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Abstract

The capability of manipulating objects is fundamental for robots in order to interact and
integrate in the environment they are deployed in. Since most manipulation actions involve
or begin with picking up objects, grasping is an integral part of any manipulation toolbox.
Although planning grasps on known object shapes is a mature research field with decades
of work behind it, such information is not available in many realistic scenarios. For robots
deployed in dynamic and unstructured environments such as homes, stores or even outdoor
settings can be cumbersome or outright unfeasible to know the complete 3D shape of target
objects, or even recover it in place with exploration techniques. In such cases, approaches
that allow planning for optimal grasps given partial 3D information are essential in order to
attempt manipulation actions, and the research field is far from being depleted.

In the attempt to model such a use case, in this Thesis we consider a target scenario
consisting of a surface cluttered with everyday household objects and we explore different
approaches to grasp planning with single-view point clouds, under the the hypothesis that
the object 3D models are not known a priori. Although many state of the art methods can
find feasible grasps on the observable part of the scene, explicitly modeling the 3D shape
of the target extends this capability to unobservable object sides. Initially, we formulate
the hypothesis that geometric primitives such as superquadrics can be effectively used as
a modeling tool. According to this line of thought, we propose a grasp planning method
that constrains the superquadric parameterization to account for the characteristics of the
target scenario. In order to evaluate the performance of our method, we tackle the lack
of widespread benchmarking protocols for grasp planning tasks by proposing GRASPA,
a complete benchmarking tool inspired by reproducibility and interpretability principles.
The nature of GRASPA allowed us to evaluate the performance of grasping pipelines with
different features on different robotic setups using the same rigorous experimental procedure
and observe the failure cases of each approach.

In the final part of the Thesis, we show a possible way of overcoming the limitations
of primitive-based methods by studying shape completion methods that have recently been
gaining traction in the computer vision and robot vision fields. Thanks to these methods, the
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3D description of the target object can be reconstructed from partial views by leveraging past
experience (in the form of a learned model) to infer information on unseen parts of objects.
We present a proof of concept of how shape completion deep autoencoders can be effectively
integrated in a grasp planning algorithm, and we point to interesting research avenues by
showing the importance of their internal representation.
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Chapter 1

Introduction

Since its inception in the first half of the 20th century, the term robot has always denoted a
machine meant to perform work by interacting with the environment and the humans present
in it. These interactions include, most of the time, some form of manipulation, be it in the
shape of moving parts around in an assembly line, sorting products from bins to store shelves,
folding clothes in a laundry room, or loading and unloading parcels and crates in a shipment
center. The relevance of manipulation to robotics is so vast that since their first deployment
in a factory environment, with the Unimate robot in the 1950s, industrial robots have ever
since been addressed to with the term manipulators.

Although size, shape and capabilities of robots have changed since the 1950s, manipu-
lation is still a very relevant research topic and constitutes an open challenge for both the
industry and the scientific and engineering community [9, 50]. Improving the dexterity of end
effectors with smart designs in order to reach and even outclass human levels of effectiveness,
researching new materials and sensors to improve tactile sensing capabilities, experimenting
with bleeding edge machine learning techniques in order to discover new policies in an
unsupervised way; these are but a portion of the ramifications of the robotic manipulation
challenge. However, any kind of manipulation task involves grasping the target of the manip-
ulation action at some point. Hence, autonomous robot grasping is conventionally considered
to be a fundamental part of the manipulation research field.

Grasping is typically defined [103] as the group of actions necessary in order for a robot
to close its end effector around an object and constrain its movement with respect to the
robot hand or gripper. Hence, after a successful grasp the movement of the object in terms of
position and orientation is entirely defined by the state of the robot1. In the literature, the

1In other words, the object can be considered fixed to the robot end effector.
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typical structure of a grasping algorithm (also often called grasping pipeline) can be boiled
down to the following stages:

• Target acquisition. The system initially has no information about the target object. In
this stage, information coming from the perception system of the robot is retrieved and
processed. Typically, this information is visual (since no contact between the robot and
the target exists just yet) and comes from either a 2D or RGB-D camera. This stage
outputs information about the target object, possibly segmented from the rest of the
scene

• Grasp planning. Given the target, this stage computes the optimal position and
orientation of the robot end effector2 (hand or gripper) that maximizes the probability of
a successful grasping action. Different grasp planning approaches might use additional
constraints in order to rule out unsuitable candidates, e.g. whether the grasp pose allows
the end effector to stay clear of other objects or the scene itself, or some manipulability
measure in the target pose. The output is simply the end effector pose in terms of
position and orientation of the TCP and the pregrasp configuration, i.e. the initial
position of the joints of the end effector itself, such as the angle of the finger joints

• Motion planning. This stage takes care of planning the trajectory that will lead the
robot end effector in the target pose. This is usually conditioned and constrained by
other factors, such as avoiding collisions between the robot links and the scene or
avoiding singularity configurations. The output is very setup-specific, but is generally
a trajectory of setpoints in task or joint space for the manipulator to follow at runtime

• Grasp execution. This stage moves the robot and the end effector in order to follow
the target trajectory and perform the planned motions. It is typically specified by the
control architectures that are supported by the hardware and software configuration,
and is also very setup-specific because of this.

The research work summarized in this Thesis mainly focuses on the grasp planning stage.
Nevertheless, the implementation of such work to perform experiments lead to the study and
application of popular techniques and tools related to the other stages.

Grasp planning is a field with more than three decades worth of literature and contains a
vast landscape of approaches, each with varying assumptions and methodology [50, 100, 10,

2In this Thesis, we often use the denomination TCP (Tool Center Point) to denote the reference system
attached to the end effector.
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7, 55, 51, 27]. Although providing an extensive taxonomy of grasp planning approaches is
outside the scope of this Thesis, we hereby attempt to outline some common or distinctive
aspects that are relevant to this work.

Target driven vs. target agnostic approaches. Some grasping pipelines are designed to
grasp specific objects in a scene [76, 120], while others can produce grasp candidates directly
from scene data [82, 62], with no explicit target definition or segmentation.

End effector type. A large part of grasp planners in literature assume a parallel-jaw
gripper structure [74, 62, 82]. Other approaches focus on multi-fingered or humanoid hands
[117, 102] or even suction grippers [63].

Clutter definition. Although there is no universal and clear-cut definition of clutter and
degrees of clutter in a scene, grasping pipelines typically tackle:

• visually cluttered scenarios, where some objects are mutually occluded when observed
from the viewpoint of the robot, but are not close to each other

• spatially cluttered scenarios, where objects lie in a structured or unstructured pile and
they are in contact to each other (this typically implies visual clutter as well)

• isolated objects, where there is no clutter at all. All the approaches that can only handle
one object at a time fall in this category.

Prior on object shape. Different grasp planners make different assumptions about the
target object in their formulation. For instance, approaches that rely on pose detection require
the 3D mesh in order to locate the object in the scene and plan for grasps (model-based

approaches), while others only assume the target object can be modeled with a geometric
primitive [120, 8]. Some methods do not require any modeling at all [62, 74], while some
attempt category-agnostic shape reconstruction based on partial data [114, 60] (we refer to
these two last categories with the term model-free approaches).

Planar vs. spatial approaches. This distinction relates to the parameterization of the
detected grasp candidates. Planar approaches assume the scene is being observed from a
fixed point over the target surface and the optical axis is perpendicular to the surface. This
type of approach describes grasps either in the form of oriented rectangles or in the form of 3D
position and rotation angle around the axis optical axis [62, 63]. Other approaches [82, 74]



4

generate grasps in terms of TCP position and orientation with a 6 DoF parameterizataion,
taking full advantage of the manipulator motion capabilities.

Data-driven vs. analytical methods. In general, grasp planners work by sampling can-
didate poses around the object and then computing some sort of quality index in order to
rank them and eventually find the best grasp. Decades worth of research on grasp quality
metrics have suggested a wide landscape of options that can be computed when the gripper or
hand kinematics and the complete object shape are known. These typically rely on analytical
procedures that involve explicit geometrical reasoning or dynamic considerations on the
forces and friction in play [7, 97]. In recent years, the rising popularity of machine learning
and deep learning has given birth to a whole new class of approaches, where quality metrics
are learned from data instead [10, 27].

One of the challenges of the robotics research community has always been to enable
robots to operate in highly unstructured or dynamic environments. Classic examples are
construction sites, disaster scenes or space missions. However, homes and stores prove
just as challenging for an automatic system, to the point where robot challenges have been
designed around such human environments [107] to serve as benchmarks for the capabilities
of service robots. For instance, a robot whose task is to fetch an object from another room
implies navigating around the layout of the house, avoiding static (furniture) and dynamic
(pets, humans) obstacles on different surfaces, to finally face a messy shelf or tabletop where
the target object resides. In this Thesis work we focus on this last kind of environment,
assuming objects lie on a planar surface, possibly in visual and spatial clutter, where the
exact model of the object to grasp is unknown a priori. In particular, we consider the
model-free hypothesis to be of particular interest. In the robotics and manipulation literature
the grasping field is often considered to be mature [9], and the grasp planning problem is
often considered to be solved and of little interest. While we agree with the first statement,
we argue that the literature offers a large variety of effective and well-established methods
[7] only as long as the object model is known and its pose can be reliably estimated within
the scene. In the abscence of known 3D models, vision-based grasping approaches cannot
perform pose estimation and therefore cannot rely on the straightforward application of
classic grasp planning methods. This is a reasonable assumption to make when unstructured
environments are concerned, as the system probably would not know the exact shape of the
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target object, nor would it be able to easily recover it via visual exploration3. For this reason,
we argue grasp planning still proves to be quite the challenge in realistic applications, as
proven by the number of novel approaches that have been published in recent years [55, 27].

Before moving on, we briefly describe some state of the art methods that are relevant
to the target scenario of this Thesis, i.e. grasp planning when the object model is not
known a priori. Dex-Net 2.0 [62] is a planar approach that generates a large number of
candidate grasps from a depth image and computes a quality score for each of them with
a GQ-CNN (Grasp Quality Convolutional Neural Network). The network is trained using
a large synthetic grasp dataset annotated with analytical metrics. Due to its performance
and inference speed, Dex-Net 2.0 and its successive revisions have been a cornerstone of
data-driven grasp planning in latest years. Since this approach is designed for bin-picking
applications, however, it requires the RGB-D camera to be placed on top of the target
surface and only provides planar grasps. GPD [82] tackles this shortcoming, being able to
provide 6-DoF grasp planning with similar performance on real-robot experiments. This
method consumes RGB-D data in the form of a point cloud, and uses a CNN (although
extended to a 3D voxel grid) to infer the quality of grasp candidates generated from the
point cloud geometry. Also similarly to Dex-Net, GPD is also trained on a synthetic dataset
annotated with analytical metrics. 6DoF-GraspNet [74] improves upon GPD by using data-
driven methods to directly propose initial candidate guesses from a point cloud by using
a Variational Autoencoder (VAE) and later refine them using gradient information from
a grasp quality CNN. Unlike previously mentioned approaches, this work uses a physics
simulation engine in order to generate ground truth (instead of analytical metrics) for the
training process.

