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Abstract

Artificial vision aims to confer to machines the ability to perceive and

to interpret their environment by inspiring from the biological vision.

Since the beginning of image processing and machine vision fields in the

60’s, numerous techniques have been developed to extract and to pro-

cess visual information in an all implicitly accepted and unique context

of frames. This is shown to be in contradiction with biologic eyes which

have discarded through evolution mechanisms the concepts of frame and

synchronized pixels. This thesis aims to switch the classic computer

vision paradigm based on frame for the biological one. New vision al-

gorithms are developed using this new paradigm for the iCub humanoid

robot, in the context of the european project eMorph. The aimed goal is

to design a neuro-inspired vision based navigation ability to the robot.

This neuro-inspired vision is expected to be much more accurate and

energy efficient.
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Chapter 1

Introduction

1.1 eMorph European Project

Mainstream computational paradigm in embodied intelligence is digital and it is

clear that conventional digital systems have difficulties in performing robustly even

in the most mundane tasks of perception. They require vast amounts of resources

to extract relevant information, but still fail to produce appropriate responses for

interacting with the real-world in real time. In addition, in sensory perception

tasks, the data acquired from the sensors are typically noisy and ambiguous. Frame-

based time sampling and quantization artifacts present in conventional sensors are

particularly problematic for robust and reliable performance.

The situation is clearly different in biological systems. In particular, biological

neural systems vastly outperform conventional digital machines in almost all as-

pects of sensory perception tasks. Despite its dramatic progress, information tech-

nology has not yet been able to deliver artificial systems that can compare with

biology. There are limitations both at the technological level, and at the theoreti-

cal/computational level.

Analog computation free from the limits of sampling provides a solution. Analog
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devices are fast, as time constants are in the range of the rising time of the transistor

currents. Event-driven computation intrinsically adapts the sensor response to the

time constants of the real world. The sensor response is automatically regulated

to match the incoming signal range, and so is robust. Moreover as only important

events are coded, they are also efficient. The eMorph project thus indented to design

novel, data-driven, biologically inspired, analog sensory devices while also developing

new asynchronous event-driven computational paradigms for them.

eMorph aimed to adapt the computational engine of the cognitive system to

the dynamics of the real world rather than furiously sample the physical sensory

signals in an attempt to obtain adequate bandwidth. Structure and morphology have

been matched to the requirements of the robots body and its application domain

with testing carried out on the advanced humanoid robotic platform, iCub (project

RobotCub).

The general objectives of eMorph were to implement embodied intelligence by

designing space-variant morphologies and computational structures of neuromorphic

sensors together with the development of asynchronous data-driven algorithms that

best exploit the properties of the sensor.

My research focused on the specific problem of motion perception and compu-

tation of optical flow, in the context of obstacle avoidance during navigation. The

resulting algorithms have been developed and tested in controlled situations and

eventually implemented and validated on the iCub robot.

In the following, I will highlight the limitations of mainstream approaches in

computer vision in general and then present the state of the art of the asynchronous

visual sensors and relative sensory systems. Afterwards I will give an overview of

the robotic navigation, and then explain why the event-based paradigm is crucial

for this task.

2
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1.1.1 Limitations of the current computer vision paradigm

The field of computer vision is seen by other robotics disciplines as immature and still

too diverse. Even though earlier work exists, only when computers could manage

the processing of large data sets such as images, in the late 1970s a more focused

study of the field started. However, these studies usually originated from various

other fields, and consequently there is no standard formulation of “the computer

vision problem”.

There is no standard formulation of how computer vision problems should be

solved. Instead, there exists an abundance of methods for solving various well-

defined computer vision tasks, where the approaches are often very task specific and

cannot be generalized over a wide range of applications.

Many of the methods and applications are still in the state of basic research, but

more and more find their way into commercial products, where they often constitute

part of a larger system which can solve complex tasks (e.g., in the area of medical

imaging, or quality control and monitoring of industrial processes).

In most computer vision applications, systems are pre-programmed to solve par-

ticular tasks, but methods based on learning are now becoming increasingly common.

1.1.2 Toward an asynchronous event based vision paradigm

The notion of a “frame” of video data has become so embedded in machine vision

that it is usually taken for granted. This is natural given that frame-based devices

have been dominant from the days of drum scanners and videcon tubes to todays

CCDs and CMOS imagers. There are undeniable advantages to frame-based im-

agers: they have small simple pixels, leading to high resolution, large fill factor and

low imager cost. The output format is well understood and is the basis for many

years of research in machine vision.

On the other hand, frame-based architectures carry hidden costs because they

3
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are based on series of snapshots taken at a constant rate, irrespective of the scene

content, thereby pixels are repetitively sampled even if their values are unchanged.

Short-latency vision problems require high frame rate and produce massive output

data. Pixel bandwidth is limited to half of the frame rate, and reducing the output

to a manageable rate by using region-of-interest readout usually requires complex

control strategies. Dynamic range is typically limited by the identical pixel gain,

the finite pixel capacity for integrated photocharge, and the identical integration

time. For machine vision in uncontrolled environments with natural lighting, limited

dynamic range and bandwidth can compromise performance.

The classical problem in computer vision, image processing and machine vision

is that of determining whether or not the image data contains some specific object,

feature, or activity. This task can normally be solved robustly and without effort by

a human, but is still not satisfactorily solved in computer vision for the general case:

arbitrary objects in arbitrary situations. The existing methods for dealing with this

problem can at best solve it only for specific objects, such as simple geometric objects

(e.g., polyhedrons), human faces, printed or hand-written characters, or vehicles,

and in specific situations, typically described in terms of well-defined illumination,

background, and pose of the object relative to the camera.

Real-world robotics applications are evolving from the industrial domain (simple

tasks in structured environment) to the service domain where the environment of

the robot is no more static. Service robotics induces complexity both in terms of

the tasks that have to be achieved and in terms of the nature of the environment

where robots are supposed to evolve. Part of the answer to these problems is the

growing complexity of the sensors with which robots are now equipped as well as the

increase of the number of degrees of freedom of the robots themselves e.g., Mobile

manipulators such as the humanoid robot iCub (1) or the wheeled assistant PR2

(2)).

4
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As a matter of fact, robots need a real-time representation of the dynamic en-

vironment that is robust to changing and uneven illumination and noise. Motion

controllers have to be either highly robust to uncertainties on the knowledge of the

model of the robot and its environment, or adaptive.

Fig. 1.1 illustrates a global process of current artificial vision methods, based on

the acquisition of discretized frames. The process is very long, and has an important

Figure 1.1: Global computer vision process

cost in terms of computation and memory communication bandwidth, specially for

high frame-rate applications, such as motion computation, as proposed in this thesis.

Contrary to mainstream paradigms, biological systems are massively parallel

and event driven. The retina is composed of multiple cells (rods and cones), each

independently reacting to changes of light, as shown in Fig. 1.2 that illustrates the

cells response to a spot light flash.

5
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Figure 1.2: Illustration of the cells of the retina and their response to a spot light
flash. The photo-receptors are the rods and cones in which a negative receptor potential
is elicited. This drives the bipolar cell to become either depolarized or hyper-polarized.
The amacrine cell has a negative feedback effect. The ganglion cell fires an action pulse
so that the resulting spike train is proportional to the light stimulus level.

1.1.3 Asynchronous vision sensors : state of the art

The first asynchronous, data-driven and biologically inspired sensory device provid-

ing spike-based output was built by Mahowald and Mead (3) in the ’80s, but was a

demonstration device that was unusable for real world task.

Following, some other designs have been proposed: Zaghoul and Boahen (4) led

to large mismatch, the pixel firing rates varied with a standard deviation of 1-2

decades and more than half the pixels did not spike at all for stimuli with 50%

contrast making it impractical in real applications.

The group at CSEM Neuchatel (5) presented a device in which the output en-

codes spatial rather than temporal contrast. After a global frame integration period,

6
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this device transmits events in the order of high-to-low spacial contrast. The main

limitation of this architecture is the none reducing temporal redundancy, and the

temporal resolution limited to the frame rate.

Etienne-Cumming’s group reported a temporal change threshold detection im-

ager (6), which modifies the traditional active pixel sensor CMOS so that it can

detect a quantized absolute change in illumination. Frame-based, one of the disad-

vantage of this device is that the event times are quantized to the limited global

sample rate.

Culurciello and Andreou (7) reported several imaging sensors that use Address-

Event Representation (AER) to communicate the pixel intensity, either by inter-

event interval or mean frequency. They have the advantage of relatively small pixel

size, but the big disadvantage that the bus bandwidth is allocated according to the

local scene luminance. Because there is no reset mechanism and because the event

interval directly encodes intensity, a dark pixel can take a long time to emit an event,

and a single highlight in the scene can saturate the bus.

Patrick Lichtsteiner et al (8) proposed the Dynamic Vision Sensor (DVS), a

128x128 pixel CMOS vision sensor, where each pixel independently generates spike

events in continuous time quantizes local relative intensity as shown in Fig.1.3.

By providing high pixel bandwidth, wide dynamic range, and precisely timed

sparse digital output, the DVS provides an attractive combination of characteris-

tics for low-latency dynamic vision under uncontrolled illumination with low post-

processing requirements. Pixels respond asynchronously to relative changes in inten-

sity. The objective for this pixel design was to achieve low mismatch, wide dynamic

range, and low latency in a reasonable pixel area.

The DVS has the potential of realization of small, fast, low power embed-

ded sensory-motor processing systems that are beyond the reach of traditional ap-

proaches under the constraints of power, memory and processor cost. The field of

7
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this kind of device, as AER sensor, is largely unexplored, and need improvements.

Figure 1.3: (a) Abstracted pixel schematic. (b) Principle of operation. In (a), the
inverters are symbols for single-ended inverting amplifiers.

Posh et al at the Austrian Institute of Technology developed the Asynchronous

Time-based Image Sensor (ATIS)(9). This device combines DVS pixels(8) with time-

based photo-measurement pixels providing a PWM intensity encoding(10). The

output is gray level values only at pixels which local luminosity changes. The ATIS

made a step forward in AER functionality by providing typical local luminosity

changes information coming with asynchronous real gray value measurements. The

ATIS has a higher resolution than the DVS with 304x240 pixels, which is large given

the youthfulness of the technology.

Linares-Barrancos group in Sevilla has presented an address event sensor con-

sisting in computing the spatial contrast, coding it as pixel event frequency (rate

8
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coding)(11). The chip also includes a global pixel reset mechanism which allows a

Time-to-First-Spike coding.

Several algorithms have been developed using asynchronous sensors, mostly with

DVS and ATIS. While applications using ATIS are mostly produced at the Austrian

Institute of Technology (AIT) for commercial purpose (i.e. Fast moving object de-

tection and classification, High-speed measurement tasks in industrial automation),

DVS, by its availability and simplicity to use, is essentially employed for academic

research.

Along this thesis I focus on the DVS starting by an overview of the state of the

art involving this sensor.

