

zero again for two cycles, then changing direction for another

two cycles of zero to maximum speed and so on. This motion

was used as a basic test for the robustness of the system.

The input to the system is given by the difference between

the center of the observed object within the field of view and

the position of the center of the eye, for both the vertical and

horizontal motions. The outputs from the chaotic field are fed

as speed values to the motors after applying the respective

offset and gain.

The methodology for tuning the gains and offsets was done

by approximating the average of the raw output from the

logistic map towards a zero average of the motor activation

values. In other words, offsets and gains should be chosen in

such a way that the activations from the logistic map oscillate

around zero. Our simulation worked with the following offsets

and gains: Gu=1.0, Gr=1.0, Ou= 0.0, and Gs=-0.72, for α=1.9

and ε=0.1.
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Fig. 6. Motion of the eye (α = 1.9, ε = 0.1)

C. Results

As mentioned before, the outputs from our globally coupled

map were treated as speeds; in other words, we wanted our

system to be controlled in velocity. However, it was proven

that the same configuration and parameters were enough for

controlling our virtual eye either in position or in torque. The

trajectory followed by our virtual eye can be observed in Fig.

6. The first reaction, once the object has entered into the eye’s

field of view, is to move toward the object. As we can see,

the adaptation to the path of motion is immediate, there are

no overshooting or oscillations.

Note that there is no way of discerning the moments where

the object is not moving or moving at full speed, this tell us

how adaptive the system is to changes in the environment.

Even though the tracking is not accurate, the object remains

inside the field of view and almost in the center of the eye

throughout the simulation time.

The simulation was run over more than two cycles of

increasing and decreasing the object’s velocity, Fig. 7. The

overshooting observed at the beginning of the plot is the result

of the object entering into the field of view of the eye; in less

than one second, the system adapts to the recent change in the

environment. It is possible to observe those moments when the

object is changing direction, its speed decreases to zero; the

relative displacement of the center of the eye and the object

decreases even more.

Finally, Fig. 8 represents the relationship between the input

to the GCM and its output on both chaotic units, yaw and pitch.

The inputs to this function are the errors in both horizontal and

vertical directions after being modified by their previous states

and the influence among each other. The linearity of both units

is necessary for the tracking to occur.

The “smooth pursuit”-kind of motion was tested using

different values of α (chaoticity factor) and ε (coupling factor).

However the tracking behavior was found to be optimal for

a high chaoticity and small coupling. When decreasing α
to values smaller than the critical point for being inside the

desynchronized areas (α ≈ 1.34), it was possible to see the

appearance of other interesting behaviors like avoidance of the
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Fig. 7. Relative displacement between eye and object.
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target or a sort of “boring” tracking, following the target for a

short time but relaxing after a while. The motion of eye and

target for the later case is showed in Fig. 9.

IV. IMPLEMENTATION

The results from the simulation gave us enough confidence

to implement this algorithm in a real platform. The following

subsections describe the experimental setup and the results of

implementing the GCM algorithm for the activation of two

degrees of freedom.
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Fig. 9. A “boring”-kind of tracking (α = 1.05, ε = 0.1)



Fig. 10. Picture of the iCub’s head

A. Software

An open-source framework for robotics named YARP (Yet

Another Robot Platform) was used for the implementation of

the algorithms. The main features of YARP are: support for

inter-process communication, image processing, and a class

hierarchy to code reuse across different hardware platforms

[13]. The programming language in YARP is C++; however,

a set of libraries has been developed to allow other programs,

like Matlab, access YARP.

As mentioned before, the focus of this project is not the

extraction of saliencies from the image, which is in itself

a hard problem in computer vision. A tracking algorithm

available in the YARP repository was used as the visual

component in charge of providing us with the horizontal and

vertical coordinates of a moving object. With this information

we focus our efforts on the motor control problem.

B. Hardware

A copy of the iCub’s head from the RobotCub project [14]

was built to test this and future experiments. The head has

six degrees of freedom: yaw, pitch and roll for the neck, a

single pitch motion for both eyes and independent yaw motors

for each eye. Three Faulhaber DC-micromotors [15] are used

for moving the eyes; each motor contains an incremental

encoder that provides the position of the joint at any time.

We invite the reader to visit the project’s webpage for having

more information about hardware and software. The RobotCub

project has been thought to be distributed as an open platform

both in hardware and software. Fig. 10 shows a picture of the

platform.