The end-to-end nature of the approaches just outlined allows them to quickly generate
and rank large numbers of candidates at runtime. However, they lack an explicit target
representation which is rather useful in robotics task to guide motion planning, collision
avoidance and scene understanding. Some methods propose to explicitly model target objects
from single-view point clouds by fitting shape primitives such as cuboids and superquadrics
[120, 83] that are also used for grasp planning. These methods are typically based on framing
the primitive fitting as an optimization problem, and are therefore quite interpretable and
predictable in their output. While this is a desirable feature that is not often present in
data-driven and deep learning based models, the simplicity and compactness of the primitive

3In case of an object lying in visual clutter or in a constrained environment, for instance, it would be
impossible for the robot to move a hand-mounted camera around it to gather enough data for a complete 3D
reconstruction.
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representation limits the span of possible shapes that can be modeled due to symmetry and
lack of detail. Another class of methods attempts to reconstruct the complete object shape
from partial point cloud data, borrowing shape completion techniques from the computer
vision field. Some of these approaches use 3D deep networks to reconstruct a complete object
mesh from single view RGB-D data [116, 60] and then use grasp quality metrics based on
the grasp wrench space to obtain good grasp candidates. Lundell et al. [61] employ a similar
reconstruction pipeline, but use the obtained shape to render a synthetic depth map and use
Dex-Net to compute grasps. These methods are some of the most promising venues in the
grasp planning research field, since they allow researchers to employ any well-established
grasp planning analytical or data-driven method that requires the full mesh without having it
beforehand.

This Thesis work begins (Chapter 2) with an attempt at tackling the aforementioned
scenario by proposing a grasp planner that relies on modeling the target object from partial
views with expressive and compact geometric primitives, i.e. superquadric surfaces, through
a constrained optimization process. The approach was meant to be deployed on the iCub
humanoid robot [71], and the features and limitations of the platform were accounted for
in the design process. We also show how this approach performs with respect to a similar
superquadric-based approach [120] also developed for the iCub robot. Initially, we tested our
grasp planner on isolated objects since the perception system implemented on the platform
would fail when performing target acquisition on visually cluttered scenes. However, good
results in such conditions were obtained by improving the perception capabilities of the
robot with the integration of a state of the art deep instance segmentation architecture [45].
Building in this direction, we obtained a versatile tool for tackling a variety of different
object sets and scenes (Chapter 3) by adapting a method to quickly generate custom datasets
in order to train instance segmentation machine learning models.

The next objective in the PhD project would have been to compare our results with other
state of the art approaches [82, 62] to grasp planning on the same cluttered tabletop task.
However, we initially found it to be difficult to do for a number of reasons linked to how
typically authors experimentally validate their proposed solution on real robot setups. Due to
the abscence of a widespread benchmarking protocol, the experiments were performed in
non-reproducible conditions and the results reported in a way that was not really comparable
with other approaches from other sources. This is the motivation that led to the proposal
of GRASPA (Chapter 4), a benchmarking protocol for grasp planners built around the
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concepts of clarity and granularity of metrics, reproducibility of experimental conditions and
adaptability to different robot platforms.

Employing GRASPA to benchmark state of the art model-free grasp planners allowed
us to observe some of their failure cases and limitations, due to occlusions and partial
information deriving from single-view RGB-D data. Having also observed the limitations
that come with modeling objects with geometric primitives such as cuboids and superquadrics,
we investigated state of the art machine learning techniques to reconstruct complete shapes
from partial measurements, i.e. shape completion and reconstruction techniques. In particular,
we show how they can partially compensate for the partial visual information that our target
scenario implies, and whether they could be integrated into existing grasping pipelines
(Chapter 5). Even though this study did not eventually result in a contribution to the field,
it allowed us to obtain precious insight on these techniques and ideas for future research
avenues.



Chapter 2

Model-free grasp planning with
superquadrics

Thanks to the last two decades of advancements in sensor technology and computer vision,
nowadays integrating 3D sensing capabilities into a robot has become cheaper and more
practical than ever. Even with these powerful sensing capabilities, robot vision is still limited
by occlusion (both auto-occlusion and caused by other objects or elements of the scene) to
only ever have a partial perception of objects. One of the stepping stones in the design of
algorithms and pipelines for autonomous, vision-based robotic grasping and manipulation is
choosing a suitable representation for modeling the objects the robotic system is supposed
to perceive, reason about and act on. Despite decades of research and experimentation on
the subject, however, the community has not converged to a single representation that is
indisputably preferrable to all others in all cases. Recent literature reviews on the topic
of vision-based grasp planning [27, 50, 55] show that different approaches model objects
according to assumptions on the task and the scene. Some of the most widespread approaches
are:

• assume that the object shape is known. This is often the case when the object CAD or
mesh is available a priori. In this case, the modeling task turns into a pose estimation
task

• assume that the object shape is not known, but it can be decomposed in one or more
geometric primitives. In this case, the modeling task turns into a shape fitting and
optimization task
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• assume that the object shape is not known, but something similar has been seen. The
modeling task turns into a shape completion task (this topic is analyzed in detail in
Chapter 5)

• no shape is explicitly sought for. There is no explicit modeling of objects, rather the
approach proposes to analyze local features of the 3D data.

As seen in the introduction, the state of the art on grasp planning pipelines and grasp
planners is rapidly moving towards data-driven and deep learning based approaches [109, 10,
13], inspired by the success of these disciplines in other scientific fields. Nonetheless, recent
research Du et al., Kroemer et al., Lin shows that analytical and optimization-based object
modeling approaches can still have a place in some scenarios and tasks. This claim has its
roots in the following factors.

Availability of intermediate representation. In robotics, explicitly modeling the object
geometry is often useful for tasks that are complimentary to manipulation (e.g. scene collision
avoidance). This feature is typically not available in most of the data-driven, end-to-end
trained grasping approaches that have risen in popularity in latest years.

Cost of a complex shape representation. Although some data-driven grasping pipelines
explicitly perform a modeling step before computing grasps (see Chapter 5), such approaches
require training on large datasets and have a large footprint in terms of computing power and
memory availability. On the other hand, if the target objects have simple shapes (as is often
the case with household items) they can be modeled in a very compact way by exploiting
geometric primitives.

Hardware constraints. Data-driven grasping pipelines, regardless of whether they provide
an interpretable representation of the object, typically are developed on top of deep learning
frameworks that require dedicated hardware in order to be efficient and responsive. On the
one hand, this is becoming easier to overcome, as training of the models is done offline on
large GPU clusters and compact hardware to perform inference on the robot platform is
becoming commonplace. On the other hand, methods that perform equally fast without the
need for a training procedure or dedicated hardware are desirable (even if this comes at a
tradeoff in performance).

In this chapter, we propose a simple grasping pipeline based on explicit object modeling
through superquadric functions. At its core, this method is inspired by the work of Vezzani
et al. but it is designed to simplify some of its moving parts by:
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• eliminating some of the degrees of freedom in the superquadric optimization process
by exploiting the scenario structure

• performing the optimization with a well-behaved analytical gradient instead of finite
differences

• using a different grasp candidate proposal method that takes advantage of the symmetry
of the superquadric representation

• ranking the grasp candidates with a metric based on the robot reachability and end
effector geometry.

In 2.1 we present an overview of other superquadric-based approaches to object modeling
and grasping drawn from the computer vision and robotics literature. In Section 2.2 we
present the approach, outlining our contribution. We quantitatively tested the method (Section
2.3) using two different experimental protocols using the iCub humanoid robot platform.
Finally, we review and discuss the experimental results (Section 2.4) and show an application
of the method in the context of a complex HRI framework (Section 2.5).

2.1 Related work

The concept of superquadric surfaces was first introduced in 1981 in the field of computer
graphics by Barr [4] as a compact and smooth representation for a family of 3D shapes
including superellipsoids, superhyperboloids and supertoroids. They were proposed as a
unified mathematical formalism that would bring a speedup in computation, by reducing
the need for memory-intensive representations such as lists of edges, faces and vertices.
They were intended for use in computer aided design and rendering, aid structural and
mechanical analysis and verify machine control trajectories. The concept of superquadrics
was soon extended by introducing local and global shape deformations [5] and the scope of
its representation power was amplified with the introduction of hyperquadrics [44].

Solina and Bajcsy hypothesized the usage of superquadric shapes as components of part-
based models, exploring the possibility of using their closed-form description and proposing
a mathematical formulation for the problem of segmentation and recovery of superquadrics
in both 2D and range images [105, 46]. The intuition behind the concept of part-based
models inspired some interest in the computer vision community in finding ways to model
3D object or scene data with multiple superquadrics [18, 19, 29]. This approach allows
to model interesting parts of objects (e.g. handles) with expressive primitives or to push
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the limits of superquadric representation by using a number of convex shapes to model a
non-convex shape. This goal is generally obtained by partitioning the 3D point clouds in a
number of clusters, and substituting to each cluster the superquadric (superellipsoid) that
best fits the points in the cluster. Methods belonging to this family typically differ in the way
the point cloud is split, i.e. the way the unsupervised clustering problem is tackled.

Recently, on the wake of the data-driven disciplines, some researchers used 3D deep
learning techniques to address the problem of modeling scene and partial object point clouds
with multiple superquadrics [83]. These works simultaneously leverage the advantages of
both the compact representation offered by superquadric shapes and the fast inference time
provided by state of the art DNN (Deep Neural Networks) architectures and modern GPU
hardware.

In robotics, being able to reduce the complexity and memory footprint of a scene to a finite
number of expressive shapes with a compact representation is useful in a number of context.
The implicit formulation of the superquadric surface allows for quick computation of whether
points reside inside or outside the shape itself, and this in turn elicits faster collision checking,
e.g. when motion planning or grasp planning algorithms are concerned. Over the last two
decades, a number of approaches relying on superquadric (either single or multiple) modeling
for scene segmentation and grasp planning have been proposed [42, 120, 119, 8, 67, 19, 106].
Relevant to our scenario are works that are employ multi-fingered or humanoids hands
[106, 42, 120, 119] since our target robot platform, the iCub robot, features humanoid hands.
Some of the works by Vezzani et al. [120, 119] have been developed with the iCub platform
in mind and propose a fast solution to the grasp pose detection problem by modeling both
the robot hand graspable volume and the target object as superquadric shapes.