1.1.4 Asynchronous Vision Algorithms: state of the art

The DVS is the first asynchronous sensor with low mismatch and user friendly

programmable bias tuning that allows its use in artificial vision applications. Several

techniques have been developed taking advantage of the low redundancy and high

bandwidth of the sensor. In (13) the stream of events of the DVS is used to track

ball using clusters. The clusters are incrementally updated and used to block balls

with a motor-controlled arm. (14) takes advantage of the sensor to provide fast

visual feedback for controlling an actuated table to balance an ordinary pencil. The

pencil is tracked using a vertical shape, which position and angle are computed from

two DVS output. (15) and (16) make use of the DVS in micro-manipulation and

tracking. First technique tracks micro-spheres computing hough circles, while the

second make use of an event-based Iterative Closest Point (ICP). In (17) the core

interest of the information provided by the DVS is the events timing. Exploiting

the visual event temporal occurrence of a pair of sensors, the proposed algorithm is

able to accurately reconstruct the depth of moving objects.

The work developed so far shows that the DVS is suitable for applications where

9



1.2 Robotic navigation

fast stimuli have to be processed in real-time. To give autonomy to mobile robots, we

chose to exploit the sensors for navigation by computing optical flow. The optical

flow provides apparent motions, and is a basis of focus of expansion and time to

contact computations as I will show in chapter3.

The event-driven approach has an enormous advantage in terms of temporal res-

olution, allowing for the computation of speed for fast moving objects, additionally,

the intrinsically no-redundant data encoding lowers the computational demand for

this usually power hungry algorithm.

Navigation is an important topic in the robotic field. In the following I give an

overview of the state of the art and then interest points leading the choice of an

event-based paradigm for robotic navigation.

1.2 Robotic navigation

The aim of the robotic navigation is to confer autonomy to the robot, giving the

ability to navigate in an environment by its own. It consists of reaching a goal point

using a suitable and safe path.

1.2.1 State of the art

Autonomous navigation in an unstructured environment is a very challenging task.

Current robots that can operate autonomously in an unknown and unprepared envi-

ronments are often huge as most of today’s autonomous navigation algorithms rely

on power-hungry sensors such as laser range finders and high resolution stereo-visions

((18)(19)(20)(21)(22)). These robots require then powerful and power-hungry com-

puting units to be mounted on-board, leading to several limitations on autonomy

and operational range.

Most obstacle avoidance algorithms use active range sensors such as ultrasonic

10
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sensors, laser range finders and infrared sensors. Visual sensors are an alternative

solution for obstacle avoidance and becoming increasingly popular in robotics. Vi-

sual sensors often provides better resolution data, longer ranges at faster rates than

range sensors. Such visual sensors are passive, they are less dependent on the envi-

ronment, however, image processing from commonly used frame-based cameras is a

very computationally expensive task.

Concerning the vision based navigation, we can divide the different approaches

in two main categories(23), the model based and the model-free.

The model based paradigm implies a partial or global knowledge of the environ-

ment before any action from the robot. Different strategies are used, consisting of

different representations of the environment. The most complete representation is

given by the metric map approach(24)(25) where the environment is totally known.

To be used, the robot needs a system of localization like Simultaneous Localiza-

tion and Mapping (SLAM) and Concurrent Mapping and Localization (CML). A

less complete approach, but still using a global representation of the environment is

based on the use of topological maps(26)(27), representing the environment like a

graph, which nodes can represent actions. This approach does not represent obsta-

cles, and implies the robot to be equipped with sensors to detect them. Topological

maps are simple and compact, take up less computer memory, and consequently

speed up the navigation processes. A transitional approach to model-free naviga-

tion is the local map method(28)(29). It consists in the creation of local map, which

updates incrementally a more global representation of the environment. The local

grid represents the portion of the environment that surrounds the robot, the grid

size being determined by the sensor field of view.

The model-less methods of navigation are based on the fast reaction to obsta-

cles and consequent path recalculation in an unstructured environment of reactive

navigation, where robots have to deal with unstructured environment through his

11
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motion. As the model based method, the model-less is subdivided in different ap-

proaches. Feature tracking uses the detection of particular shapes such as corners,

lines, which can be used to segment ground plane(30). Another interesting ap-

proach, the Image Qualitative Characteristic Extraction, avoids as much as possible

the use, computation or generation of accurate numerical data such as distances,

position coordinates, velocities or contact time to obstacles(31)(32). This approach

suffers from changing imaging conditions, i.e. illumination intensity, position of

light sources, glossiness of the scene materials. A last subdivision of the model-free

methods is represented by the computation of the optical flow. In robotic applica-

tion, the optical flow is used for direct navigation as taking inspiration of insect(33)

for instance. The information provided by the apparent motion allows to detect

obstacles(34)(35) and also to compute the time before their impact(36).

Fast navigation is a fundamental problem in robotics. Current navigation meth-

ods, as quickly presented above, are designed to work on frames, usually acquired

at a fixed rate using conventional cameras. The resulting data redundancy leads to

high computational burden while the image acquisition temporal resolution, often

limited to video frame rates of the order of tens of milliseconds, restricting the speed

of mobile platforms.

Vision often requires complicated software and powerful computing platform or

dedicated hardware modules. Very small robots, i.e. those that are man-transportable

are not usually equipped with vision sensors. Crowlay underline in(37) that one of

the most important problems to be addressed in visual navigation is sensor interpre-

tation. This task is indubitably increased by the redundancy of standard imagers.

1.2.2 Event-based Navigation

A recent and evolving area in computer vision aims at exploiting the unique char-

acteristic of a novel family of biologically inspired asynchronous sensors (38)(39)

12



1.2 Robotic navigation

(10)(40). The increasing availability and the quality of these sensors open up the

potential to introduce a shift in the methodology of acquiring and processing visual

information in various, demanding machine vision applications(41)(42). The sub-

microsecond temporal resolution and the inherent redundancy suppression of the

frame-free, event-driven acquisition and subsequent representation of visual infor-

mation employed by these cameras enable to derive a novel methodology to process

the visual information at an unprecedented speed and with low computational cost.

For these reasons, the use of this kind of sensor is promising for robot’s naviga-

tion, for which we had to develop algorithms with new methodologies.

We focused on the optical flow approach because the nature of the sensors. As

only dynamic part of a scene is provided, the optical flow was viewed as naturally

emerging. Moreover, the importance of this work is emphasized by Gibson claim

in(43), that the optical flow is used by humans to extract all the necessary environ-

mental information, such as egomotion or obstacle’s positions.

In this thesis I describe a novel computationally efficient and robust event-based

chain of visual navigation that relies on the accurate timing of individual pixels’

response allowing in a first step to compute an efficient and accurate optical flow.

This method takes the visual stimuli as computational inputs and fully benefits of the

high temporal resolution properties of the sensor. The second step of the navigation

chain is the computation of the focus of expansion (FOE), that provides egomotion

information. The joint use of the focus of expansion and the optical flow allows the

computation of the time to contact (TTC), which provides the information of the

time before impact of nearby obstacles.

In the following I present the work done to accomplish the task of safe navigation.

Chapter2 describes the event-based paradigm, and give a general methodology to

compute with spikes. Chapter 3 details two approaches of optical flow computation,

the focus of expansion and the time to contact calculation. Eventually Chapter

13
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4 presents the validation of the methods details in chapter 3. Finally chapter 5

concludes on the results of the presented methods and chapter 6 gives an overview

for further work.

14



Chapter 2

Methods

In this chapter, I introduce the event-based paradigm, giving the mathematical

foundation of the approach. First, I explain how event-based sensors discretize

the luminance of a scene, and how this information is encoded. Then, I explain

how events can be mathematically treated and the properties and computational

capabilities of the developed algorithms.

2.1 Event-based formalism

2.1.1 Pre-requisite

2.1.1.1 From luminance to temporal changes

A gray-scale image is a M ×N array of positive numbers encoding the intensity of

light incident on the pixels located on the sensor image plane.

A movie is a sequence, Iseq, of images (or frames) periodically taken at a fixed

temporal interval, ∆t, from t0 to t0 + n∆t:

Iseq = {I(t0), I(t0 + ∆t), . . . , I(t0 + n∆t)} (2.1)

15



2.1 Event-based formalism

with n ∈ N+.

The intensity of a given a pixel at [x, y]t, is a mono-dimensional function of time

t:

fx,y : [0, T ] → R+

t 7→ fx,y(t)
. (2.2)

A digital image taken at time t is the set of mono-dimensional functions fx,y:

I(t) = {fx,y(t)}
x ∈ [0,M − 1]

y ∈ [0, N − 1]

. (2.3)

Using Eq. 2.2, an image sequence (Eq. 2.1) can be written as a set of functions

fx,y(t) expressing the variations of the values of pixels over time:

Iseq = {f0,0(t), f0,1(t), . . . , fM−1,N−1(t)} (2.4)

for t ∈ [t0, t0 + n∆t], and n ∈ N+.

Iseq is composed of a set of discrete functions fx,y(t), obtained by sampling all

of the pixels at the same time. The main disadvantage of using such a fixed global

sampling frequency is in the reduction of the dynamics of the changes detection of

the continuous function of time fx,y(t).

This method, used in main stream current acquisition techniques, originates

from the early times of audio signals. As shown in Fig.2.1(a) this process generates

unnecessary redundant data when values are unchanged over a long period of time.

This consuming process is acceptable if only few signals are to be considered, but

requires an enormous amount of resources for a high number of simultaneous signals

as it happens in the case of video streaming, where nowadays sensors can acquire

16
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images up to millions of pixels. This sampling is incompatible with a compact

representation of visual information, as it requires the acquisition, transmission,

processing and storage of unnecessary redundant data.

In order to overcome these limitations and provide an accurate temporal sam-

pling of f(t), it is more efficient to detect variations of f(t) just at the exact time

at which they occur (Fig.2.1(b)), namely sampling on the amplitude axis.

(a) t

f(t)

(b)

f(t)

t

Figure 2.1: Two ways to sample functions values, in (a) using a classic constant scale
on the t axis, in (b) using a constant scale but on the values of f(t).

This process is data oriented and discards redundancies at the lowest level.

Changes are detected precisely at the time they occur, overcoming all limitations

of fixed time sampling. This signal oriented codification provides a compact rep-

resentation of light changes and produces a sparse representation of data, as it is

extremely rare that in natural environments the whole content of the visual field

changes completely in the time between two consecutive frames.

In the worst case of cluttered and dynamic environment this data encoding will

tend to the asymptotic value represented by the whole frame acquisition. check

with Ryad!!!.

If f(t) is quantized according to a predefined quantity ∆f , it is possible to define

a function Ev providing temporal events corresponding to the exact change time of

f(t) (Fig.2.1). The absolute value of luminance is no longer the element to be

retrieved, the spatial and temporal locations of ∆f changes are sufficient to give
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2.1 Event-based formalism

an estimate of the visual data. Nevertheless, in the next section we will show that

luminance can always be estimated using a incremental summation process.

This paradigm introduces a major road map change in computer vision, as it

states that vision does not rely on a sampled set of low dynamics images but on a

collection of asynchronous functions, each corresponding to a pixel which indepen-

dently and asynchronously encodes changes of light at different spatial locations.

2.1.1.2 Codifications strategies to encode light changes

There are several ways to quantize fx,y according to its value. Let us define {tk},

the set of times of the signal sampling. With the assumption that ∀k ∈ N, tk+1 > tk

and t0 is the initial time, a standard set is:

T = {tk | |F(fx,y(tk)− fx,y(tk−1))| = ∆f} . (2.5)

The signal is sampled every time the variation of the magnitude of the function F

is equal to ∆f .