Again, the difference between the center of the observed

object within the field of view and the position of the center

of the eye, for both vertical and horizontal motions, was

the value that modified the way the chaotic system behaves.

The algorithm governing the dynamics for this part of the

project was the same as in the simulation; however, the gains

and offsets had to be modified, Eq. (4, 5) since the values

representing mass, inertia, friction and gravity are different in

both frameworks. Using the same methodology for adjusting
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Fig. 11. Motion of the eye
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gains and offsets as before, these values were fixed to: Gu=1.0,

Gs=1.0, Ou= 0.0, and Os=-0.8; α = 1.9, and ε = 0.1.

C. Results

Figure 11 depicts the motion of the eye as well as the

motion of the target. When analyzing these results, it is

important to remember the following working conditions: first,

the target was moved in all possible directions and with

different speeds; second, the target was moved in several

occasions into the limits of the visual field after reaching the

mechanical constraints. Independently of the direction or the

acceleration of the target, it remains inside the field of view

within a maximum error of 10 degrees, Fig. 12.

The return maps are depicted in Fig. 13 and describe the

relationship of input and output in the GCM. In contrast with

the simulation, the use of a larger area in the logistic map

is seen. These plots show activations in the left side of the

logistic map; however, activations reaching and trespassing the

top of the map were also observed in several trials. In those

experiments, the target was moved at very low speed around

the mechanical and visual limits of the system.
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V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

A very simple experiment for demonstrating the feasibility

of applying coupled chaotic systems in the area of cognitive

developmental robotics has been shown in this project. Track-

ing an object moving in front of a camera has been solved in

several ways previously, from using very simple trigonometric

solutions to advanced control algorithms. However, this task

represented the simplest test bed for the study of emergence

of a reactive behavior, both in a simulated environment and

for its implementation in a real platform.

A virtual setup consisting of only two rotational joints

and a camera was created to replicate the sensori-motor

configuration of a real eye. We have demonstrated that, once

the object enters the field of view, this input is enough for the

self-organization of the controller that generates the torques

applied to each of the joints of our devices. No learning or

specific coding of the task is needed, which results in a very

fast reactive behavior.

By playing with the values of α (chaoticity factor) and ε
(coupling factor) we saw that a smooth pursuit behavior can

change to other ’non-tracking’ patterns like following during

some time and escaping from the target in some others. This

very simple action tells us that other visual behaviors can

be achieved without much effort from the designing part to

simulate specific cognitive actions.

The implementation of this algorithm in a real platform was

straight forward. A copy of the iCub’s head from the RobotCub

project [14] was used with only minor changes in offsets

and gains. The tracking algorithm used in the implementation

was taken from the YARP repository [16]. The algorithm was

tested by changing both the chaoticity of the system and the

coupling among its elements. In both cases, simulation and

implementation, the smooth pursuit behavior emerges when

the system is highly chaotic and there is a weak coupling

among its elements.

The focus of the present research is the coordination of

several degrees of freedom for smooth pursuit but we found

that other cognitive behaviors are also possible by changing

a single parameter in our system. The work reported in this

article represents the ground for building a more complex

architecture for sensori-motor integration and cognitive devel-

opment.

B. Future work

The iCub’s head has also an inertial sensor which will

be included in the future as another element influencing

the chaotic field. Future work involves the emergence of a

coordinated motion between both eyes and finally among the

motors representing the three degrees of freedom of neck (yaw,

pitch and roll) and the three degrees of freedom of the eyes

(left eye yaw, right eye yaw, and both eyes pitch). Several

questions should be addressed regarding the correspondences

between this research and the biological counterpart; for

example, if a smooth pursuit behavior emerged from the

interaction of chaotic units, could it be possible to obtain other

visual behaviors like vestibulo-ocular reflex (VOR), vergence

or saccades in the same way?
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Abstract. The increasing complexity of humanoid robots and their ex-
pected performance in real dynamic environments demand an equally
complex, autonomous and dynamic solution. Our approach for the cre-
ation of real autonomy in artificial systems is based on the use of nonlin-
ear dynamical systems. The purpose of this research is to demonstrate
the feasibility of using coupled chaotic systems within the area of cogni-
tive developmental robotics.