2.2 Methodology

The target scenario for this work consists in the robot facing a horizontal surface (e.g. a
tabletop, countertop, or shelf) populated with objects whose 3D shape is unknown a priori.
There can be partial visual occlusion between the objects, but they cannot be stacked on top
of each other. This type of scenario, while unrealistic in an industrial bin picking task, is very
relevant for service robotics operating in human environments and is sometimes referred to
as structured clutter [74, 76].

We hereby describe our approach to a superquadric-based grasping pipeline. Initially, we
present the superquadric family of shapes and give some insight on their features for object
modeling. After that, we present the approach pipeline itself. Following the typical structure
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of a model-based grasp planner, our approach can be functionally split in two stages. In the
first stage (Section 2.2.2), the information coming from the robot vision system is used to
produce a representation of the object. In the following stage (Section 2.2.3), this object
description is used to compute a list of feasible grasp candidates and select the best one
according to some metric.

2.2.1 Features of superquadric representation

Superquadrics are a family of 3D parametric surfaces that can describe a large variety of
shapes in a single and continuous parameter space, and became popular for their capability
to represent complex shapes with a limited number of parameters. Within the superquadric
family of surfaces, superellipsoids are the ones that are the most suitable to model objects,
since they define closed and limited surfaces (the others being supertoroids and superhyper-

boloids). Hence, with some abuse of notation, this thesis uses the term superquadric to refer
to superellipsoids. Using an object-centric reference frame, superquadric surfaces can be
mathematically described by an implicit formulation

F(x̄,λ ) =
(∣∣∣ x

sx

∣∣∣ 2
ε2 +

∣∣∣ y
sy

∣∣∣ 2
ε2
) ε2

ε1 +
∣∣∣ z
sz

∣∣∣ 2
ε1

λ = {sx,sy,sz,ε1,ε2} ∈ R5
+ (2.1)

where parameters {sx,sy,sz} define the size of the three axes of the superquadric while
{ε1,ε2} define its shape in terms of edge roundedness. Figure 2.1 shows how these parameters
(aptly called roundedness parameters) shape a superquadric surface with the same axes size.
Using the same five parameters, superquadric surfaces can also be described by an explicit
formulation x

y

z

= x̄ (η ,ω) =

sx cosε1 η cosε2 ω

sy cosε1 η sinε2 ω

sz sinε1 η

 −π/2≤ η ≤ π/2
−π ≤ ω ≤ π

(2.2)

By applying a transformation Tλ ∈ SE(3) to the points belonging to the surface defined
by either Equation 2.1 or Equation 2.2, we can obtain the description of an object in the
3D euclidean space together with its pose (defined as position and orientation) with 11
parameters. This compactness of the representation is the first feature of the superquadric
representation for object modeling.

A second useful feature of the superquadric representation relies in its implicit formula-
tion. Considering Equation 2.1:
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• x̄ : F(x̄,λ ) = 1 represent all the 3D points lying on the superquadric surface

• x̄ : F(x̄,λ )< 1 represent all the 3D points lying inside the superquadric boundaries

• x̄ : F(x̄,λ )> 1 represent all the 3D points lying outside the surface.

This property identifies superquadrics as mathematical solid, for it univocally determines the
region of the three dimensional space an arbitrary point falls into. Hence, it is also referred
to as in-out function.

The third feature of the superquadric representation can be shown by observing the
behaviour of parameters {ε1,ε2}. Each one describes the roundedness of the superquadric
along one direction (nort-south and east-west) and behaves in the following way (refer to
Figure 2.1 for a visual guide):

• for ε < 1, the shape is increasingly squared with sharper edges

• ε = 1, the shape is rounded

• ε ∼ 2, the shape has a flat bevel

• ε > 2, the shape is "pinched" and pointed.

As pointed out in other works [46, 120, 67, 18], constraining the roundedness parameters
between 0 and 2 leads to strictly convex shapes. Empirically, we can observe that a large
number of common household objects can be approximated to such shapes (e.g. containers
such as boxes and bottles) without loss of affordance. The convexity also makes the in-out
function well behaved with respect to the optimization problem.

Thanks to the features we just outlined, the superquadric representation is descriptive
of a good number of household objects that a service robot might need to grasp on a daily
basis. In the next sections, we show how we propose to frame and constrain an optimization
problem in order to fit a superquadric shape to a segmented point cloud coming from the
visual system of the robot (Section 2.2.2). We also propose a simple algorithm to generate
candidate power grasps around the computed superquadric and rank them according to the
robot kinematic structure and end effector geometry (Section 2.2.3). We use the term power

grasp to denote a type of grasp where only the pose of the TCP (Tool Center Point) of the
end effector is computed, as opposed to a precision grasp where the position of each contact
point with the is planned for.
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Figure 2.1 Superquadric shapes with varying roundedness parameters (ε1,ε2) and fixed size
sx = sy = sz . For values 0 < ε < 2, superquadrics are convex shapes with continuous surface
gradient. In particular, it can be observed that superquadrics closely approximate more
traditional geometric primitives used in object modeling such as spheres (ε1 = 1,ε2 = 1),
cylinders (ε1 = 1,ε2→ 0), octahedrons (ε1→ 0,ε2 = 2) and cubes/parallelepipeds (ε1→
0,ε2→ 0). Image sourced from [118].

2.2.2 Modeling objects with superquadrics

The aim of this first step is to find the best superquadric representation of an object perceived
by the robot, i.e. finding the set of parameters that best fit the 3D data according to some cost
function. In this case, such 3D data is supposed to be provided in the form of a partial, single
view object point cloud P ∈ R3 acquired by the visual perception system of the robot. As
initially proposed by Jaklič et al. [46], the best superquadric to model P is the one whose
surface is closest (in an euclidean sense) to the point set. Recalling the in-out function

defined in Equation 2.1, the superquadric surface is defined by the locus of points that satisfy
F(x̄,λ ) = 1. Hence, minimizing the distance of the i-th point pi = (xi,yi,zi) ∈ P, for i =

1, . . .N from the superquadric leads to the parametrization λ = {sx,sy,sz,ε1,ε2,Tλ} that best
fits the 3D data. The search for λ can be cast as a least-squares minimization problem over
the point set

λ = argmin
|P|

∑
i=1

(√
sxsysz(F(pi,λ )−1)

)2
(2.3)
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where the term (F(pi,λ )− 1)2 is the squared distance of the i-th point from the su-
perquadric surface. The term √sxsysz is introduced as a regularizer for the superquadric
volume, as we are interested to find the smallest surface that fits the point cloud.

Our first contribution with respect to the work of Vezzani et al. [120] is to introduce some
prior about the scene where the object is located to simplify the optimization process. In
particular, our target scenario consists in the robot observing a tabletop or shelf scenarios with
a single object or isolated objects. Thus, instead of estimating the pose of the superquadric
Tλ with 6 degrees of freedom, we hypothesize the object to be modeled is laying on a surface.
This assumption constrains two of the three axes to lay in a plane parallel to said surface
(which is fixed) and reduces the pose estimation problem to 4 degrees of freedom, the first
three being the center of the superquadric and the fourth being the rotation φ around its z

axis. The parameter set λ is reduced in dimensionality from 11 (3 for the position of the
center, 3 for the size, 2 for the roundednss, 3 for orientation) to 9. We redefine the notation
for the parameter set as λ = {xc,yc,zc,sx,sy,sz,ε1,ε2,φ} ∈ R9 where (xc,yc,zc) is the center
of the superquadric.

We frame the optimization problem defined in Equation 2.3 as a constrained nonlinear
optimization problem, since the target superquadric has to adhere to the following constraints:

• the superquadric has to be convex, therefore 0 < ε1,ε2 ≤ 2

• since the object is assumed to lie on a surface without intersecting it, zc− sz > zsur f ace

• the superquadric has to have non-zero volume, i.e. sx,sy,sz > 0.

We solve the optimization problem for λ using an interior point filter line search algorithm,
as implemented in the IpOpt library [127]. Since this class of methods benefits (in terms of
accuracy of the results and computing power) from the availability of a closed-form gradient
of the cost function, we take advantage of the analytical nature of the in-out function F(pi,λ )

and provide it. This is a second difference with respect to how the problem was solved in the
work of Vezzani et al., where a finite difference method was used. Some examples of partial
point clouds modeled as superquadrics with our method can be seen in 2.2.
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(a) Box object

(b) Toy Car object

(c) Large Bottle object (not in the dataset, ungraspable)
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(d) Teddy Pig object

Figure 2.2 Visual comparison of results obtained by modeling partial object point clouds
with our method (left) and the one by Vezzani et al. (right). The superquadric obtained for
(a) is very similar between methods, since the object is a simple geometric shape. In the
case of (b) and (c), the 6D method by Vezzani et al. produces superquadrics that fit the point
cloud better, but intersect the surface the object is lying on. Although the plushie in (d)
with a single superquadric is impossible, we show the best superquadric fit obtained by both
methods.
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(a) Simulated grasping scenario with YCB Pudding Box.

(b) Simulated scenario with YCB Mustard Bottle.

Figure 2.3 The superquadric cardinal point grasp planning approach deployed in a tabletop
scenario simulated in Gazebo. The test objects are meshes from the YCB object set. The
snapshots show the left eye view of the object, the superquadric computed from the partial
view (faint green) and the feasible grasps (approach directions marked as arrows). Red and
blue arrows indicate candidate grasps for the left and right hand respectively. Grasps that
would cause a collision with the table surface are filtered out of the candidate list.
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2.2.3 Cardinal point grasp planning

Once the incomplete point set P has been modeled as a superquadric, we wish to determine
the best end effector pose for the robot to reach and grasp the object. The motivation for
choosing to plan for power grasps (i.e. only the pose of the TCP is specified) instead of
precision grasps (i.e. the location of every contact with the object is specified) is mainly
twofold:

• the proposed approach was originally designed for humanoids, underactuated hands.
Since not every joint can be directly controlled, with this type of hands it is usually
preferrable to perform grasps by planning for the pose of the palm and then closing
the fingers starting from an initial (pregrasp) configuration. This way, the fingers can
naturally adapt to the object shape due to their mechanical design

• planning for precision grasps requires an accurate estimation of the object surface in
order to detect contact points. Since superquadrics are approximated representations of
objects and lack the power to model both asymmetry and details, planning for contacts
on such surfaces might not lead to actual contacts on the object.

During our experience acquired by reproducing and testing the superquadric grasp
planning approach proposed by Vezzani et al. on the iCub humanoid robot, we observed that
for common household objects the algorithm would most of the time plan for grasps either
on the top or the sides of the object. Moreover, the approach did not take into the account
whether the pose was reachable by the hand, and this would cause failures. According to
these observations, we propose a grasp planning algorithm that generates a number of top
and side candidate grasps around the superquadric and then ranks them according to a cost
function that takes into account the robot workspace.