In principle there is no forward method to choose F, that has to be selected

according to the task to be performed. To study the general properties of codification

based on relative changes, we will set F as the identity function. Unfortunately, there

is no elegant formulation of T , as assumptions on f (to derive f−1) contradict the

random nature of light changes in scenes. Once T is set, Ev(x, y, t) can be defined

as:

Ev(x, y, t) = δ(t, tk)ṡign(f ′x,y(t)), (2.6)

where δ() is the Kronecker delta function and sign() is the sign function of a real

number taking value in {−1, 1}.

Ev(x, y, t) is a compact representation of fx,y, its values are in the set {−1, 0, 1}:
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2.1 Event-based formalism

Figure 2.2: Codification of pixels gray-level variations into temporal contrast events.

+1 and −1 indicate a ∆f change towards lighter or darker stimuli respectively, 0

corresponds to absence of change, or to changes smaller than ∆f . Once Ev, ∆f and

fx,y(t0) are known, fx,y can be approximated by a piecewise constant function f̂x,y:

f̂x,y(t) =
+∞∑

i=0

fi(t), (2.7)

where

f0(t) =





fx,y(t0) for 0 ≤ t < t0

0 otherwise

, (2.8)

fi(t) =





Evt1,ti(x, y)∆f for ti ≤ t < ti+1

0 otherwise

, (2.9)

and

Evtm,tn(x, y) =

n∑

k=m

Ev(x, y, tk). (2.10)

As shown in Fig.2.2, f
′
x,y changes sign during the transitions, the next event ap-

pears only when the whole amount of change is larger than ∆f from the last event.

Ev(x, y, t) is a series of impulses, that allow a direct codification of the variation
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2.1 Event-based formalism

of light of a scene in a more compact way than any frame acquisition process.

This asynchronous architecture is one of the most general form of light acquisition.

Frame images are clearly a special case, as shown in Eq. 2.7 the value of f̂x,y can

be estimated any time needed. Frames can still appear spontaneously if the whole

scene content changes completely at the same time. We will demonstrate farther

that frames are most of the times not needed to perform visual tasks.

In what follows we omit the spatial variables x and y to define Ev(t) as the set

of Ev(x, y, t) for x ∈ [0,M − 1], y ∈ [0, N − 1]:

Ev(t) = {Ev(0, 0, t), . . . , Ev(M − 1, N − 1, t)} (2.11)

and Evt1,t2 is the spatiotemporal volume restricted on the interval [t1, t2].

As described in the introduction, the Dynamic vision sensor is one of the first

event-driven asynchronous sensors. It implements a specific case of discretization,

where the function f(t) is equal to the logarithm of light intensity. This specific

function makes the pixel sensitive to local contrast change, rather than absolute

light intensity, implementing a form of local gain control that adapts the gain of the

pixel to the level of illumination and increases the sensor dynamic range (8). Unless

explicitly mentioned, the work described in this thesis refers to the DVS and uses

its recorded events for validating the developed computational methods. Figure 2.3

shows the values of Ev(x, y, t) for all pixels responding to an horizontal translating

bar. The output is part of a unique spatiotemporal volume, instead of being con-

fined in separated frames.
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2.1 Event-based formalism

Figure 2.3: Codification of a horizontal translating bar using an asynchronous acqui-
sition process: “·” and “+” correspond to the value −1 and +1, respectively, 0 is not
represented.

2.1.2 Properties of event-driven acquisition

2.1.2.1 Decomposition of spatiotemporal volumes

The asynchronous acquisition process does not generate frames, but it is possible

to generate images at any time if Ev(t) is available. An image Îtk,tk+1
as a set of

{f̂x,y} between [tk, tk+1] can be generated according to Eq. 2.7. The content of Î

is simply the sum of all Ev(x, y, t) functions over the considered period of time.

Images can then be generated when needed and at frequencies as high as the inverse

of the pixels’ elementary time step activation. The summation nature of Eq. 2.7 is

a major property, as image processing and vision applications relying on such an

acquisition process can rarely be limited by the bandwidth of the connection line or

the computation power of computers. In networking applications, this means that

if a common reference is set between two peers, the generation of images can follow

the maximal speed rate of the communication lines.

Another interesting property of asynchronous image formation is shown in Fig.2.4. A

spatiotemporal volume Ev(t) restricted to the time interval [t0, tn+1] can be written
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2.1 Event-based formalism

as a sum of spatiotemporal sub-volumes :

Evt0,tn+1(t) =

n∑

k=0

Evtk,tk+1
(t). (2.12)

If images Îtk,tk+1
are built by summing events over the intervals [tk, tk+1], we can

write:

Ît0,tn+1 =

n∑

k=0

Îtk,tk+1
. (2.13)

An image can be naturally decomposed as a summation of all generated previous

images.

Evtk−1,tk
(t)
Evtk,tk+1

(t)
X

Y

Ît0,tn
Îtn−1,tn

Ît0,t1

t

Figure 2.4: An asynchronous image generated at a time tn+1 can naturally be decom-
posed as a summation of all previously generated images.

2.1.2.2 Noise

Every pixel has a spontaneous impulse activity decorrelated from the content of the

scene. Every pixel emits a noise impulse with a period of 15s and standard deviation

of 1.5s. The main source of spontaneous activity is a fixed pattern noise, mainly

due to the leaky switch that resets the pixel after the generation of a spike. The

variability of every pixel is highly unpredictable due to the mismatch in the silicon

substrate. Fixed pattern noise can be removed by acquiring data from a static
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2.1 Event-based formalism

scene for a long time interval (typically in the order of three minutes), providing a

suppression of 92% of noise impulses. The remaining noise is due to other electronic

noises, it can be easily removed by applying median filters.

2.1.2.3 Events and images

In order to provide a comparison with frame cameras, Fig.2.5 illustrates two se-

quences of images: a static acquisition of road traffic (Fig.2.5(a)) and a hand held

moving camera moving on the sidewalk (Fig.2.5(b)); each image is created from

event summation over a period of 50ms.

(a)

(a)

(b)
Figure 2.5: Generated images from event sequences for summation periods of 10ms
(a) static camera observing road traffic, (b) a hand held moving camera on the sidewalk.

The static traffic acquisition sequence (a) is 1.75 minutes long, for a total of

876340 events, while the hand-held camera sequence (2) lasts 0.44 minutes, for a total

of 1.153.600 events. Considering that 2 bits are needed to encode events polarity

and the number of pixels is 128 × 128, the amount of acquired data is 213.9Kb for

the first sequence and 281.6Kb for the second. The number of events depends on

the content of the recorded scene. In the case of static acquisition only moving cars
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2.2 Event-based computation

and pedestrians can generate events, while in the case of hand-held camera also the

relative motion of background produces events. For a comparison, we can calculate

the amount of data produced by a traditional sensor with standard frame rate of

30 images/s: assuming that frames are standard 256 grey scale images of 128× 128

pixels, the total amount of recorded data would be 49.12Mb for (a) and 12.36Mb for

(b). The asynchronous sensor time resolution is 1µs, which means that in principle

an image sequence at a rate of 1µs can be generated from the collected data. To

obtain the same temporal resolution with traditional digital cameras, a fast, 1GHz,

camera should have been used. In this case the collected data would increase of

more than 7 orders of magnitude. These results can be easily explained by the fact

that acquiring images induces unnecessary data load, as most pixels do not change

their content across consecutive frames. The hand-held camera produced a much

larger amount of data than the static acquisition but it remains far from the data

load produced if the same scene was acquired with a classic frame based camera,

even at a much lower time resolution.

2.2 Event-based computation

The easiest way to perform visual tasks with event-based data is the application

of standard computer vision algorithms on reconstructed frames from the stream

of events. However, generating frames will only increase computational loads and

lower real-time properties. The main interest of event driven acquisition relies on a

wide temporal dynamic in the arrival of events, therefore it is essential to take into

account this property and set up algorithmic processes that directly work on events.

This is an important step as every event should require few computations to be able

to be processed easily on the fly. To fully exploit the advantages of such framework,

it is then important to understand the computational connection between current
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2.2 Event-based computation

events and the preceding ones to set up a fast integral computation.

In the following we introduce a framework for computing with events, starting from

the definition of event-based convolution to the formalization of the computation of

event-based optic flow.

2.2.1 Temporal convolution

We examine the event-based formulation of convolution, one of the most used stan-

dard signal processing operation, applied to spatiotemporal volumes of events. Let

∗ denotes the convolution operator applied to two functions g and f̂ where f̂ is the

quantized form of an intensity function f introduced in Sec. 2.1.1.1. g is a function

complying with the usually requested conditions for the standard convolution prod-

uct. Finally, both functions are also assumed to be causal.

If f̂ is acquired between t0 and tn, using results of Eqs. 2.7-2.10:

(g ∗ f̂)(t, n) = (g ∗
n∑

i=0

fi)(t) =

n∑

i=0

∫

R
g(t− u)fi(u)du. (2.14)

Sum and integration can be switched due to the finite summation from 0 to n.

Finally, since each fi(t) is equal to 0 outside the interval [ti, ti+1]:

(g ∗ f̂)(t, n) =
n∑

i=0

∫ ti+1

ti

g(t− u)fi(u)du

=
n∑

i=0

Evt1,ti(x, y)∆f

∫ ti+1

ti

g(t− u)du

(2.15)

Thanks to the linearity of the convolution operator, if an additional event is

detected, the convolution product can be efficiently computed by adding the term
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(g ∗ fn+1)(t) to the previous result. Convolution is calculated recursively:

(g ∗ f̂)(t, n+ 1) =(g ∗ f̂)(t, n)

+Evtn,tn+1(x, y)∆f

∫ ti+1

ti

g(t− u)du
(2.16)

2.2.2 Spatial convolution

Spatial convolution follows the same principle described above, in this case g is a

two-dimensional function and f̂ is replaced by Ît0,tn , the image built as explained in

Eq. 2.13:

(g ∗ Ît0,tn)(x, y) =

∫

R

∫

R
g(x− u, y − v)Ît0,tn(u, v)dudv. (2.17)

If an event appears at tn+1, the convolution is updated recursively:

(g ∗ Ît0,tn+1)(x, y) = (g ∗ Ît0,tn)(x, y) + (g ∗ Îtn,tn+1)(x, y) (2.18)

This is different from the slow and power-hungry computation required for frame-

based convolution, event-based asynchronous convolution allows fast processing due

to the light computational load that exploits the integral properties of the acquisi-

tion.
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Chapter 3

Event based visual navigation

This chapter presents the approach developed in the context of the event-based

paradigm to provide mobiles platforms the capability of autonomous navigation. We

developed a navigation system based on the computation of the optical flow. The

optical flow is the projection of motion in the observed scene onto the imager focal

plane and conveys all the necessary information needed for reaching a point avoiding

obstacles. In this chapter I describe the method developed for the computation of

the optical flow using event driven sensors and the algorithms for calculating the

focus of expansion, the detection of obstacles and the relative time to contact.

3.1 The optical flow

3.1.1 State of the art

Visual flow is a topic of several research fields that has been intensively studied

since the early days of computational neuroscience. It is widely used in artificial

vision and essential in navigation. Visual flow is known to be an ill-posed noisy

visual measure, limited by the aperture problem. Its use in real-time applications

on natural scenes is generally difficult and computationally expensive, it is usually
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3.1 The optical flow

computed sparsely on highly salient points.