Using a robotic head, we demonstrate that the visual input coming into
the head’s eyes is enough for the self-organization of the axes controlling
the motion of eyes and neck. No specific coding of the task is needed,
which results in a very fast adaptation and robustness to perturbations.
Another equally important goal of this research is the possibility of hav-
ing new insights about how the coordination of multiple degrees of free-
dom emerges in human infants. We show that the interaction between
body and environment modifies the inner connections of the controlling
network resulting in the emergence of a tracking behavior.

1 INTRODUCTION

Most of today’s humanoid platforms follow an almost 50-year-old tradition of
control theory that started with the industrial automation at the beginning of
the 1960s. The methodology followed by this approach is based on modeling as
precise as possible both the plant and the controller; and filtering or processing
as noise the different unexpected circumstances that could occur during the op-
eration of the system. This approach has worked pretty well when the system is
in a fixed framework and the environmental conditions are known and controlled;
however, this will not be the case for humanoid robots of the future. It is abso-
lutely necessary to start working on a different approach if we want to design
and build systems that move and act in the same kind of dynamic environments
where humans move and act. A more adaptive and flexible theory is needed in
order to ’control’ a device that is supposed to move within an ever-changing en-
vironment. These are our first steps towards the design and implementation of a
real autonomous cognitive architecture based on nonlinear dynamical systems.



Although the study of nonlinear dynamical systems and chaos has also a long
history, real applications that make direct use of chaos theory have not been fully
developed. The purpose of this research is to demonstrate the feasibility of using
coupled chaotic systems [1] within the area of cognitive developmental robotics.
Based on the model of behavior emergence introduced by Kuniyoshi et al. [2],
we study the coordination of multiple degrees of freedom in humanoid robots.

The task of tracking an object has been fully studied and many solutions
presented before. Based either in position errors or velocity mismatches, some
approaches try to control the activation of motors by means of robust PID
controllers [3–5], while others base their controllers in fuzzy logic [6] or neu-
ral networks [7]. In any case, the common methodology in these approaches is
to compute expensive Jacobian and kinematic expressions thinking in all the
possible circumstances the system could encounter.

All these works comprehend the state of the art in motor control for tracking
systems; therefore it would not be necessary to develop new solutions. However,
the tracking problem represented the simplest test bed for the study of coupled
chaotic systems, both in a simulated environment and for its implementation in
a real platform. Our approach differs from previous work mainly in two aspects:
first, our system does not need to deal with complex equations of kinematics and
dynamics; second, the main goal behind our research is not to improve the per-
formance of existing algorithms but, through our experiments, start building the
basis of a dynamic model for motion emergence that embrace as a single entity
body and environment. Following Esther Thelen and Linda Smith’s suggestion
that “action and cognition are also emergent and not designed” [8], another
equally important goal of this research is the possibility of having new insights
about how the coordination of multiple degrees of freedom emerges in human
infants.

The following section contains a short introduction on chaos and coupled
chaotic systems; as well as a description of the model of behavior emergence
proposed in [2]. Section III describes the experimental setup and the results
of our experiments from the implementation of our model when working with
constant parameters. In Section IV it is presented the results of a developmental
process in a five degree of freedom implementation of our approach. Finally,
conclusions and guidelines for future work are summarized in section V.

2 Coupled Chaotic Systems

2.1 A Short Introduction to Chaos

The word ’chaos’ has been used to represent a part of nonlinear dynamical sys-
tems theory that deals with the unpredictable behavior of a system governed by
deterministic rules, [9]. One of the most common, and probably the simplest,
deterministic rule that generates chaos is the logistic map (1). This second-order
difference equation was studied by the biologist Robert May as a model of pop-
ulation growth [10]. In this equation, the parameter α controls the nonlinearity



of the system. In order to keep the system bounded between -1 and 1, α takes
values between 0 and 2, Fig. 1.

f(xn) = 1 − αx2
n−1 (1)

A stand-alone logistic map (internal feedback whitout external influences)
stabilizes in an specific behavior depending on its initial condition and the value
of α. This very simple rule can generate fixed points, Fig. 1a; periodic oscillations
of period two, Fig. 1b; period four, Fig. 1c; and following the period doubling
path until reaching a choatic behavior, Fig. 1d.
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Fig. 1. Left, bifurcation plot for logistic map. Right, different outputs for Logistic Map
depending on α

2.2 Coupled Maps with Adaptive Connections

Coupled Map Lattices (CML) and Globally Coupled Maps (GCM), were intro-
duced by Kunihiko Kaneko in the middle of the 1980’s as an alternative for the
study of spatiotemporal chaos [1]. In short, this kind of dynamical systems use
discrete partial difference equations to study the evolution of a process described
by discrete steps in space and time but with continuous states. Two parameters
control the dynamics of these maps: a chaoticity factor and the strenght of con-
nections among their elements.