Candidate grasp pose generation Given a superquadric parametrized by the set λ , our
approach generates grasp candidates in a narrowed search space for position and orientation:

• the position of the TCP is constrained to the cardinal points of the superquadric, so
that the palm touches the surface. See Figure 2.4 for a representation of the iCub hand
and its TCP reference frame. We define as cardinal points the intersections between
the superquadric surface and its main axes (Figure 2.5)

• the TCP orientation is constrained so that each pose axis is parallel to one superquadric
axis, with the gx axis pointing towards the superquadric center. This way, the surface
of the palm is in contact with the superquadric surface with no collision
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• side grasps are constrained to having the thumb always point upwards.

Algorithm 1 Grasp pose candidate generation
Input:

Center sc of the superquadric, unit vectors for the superquadric axes {a⃗x, a⃗y, a⃗z}, size
{sx,sy,sz} of the superquadric, maximum hand aperture whand , table surface height zt

Output:
Grasp candidate set Sg
Grasp pose gi = {Ri,Ti} ∈ Sg

1: procedure GENERATEGRASPS(λ )
2: Sg = /0
3: Sgx ←{a⃗x, a⃗y,−a⃗x,−a⃗y} ▷ gx,gy search spaces
4: Sgy ←{a⃗x, a⃗y, a⃗z,−a⃗x,−a⃗y,−a⃗z}
5: for g⃗i,x ∈ Sgx do
6: for g⃗i,y ∈ Sgy do
7: g⃗i,z← g⃗i,x× g⃗i,y
8: Ti← sc− szg⃗i,z
9: Ri← [gi,x gi,y gi,z]

10: if ISGRASPFEASIBLE(Ri) then
11: Sg←OFFSET(Ri,Ti)

12: return Sg

13: procedure ISGRASPFEASIBLE(R, T)
14: if ISOBJECTGRASPABLE(sx,sy,sz) then
15: if sc−Tz > zt then ▷ make sure grasps are over the table surface
16: return true
17: return false
18: procedure ISOBJECTGRASPABLE(R,sx,sy,sz)
19: if gx ∥ ax and whand > 2sx then
20: return true
21: if gx ∥ ay and whand > 2sy then
22: return true
23: if gx ∥ az and whand > 2sz then
24: return true
25: return false

Grasp poses are generated as detailed in Algorithm 1, and are represented as homogeneous

transformations gi = (
Ri Ti

0 1
) linking the robot palm TCP to the root frame. In Operation 18,

pose candidates are rejected if the cross section of the superquadric, is larger than the
distance between the middle fingertip and the thumb fingertip in pregrasp position (i.e. thumb
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Figure 2.4 The TCP (Tool Center Point) of the iCub hand lies on the palm. The gx axis is
represented in red, gy in green and gz in blue.

perpendicular to the palm and open fingers). In Operation 11, the pose is rotated around the
wrist pitch to avoid collision between the thumb and the object during approach.

Pose ranking The i-th candidate grasp pose generated on the superquadric cardinal points
is then ranked according to a cost function, and the best candidate is sent to the robot for
execution. The metric Ji accounts for two contributions, weighted by the parameter w: how
reachable the candidate is by the robot TCP (Ji,1) and the hand geometry with respect to the
computed superquadric (Ji,2)

Ji,1 = ||õi sin θ̃ ||

Ji,2 = 1− shand
max(sx,sy,sz)

Ji = wJi,1 +(1−w)Ji,2 w ∈ [0,1]

(2.4)

where {õi, θ̃} is the axis angle representation of RiR̂T
i , Ri is the target grasp orientation and R̂

is the hand orientation that the robot can actually reach (according to the inverse kinematics
solver) with respect to the root reference frame. shand is the size of the superquadric axis that
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Figure 2.5 Cardinal points are defined as the intersection between the superquadric axes
and its surface. The axes are here depicted as black lines, and the visible cardinal points are
represented as blue solid dots.

lies in the direction of the fingers (hand x axis). The parameter w weighs the two components
of Ji, where Ji,1 accounts for the orientation accuracy and Ji,2 favors grasps around the
smallest side of the superquadric. Candidates that would bring the hand geometry in collision
with the table surface are removed from the candidate list. In case of dual arm grasping, a full
list of candidates is generated for each arm and for each cardinal point either the left-handed
or right-handed candidate is selected, according to the cost function 2.4. Figure 2.3 shows
examples of grasps generated and ranked with this method in a simulated environment.

2.3 Experimental setup

While our proposed approach can be adapted to any robotic setup that features any kind of 3D
vision system and a manipulator with a prehensile end effector (e.g. gripper or multifingered
hand), we chose the iCub humanoid robot as a test platform.

2.3.1 Robot hardware: the iCub robot as manipulator

The iCub humanoid robot is an open source research platform [71] designed around the size
and appearance of a child. While it features 53 degrees of freedom in total, only 41 of these
are considered in the scope of its work, since the base of the torso is supposed to be fixed.
Figure 2.6 shows a visual overview of the kinematic structure of the robot. The components
that are most relevant to this work (i.e. the vision system and the multifingered hands) are
briefly reviewed in the following.
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The iCub oculomotor system. The vision system of iCub consists in a stereo camera rig
built in the robot head, equipped with a color camera (resolution up to 640x480) in each
eye. This setup consists of 3 actuated DoF in the robot neck to grant roll, pitch and yaw
capabilities to the head, and 3 actuated DoF in order to model the human oculomotor system
(tilt, version and vergence). The iCub software library includes a gaze controller [96] that
controls the head and eyes joints to fixate on a given point in cartesian coordinates in the
robot reference frame. In order to obtain 3D vision capabilities, the eyes vergence is fixed
and the camera extrinsics are calibrated in order to enable the use of well-established stereo
matching techniques [34] to compute a disparity map. This can be further processed to obtain
a depth map and a 3D color point cloud of the scene in front of the robot.

The iCub multifingered hand. iCub is equipped with a 5-fingered hand whose kinematic
structure and actuation is inspired to the human physiology (Figure 2.4). Mechanically, all
the fingers consist in 3 phalanges (proximal, middle, distal) but are actuated differently. The
thumb, index and middle finger have an actuated proximal joint while the middle and distal
joints are actuated by the same motor (underactuated). The ring and little finger are actuated
by a single motor. The thumb is opposable and the other fingers have an abduction mechanism
that spreads them apart. In total, each hand has 9 degrees of freedom and the capability to
conform its shape to objects while grasping thanks to the underactuation. Although the torque
of the motors actuating the finger motion can be measured and controlled, the torque of the
underactuated joints cannot be measured directly and is therefore estimated by modeling the
elastic behaviour with a SVM-based method.

2.3.2 Grasping pipeline

In this Section, we describe the main functional blocks of the complete pipeline that was set
up in order to test the superquadric cardinal point grasp planner proposed in the previous
sections. Figure 2.7 shows the functional blocks of the pipeline and the information flow
between them. In order to maximize reusability of the software, the grasping pipeline was
developed as an integral part of the Interactive Object Learning (IOL) framework1, therefore
the stereo matching, 2D segmentation, object database and kinematic solver are part of it and
have not been implemented as a part of this work.

1http://robotology.github.io/iol

http://robotology.github.io/iol/
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Figure 2.6 Kinematic structure of the iCub humanoid robot. In this work, the legs of the
robot are not used and the torso is to be considered fixed to the workbench. The torso (3
DoF) is highlighted in orange, the arms (7 DoF each) in purple and the head and eyes (6
DoF) in blue. Each hand features 9 DoF (the kinematic structure is omitted from this image).
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Figure 2.7 Function block representation of the complete grasping pipeline that integrates the
superquadric cardinal point grasping approach outlined in this chapter and the iCub system.
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Stereo matching. As explained in Section 2.3, the eyes of the iCub can perform tilt, version
and vergence movements. For these grasping experiments, the vergence is fixed at 5 degrees
(the robot gaze is supposed to fixate on points that are about 50 cm in front of it) and the
extrinsics of the stereo setup are computed with a checkerboard pattern. Both cameras
acquire 320x240 stereo images, and a disparity map is computed. The knowledge of the
camera intrinsics allows to obtain a depth map and point cloud of the scene in front of the
robot.

2D segmentation. The target scenario simply involves a tabletop surface with isolated
objects on top of it, with no clutter. Since performing an accurate 3D segmentation on the
point cloud obtained from the iCub stereo rig is infeasible (the stereo matching algorithm
does not behave well on low-texture objects like the tabletop surface at our disposal), we use
a simple texture-based 2D segmentation approach to segment object binary objects. It uses
Local Binary Patterns [79] to extract 2D texture features from the scene in order to obtain a
description of it in terms of texture areas. This information is then processed with a graph
cut algorithm to extract isolated object blobs. We used the implementation of this procedure
present in the iCub software library in the form of the lbpExtract software package2.

Object name database. The IOL pipeline automatically keeps track of segmented objects,
their type (obtained through a classifier) and location in the robot workspace through an
object database. If a number of different objects are scattered on the table in front of the
robot, the robot can be prompted to fixate its attention on any one of them, selecting the
corresponding segmentation mask and triggering the modeling and grasping action on the
partial point cloud obtained this way. This is the only interaction required to the user by
the grasping pipeline. Figure 2.9 shows an example of how the user input triggers a grasp
planning action.

Point cloud segmentation. In order to obtain a partial, single view point cloud of the target
object, the binary mask obtained from the segmentation stage is superimposed to the depth
map. The point cloud is then computed using the intrinsic parameters of the stereo cameras.

Superquadric and grasp pose computation. Since the segmentation is performed on the
camera RGB image instead of directly on the partial point cloud, the partial object point
cloud can have outliers. In fact, there is no guarantee that pixels that are contiguous in the

2http://robotology.github.io/segmentation

http://robotology.github.io/segmentation
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2D image will be close (i.e. their Euclidean distance in the 3D space is small) to each other
in the 3D space of the point cloud. For instance, a few pixels belonging to the table surface
or to another object could be included in the binary object because of a small segmentation
error. Since the cost function in Equation 2.4 does not account for the possibility of outliers,
the resulting superquadric is often very deformed (Figure 2.8). To avoid this, our method
introduces an outlier rejection stage based on DBSCAN [32], a popular density based spatial
clustering algorithm, before the optimization process. An optional random sampling is also
performed to reduce the cardinality of the point cloud if necessary. After this preprocessing
stage, the segmented point cloud is fed as input to the superquadric modeling stage and the
best grasp pose is obtained. The procedure is described in detail in Section 2.2.

(a) (b)

Figure 2.8 The superquadric modeling formulated in Equation 2.4 is not robust to outliers.
In (a), the superquadric is deformed by the optimization process to include 8 outliers. In (b),
outliers are filtered with DBSCAN.