Visual flow techniques are commonly classified under one of four major cate-

gories:

• Energy-based or frequency-based methods estimate optical flow from the out-

put of velocity-tuned filters designed in the Fourier domain ((44; 45; 46)),

• Phase-based methods estimate image velocity in terms of band-pass filter out-

puts ((47)),

• Correlation-based or region-matching methods search for a best match of small

spatial neighborhoods between adjacent frames ((48; 49; 50; 51; 52; 53)),

• Gradient-based or differential methods use spatio-temporal image intensity

derivatives and an assumption of brightness constancy ((54; 55; 56)),

Energy-based techniques’s are slow (47) and not adequate for real-time applications

where gradient-based approaches perform better, as they rely on correlations. Vi-

sual flow is generally slow and does not exceed several Hz on dense input. There

are existing solutions to speed-up the computation according to a trade off between

accuracy and efficiency (57). Preprocessing stages and kernel differentiation are of-

ten needed but they affect drastically real-time performance. In this case, accuracy

is linked to the size of kernels that inevitably influences the execution time. If tem-

poral kernels are used, then the buffering of images needed to perform computation

dramatically increases the amount of stored data and introduces additional time

delay in the computation.

The high computational cost of all of the approaches described above are not

suitable for real-time applications. Frame-based flow computation using large tem-

poral windows is not comparable with the temporal precision of biological sensors

that respond with 1ms precision. The same observation applies to artificial vision
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that intrinsically remains linked to the frequency of the available cameras, gener-

ally not exceeding 60Hz. Most of the developed techniques are computationally

expensive and are mostly used off line.

Lee claims in (58) that the fundamental ecological stimulus for vision is not a

camera like time static images but a constantly changing optic array or flow field,

the description of which must be in spatio-temporal terms.

In the following, I present my research on the event-based computation of the

optical flow. Two different methods have been developed and tested. The former

method introduces a new formulation entirely and only based on events’ timing. The

optical flow is obtained by adapting the differential brightness consistency constraint

to event-based framework. Local image intensities are then approximated by events’

summations, as the DVS does not provide absolute intensities. This method has a

major weakness in the noise and drift in the computation of absolute illumination

levels, needed for the computation of spatial derivatives. This is overcome by an

alternative method that offers a pure event-based time oriented computation of the

motion flow within the focal plane that does not need to reconstruct intensity levels

of illumination.

3.1.2 Asynchronous frameless event-based flow

3.1.2.1 Assumption and equations of the optical flow

The main assumption for the evaluation of the optical flow is the invariance of light

intensity captured by the retina undergoing a small motion over an infinitesimally

short duration. If we assume that the brightness of a small surface patch is not

changed by motion, then expansion of the total derivative of brightness leads to
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(59):

dI(x, y, t)

dt
=
∂I

∂x

∂x

∂t
+
∂I

∂y

∂y

∂t
+
∂I

∂t

=

(
∂I
∂x

∂I
∂y

)t




∂x
∂t

∂y
∂t


+

∂I

∂t

= gradt(I)



vx

vy


+

∂I

∂t
= 0,

(3.1)

where is I is the image containing gray levels. This equation is solved for the velocity

vector (vx, vy)t but it is under-determined, since two variables must be estimated,

given only one equation. One of the most popular techniques (60) to overcome this

problem is based on the assumption of local constant flow: (vx, vy)t is constant over

the neighborhood of pixel (x, y)t. If the neighborhood is a n × n window, m = n2

optical flow equations can be written:




gradt(I(x1, y1))

...

gradt(I(xm, ym))






vx

vy


 =




−It1
...

−Itm



, (3.2)

with gradt(I) being the spatial gradient and It the partial temporal derivative of

I. The equation system can then be solved using least square error minimization

techniques.

This constraint can be formulated in an event-based manner. The main difficulty

being that the used sensor does not provide gray levels needed for the computation of

spatial derivatives, obtained by comparing illumination levels of neighboring pixels.

Nevertheless, for adjacent active pixels it is possible to provide an estimation of the
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spatial gradient by comparing their instantaneous activities:





∂e(x, y, t)

∂x
∼

t∑

t−∆t

e(x, y, t)−
t∑

t−∆t

e(x− 1, y, t)

∂e(x, y, t)

∂y
∼

t∑

t−∆t

e(x, y, t)−
t∑

t−∆t

e(x, y − 1, t)

. (3.3)

∆t is a temporal interval of few µs, generally set to 50µs. The estimation of the

temporal gradient is expected to be more precise than in the frame-based framework

due to the temporal precision of the DVS. It can be written as:

∂e(x, y, t)

∂t
∼
∑t1

t−∆t e(x, y, t)−
∑t

t−∆t e(x, y, t)

t− t1
,

with t1 < t

(3.4)

By substituting Eq. 3.3 and Eq. 3.4 into Eq. 3.2, the jth line of the matrix equality

can be reformulated using events:

(∑t
t−∆t e(xj , yj , t)−

∑t
t−∆t e(xj − 1, yj , t)

)
vx

+
(∑t

t−∆t e(xj , yj , t)−
∑t

t−∆t e(xj , yj − 1, t)
)
vy

=

∑t
t1

e(xj ,yj ,t)

t−t1

(3.5)

since
t1∑

t−∆t

e(x, y, t)−
t∑

t−∆t

e(x, y, t) =

t∑

t1

e(x, y, t).

The general optic flow algorithm is detailed by the Algorithm 1.
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3.1 The optical flow

Algorithm 1 Event-based optical flow

For each incoming e(x,y,t):
Define a (n× n×∆t) neighborhood around (x, y, t)T

Compute the partial derivatives:

• ∂e(x,y,t)
∂x , ∂e(x,y,t)

∂y , ∂e(x,y,t)
∂t

Solve Eq. (3.2) written using Eq. (3.5) for (vx, vy)t

3.1.3 Event-based visual flow

3.1.3.1 Flow definition

The stream of events from the DVS can be mathematically defined as follows: let

e(p, t) = (p, t)T a triplet giving the position p = (x, y)T and the time t of an event.

We can then define the function Σe that maps to each p, the time t:

Σe : N2 → R

p 7→ Σe(p) = t.
(3.6)

Time being an increasing function, Σe is then a monotonically increasing surface.

X

Y

t

Σe

Σex

Σey

Σe(x, y)

x

y

Figure 3.1: General principle of visual flow computation, the surface of active events
Σe is derived to provide an estimation of orientation and amplitude of motion.

We then set the first partial derivatives with respect to the parameters as: Σex =
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3.1 The optical flow

∂Σe
∂x and Σey = ∂Σe

∂y . We can then write Σe as:

Σe(p + ∆p) = Σe(p) +∇ΣT
e ∆p + o(||∆p||), (3.7)

with ∇Σe = (∂Σe
∂x ,

∂Σe
∂y )T .

The partial functions of Σe are functions of a single variable whether x or y.

Time being a strictly increasing function, Σe is a nonzero derivatives surface at any

point. It is then possible to use the inverse function theorem to write around a

location p = (x, y)T :

∂Σe

∂x
(x, y0) =

dΣe|y=y0

dx
(x) =

1

vx(x, y0)
,

∂Σe

∂y
(x0, y) =

dΣe|x=x0

dy
(y) =

1

vy(x0, y)
,

(3.8)

Σe|x=x0 , Σe|y=y0 being Σe restricted respectively to x0 and y0. The gradient ∇Σe

can then be written:

∇Σe = (
1

vx
,

1

vy
)T . (3.9)

The vector ∇Σe measures the rate and the direction of change of time with respect

to the space, its components are also the inverse of the components of the velocity

vector estimated at p.

3.1.3.2 Flow regularization

The flow definition given by Eq. 3.9 is sensitive to noise since it consists in esti-

mating the partial derivatives of Σe at each individual event. One way to make the

flow estimation robust against the noise is to add a regularization process to the

estimation. To achieve this, we assume a local velocity constancy. This hypothesis

is satisfied in practice for small clusters of events. It is then equivalent to assume Σe

being locally planar since its partial spatial derivatives are the inverse of the speed,
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hence constant velocities produce constant spatial rate of change in Σe. Finally,

the slope of the fitted plane with respect to time axis is directly proportional to

the motion velocity. The regularization also compensates for absent events in the

neighborhood of active events where motion is being computed. The plane fitting

provides an approximation of the timing of still non active spatial locations due to

the imperfection of the sensor.

A robust plane fitting is applied to each event arriving at time t over a spatio-

temporal window of dimensions L× L× 2∆t, centered on the event. In practice, a

spatio-temporal window is selected empirically for the fitting, in what follows L = 3

and ∆t ∼ 1ms. This setting produces accurate result if compared to the ground-

truth.

Any event e(p, t) belongs to a plane of parameters Π =

(
a b c d

)T

if the

following equality is satisfied:

ΠT




p

t

1




= 0. (3.10)

According to this equality, the regularization operation can be performed as

detailed in Algorithm 2 that provides the whole approach of computing motion

flow:

The threshold in step 4 can be set to th1 = 1e-5, it is usually the magnitude of

accuracy we get from this iterative estimation algorithm. The second threshold in

step 5 is also set to th2 = 0.05, according to experimental results. Moreover, the

error usually converges in only 2 to 3 iterations, in short the resulting algorithm

is robust and consumes little computational resources, as shown in sec4.1 where
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Algorithm 2 Local planes fitting algorithm on incoming events

1: for all event e(p, t) do
2: Define a spatio-temporal neighborhood Ωe, centered on e of spatial dimensions

L× L and duration [t−∆t, t+ ∆t].
3: Initialization:

• apply a least square minimization to estimate the plane Π =(
a b c d

)T
fitting all events ẽi(pi, ti) ∈ Ωe:

Π̃0 = argmin
Π∈R4

∑

i

∣∣∣∣∣∣
ΠT




pi

ti
1



∣∣∣∣∣∣

2

(3.11)

• set ε to some arbitrarily high value (∼ 10e6).

4: while ε > th1 do

5: Reject the ẽi ∈ Ωe if |Π̃T
0




pi

ti
1


 | > th2 (i.e. the event is too far from the

plane) and apply Eq. 3.11 to estimate Π̃ with the non rejected ẽi in Ωe.
6: Set ε = ||Π̃− Π̃0||, then set Π̃0 = Π̃.
7: end while
8: Attribute to e the velocity defined by the fitted plane.
9: end for

10: return vx(e), vy(e).
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3.2 Focus of expansion

both optical flow algorithms are validated and tested against standard frame-based

camera.

3.2 Focus of expansion

3.2.1 Definition

The focus of expansion is the single (focal) point, in space, where all divergent optical

flow vectors originated by translation of the sensor intersect. According to Gibson’s

Ecological Theory of Perception(43), a more generic designation of the focus of ex-

pansion would be Dynamic Ambient Optical Array which represents the single point

in space where the optical information converges. The focus of expansion plays an

important role in many vision applications such as three-dimensional reconstruction,

range estimation, time to contact and obstacle avoidance. In our context this point

is looked for motion recovery, specifically of the translational direction of the robot

on which the vision system is embedded.