Due to the chaotic nature of the system, it is possible to see one of the main
properties of chaotic systems: two slightly different initial conditions amplify
their difference through time. On the other hand, the system tries to synchronize
the activations of all its chaotic elements by coupling them. In between these two
states of complete chaos and complete synchronization, interesting states emerge
like the formation of clusters oscillating in different phases and amplitudes.

The study of dynamically varying the connections among the elements in a
GCM was done by Ito and Kaneko [11, 12]. The model is described by the set of
equations in (2). The first equation correspond to a GCM, where f represents



a chaotic map; (2b) updates each unit’s connections coming from other units
in the network; and (2c) specifies the hebbian rule governing the relationship
between all units.
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, (2b)

g(x, y) = 1 − 2 |x − y| (2c)

In (2b), δ represents the degree of plasticity of the connections and ranges
from 0 to 1. The weights wij in (2b) refer to the influence from unit j going
into unit i. All self-connections were set to 0; and the initial condition for all
remaining connections are equal to 1/(N − 1), N being the number of chaotic
units.

2.3 A Model for Behavior Emergence

The states of each of the elements in a GCM, or a CML, depend only on the
internal dynamics of these systems; they are not influenced in any moment by an
external force. When taking these concepts to robotic applications it is necessary
to think in a way of including the environment within the dynamics of the system.

The model used in this project is based on the approach followed by Ku-
niyoshi and Suzuki [2]. Their model uses both, the local interaction (CML) and
the global interaction (GCM) but with the environment as the external force in-
fluencing the internal dynamics of the network. In our case, only GCM was used
since no extra benefit was seen when including local connections; nevertheless
the overall approach is the same, Fig. 2.
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Fig. 2. Body-environment interaction through coupled chaotic fields



3 Implementation

A copy of the iCub’s head, the humanoid platform of the Robotcub’s project [13],
was used in the present work. The head’s hardware and software components
will be described in the following subsections together with the implementation
of the algorithms used to create a dynamic smooth pursuit.

3.1 Hardware and Software

The head has six degrees of freedom: yaw, pitch and roll for the neck, a sin-
gle pitch motion for both eyes and independent yaw motors for each eye. DC-
micromotors are used for moving the different joints; each motor contains an
incremental encoder that provides the position of the joint at any time. All mo-
tors and sensors are controlled by a suite of DSP chips which channel data over
a CAN bus to a computer in charge of iCub’s high-level behavioral control [14].

Due to the large amount of sensori-motor information generated within the
platform the iCub’s software was configured to run in parallel on a distributed
system of computers. An open-source framework for robotics named YARP (Yet
Another Robot Platform) [15] was used for the implementation of the algorithms.
It is important to mention that the focus of this project is not the extraction
of saliencies from moving images, which is in itself a hard problem in computer
vision. A tracking algorithm available in the YARP repository was used as the
visual component in charge of providing us with the horizontal and vertical
coordinates of a moving object. With this information we focus our efforts on
the motor control problem.

3.2 Methodology

Each camera provides two quantities: the position of the target in vertical and
horizontal directions. These values modify the position of each motor; thus gen-
erating a coupled chaotic system with 6 logistic maps, Fig. 3. The algorithm
governing the dynamics of the system is governed by (3).

ui
n = f

(
(1 − ε)si

n−1 + ε
N∑

j=1

wij
n sj
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)
(3a)

mi
n = Gm(ui

n + Om)

si
n = Gs(ri

n + Os)
(3b)

Where m is the output applied to each motor as speed values, s and u are
inputs and outputs respectively of the chaotic field block, and r is the raw value
coming from the sensors. Finally, Gm, Gs, Om, and Os are gains and offsets of the
sensors and motors respectively; these values are applied in the same magnitude
to all elements in the system.

The methodology for tuning offsets was done by approximating the average
of the raw output from the logistic map towards a zero average of the motor
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activation values. In other words, offsets should be chosen in such a way that
the activations from the logistic map oscillate around zero. Gains Gm were chosen
depending on the speed limits of the motors. The following parameters were fixed
during all experiments:Gs=1.0, Os=-0.8, GLY = GRY = GEP =25.0, GNY =70,
GNP =35, and Om= 0.0; α = 1.9, and ε = 0.1.