Kinematic solver. The grasps, superquadrics and point clouds are expressed in the task
reference frame. The iCub software library features a cartesian controller [85] that is used to
solve the inverse kinematics in order to obtain the joint space configuration of an end effector
pose in the 6D task space and to plan for minimum jerk motion trajectories. This software
module is prompted by the grasp planner in order to solve the kinematics for a candidate
TCP grasp pose (without moving the arm) and return the pose that would be reached if the
motion were to be executed. In order to maximize the workspace and dexterity of the robot,
we use all the joints in the torso, arms and wrists.
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Grasp pose. Once the best grasp is selected, the robot reaches it and closes its hand around
the object, using all the hand fingers and joints. The fingers are actuated by setting the joint
targets corresponding to the fully closed hand. Each joint stops and maintains its position
when a threshold torque value is reached. This allows a proper power grasping motion,
allowing the robot hand to conform to the object.

2.4 Results and discussion

In this section we present and discuss the results of our experimental evaluation of the
aforementioned grasping pipeline. Using a set of common household objects and toys (see
Figure 2.10) we test

• the stability and computation time of the proposed superquadric fitting method

• the performance of the pipeline, evaluated with grasping experiments on the iCub
humanoid robot.

In both cases, results are compared to those obtained with the method proposed proposed
by Vezzani et al. [120].

2.4.1 Performance of the superquadric fitting method

Our approach shares with the one by Vezzani et al. the software package used in the imple-
mentation, as well as the cost function and a similar superquadric parametrization. The main
differences between the methods are in the way the superquadric pose is parametrized; we
constrain the superquadric to have the z axis perpendicular to the table surface, while the
approach by Vezzani et al. uses a full 6 DoF pose. The way the optimization is solved is
also different, since our approach takes advantage of analytical gradient of the cost function
(Equation 2.4) instead of using a finite differences approach. We acquire 50 partial point
clouds for each evaluated object and run the superquadric fitting process for each method.
In Table 2.1 we report the final value of the cost function, together with a measure of the
computation time. Both approaches are evaluted on the same machine.

2.4.2 Performance of the grasping pipeline

We also tested the overall performance of our grasp planning pipeline against the one
proposed by Vezzani et al.. Each object in Figure 2.10 was positioned on a table surface in
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Object
Final optimization error Computation time (s)

Ours Vezzani et al. Ours Vezzani et al.

Mean σ Mean σ Mean σ Mean σ

Box 0.032 0.011 0.085 0.049 0.126 0.035 0.105 0.025
Toy Car 0.127 0.050 0.038 0.008 0.154 0.055 0.101 0.020
Soap Dispenser 0.078 0.082 0.057 0.035 0.212 0.055 0.163 0.056
Teddy Bear 0.110 0.011 0.102 0.017 0.211 0.038 0.152 0.030
Soda Can 0.038 0.010 0.054 0.018 0.162 0.028 0.112 0.034

Table 2.1 Comparative results of two different superquadric modeling strategies. The opti-
mization error refers to how much the computed superquadric fits the point cloud, according
to Equation 2.3. A smaller error indicates a better fit. For each object, 50 partial point clouds
were acquired and processed.

front of the robot in a natural pose and the system was prompted for a grasp action. For each
object, 10 grasps were performed and each grasp was considered valid only if the robot could
grasp the object steadily enough to lift it off the table surface and maintain the grasp for 10
seconds. Performance for both methods is reported in Table 2.2.

2.4.3 Results discussion

As far as the superquadric modeling stage is concerned (Table 2.1), there seems to be little
difference between the performance of optimization residual error between our method and
the one proposed by Vezzani et al.. Unintuitively, despite taking advantage of the analytical
gradient our method would seem to be slower in terms of computation time with respect to
simply using a finite differences approximation to compute the gradient of the cost function
in each iteration of the optimizer. This is mostly due to the analytical gradient of the complete
cost function being more expensive to compute with respect to the gradient computed through
finite differences. Nonetheless, we observed the outcome of the optimization to be more
stable with respect to the random sampling of the point cloud being fed into the process.

In terms of overall grasping performance, however, there are some observable differences
(Table 2.2) between the two approaches. While the success rate is solid for both approaches
for the majority of objects, the constraints imposed on the modeling of the superquadric
in our approach make a difference for some objects (e.g. Teddy Bear, Cup, Ball). In these
occurrences, the superquadric shapes found by the approach by Vezzani et al. compenetrate
the table surface and only approximate well the observable part of the object. In two instances,
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Object Ours Vezzani et al.

Cylinder 100% 100%
Teddy Bear 100% 80%
Octopus 100% 90%
Juice bottle 90% 100%
Soda can 90% 90%
Cup 60% 40%
Soap Dispenser 90% 80%
Box 1 100% 100%
Box 2 90% 100%
Box 3 100% 100%
Sponge 70% 60%
Cube 100% 100%
Ball 80% 60%
Small Toy Car 70% 50%
Toy Car 80% 70%

Table 2.2 Grasping test results for the tabletop scenario on the iCub robot. For each object,
10 grasps were executed. A grasp is considered valid only if the object can be lifted off the
tabletop surface and the grasp is maintained for 10 seconds.

this caused the robot hand to collide with the table while reaching for the target pose. By
definition of the superquadric constraints, this does not happen in our method. Moreover,
including a reachability component in the way our method ranks grasps (Equation 2.4) is a
simple and effective way to filter out grasps that are out of the robot workspace or that can
only be reached with unacceptable precision by the robot end effector.

In conclusion, testing the pipelines on the iCub robot shows that our approach is better
suited to tackle the grasping problem in the target scenario. The constraints imposed on
the superquadric in the modeling stage and on the grasp candidates in the grasp planning
stage pair well with the simple structure of the task (single object, natural poses, tabletop
setting). The tradeoff between computation time and stability of the obtained superquadrics
is acceptable, since the scenario does not involve a time-critical aspect. However, the method
proposed by Vezzani et al. would perform better in a more complex scene, for instance if the
scene were cluttered and the objects were piled together (and therefore lying in a pose that
might not be upright), since this would violate the assumptions we leverage in our method to
obtain a more reliable object modeling. Finally, this method would be more suitable with
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respect to ours if a higher rate of superquadric modeling were application-critical (e.g. a
moving conveyor belt, or a flying object that needs to be tracked).

2.5 Applications and dissemination

Integration in the IOL toolbox Our approach to superquadric grasp planning was devel-
oped in order to provide the iCub robot ecosystem with a relatively simple and easy to debug
grasping pipeline that could be used without prior knowledge of the 3D models of the objects
to grasp. In this sense, constraining the modeling of the objects in the scene was a deliberate
choice in the attempt to obtain a robust pipeline to be deployed in a well-defined scenario. In
fact, the target scenario of this pipeline (tabletop surface, isolated objects, simple household
objects) coincides with the target scenario of the IOL (Interactive Object Learning) toolbox
for iCub. The implementations of the superquadric fitting module3 and the cardinal point
grasp planner4 are currently part of the IOL suite of open source modules, and are used as a
standard grasping action.

The iCub grasping sandbox For its simplicity and interpretability, the superquadric cardi-
nal points grasp planner was chosen as an example approach for the Gazebo iCub Grasping
Sandbox [86]. Figure 2.3 shows a snapshot of the Gazebo simulated grasping demo.

2.5.1 Integration in the HRI framework

We proposed our superquadric grasp planner as a building block of the Human Robot
Interaction (HRI) proposed by Nguyen et al. [78]. Such framework draws elements of both
physical and social HRI (pHRI and sHRI, respectively) and integrates them in a single control
system. The features of such a system can be briefly summarized as follows:

• a human-centered visual perception system that employs human keypoint estimation
to map the space occupancy of the user in the robot workspace

• a Peripersonal Space representation

• a visuo-tactile reactive controller that allows the robot to safely react in both pre- and
post-collision phases by combining visual information about the state of the human
with tactile and skin sensor measurements

3https://github.com/robotology/find-superquadric
4https://github.com/robotology/cardinal-points-grasp

https://github.com/robotology/find-superquadric
https://github.com/robotology/cardinal-points-grasp
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• a simple symbolic “storage” of information about entities (humans, objects, tools) the
robot interacts with

• a simple behavior model supporting social interaction.

The architecture of the framework is shown in Figure 2.11. In the paper, the authors show the
effectiveness of the framework by having the robot perform simple tasks that involve social
and physical collaboration with a human partner. The experimental setup for such tasks is
shown in Figure 2.12. The tasks involve safe human-robot and robot-human object handover,
in which the robot is asked either to look for an object on a tabletop, grasp it and hand it
to the partner or, vice-versa, receive an object from the human and place it on the tabletop
surface for later use. In the context of this work, our proposed pipeline was successfully used
to pick up objects in the robot-human handover task.
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(a) (b)

(c) (d)

Figure 2.9 In our target scenario, the robot is put in front of a number of different objects. In
(a), object detection performed within camera frames from the left eye of the robot. When
iCub is prompted to grasp the Cube object, it focuses its attention on the target (if present)
and the segmented point cloud is acquired. In (b) the computed superquadric is superimposed
for visualization purposes to the object point cloud, and the best grasp pose is selected among
candidates for the Box object (c). The candidate grasp poses are drawn as TCP reference
frames (recall Figure 2.4 for a visual specification of the TCP with respect to the iCub hand),
and each pose is associated to its cost function. In the case of the box, the best feasible grasp
is a top grasp (denoted with a green cost function in (c)), and the robot executes it without
issues (d).
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Figure 2.10 Common household objects used in the experimental evaluation of the su-
perquadric cardinal grasp planning pipeline.

Disparity map

Skeleton3D

Human pose
estimation

Object extractor Object recognition

Right Left

Touch detector

Tactile sensor

Object property collector

PPS

pHRI Ctrl

motors

K
now

ledge
layer 

 
Sensorim

otor layer 
Physical layer 

Grasp pose
generator

Object point
cloud

Figure 2.11 Overview of the HRI framework proposed in [78]. At the physical level,
perception includes vision and touch. Low-level motor control allows specifying the position
trajectories of the joints exploiting a combination of pressure (from the tactile sensors)
and force information (from a number of 6-axis force-torque sensors located on the robot
structure) as additional feedback. The sensorimotor layer transforms raw sensory data into
symbolic tokens (e.g. object identities, posture, 3D shape, human body posture, etc.) that can
be easily stored into the “object property collector” database. This symbolic knowledge is
used to control action, as for example to avoid contacts rather than to grasp objects, through
reasoning modules (i.e. PPS, object point cloud, pHRI controller, and grasp pose planner).
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Figure 2.12 The Human Robot Collaboration (HRC) experimental setup for [78]. The
human is sitting next to Table 1 while the iCub is located near Table 2, effectively sharing the
workspace.