3.2.2 State of the art

State of art methods for the computation of the focus of expansion can be divided

in four main categories: direct, discrete, differential and continuous.

• Direct approach: This approach aims to determine the motion of the environ-

ment directly from the variation of the image brightness pattern in a motion

sequence. It gave rise to different ideas, i.e, the computation of the FOE using

unequally constraint applied to features in two frames(61), the direct recovery

of the FOE by imposing the geometric constraint that depth is positive(62),

or the computation based on the information from various local regions in the

image, each voting for a direction toward the FOE(63).
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3.2 Focus of expansion

• Discrete approach: The information about the movement of brightness pat-

terns at only a few points is used to determine the motion: it matches discrete

points in a sequence of images. This technique needs to track or identify

features in a set of images taken at different times(64).

• Differential : This method uses the first and second spatial partial derivatives

of the optic flow. (65) claims this is sufficient to know those information at a

single point to uniquely determine the motion.

• Continuous: In this method the whole optical flow is used. It takes ad-

vantage of the abundance of available data to compute a robust numerical

results(66)(67)

Applying traditional approach, which requires the estimation of the induced image

motion and calculation of the camera motion from it, i.e. The optical flow, is

generally said to be inefficient and computationally expensive. In this section I

show that this statement only concerns the frame-based methods.

3.2.3 Equations

In our method, every flow vector provides an estimation of the location of the FOE

in the visual field. We consider a probability map of the visual field, where each

flow event votes for a probable position of the FOE in the plane behind the vector,

as shown in Fig3.2a-b. In this map, each point represents the likelihood of the FOE

to be located at the corresponding location in that field. This method uses the

redundancy of the flow pattern to smooth the noisy FOE estimation and reduce

errors. In brief, our algorithm for estimating FOE is as follow: 1. Update the map

with every computed flow, 2. Find the patch of visual field map with maximum

value, 3. Shift the FOE toward the maximum patch. Our results show that the

estimation of the FOE is accurate if we receive a sufficient number of events from
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3.3 Time to contact

the sensor.

For an incoming event e(pe, te) with a velocity vector ve, we can define the set of

spatial locations such as:

Algorithm 3 Computation of the Focus of expansion

Require: Mactivity ∈ Rm × Rn and Mtime ∈ Rm × Rn. Set all values of Mspace and
Mtime to 0

1: for every incoming e(pi, ti) at velocity vi do
2: Determine all spatial location p such as (p− pi).vi < 0
3: for all p : Mactivity(p) = Mactivity(p) + 1 and Mtime(p) = ti

4: ∀ p ∈ Rm × Rn, update the value of Mactivity(p)= Mactivity(p)e−
ti−Mtime(p)

τ

5: Find pFOE the spatial location of the maximum value of Mactivity correspond-
ing to the FOE location

6: end for

 

(a) (b)

Figure 3.2: Computation of the focus of expansion (a) the focus of expansion lies
under the normal flow, we can then vote for a area of the focal plane shown in (b) the
FOE is the max of this area

3.3 Time to contact

3.3.1 Definition

Time-to-Contact (TTC) is the time needed to reach a point under unknown constant

relative velocity. Part of the attraction of TTC is that the calculation relies only
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3.3 Time to contact

on image measurements and does not require camera calibration, knowledge of the

structure of the environment nor the size of the obstacles. It is commonly used for

obstacle avoidance of autonomous vehicles in dynamic environments. With TTC the

observer is able to judge when to alter course without making any further estimates.

TTC is a biologically inspired method for obstacle detection and reactive control

of motion that does not require scene reconstruction or 3D depth estimation(68).

Biological evidence shows that the TTC is in form of relative distance. For visual

navigation this implies that the temporal units do not require camera calibration.

3.3.2 State of the art

TTC can be defined as the ratio of the distance z of an object and the relative speed

of approach between an agent and an obstacle(69). This definition naturally suggests

the use of the optical flow for the computation of the TTC(36)(70). However, as the

computation of the optical flow under the frame-based approach is computationally

expensive, other methods have been developed, for example using active contour

affine scale(68). Where TTC can be estimated as the distance between two image

points divided by the rate of change in that distance. In (71) a method using only

accumulated sums of suitable products of image brightness derivatives is proposed.

Claiming that the approach does not need features, object detection nor optical flow

estimation, the author points out that the methods for estimating optical flow are

iterative and need to work at multiple scales, which tends to be computationally

expensive and require a significant effort to implement properly. (72) proposes

that the TTC can be directly measured from a spatio-temporal image sequences

obtained from uncalibrated camera. The method is based on the idea of measuring

the rate of change of the “intrinsic scale”, rapidly determined using a multi-resolution

pyramid, and on the observation that the local size of features in an image may be

directly measured from the scale of extremal points in a Laplacian scale space.
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3.3 Time to contact

Another method (73) makes use of temporal derivative of the area of a closed active

contour and proposes to avoid the problems associated with the computation of

image velocity fields and their derivatives.

In the following, I present a method of computation of the time to contact

relying on event-based computation of the optical flow which I show to be accurate

and computationally efficient in sec4.1. This method relates to biological evidence,

where the computation of the TTC in human looming relies on the estimation of

the optical flow and its first derivative(74)(70)(75)

3.3.3 Equations

 

Figure 3.3: General principle of time to contact computation

In this section, we show how to estimate time to contact to an object given

the FOE and optical flow. Consider a camera-centered coordinate system where

the z-axis aligns with the line of sight. As shown in Fig.3.3, if the camera moves

with translational velocity t = (tx, ty, tz)
T and rotational velocity ω = (ωx, ωy, ωz)

T

around its origin, then, the 3D velocity of a world point, P = (X,Y, Z)T , is :

.
P = −t− ω ×P (3.12)
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or, in components,

.
P =




.
X
.
Y
.
Z




= −




tx

ty

tz



−




ωyZ − ωzY

ωzX − ωxZ

ωxY − ωyX



. (3.13)

Assume the point P is projected onto the point p = (x, y)T in the image plane.

Applying the perspective projection, its image coordinates will be x = X
Z and y = Y

Z .

Temporal differentiation of image coordinates results is 2-D motion or velocity field

induced in the image plane:

.
x =

(
.
XZ −X

.
Z)

Z2
,

.
y =

(
.
Y Z − Y

.
Z)

Z2
. (3.14)

By substituting
.
X and

.
Y from (3.13), the 2-D motion field can be written as:

.
p =




.
x

.
y


 =

1

Z



xtz − tx

ytz − ty


+




xy −(x2 + 1) y

y2 + 1 −xy −x







ωx

ωy

ωz




(3.15)

Then from 0, for a pure translational motion, i.e. ω = (0, 0, 0)T , the velocity

field at each point will be:

.
p =




.
x

.
y


 =

tz
Z



x− tx

tz

y − ty
tz


 (3.16)

( txtz ,
ty
tz

) actually represents FOE. In addition, the variable τ = Z
tz

is the time it

takes for an object moving at constant velocity tz to cross the distance Z, this is

known as TTC. Thus, from (4), TTC can be computed by: τ =
dfoe

|
.

p|
where dfoe is

the distance of the considered point on the image plane and | .p| is the magnitude

of computed optical flow at the same point. To compute TTC, we use the above
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3.3 Time to contact

equation and apply it for every pixel. To make the algorithm less sensitive to the

noise, we incrementally smooth the results using an online mean with the close

neighborhood.
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Chapter 4

Results and validation

In the following I present the performance of the algorithms introduced in chapter

3. First I validate the two event-based optical flow methods described above, com-

paring their performance with respect to a frame-based method, by assessing the

precision of amplitude and direction of the calculated optical flow vectors, its tem-

poral precision and, finally, its computational cost. Finally, the computation of the

focus of expansion and time to contact will be tested. In the following experiments,

the event-driven input is provided by a DVS camera connected to a PC via a USB

port. The DVS has a temporal resolution of 1us. The motion flow algorithms have

been implemented in C using a Linux driver of the DVS.

4.1 The optical flow

To assess the precision of amplitude and direction of the calculated optical flow vec-

tors, the methods use the same two experiments, each of them involving a different

setup. In a first experiment, which aims to validate the orientations, the motion

flow is computed for a black bar painted on a white disk, rotating with a constant

angular velocity, as shown in Fig.4.1. In a second experiment, the amplitudes of the
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4.1 The optical flow

estimated optical flow are computed for a moving pattern of bars presented on a

moving conveyor belt whose translational speed can be accurately set by adjusting

the supply voltage of a DC motor (Fig.4.2).

Figure 4.1: Experimental setup consisting of a black bar printed on a white disk,
driven by a DC-motor.

Figure 4.2: Belt driven by a DC-motor, controlled in closed-loop

4.1.1 Method 1: Asynchronous frameless event-based optical flow

The optical flow is computed using a neighborhood of 5× 5 pixels for a ∆t = 50µs.

Orientation To assess the computed orientations, a constant angular velocity of

ω ∼ 13, 6rad/s is set to the setup presented in figure 4.1. The events-based optical
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4.1 The optical flow

flow is computed in real-time using the continuous train of output events. The

frame-based optical flow is computed for a 60 fps emulated camera, obtained by

accumulating events for 16.7ms. Fig.4.4 shows the orientation of the bar computed

from the flow obtained by the two techniques and is plotted versus the ground truth

orientation of the bar. The event-based computation takes full advantage of the

high temporal accuracy of the sensor, by providing a dense and accurate estimation

of the rotation angles in real time.
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Figure 4.3: Space-time representation of events generated in response to a rotating
black bar. Each dot represents a DVS event.

Figure 4.4: Bar orientation estimated by the events-based (+) and by the frame-
based (∗) optical flow algorithms versus the true bar orientation over the time (−) for
the input shown in Fig.4.3.
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Amplitude In this experiment the magnitudes of the optical flow are computed

for different known belt speeds obtained by driving the DC motor, figure 4.2, with

supply voltages ranging from 500 to 1500 mV corresponding to a range of velocities

of 30,83 – 83,05cm/s. Fig.4.5 shows the mean estimated amplitudes, as expected,

there is a linear relationship between the ground truth and the computed velocity.
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Figure 4.5: Estimated amplitudes of the optical flow versus the DC voltage ranging
from 500 to 1500 mV apply on the setup presented in figure 4.2 and corresponding to
a range of velocities of 30,83–83,05cm/s.

Temporal precision With this experiment I highlight the high temporal precision

of the estimated optical flow. The stimulus consists of a grid of LEDs that turn on

and off sequentially with a precisely tunable frequency. The distance between LEDs

is 3.4cm and the time interval between the switching of successive LEDs is adjustable

from 1ms to 1s and is set to 16ms in the current experiment.

The aim of the experiment is to estimate the rate of switching on of successive

LEDs on the panel (or the apparent speed of the LED sequence). The experiment

consists in estimating the temporal interval of the switching between two consecu-

tive LEDs, the apparent speed is then the temporal interval divided by the distance

between the LEDs. The switching on of a LED is detected by sensing the charac-

teristic divergent pattern of the optical flow that it creates, as shown in Fig.4.6(b).
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4.1 The optical flow

This divergent characteristic pattern of optical flow is created because, as the LED

turns on, the pixel that views the brightest point in the LED reaches a threshold of

activity first, followed later by the surrounding pixels.