3.3 Results

The motion of both eyes and the motion of the head is shown in Fig. 4. This
plot shows the motion of the eyes relative to the head and the motion of the
head relative to its fixed position. In this plot is possible to see the coordination
between eyes and neck. The target was moved in random directions and at
different speeds. Since the joints of the neck give approximately an extra 60
degrees on each side and on each direction, an object can be tracked in a wider
space. It was also observed an increase of the tracking speed when compared to
the 3dof case (2-eye tracking). The motors in the neck help the motors in the
eyes to follow the object in a faster way, especially in the yaw direction.

The coordination between both eyes and between eyes and neck in each di-
rection can be more easily appreciated in Fig. 5. Since the tracking algorithm
works on independent threads in each camera, different points in space are de-
livered to the GCM. This ’computer vision’ problem creates the errors observed
during some points during the experiments.

The activations of all units grouped in yaw, Fig. 6, and pitch Fig. 6 directions
show the dynamics of the system. Here is also possible to see the coordination of
chaotic units since all activations are gathered along the diagonal of each plot.
The nonlinearity of the chaotic units give them enough freedom to use the rest of
the space when needed but always staying and returning back to this diagonal.

The development of weak and strong connections among the chaotic units
depend on the level of interaction they have through time, Fig. 7. Even though all
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connections start with the same value, the system takes only a few time steps to
separate in groups of strong and weak connections. A very interesting observation
from this plot is that after approximately 500 steps, the connections arriving to
any unit oscillate around the middle of the permitted strength. Extreme cases
are with pitch units in each eye LP and RP which develop a very strong influence
from the pitch motion of the neck NP but a zero influence from one to another.
Yaw units develop a more balanced influence in their network, oscillating always
around 0.5.
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At time step 3500 the system has entered in an almost fully developed state
where its internal connections vary very little. In the end, each unit is influenced
by no more than two other units within the whole network, Fig. 8. As expected,
two independent sub networks emerge after approximately 20 seconds. In one
side all chaotic units fed by yaw motions strengthen their connections while
weakening those towards and from ‘pitch’ units; and the same happens with
those units fed by pitch motions when compared to ‘yaw’ units.

4 Conclusions and Future work

Conclusions

A very simple experiment for demonstrating the feasibility of applying coupled
chaotic systems in the area of cognitive developmental robotics has been shown
in this project. Tracking an object moving in front of a camera has been solved
in several ways previously, from using very simple trigonometric solutions to
advanced control algorithms. However, this task represented the simplest test
bed for the study of emergence of a reactive behavior in a real platform.
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A copy of the iCub’s head [13], a 6 DOF robotic platform, was used to repli-
cate the sensori-motor configuration of a real head. The tracking algorithm used
in all experiments was taken from the YARP repository [15]. The experience
obtained in previous experiments with the simulation and implementation of
a single eye tracking [16] gave us enough confidence to increase the complex-
ity of our model. The present work contains the results on the development of
connections in the eyes-neck coordination problem (5 DOF).

We have demonstrated that a visual input is enough for the self-organization
of a globally coupled map whose outputs are used as speed values activating each
of the joints of our device. No specific coding of the task is needed, which results
in a very fast reactive behavior. A very simple Hebbian rule was used to study
the development of connections within the core of the system, a globally coupled
map. From normalized initial connections we saw them changing through time,
restructuring the ’brain’ according to the experiences with the environment. In
the final stage, two independent sub networks were formed, one containing yaw-
related chaotic units only and the other pitch-related chaotic units only. The
smooth pursuit behavior emerged during this process.

Future work

The iCub’s head includes also an inertial sensor which will be used in the future
as another element influencing the chaotic field. Several questions should be ad-
dressed regarding the correspondences between this research and the biological
counterpart; for example, if a smooth pursuit behavior emerged from the inter-
action of chaotic units, could it be possible to obtain other visual behaviors like
vestibulo-ocular reflex (VOR), vergence or saccades in the same way?

The tracking algorithm used in all experiments does not focus on the same
point in both cameras; consequently a displacement is observed when comparing
the centers of both images. Therefore, this algorithm will be modified in order
to visually track the same point in space.
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