Chapter 3

Fast synthethic dataset generation for
instance detection and segmentation

Object localization is a fundamental component in the cognitive architecture of any robotic
system that is meant to interact with environments that are not entirely and precisely struc-
tured. Vision-based robot manipulation systems, as defined in the Introduction, are no
different. From industrial manipulators working in pick and place or assembly work cells to
service robots looking around an environment for a specific object, object localization is the
means through which they acquire the manipulation target and visually separate it from the
surrounding world.

Regardless of whether the vision system provides the robot with 2D, 2.5D or 3D informa-
tion about the environment, depending on the task and requirements the object localization
problem (according to the taxonomy by [27]) can be declined as one of the following:

• Object localization without classification when the task consists in finding the loca-
tion of target objects without explicitly detecting their category

• Object detection when the task consists in finding the bounding box (in 2D) or
bounding volume (in 3D) while also inferring information about the object category

• Object instance segmentation when the task consists in detecting objects and attribut-
ing to each instance the pixels or points belonging to it, separating them from the
environment.

In Chapter 1, we have shown how we employ instance segmentation to acquire an object
point cloud from the scene (Figure 2.7) and fit a superquadric shape on it to then plan for
grasps. In that case, performing instance segmentation on the point cloud was unfeasible
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due to the noisy depth map estimation of the background and we solved the problem by
segmenting object blobs in 2D. As explained in Section 2.3, we make use of the IOL
segmentation tools to perform this step. However, this method exploit bottom-up information
and is therefore viable as long as the objects in the scene do not occlude each other, i.e.
their 2D outlines do not touch. This tool determines object bounding boxes according to the
segmented blobs, and each blob is then classified. If the object outlines touch, as it happens
in cluttered scenarios, this method fails (as shown in detail in Figure 3.1).

Since visually cluttered scenarios are a target of this thesis work, the limitations of the IOL
(Interactive Object Learning suite1) segmentation capabilities had to be overcome. In the first
part of this Chapter, we show how we use a popular deep learning architecture for instance
segmentation to tackle this problem. These approaches outperform classical techniques for
object segmentation, because they can succesfully encode semantic information related to
the objects to deal with occlusions.

Deep learning methods, although powerful and scalable, are well-known to be especially
data-hungry with respect to other machine learning techniques. In the case of 2D object
segmentation, the annotations typically require bounding boxes information (for the object
detection task) and pixel-wise binary masks for each bounding box (for the segmentation
task). Although adding objects to an already existing dataset is a time-consuming and tedious
task, in robotics manipulation research it is a pretty common occurrence. While the usage of
synthetic rendered image datasets is an increasingly popular solution to this problem since
it automatically provides both RGB data and ground truth, large-scale rendering of tens of
thousands of images is not always feasible both in terms of hardware and time requirements.

The purpose of the work contained in this Chapter is to produce a highly versatile and
reusable tool that can be used as an enhanced instance segmentation tool in the IOL suite. In
particular, the feature of such tools are

• provide 2D instance segmentation capabilities in cluttered scenes

• the instance segmentation architecture must be modular in order to facilitate further
research and improvements

• provide a way to quickly generate new synthetic annotated datasets when objects are
added or removed from experiments

• when a new dataset is produced, the instance segmentation model must be quickly
fine-tunable on it.

1https://github.com/robotology/iol

https://github.com/robotology/iol
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(a) LBP-based instance segmentation of isolated objects.

(b) LBP-based instance segmentation of occluded objects.

Figure 3.1 2D instance detection using the IOL toolbox with the LBP segmentation tool. The
detection works correctly if the objects are isolated as is shown in (a). If the object outlines
touch each other, the heap of objects is segmented as a single instance and detection fails as
shown in (b).

In Section 3.1 we give a brief overview of state of the art methods for instance segmen-
tation and automated dataset generation for the task. Then, we describe our approach in
producing a tool with the aforementioned features (Section 3.2) by combining the Mask
R-CNN architecture [45] with a fast synthetic dataset generation method [30] and proceed
to describe experimental results to validate its effectiveness (Section 3.3). We then show
some applications of the instance segmentation tool in the context of robotic applications
and published work (Section 3.4) and, finally, make some remarks and give some pointers
for further research.

3.1 Related work

Before detailing our approach to the problem of quick dataset generation for instance
segmentation, we make a brief introduction to the state of the art on object segmentation
3.1.1 and synthetic dataset generation 3.1.2.
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3.1.1 Object segmentation methods

In general, the term object segmentation is used to refer to the task of labelling the pixels
belonging to some object class within an image (or points in a point cloud). However,
this is a very broad term and in order to avoid confusion the computer vision and robot
vision community typically distinguish between the semantic segmentation and instance

segmentation tasks. Semantic segmentation aims to classify each pixel pi according to to a
set S of classes, that can either be binary [89] or include a number of objects, without caring
for specific instances. In latest years, the problem has been tackled countless times with
a wide landscape of architectures [40, 51] that include fully convolutional neural network.
These methods have been steadily rising in popularity thanks to the possible applications in
autonomous vehicles and robotics. Instance segmentation instead aims to find the pixels pi

belonging to different objects, accounting for different instances of the same object. The
current state of the art methods for instance segmentation typically fall in one of three
families, that are outlined in the following.

Region-based methods. Broadly speaking, these feature a two-stage approach: while the
first stage is tasked with analyzing the input image and finding locations that might contain
objects, typically referred to as RoI (Region of Interest), the purpose of the second stage is to
establish, for each RoI, whether an object is present in the RoI at all and which pixels of the
RoI belong to it. Different approaches might output additional information for each RoI, e.g.
the object class most likely contained in the region. A landmark of the region-based methods
is Mask R-CNN [45], whose output for a given image consists in a list of bounding boxes, the
object class detected in each bounding box, and a binary segmentation mask that indicates
pixel-wise foreground/background classification within the bounding box. This architecture
is explained in more detailed in Section 3.2.1. Other approaches [23, 54] tackle the problem
in a similar way, although in these works the detection phase is performed after computing
the segmentation masks instead of in parallel (i.e. what happens with Mask R-CNN).

Pixel-based approaches. The common denominator of these methods is the formulation
and definition of an "auxiliary" information metric, computed for each pixel. After the metric
has been computed for every pixel in the input image, clustering algorithms are typically
used to gather pixels into object instances based on the distribution of such values. The works
by Bai and Urtasun and Wolf et al. [3, 124], for instance, combine the watershed transform
with a learned "energy field" pixel-wise metric to produce an energy map of the input image,
the intuition being that local minima in such a distribution correspond to object instances.
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Snake methods. These methods propose to progressively improve an initial, coarse esti-
mation of the object boundaries by optimizing an energy metric with respect to the contour
coordinates. An example of this class of methods is the work by Ling et al. [58], where a
graph convolutional neural network is employed to predict vertex-wise offsets for progressive
contour deformation.

3.1.2 Synthetic dataset generation for object detection and segmenta-
tion

Learning the parameters of complex models such as the ones mentioned in Section 3.1.1
requires massive amounts of annotated data. This quickly becomes expensive and impractical,
driving the effort either towards datasets that are either small and very task-focused (e.g.
YCB-Video [128], used for pose estimation of 21 objects) or large and more generalist
(e.g. MS COCO [57] or Pascal VOC [33]). Producing images through rendering is a well-
established solution for the dataset creation problem, as it alleviates the cost of manually
gathering and annotating vast amounts of examples. Generally speaking, we can distinguish
between approaches that produce images by either applying rendered object images on real
background images or vice versa [87, 80, 75] and approaches that render the entire scene
[94, 43, 36, 101]. Although the giant leaps made in the fields of GPU rendering, hardware
architectures and computer graphics have made possible photorealistic scene and object
renders [101], these methods are still expensive in terms of time and demanding in terms of
computational resources.

In some instances, e.g. in robotics and manipulation research, target objects change
frequently according to the task being tackled, and the aforementioned object detection and
segmentation methods, if present, must to be retrained. In such context, since the purpose of
the research is not to advance the object detection field, it is preferrable to quickly generate a
dataset containing a reduced number of objects in order to train a small model with respect
to generating a massive dataset containing a comprehensive amount of objects (e.g. all the
77 YCB [14] objects) in order to train a large model. The Cut, Paste and Learn approach
[30] fits the role of a fast dataset generator, since it proposes to synthesize dataset images
by applying existing objects cropped from real images on a number of backgrounds. While
this approach might seem naive, the authors demonstrate that it constitutes a feasible way to
augment or create brand new datasets for object detection. In Section 3.2.2 we show that this
intuition holds validity for the instance segmentation task as well.
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3.2 Methodology

The first part of this section is dedicated to a brief recall of the inner workings of the Mask
R-CNN instance segmentation architecture [45] and the Cut, Paste and Learn method [30].
The last part of the section is dedicated to the description of how we used and adapted these
building blocks to obtain our versatile instance segmentation tool for robotics.

3.2.1 Mask R-CNN

Mask R-CNN [45] is a deep instance segmentation framework that shares the general two-
stage structure of its predecessor Faster R-CNN [93], published by the same research group.
Both are aimed at detecting objects in images, with the former extending the functionality to
instance segmentation.

The acronym R-CNN stands for Region-based Convolutional Neural Network, which
suggests the two-stage nature of the approaches. Both Mask R-CNN and Faster R-CNN
employ

• a first stage aimed at scanning the image, extracting features and proposing region
proposals, i.e. box-bound portions of the image where objects are very likely to be
found. This stage is aptly named Region Proposal Stage

• a second stage, aimed at refining the region proposals and classifying the content
(object detection). Mask R-CNN also outputs a binary segmentation for the object
contained in each box.

The Mask R-CNN architecture, depicted in Figure 3.2, can be functionally divided in
four modules.

Network backbone. The term backbone typically refers to the CNN architecture used to
extract features from the input. Agarwal et al. [2] provides more insight on the nature of the
term, and how different architectures can share a backbone. As typical with CNNs, the lower
layers (i.e. closest to the input) extract low-level features such as edges, corners, and color
gradients, while the higher layers combine them in more expressive and complex features. In
the original proposal, the authors use ResNet-101 as backbone.

Region Proposal Network (RPN). The RPN is a lightweight network that uses the features
produced by the backbone to find rectangles that are likely to contain objects. Although
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different types of RPN exist, Mask R-CNN inherits its region proposal method from the
Faster R-CNN architecture. Briefly, the RPN here scans the feature maps in a very large
number of rectangular boxes with different size and aspect ratios. The scanned regions are
determined by sliding each box over the feature maps with different strides, in order to cover
as much of the image as possible with their receptive fields2. The output of the RPN is a list
of bounding boxes where objects are likely to be found.