In the experiment the DVS observes the panel continuously and for every in-

coming event the optical flow is computed. In a second stage, in order to detect

precisely the exact timing of the LED’s activation, a spatial vector pattern similar

to Fig.4.6(b) is used as a template and correlated with the measured optic flow

pattern in the neighborhood of the active pixel’s location. In the experiment, the

vector flow pattern of activation is set to a size of 5× 5 vectors.

(a)

(b) (c)
led speed m/s

#samples

Figure 4.6: Computation of the optical flow generated by sequential activation of
LEDs on a panel. Long exposure of this image shows 4 LEDS that have been turned
on successively from left to right(a). (b) Switching on of a single LED generates a
characteristic, expansion pattern of optic flow. (c) Distribution of estimated speeds of
moving display created by sequential switching of LEDs in m/s, giving a mean value of
2.16m/s , compared to an actual speed of 2.12m/s.

Once the location of the active LED is determined, its position on the panel is

retrieved and the estimation of the speed of activation of pixels can then be per-

formed. The precise moment of switching on of an LED is established by detecting

the divergent pattern of optic flow that will initially cover a small area and then

grow continuously. The instant of switching on is then defined as the time when the

central pixel is first detected and has reached threshold. Fig.4.6(c) shows the dis-
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4.1 The optical flow

tribution of estimated speeds for a 2s sequence, giving an estimated mean speed of

2.169m/s while the ground truth speed is 2.125m/s. The observed estimation errors

are due to small misalignments of individual LEDs in the panel, small geometrical

imperfections in the sensor and distortions in the optics of the camera.

Computational cost Tests were performed to compare the computational times

required by the frame-based and the event-based methods for computing optic flow.

These results were obtained using a C++ implementation of the algorithm, on an

Intel Core 2 Duo 2.40GHz processor.

The optical flow was computed for a rotating bar as shown in Fig.4.3. The event-

based method uses raw events, while the frame-based method uses frames acquired

at a rate of 60Hz created by summing events. The following computation times

were obtained:

• frame-based, 60fps (16.7ms): the number of processed pixels at each step is

16384, and a mean computation time is 251.7ms,

• event-based (1e-3ms) : computation time for a period of 16.7ms corresponding

to a mean number of events of 1340, the computation time is 9.65ms, while

the mean computation time of an event is 7.2e-3ms.

It takes 251.7ms to compute the optical flow between two successive frames on a

time interval between successive frames of 16.7ms. This means that in absence of

any optimization, the optical flow can computed only at a rate of 4fps. The optical

flow computation is taking as long as 251.7 milliseconds because we are computing

the flow at all of the 16384 pixel locations in the imager without any optimization

in both frame and event-based. The event-based optical flow requires 7.2µs to com-

pute the optical flow for each event, thus leading to a total time of 1340×(7.2e-3) =
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9.65ms. Fig.4.7 shows that the event-based method delivers flow measurements at

a cost that is approximately 25 times lower than does the frame-based method.
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Figure 4.7: Computation time of event-based (triangles) vs frame based (squares) for
the same observed sequence. The event-based method delivers flow measurements at a
cost that is approximately 25 times lower than does the frame-based method.

Samples of computed flows This section presents examples of optic flow com-

puted using the events-based method developed in the section 3.1.2. Fig.4.8 presents

the decomposition of fast arms movements and their corresponding estimated optical

flows. Fig.4.9 shows the optic flow associated with a bouncing ball.

4.1.2 Method 2: Event based motion flow

The results obtained with the event-based method are compared with frame-based

algorithms such as Horn and Shunck (55), and Lucas and Kanade (76). For Horn

and Schunk, following (47) the smoothness term λ is set to 0.5, with a number of

iteration below 100. The Event-based flow computation is performed according to

Algorithm 2. The flow is regularized as detailed, but Σe itself is never updated by

the regularization operation. To avoid overlaping issues of the plan fitting on ON

and OFF events because of thin textures, the events of the DVS are processed sep-

arately given their polarity. Results shown are merging both pathways.
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4.1 The optical flow

Figure 4.8: Optic flow for curved motion: (up) decomposition of the movement of two
hands moving from the bottom to the sides of the scene and its (down) corresponding
cumulative estimated optic flow over a time period of 1.5s on all the focal plane.
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Figure 4.9: Optic flow for curved motion: (up) decomposition of the movement of a
bouncing ball, (down) corresponding cumulative estimated optic flow over a time period
of 0.8s on all the focal plane.
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For indoor experiments, the illumination condition is the standard office lighting

(i.e. 300 to 500 lux) from a non flickering source (halogen lamp). For outdoor

experiments, the sequences are captured under the sunlight of an overcast day (∼

1000 lux).

Orientation To assess the precision of the flow orientation estimation, we use the

setup shown in figure 4.1 with a constant angular velocity ω = 1.59rad · s−1. The

event-based optical flow is computed in real-time directly using the output train of

events.

The frame-based optical flow is computed for a 30 fps using a conventional frame-

based camera where images are rescaled to 128× 128 pixels to allow for comparison

with the DVS.

Fig.4.10 shows the orientation of the bar computed from the flow plotted versus

the ground truth orientation of the bar for the event-based and Horn and Schunk

algorithms. The mean error corresponding to the event-based algorithm is 0.037 rad,

with a standard deviation of 0.025. The mean error corresponding to the Horn and

Schunk (55) frame-based implementation is 0.113 rad, with a standard deviation

of 0.078, this is 3 times higher than the event-based method. The event-based

computation takes full advantage of the high temporal accuracy of the sensor, by

providing a smoother and more accurate estimation of the rotation angles in real

time. A sample of the computed flow is shown in Fig.4.11, highlighting the quality

of the estimated motion and it is shown for a period of time of 3 ms. The lower

accuracy of the flow estimated by the Horn and Shunk algorithm on reconstructed

images is largely due to the lower temporal resolution of frames. Increasing the

frame-rate would of course improve the frame-based performance, but at the cost of

an increase of the needed computational resources and, as shown later, at the cost
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of real-time performances.
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Figure 4.10: (a) Ground truth and computed orientation for the stimulus in Fig.4.1.
In red the real orientation of the bar, in green the estimated one for the event-based
method. (b) Angles estimated using frame-based Horn and Schunk (55). The real
angles are plotted in red, while the estimated ones are shown in green.

Amplitude The cumulated amplitude of the visual motion flow for the previous

experiment is shown in Fig.4.12. Each spatial location is associated with its esti-

mated flow amplitude after a single rotation. As the computed component of the

flow are inverted, high amplitudes correspond to slow motion, and vice versa. As

expected, the velocity of the rotating bar increases with the radius. The expected

theoretical ratio of the velocity between the outer and the inner rim is 3.09, the

estimated ratio after computation is 3.07.

A sample of flows computed from the same sequence on the same time period
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Figure 4.11: Sample of computed event-based flow for the stimulus in Fig.4.1 shown
for a cumulated period of time of 3 ms for a portion of the focal plane for better
readability.

.

Figure 4.12: Amplitude of the computed motion flow for the stimulus in Fig.4.1.

of 3ms for frame-based and event-based methods is shown in Fig.4.13. Frames have

been generated by cumulating events to simulate a frame rate of 3ms to ensure

clarity in the display of results and allow comparison on a short time scale. In

absence of a fast camera, and due to the simplicity of the stimulus, cumulating

events has shown to efficiently approximate frames. In Fig.4.13(a), frame-based

computation produces a wide variety of amplitudes responses due to the static nature
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of frame-based acquisition: it is usually a non smooth vector field because of the

discontinuities introduced by frames’ sampling. Proposed methods to improve the

smoothness of the vector field(55) apply a general smoothing paradigm that induce

additional artifacts. Computed event-based amplitudes in Fig.4.13(b) are smooth

and closely correspond to the expected amplitudes thanks to the high temporal

resolution of the DVS.
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Figure 4.13: (a) Frame-based optical flow using Horn-Schunk on a 3ms accumulation
frame. (b) Accumulation of the Event-based optical flow over a same duration of 3ms.
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Figure 4.14: The estimated amplitude (green diamond) is shown with the real one
(red line).

The amplitudes of the visual flow are computed for different known belt speeds
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obtained by setting the DC motor of the setup shown in figure 4.2 with a range

of velocities of 0.081m · s−1 to 0.365m · s−1. In order to compare the real and the

computed amplitudes, we normalize the estimated amplitudes and the velocities of

the moving patterns with their respective maximum values. The normalized results,

shown in Fig. 4.14, correspond to the estimated velocity of the motion flow and the

ground truth ranges in the interval [0.081, 0.365]m · s−1. The ground truth and the

estimated values coincide with a mean error of 9%.

Computational time We define ∆tb as the time interval within which the visual

signal is observed, it is equal to the inverse of the frame-rate of the standard per-

spective camera (i.e. ∆tb ∼ 33ms if the camera captures at 30fps). For a meaningful

comparison, this time duration is chosen to evaluate the frame-based and the event-

based techniques. Let ∆tc be the processing time consumed for the flow estimation

from the signal acquired during ∆tb. We then define the ratio r such as: r = ∆tc
∆tb

.

If r ≤ 1 then the computation can be performed in real-time.

For the experiments, the computation of the frame-based optical-flow uses the

OPEN-CV implementation Lucas and Kanade’s (76) algorithm. It relies on a pre-

processing of incoming images to select features (77) on which the motion visual

motion flow is then estimated. Fig.4.15(a) and Fig.4.15(c) show the number of

events and features used to compute the flow for the rotating bar. As illustrated in

Fig.4.15(b), the maximum ratio in the case of the event-based algorithm is r = 0.1,

showing that the visual flow is estimated in real-time. The frame-based implemen-

tation processing time ratio is r = 0.0395 as shown in Fig. 4.15(d). It allows also

real-time estimation, assuming only a few image features are detected.

The mean number of events and the mean processing ratio allow to estimate

the mean processing time of a single event: 33 × 0.1/60 ∼ 0.055ms (mean number
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Figure 4.15: (a) Number of events per time bins generated by the rotating bar shown
in Fig.4.1. (b) Processing time ratio of the event-based technique: the mean processing
ratio is equal to 0.1, for a mean number of events equal to 60. (c) Number of features
using cumulated frames generated by the optimized Lucas-Kanade’s algorithm. The
algorithm selects the feature pixels on which the optical flow is computed. (b) Processing
time ratio of the Lucas-Kanade’s technique: the mean processing ratio is equal to 0.0395
and the mean number of features is around 6.

of events per millisecond = 60 and mean processing ratio r= 0.1). With the same

consideration, the mean time to process one image feature with the frame-based

optimized implementation is equal to 33 × 0.0395/6 ∼ 0.217ms (mean number of

feature per millisecond = 6 and mean processing ratio per feature r=0.035). This

means that within the time slot of 33ms, around 600 events can be processed in

real-time with the first technique, while only 150 pixels can be processed in real-

time in the second technique. The Lucas-Kanade C++ OpenCV implementation

is highly optimized if compared to the C++ implementation of the event-based
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4.1 The optical flow

algorithm. Presented results can then be seen as a lower bound of the event-based

algorithm performances. Event-based motion flow is expected to run even faster

with an adequate algorithm optimization, since its computational principle is very

simple.

Natural Scenes In the case of natural scenes, the flow estimation is harder to

evaluate as the ground truth is not available. However, it is still possible to show

the coherence of the computed flows with the scene’s content. In the first set of

data shown in Fig. 4.16 (a-d), the velocity vectors amplitudes of cars moving along

highway lanes using the event-based sensor are shown Fig. 4.17 (e-h). Velocities are

increasing as the cars are getting closer to the sensor, this is a direct effect of the

perspective projection Fig. 4.18 (i). A second sequence acquired by the sensor is

shown in Fig. 4.19 4.20 4.21. It confirms the same observations. Again as expected,

the velocity amplitude increases when the distance to the sensor decreases.

4.1.3 Limitations

The sensor is subject to several non-idealities that cause latencies in the signal

acquisition, limiting the accuracy of the computed flow. In the following experiment

we consider a rotating moving bar, as shown in Fig. 4.21. The bar observed by

both the spiking sensor and a conventional camera has an angular speed increasing

progressively from 450 to 5000 rpm.

The first column (a,e,i,m,q) shows samples of images acquired by a conventional

camera at 30fps. The second column (b,f,j,n,r) shows the results using the Horn

and Schunk’s algorithm. As expected frames are not suitable for these high speed

motion as the motion blur is preventing flow estimation, motion results are chaotic

and irregular and not fitting the general rotational motion of the bar. The motion

flow is already inaccurate at the lowest speed as shown by Fig. 4.21(b).
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4.1 The optical flow

(a) (b)

(c) (d)

Figure 4.16: (a-d) Outdoor scene acquired by the event-based retina showing cars on
a highway using cumulated events on the focal plane.

The third column (c,g,k,o,s) shows the events generated by the rotating bar in the

spatiotemporal space of events. As the bar rotates faster, more events are collected

and longer portions of the motion are acquired. The last column (d,h,l,p,t) provides

the flow estimation using the event-based algorithm. The flows are accurately esti-

mated in real-time for all rotational speeds. As the rotational speed increases, the

motion flow in the event-based case tends to be sparser, Fig.4.22 shows the motion

blurs, resulting from the retina’s latencies when capturing light. This is the main
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4.1 The optical flow
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Figure 4.17: (e-h) show the mean motion flow for each vehicle (arrows) increasing as
the cars get closer to the retina.
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Figure 4.18: Mean velocities amplitudes shown in (i) for each of the three cars of
Fig 4.17(e-h).
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4.1 The optical flow

(a) (b)

(c) (d)

Figure 4.19: (a-d), Cumulated events on the focal plane of an outdoor traffic scene.

limiting element of the retina’s in estimating accurately the flow. With the increas-

ing speed of the rotation, motion blurs induces clusters of events instead of sharp

edges. The retina is also not generating a sufficient amount of events form all spatial

locations, some pixels are not activated by the moving bar. The fitting of Σe is then

inevitably affected. As shown in Fig.4.23, the estimated amplitude and orientation

of the bar follow closely the ground-truth up to a rotation velocity of 2500 rpm.

Beyond this velocity, the orientation seems to stay stable up to 4000 rpm. Less

events are collected at high speed, thus affecting the slope of fitted plane but not its
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4.1 The optical flow
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Figure 4.20: In (c-h) the car moving from left to right (in the background) has an
almost constant depth. The truck moving toward the retina is showing an increasing
velocity amplitude due the perspective projection.
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Figure 4.21: In (i) the mean velocities amplitude of each vehicle is shown: bottom
curve is reflecting the almost constant velocities of the car, while the increasing one
provides the velocity of the truck moving toward the retina.
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4.1 The optical flow
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direction. This is the limit of the sensor. The use of better lighting conditions will

lower these effects.
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4.2 Focus of expansion and Time to contact
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Figure 4.21: Comparison of the flows computed with a 30fps frame-based camera
and the DVS. The disk is rotated at a speed ranging from 450 to 5000 rpm with an
elementary step of 500 rpm. The first column (a,e,i,m,q) shows samples of images
acquired by a conventional camera at 30fps. The second column (b,f,j,n,r) shows the
results using the Horn and Schunk’s algorithm. As expected frames are not suitable
for these high speed motion as the motion blur is preventing flow estimation, motion
results are chaotic and irregular and not fitting the general rotational motion of the
bar. The third column (c,g,k,o,s) shows the events generated by the rotating bar in the
spatio-temporal space of events. One can notice that as the bar rotates faster, more
events are collected and longer portions of the motion are acquired. The last column
(d,h,l,p,t) provides the flow estimation using the event-based algorithm, the flows are
accurately estimated in real-time for all rotational speeds.

4.2 Focus of expansion and Time to contact

In this section I present the results of the different methods explained in sections 3.2

and 3.3. I first illustrate the accuracy and efficiency of the computation of the FOE

using synthetic and real data. In a second stage the results of the TTC algorithm

are shown on real data.

The real data are all acquired using a Pioneer 2 mobile robot, Fig.4.24a, equipped

with a DVS sensor, Fig4.24c, and a laser range finder (LRF), Fig4.24b.

The acquisition with camera are done in normal indoor luminance. All compu-

tations take place on a intelr core2 duo laptop under Linux.

4.3 Focus of expansion

Using the event-based visual flow computation presented section3.1.3, we are able to

compute efficiently and accurately the FOE over continuous time. In the following
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4.3 Focus of expansion

(a) 405 tr.min−1 (b) 1255 tr.min−1 (c) 1870 tr.min−1

(d) 2450 tr.min−1 (e) 3330 tr.min−1 (f) 4110 tr.min−1

(g) 4530 tr.min−1 (h) 4840 tr.min−1

Figure 4.22: Sequences of a disk rotating with an increasing speed from 450 rpm to
5000 rpm for the event-based retina. Cumulated events in the focal planes are shown
for a fixed time period of 500ms. Events underlining the edges are more and more
scattered as the rotation speed increases, this is a typical effect of the motion blur.

we present three experiments to demonstrate this statement.
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4.3 Focus of expansion
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Figure 4.23: In (a) the mean velocity of the estimated flow and the mean angle
estimation in (b) are shown using the event-based retina from the event flow of the
rotating bar. The angular speed increases from 450 to 5000 rpm. Estimations are given
each time the bar reaches its initial starting position. The red dots provide the ground-
truth. The estimation of the motion parameters is stable up to 2500 rpm. Beyond the
orientation seems to stay stable up to 400 rpm. Less events are collected at high speed
thus affecting the slope of fitted plane but not its direction. This is the limit of the
sensor for the used lighting conditions.
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4.3 Focus of expansion

Figure 4.24: Illustration of the Pioneer 2, used for the following experiments, fig.4.24a,
carrying a DVS asynchronous sensor, fig.4.24c, and a laser range finder, fig.4.24b.

4.3.1 Simulated data

In order to accurately evaluate our method using a ground a truth, we confront the

algorithm to synthetics data. We first simulate the expansion of a disk as it would

occur while a robot runs closer to a circular target. Figures 4.25 presents the results

of the two components of the FOE, the horizontal axis on top, and the vertical

axis on middle. In both subfigures we plot the ground truth as a continuous line,

the raw data in dashed line and the data smoothed using a sliding windows of 1ms

with a dotted line. The third subfigure presents the stability of the computed flow,

which gives a confidence criteria on the computation. We simply define this stability

criteria as the normalized 1-norm distance between the last and the current FOE.

Reconstructed frames, created using an accumulation over time of the events

from the DVS, illustrate the movement of the circle while expanding. First, a stable

focus of expansion arises from the computed motion flow, fig.4.25a, then a period of

stability occurs while the movement continues to induce a dense apparent velocity

around the edge of the circle, fig.4.25b. This stable focus of expansion is computed

until the end of the simulation, fig.4.25c.

To smooth variations of the computed FOE we apply a convolution using a

sliding window over 1ms. The similarity between the raw and convolved data of the

algorithm and the ground truth is computed using the mean square error, the results

are shown tab.4.1. The ground truth of the FOE is centered in (64, 64), respectively
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4.3 Focus of expansion

Mean square error Standard deviation
Horizontal Vertical Horizontal Vertical

Raw data 5.44pixels2 4.07pixels2 9.0pixels2 7.65pixels2

Convolved data 1.69pixels2 0.96pixels2 1.35pixels2 1.2pixels2

Table 4.1: Results of similarity for the simulated illustrated 4.25a-c. The similarity
is given by the computation of the mean squared error between the ground truth and
the raw results and the convolved results of the TTC.

on the x and y coordinates.

As the results show, the similarity with the ground truth is increased by the

smoothing of the data. It is noticeable by the decrease of the mean square error and

the standard deviations showing a better stability. This convolution can be applied

incrementally to increase the precision of the computation in real conditions.

The computation of the FOE is possible as long as the motion involves an

isotropic enough divergence of the optical flow field. This is the case if the direc-

tion’s change of a robot is slower than its translation along the axis of the camera.

To show the accuracy of the computation in this condition, we simulate a second

synthetic expanding circle which center translates along the diagonal of the visual

area. The result of the computation is given figure 4.26, where we use the same

convention than in figure 4.25.

As above, we illustrate the experiment with reconstructed frames from the events

of the camera. We observe that the computation of a stable FOE arises after few

iterations, fig.4.26a, and is stable along the trajectory, fig.4.26b. At the end of the

simulation, the point of divergence of the flow is lost out of the synthetic space,

making impossible to accurately locate the FOE, fig.4.26c. The unreliable compu-

tation of the FOE is depicted by the high instability of our criteria, fig.4.26 bottom

subplot.

The table 4.2 shows the similarities computed as above, where the ground truth

is closely followed by the computed FOE. This accuracy to follow the shift of the
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4.3 Focus of expansion

Mean square error Standard deviation
Horizontal Vertical Horizontal Vertical

Raw data 122.57pixels2 109.83pixels2 198.42pixels2 195.45pixels2

Convolved data 24.09pixels2 6.16pixels2 19.83pixels2 9.47pixels2

Table 4.2: Results of similarity for the simulated illustrated 4.26a-c. The similarity
is computed as above.

FOE shows the ability of the method to give the head direction of a robot which

does not strictly follow a pure translational movement along the axis of the camera.

As in the previous experiment the similarity is increased by convolving the data.
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Figure 4.25: Simulated data Expansion of a synthetic circle simulating a displace-
ment of a robot toward a circular target perpendicularly to the axis of the camera.
The subplot present the results of the FOE computation for the horizontal, on top, and
vertical, on bottom, component of the flow. The continuous lines represent the ground
truth, while the dashed and dotted line represent the raw data and the data smoothed
using a sliding window of 1ms. The third subplot present the stability of the FOE given
the current and the previous results. The frame on bottom illustrate the state of the
circle. We notice that the stable part of the plot corresponds to a well defined edge of
the circle.
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4.3 Focus of expansion

a. b. c.
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Figure 4.26: Simulated data Simulation of a robot moving forward a circular target
not aligned with the axis of the camera. The convention of the illustration is the same
than the figure 4.25.

Standard deviation
Horizontal Vertical

Raw data 12.43px 12.67pixels2

Convolved data 8.61pixels2 6.43pixels2

Table 4.3: Results of standard deviation computation of the experiment illustrated
fig.4.27.