Bounding box regressor and classifier. The feature maps are then cropped according to
the candidate regions and further processed in order to perform classification, i.e. establishing
the type of the detected object, and regression of the minimal bounding box containing it.
Since classifiers typically operate on a fixed input size, Mask R-CNN introduces an operation
called ROIAlign to accurately crop feature maps and fit their size and shape to the classifier
input. The Mask R-CNN classifier uses a softmax function to determine the likelihood of
each dataset class plus a background class. The candidate region is discarded if it is classified
as background.

Object segmentation. The main addition of Mask R-CNN over Faster R-CNN is the seg-
mentation stage, outputting a binary mask to indicate which pixels of the image contained in
each bounding box belong to the object and which belong to the background. Similarly to
the classification module, the feature maps are cropped according to the candidate regions
proposed by the RPN and resized to a fixed size (e.g. 28x28). The segmentation stage
is essentially a fully convolutional network that outputs, for each pixel in the region, the
likelihood of that pixel belonging to the foreground. The segmentation mask is then scaled
back to the size of the bounding box.

Beyond its performance with respect to state of the art competitors, Mask R-CNN
has some features that make it particularly interesting to our use case. First of all, the
segmentation is class-agnostic, i.e. there is only one segmentation CNN for all object classes.
This allows the bounding box regression, classification and segmentation tasks to happen in
parallel, with a gain in performance, but most importantly it means that for small changes in
the task and dataset we can effectively retrain only the classification and regression branches.
Another important feature of Mask R-CNN is its modular structure, meaning every module
can be swapped out with a different implementation of the same approach or even with a

2In deep learning literature, the region of an input that influences the activation value of a neuron is called
receptive field. In CNNs, a high-level feature element typically has a large receptive field in the input image due
to the convolutional nature of the architectures. Refer to Dumoulin and Visin [28] for an in-depth explanation.
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Figure 3.2 The Mask R-CNN architecture for instance segmentation.

different approach (provided the inputs and outputs remain coherent). This is in line with
the aim of the work presented in this Chapter, i.e. to provide a platform that can be quickly
adapted to different tasks or object sets and that allows for iterating on the design of one or
more modules without the need to reimplement the whole architecture.

3.2.2 Cut, Paste, and Learn

Cut, Paste and Learn [30] (abbreviated from now on as CPL) is a method to quickly create
or augment existing annotated datasets with custom objects in a way that does not hinder
the performance of models trained on them. The problem the authors originally wanted to
tackle was to augment existing datasets with particular instances of objects. For instance, the
MS COCO dataset for object detection and segmentation features a Bottle class, but it is not
annotated to distinguish between different bottle shapes, or soda brands. CPL would allow to
augment MS COCO with specific bottle instances, each to be detected as a different class.

The proposed approach consists in what the name suggests:

• cut object shapes (called patches in the paper) from BigBIRD [104] dataset images.
For the same objects, images from different viewpoints are used. Objects are segmented
from the background using depth information or a simple fully convolutional neural
network (in the case of translucent objects, where the depth measurements would fail)
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Figure 3.3 Different blending modes used by the Cut, Paste and Learn method. Image
sourced from the paper by Dwibedi et al. [30].

• paste the object patches on real kitchen backgrounds, applying augmentations such as
rotations, scaling and mirroring. To avoid creating boundary artifacts and jagged edges,
pasted patches are processed with a number of blending filters. A number of different
blending modes are suggested by the authors to make the training more robust to such
artifacts, i.e. median blur, gaussian blur and Poisson blending [90]

• learn, i.e. train state of the art object detection algorithms (such as Faster R-CNN) on
these synthetically-augmented datasets.

The claim of the authors, demonstrated in the paper, is that as the borders of the patches
are not too different from the rest of the image, the datasets created this way perform
remarkably well in real scenes if compared to a human-annotated dataset when used to train
the same algorithm. Their key intuition is that state of the art object detection methods based
on CNNs do not focus on global features (e.g. physical feasibility of the object pose in the
scene, validity of perspective projection, etc) but on local features such as edges, object
texture and color gradients. In our work, we aimed to verify if this claim still stands when
instance segmentation architectures (i.e. Mask R-CNN) are trained on datasets generated or
augmented in a similar way.

3.2.3 Our contribution

We now present the details of our approach in modifying CPL to automatically generate
annotated datasets in order to train a Mask R-CNN model.
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Implementation of the Mask R-CNN architecture

We used the out of the box implementation of Mask R-CNN by Abdulla [1] as a starting
point. Even though it features some minor implementative differences with respect to the
paper, we found its documentation to be more user-friendly and its codebase easier to fit to
our needs with respect to the original, and at the time of working on this subject (January
2019) the Detectron2 [126] implementation was not yet public. The most relevant difference
in the Mask R-CNN architecture we used with respect to the paper by He et al. is that we
used a different backbone, preferring a FPN-enhanced ResNet50 [56] to a ResNet101. The
choice was made considering that in our final use case, i.e. live object instance detection
on robotic setups, a smaller and lighter backbone would allow faster inference times, and
therefore a higher detection rate, when deployed on robot hardware.

Objects and backgrounds

The authors of the CPL paper used the BigBIRD [104] as a dataset to extract object patches
from. The availability of physical YCB [14] objects in our laboratory steered us towards the
use of such dataset instead; in fact, both BigBIRD and YCB datasets come as a set of object
RGB-D images taken from many different viewpoints (the physical turntable and camera rig
used to acquire the data is very similar). The subset of YCB objects chosen for this work
matches the 21-class subset used in the YCB-Video dataset for pose estimation [128], since
such dataset comes with images annotated with bounding boxes and segmentation masks for
each object instance in a scene, and is therefore suitable for an architecture such as Mask
R-CNN. In order to construct our instance segmentation synthetic dataset, we use real images
from the YCB object set, as described in Section 3.2.3. For each of the 21 YCB-Video object
classes, we used 600 frames from all the viewpoints available in the YCB dataset, using 1
frame out of 10 consequent frames for the validation set. In total, we used 11361 object
images (with relative segmentation masks) to generate object patches for the training set and
1239 for the validation set. Some of these images are shown in Figure 3.4.

In order to provide backgrounds to populate with object patches, we gathered a dataset of
real rooms and desks in the lab premises. We shot 19 videos in order to obtain frames for
the training sets and 2 videos for the test set. The video frames were downsampled, keeping
1 out of 10 frames in order to eliminate visual similarity between consequent frames. This
procedure generated 5373 background frames for the training set and 544 frames for the test
set. Some sample background scenes can be seen in Figure 3.4.
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Dataset generation using CPL

Here we describe the process we used to generate custom datasets to train Mask R-CNN for
our custom task. We mainly follow the CPL method as described in the paper, with some
modifications to adapt it to our use case. For the sake of brevity, from this point onwards we
shall refer to this type of dataset with the term tabletop dataset.

Extracting object patches and segmentation masks. The YCB object set comes with
RGB-D images and a segmentation mask for each object, extracted from depth measurement.
Since depth maps can be noisy near the object base, we used basic image processing tools
(e.g. binary morphology tools) to remove small outliers in the segmentation masks. Since
RGB and binary maps have the same size, object patches can easily be cropped from RGB
images with such masks (Figure 3.4).

Adding objects to backgrounds. For each dataset image to create, a background scene
and a number of object patches are randomly selected, respecting the training/test data split.
Although the number of objects that end up in each dataset image is random and can be
given lower and upper bounds, we decided to paste between 3 and 5 object patches in each
image. This is to mirror the structure of the YCB-Video dataset, that features an average
of object instances per frame just below 4. The first difference between the CPL method
and our own is how the location of the patches is chosen when they are added to the image.
While in the CPL paper this is sampled from 2D uniform distribution, we sample from a 2D
Gaussian centered in the image center. This encourages dense scenes with a cluster of objects
around the center, which is exactly our target scenario. Another difference with respect to
the paper is that, since we need the segmentation masks in order to train Mask R-CNN, each
RGB image Ii entry in the tabletop dataset is accompanied by another, gray-scale image Mi

containing the segmentation masks. These are formed by pasting the segmentation mask of
each object patch on a black image, attributing to each instance a different grey value, even
if it refers to instances of the same object. In case of overlap between objects in the RGB
images, the corresponding masks also overlap accordingly. Figure 3.4 shows an example of
such composite segmentation image.

Patch augmentations. Just as in the paper, we apply scaling and rotation to object patches
before pasting them. Regarding scale, scaling up or down a patch too much results in
interpolation artifact, therefore our method differs from the one used in the paper. In order to
keep resolutions and sharpness consistent, we first scale the backgrounds in order to obtain a
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similar sharpness to the YCB RGB-D images. This is done by resampling the background
image. Only then, we apply a modifier between 0.8 and 1.2 to the patch size and paste it on
the dataset image. Regarding rotation, we apply a random rotation sampled from a uniform
distribution ∈ [0,2π]. We also add a mirror augmentation to the patch with probability 0.5.

Handling occlusions. Since our target scenario involves cluttered object scenes, we allow
overlap between object patches (and relative segmentation masks). While the original CPL
method uses the Jaccard index3 of the object bounding boxes as a measure of occlusion
between objects, we use a custom occlusion metric Jt that accounts for both bounding boxes
and segmentation masks. If Pi and Pj are two overlapping patches, we define such metric as

Jt(Pi,Pj) =
1
2

Abb(Pi)∩Abb(Pj)

Abb(Pi)∪Abb(Pj)
+

1
2

Am(Pi)∩Am(Pj)

Am(Pi)∪Am(Pj)
(3.1)

where Abb(Pi) defines the area of the bounding box containing the i-th object patch and
Am(Pi) defines the area of the binary segmentation mask of the i-th patch. Both areas are
quantified in pixels. For our experiments, we observed max(Jt(Pi,Pj)) = 0.3 for any two
patches (i, j) in a synthesized image produce a good level of occlusion.

The original CPT method adds in un-labeled distractor objects to train the detection in a
more robust manner. In our own observations, however, this does not seem to lead to relevant
improvement in performance. Besides, the tabletop cluttered scenes we aim to segment do
not contain any object that is not in the dataset. Hence, we do not add any distractors to our
images.

Blending modes. The original CPL method employs 4 blending modes: Gaussian blur,
motion blur, Poisson blending and box filtering. We make no modifications to the blending
modes in our own work, and use them as the original authors intended. The blending is only
applied to the RGB data of the dataset images, as segmentation masks have no transparency
channel.