4.3.2 Real data

A DVS camera is embedded on the mobile platform which runs along the axis

of the camera in indoor environment. Figure 4.27 illustrates the results with the

same convention than figures 4.25 and 4.26. The FOE is accurately computed from

ta = 0.3s, and is stable until the robot slows down and stops, tb = 1.84s, where the

FOE cannot be computed. As for the simulated data, the range in which the FOE

is accurate is evaluated by the computation of the stability criteria.

To illustrate the stability of the retrieved egomotion, we calculate the standard

deviations along the trajectory in the range surrounded by the stability criteria,

t ∈ [0.3, 1.75]s. The results of the computation is shown tab.4.3.
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4.4 Time to contact
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Figure 4.27: Real data Mobile platform moving toward a chair along the axis of
the camera. The two subplots represent the two components of the FOE. The Dashed
line illustrates the raw data, while the dotted line illustrates the data smoothed using a
sliding windows of 1ms. The last subplot depicts the stability of the computation given
the current and last FOE. The frames a-c, illustrating the motion, are reconstructed
using an accumulation over time of the event of the DVS.

4.4 Time to contact

The time to contact is measured from the event-driven optical flow and compared to

the results given by a Laser Range Finder embedded on the mobile platform. The

LRF allows a continuous acquisition of the distance between the platform and the

obstacles. The scans are timestamped, we are able to compute the velocity of the

platform and the TTC.

For the aim of the experiment, the robot moves back and forth in direction of

an obstacle perpendicularly to the axis of the camera, during which we record the

data from the two sensors.

As we use an uncalibrated DVS, and the sensors extracting the information of

the scene in different ways and in different fields of view, the results obtained are
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4.4 Time to contact

not directly comparable. As in (72), we only consider the TTC correlated with the

obstacle in front of the setup, Fig.4.28a and b. The similarity between the results

is given by the computation of the cross correlation of the data, figure 4.28c, where

the cross correlation is normalized by the LRF auto-correlation. In order to avoid

obstacles we are interested in objects which involve a situation of risk. As it can be

seen on the figure 4.28c, t ∈ [1.2, 6]s, the quantitative worst similarity in this case

is 60%. This low quantitative similarity can be explain by:

• The use of uncalibrated sensors,

• false range measurements resulting when the laser beam reflects from more

than one surface,

• sensor readings, which may be erroneous because of specular reflections.

For these reasons, it is more relevant to focus on qualitative comparison between

the results4.28 a-b, where in this case the two sensors clearly provide the same

information.
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Figure 4.28: The time to contact computed using the DVS (a), and the laser range
finder (b) are illustrated using a color map, which color scale express the imminence to
impact in the selected central view of the sensors. The correlation between the results
of the two sensors is depicted in (c), giving highlighting the similarity of the information
provided by the two sensors, the laser range finder being considered as the ground truth.
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Chapter 5

Conclusion

5.1 Asynchronous frameless event-based flow

This thesis introduced a complete framework to use event-based accurately timed

information for visual processing for robot navigation. The developed approached

focused on the estimation of the optical flow. Results show that event-based com-

putation introduces a paradigm shift in visual computation. The use of accurately

timed events allow unprecedented high speed computation at the lowest cost.

This contrasts with current main stream approaches that rely on images. The

work developed in this project followed two constraints, accuracy and efficiency

(78),(79).

• no matter how accurate an algorithm may be, it is not useful unless it can

output the results within the necessary response time for a given task,

• Even if it is fast, an algorithm is useless unless it computes motion sufficiently

accurately (78).

The time oriented event-based computation paradigm allows to deal with this trade-

off by using a new way of acquiring visual information from the real world. The
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5.2 Visual flow

counter-part is an a priori less ”human-understandable” information, because of

the use of events rather than images. It is important to emphasize that images

are unknown to biological vision system. They are the heritage of early painting

and photography and are best suited for accurately reproducing the external world,

rather than extracting information out of the sensor’s data. Biological sensors are

event-driven and precisely timed (1ms).

5.2 Visual flow

The study of the visual flow from events (specially the second approach introduced

in section 3.1.3), shows that one can use the space of co-active events to directly

derive information about the direction of a visual stimulus. The precise timing con-

veyed by the Neuromorphic asynchronous event-based vision sensor is fully used

to determine locally for each incoming event its direction and amount of motion.

Timing is the essential computational element, the whole computation is based on

its precision. The method complies with the concepts of event-based computation

and the processing is performed on each incoming event rather than on a time inter-

val. The presented work differs from existing frame-based techniques that consider

temporal window frames (∼ 33− 500ms) and induce unnatural high computational

costs. The developed method can be applied equally on other modalities such as the

tactile one that shares common characteristics with vision. Both rely on a spatial

grid of sensors (pressure: mechano-receptor, light: photoreceptor) that input to a

chain of processing precise neural responses.

The presented approach did not impose any mathematical model, results show that

the intrinsic properties of spatiotemporal spaces provide the inverse of the velocity.

This observation sets the estimation of motion on time rather than space. The pre-

cise timing properties of the method comply with the dynamic properties of natural
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5.3 Focus of expansion and Time to contact

environments and the importance of time measurement in the brain; actions are

driven by time, motor control depends on processes that have to determine when

exactly to perform actions. This then adds to the ongoing debate around whether

perception and movement share common time lines or are organized on separate

clocks and coding. The presented results suggest that the same timing mechanism

identified at the perception level may also underlie motion behavior. Event-based

acquisition provides a fast common mechanism that allows perception to be linked to

motion by a common computationally inexpensive timing system. This could then

provide an efficient way of controlling sensory dependent behavior and anticipating

changes in the environment.

5.3 Focus of expansion and Time to contact

The focus of expansion and the time to contact computation presented section 3.2

and 3.3 rely on the motion flow low computational costs. The approach developed

here fulfills the requirements of event-driven computation, it is incremental, in the

sense that events are processed at the exact time of their arrival. There is no need to

store ”frames” as a collection of events to compute the time-to-contact. This contrast

again with main stream methods that face limitations due to the slow computation

of the optical flow. This work is in adequacy with biological findings of Lee (58),

the fundamental ecological stimulus for vision is not a camera like static time-frozen

image, rather a constantly changing optic array or flow field, the description of

which must be in spatio-temporal terms, where one can directly set the link with

the event based paradigm. By the accurate computation of the focus of expansion

and the time to contact based on biological approach of precise timing, we showed

that the frame-based paradigm is non physiological compatible. This opens up new

methodologies of computation in direct link with current physiological studies of the
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5.3 Focus of expansion and Time to contact

brain.
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Chapter 6

Discussion

My Phd work focused on studying the advantages of event-based computation and

the practical use of asynchronous event-driven sensors in mobile robotics. This coin-

cided with the availability of the first fully usable event-based sensor (the Dynamic

Vision System). The path and struggle to determine new methodologies was among

the most exciting endeavor of my training. I am fully convinced that this will open

up a new way to think artificial vision.

The hardest point in this new context was to develop a real new methodology that

works on time rather than on intensity information in order to fully take advantage

of asynchronous acquisition. The goal was always to avoid the temptation to stay in

known approaches that are inappropriate for such data. The attempt of copying or

directly translating mainstream methods of computer vision showed rapidly its limi-

tations. The optical flow computation opened the problem of the efficient use of the

information acquired. Even if the first attempt extending the Lucas and Kanade

light consistency constraint was successful, the method showed rapidly its limits.

The use of temporal spatiotemporal space setting aside light consistency proved to

be more efficient and illustrates the type of computation that should performed on

such data. Spatiotemporal spaces are usually studied in physics, to our knowledge
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this the first true use of their properties in artificial vision. The use of spatiotem-

poral spaces introduces elegant formulations of visual problems. The work unveiled

the properties on tangent spaces but there is more to be found in the space-time

structure of events specially when the problem of features is dealt with. An encour-

aging observation of this work is that the developed methods fit biological findings

and recordings as it has been shown along the manuscript.‘ There is still so much

to do in this field, we are currently at the beginning of a new paradigm that will

necessitate more exchange between physiology and engineering. This has already

started all over the world, the growth of the neuromorphic community is a sign

that this will sooner of later happen and generalize. The other challenge that needs

to be tackled is to rethink computation and get away from VonNeumann architec-

tures and computational hardware that are totally inadequate to handle event-based

massively parallel computation. Current computers cannot deal with this type of in-

formation, their architecture is too limiting as information is serialized to fit within

the sequential processing scheme. New computation biomorphic-like hardware is

being developed around the world such as : neural processors on chip(80), or highly

parallel platforms like the spinnaker (81), but there is still a missing computational

element. These new computer are currently used to simulate neurons and physio-

logical findings, but there more to do. There is a need to developed and rethink

computation beyond Turing machines computation-like to go toward more interac-

tive computation. Unfortunately this will no happen until our current knowledge of

the mathematics of the brain increases. It is for now still too scarce, brains deal with

non linearities, and compute in a complete different level of understanding of our

current knowledge. Perhaps the solution lays in path initiated by Godël where he

describes a philosophical path from the incompleteness theorems to Husserl?s phe-

nomenology and his investigation of the treatment of categories to think the future

of computation.

77



References

[1] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori. The iCub

humanoid robot: an open platform for research in embodied cog-

nition. In PerMIS: Performance Metrics for Intelligent Systems Workshop,

Washington DC, USA, August 2008. 4

[2] Willow Garage. Overview of the PR2 robot.

http://www.willowgarage.com/pages/robots/pr2-overview. 4

[3] Misha Mahowald. Analog VLSI Chip for Stereocorrespondence. In

ISCAS, pages 347–350, 1994. 6

[4] K. A. Zaghloul and K. Boahen. Optic nerve signals in a neuromor-

phic chip II: testing and results. Biomedical Engineering, IEEE Transac-

tions on, 51(4):667–675, 2004. 6

[5] P.F. Ruedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P.Y. Burgi,

S. Gyger, and P. Nussbaum. A 128/spl times/128 pixel 120-dB

dynamic-range vision-sensor chip for image contrast and orientation

extraction. Solid-State Circuits, IEEE Journal of, 38(12):2325–2333, 2003. 6

[6] U. Mallik, M. Clapp, E. Choi, G. Cauwenberghs, and R. Etienne-

Cummings. Temporal change threshold detection image. IEEE ISSCC,

pages 362–363, 2005. 7

78

http://dx.doi.org/10.1109/TBME.2003.821040
http://dx.doi.org/10.1109/TBME.2003.821040


REFERENCES

[7] Eugenio Culurciello and Andreas G. Andreou. CMOS image sen-

sors for sensor networks. Analog Integrated Circuits and Signal Processing,

49(1):39–51, October 2006. 7

[8] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128 x 128 120 dB

15 us Latency Asynchronous Temporal Contrast Vision Sensor. Solid-

State Circuits, IEEE Journal of, 43(2):566 – 576, Feb 2008. 7, 8, 20

[9] et al. Posch C. High-DR Frame-Free PWM Imaging with asyn-

chronous AER Intensity Encoding and Focal-Plane Temporal Re-

dundancy Suppression. ISCAS, 2010. 8

[10] Xiaochuan Guo, Xin Qi, and J.G. Harris. A Time-to-First-Spike

CMOS Image Sensor. Sensors Journal, IEEE, 7(8):1165 –1175, aug. 2007.

8, 13
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