3.3 Experiments

We tested our approach by generating a tabletop database composed of 20K training images
and 2K test images. The parameters of the generator were tuned in order to produce images
resembling scenes from the target scenario:

3colloquially, the Jaccard index is also known as Intersection over Union, IoA.
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(a) Images from the YCB dataset

(b) Binary masks for the YCB dataset images

(c) Sample background scenes

(d) Sample images for the tabletop dataset

(e) Ground truth masks for the tabletop dataset images

Figure 3.4 Samples from each stage of the synthetic dataset creation procedure.
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(a) (b)

Figure 3.5 Samples of instance segmentation output from a real scene using a Mask R-CNN
model trained with our approach. In (a), the purple regions correspond to false detections of
the wood_block object. (b) shows the output of the network when trained on a similar dataset
that does not include the YCB wood_block object.

• Objects: 20 YCB-Video objects

• Blending modes: none, box, motion, gaussian, Poisson

• Objects per image: 3 to 5

• Augmentations: rotation ∈ [0,2π], scaling factor ∈ [0.8,1.2], mirror with probability
0.5

• Maximum allowed occlusion: max(Jt) = 0.3.

The generation of 22K images according to our method took 45 minutes using 8 cores
of an Intel Xeon server-grade processor. Note that YCB-Video includes 21 objects, while
we used 20. The last object is a wooden brick, and we did not include it in our experimental
dataset as it exhibits similar wood grain and texture to the desks that are present in the
background images. This would cause a massive number of false positives, as shown in
Figure 3.5.

As already mentioned in Section 3.2, we used a Mask R-CNN model with a ResNet50
Feature Pyramid Network backbone as target architecture. In order to minimize training time,
we used a set of weights pre-trained on MS COCO and fine-tuned only the network heads4,
i.e. classifier, bounding box regressor and segmentation mask CNN. While fine-tuning more

4This is a common practice, known in the deep learning literature as transfer learning. Training large
architecture models from scratch every time might not be feasible, in terms of required time and amount of
training data. To circumvent this, deep learning practicioners often "transfer the knowledge" between a model
learned on a large dataset to a similar architecture that has to be retrained for a different task, or dataset.
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Detection threshold Metric Tabletop synthetic dataset YCB-Video

70%
mAP 0.69 0.58
AP50 0.88 0.84
AP75 0.66 0.66

90%
mAP 0.66 0.55
AP50 0.83 0.79
AP75 0.76 0.64

Table 3.1 Quantitative performance of the Mask R-CNN when trained on the synthetic
tabletop dataset. Results are reported for two different detection thresholds, i.e. the minimum
confidence value for a single class.

stages of the model could produce higher segmentation performance, it would have taken
significantly longer to train. We used a simple early stopping technique to stop the training
when the validation error (half of the test images were held out for performance evaluation,
while the other half was used for validation) would register a significant rising trend. On
a nVidia P100 card, in most of the experiments the model would overfit after 2 hours of
training and 6 epochs.

In order to probe the generalization capabilities of a synthetic-only dataset training on
real scenes, we tested the model against the test set of the tabletop dataset used for training
and a subset of YCB-Video test sequences. We report the performance in terms of average
precision5, obtained by generating 10 different tabletop datasets and training 10 different
models. The evaluation is performed using two different minimum detection threshold, i.e.
the minimum confidence for a single class that must obtain in the classification stage in
ordered for the bounding box to not be discarded. Performance is reported in Table 3.1.

Quantitatively, the results indicate that the model fine-tuned on a dataset that only contains
images generated with a CPL method can be used on real scene images. As expected, the
model performs worse on YCB-Video test images than its own test set, but proves that the
CPL method can also be extended to instance segmentation tasks if the proper modifications
to the dataset generation phase are made.

Qualitatively, this approach turned out to be sufficient for our use case. The work outlined
in this Chapter was not meant to be a comprehensive and exhaustive study of the CPL

5Average precision (AP) is a widespread metric for measuring the performance of object detection ap-
proaches. It computes the precision value for different recall values. mAP indicates medium average precision,
and averages the precision for recall values from 0 to 1. For more details, refer to the Pascal VOC paper [33],
where a definition and explanation of these metrics is given.
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technique applied to the instance segmentation problem. As remarked in Section 3.5, it
was merely supposed to work well enough to surpass the limitations of the LBP-based
segmentation module. Moreover, while not performing as well as other state of the art
approaches in terms of either object detection rate or segmentation quality, reducing the
time and effort needed to fine-tune the network to a different object set or a different scene
composition proved to be a valid tool. In particular, its usefulness became clear in some
applications that are part of this Thesis and also in the context of collaborative efforts, as
outlined in the next Section.

3.4 Applications

In this Section, we show some applications of the work in this Chapter by briefly presenting
some instances where having a tool to quickly adapt a powerful instance segmentation model
to a custom dataset is fundamental.

3.4.1 Replacement of lbpExtract in the IOL suite

As explained in the introductory section to this Chapter, the standard segmentation tool in the
IOL suite of software modules for the iCub robot shows some limits in dealing with cluttered
scenes and surfaces with non-uniform textures. Although its usefulness is unquestionable
in some scenarios, in terms of both deployability and throughput, a YARP6 wrapper for
Mask R-CNN was inserted in the IOL suite of modules in order to take over the instance
segmentation functionality in more complex scenario. As described in Section 4.4 and shown
in Figure 4.6, a custom dataset for GRASPA objects using markers as distractors was created
and used to train a Mask R-CNN model to perform instance segmentation on the benchmark
layouts, where the lbpExtract module would fail.

3.4.2 Segmentation input for MaskUKF

We contributed to the development of MaskUKF[88], an approach to 6DoF pose estimation
from RGB-D images that proposes an alternative to state of the art pipelines. This work
proposes a step back from the current paradigm of end-to-end deep learning pose estimation
network by using a two stage system; the first stage consists in a Mask R-CNN model trained
on target objects and provides segmentation masks for detected objects whose pose has to

6YARP, or Yet Another Robot Platform, is the middleware used by the iCub software ecosystem.
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be detected, while the second stage uses this information to segment input RGB-D data
and estimate the object pose with an Unscented Kalman Filter [121]. The paper shows how
this approach not only outperforms some state of the art approaches, but also provides an
estimation of the object motion state and direction, that is crucial for closed loop control in
robotic applications.

Another noteworthy feature of MaskUKF is that it does not require a large dataset
annotated with 6D poses, since the instance segmentation network works in the 2D domain
and it is the only component that requires a training phase. Hence, adapting this model to
a different set of target objects is only a matter of training the Mask R-CNN network and
providing 3D models of the objects to the UKF stage. With our contribution, a dataset can be
quickly generated and the network can be fine-tuned in only a few epochs. This provides a
very convenient advantage over deep pose estimation architectures such as Pose-CNN [128]
or PoseRBPF [25] in terms of dataset size, type and training time requirements.

3.5 Remarks and Conclusions

In this Chapter, we have shown how we combined a relatively straightforward synthetic
dataset generator and a state of the art instance segmentation architecture to obtain a versatile
tool that enabled us to adapt to fast experiment prototyping and deployment on the robot
platform. Altough the generated images do not look nearly as good as their photorealistic
rendered counterparts and the trained models do not exhibit state of the art performance, its
purpose was mainly to provide a segmentation stage good enough for the tasks at hand. On
the basis of the applications in terms of both research work and lab demos, we believe our
approach fulfilled the needs that sparked its inception.

Even though this Thesis work is not focused on improving the state of the art on instance
segmentation tasks, we can point out one relevant shortcoming of the work outlined in this
Chapter. In our review of the object segmentation state of the art (Section 3.1.1), we mainly
focused on deep architectures that are trained in an end-to-end fashion using backpropagation
and stochastic gradient descent. Although it can be argued that the training can be limited
to the most high-level stages of the architecture like we did, effectively reducing training
time and transfering parameters learned on much larger datasets, this process weakens the
performance of the model quite significantly. Moreover, factoring in the time needed to
optimize the generator parameters and create a new dataset results in a method that can still
be too slow for many applications (e.g. in our target tasks, generating a dataset and training
the model on it took typically took no less than three hours with dedicated hardware).



3.5 Remarks and Conclusions 52

As a development and research direction for this work, we point to some approaches that
address online learning for robotic applications. Such methods employ hybrid architectures
that integrate CNNs a feature extractors and efficient kernel-based methods [98] to allow
online learning for object classification [84], object detection [65, 66] and instance segmen-
tation [16] tasks. This kind of approach solves the need for an annotated database and for
stochastic gradient optimization by freezing the feature extraction part of the end-to-end
architectures and allowing the user to simply acquire visual object samples from the robot
itself at runtime and wait about 20 minutes for the retraining.



Chapter 4

Benchmarking grasp planners

The pillars and defining features of the scientific method are the repeatability and repro-
ducibility of experiments, the objectivity in evaluation protocols and the clarity in the way
results are reported. In many disciplines, the use of benchmarks is a widespread and scientifi-
cally meaningful practice to validate the performance of different approaches to the same
task. In the computer vision field, for instance, the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) [24, 99] has become a landmark for researchers tackling image
classification and object detection tasks. Over the last decade, wildly different architectures
and algorithms have competed in the same evaluation environment, on the same images,
and their performance was quantified with the same metrics. Unfortunately, it is not yet
possible to draw a parallel to the ILSVRC in the context of robot manipulation. Although
robot challenges exist [20] and in recent years the use of standardized object sets has started
to become common practice, no dominant protocols and metrics to test grasping pipelines
have taken root yet. In an attempt to address this lack of standardization we have proposed
a benchmark to test the effectiveness of grasp planners and grasping pipelines on physical
robot setups. In Section 4.2 we describe in detail how the approach tackles the complexity of
such pipelines by proposing different metrics that account for the features and limits of the
test platform and an experimental protocol needed to evaluate such metrics. As an example
application (Sections 4.4 and 4.5) we have successfully deployed our benchmark on two very
different robot platforms in order to assess and compare the performance of several state of
the art grasp planners. The final section of this chapter contains a discussion on the results
we obtained, detailing how the indicators included in the proposed benchmarking approach
can provide insight into the performance of every step of the grasping pipelines. According
to the experience gathered with the deployment of the benchmark, we also propose possible
improvements towards a successive release.
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4.1 Fairly benchmarking grasp planners on real robots:
the GRASPA benchmark

In recent years, many robotic grasping pipelines have been proposed in the literature fea-
turing consistent differences in hypotheses, methodology and experimental evaluation, in
particular with respect to the objects and robotic platform used [10]. Given such variability,
reproducible test conditions, a standardized set of objects, a benchmarking protocol and a
suite of metrics are fundamental to make fair performance comparisons. Although a subset
of the manipulation research community has already converged on a standard set of objects
(i.e. the YCB object and model set [15, 14]), a widespread protocol and a system of metrics
for properly comparing different pipelines are still missing.

Validation of candidate grasps in simulation alone with force closure quality mea-
sures [95] has been proven to be unreliable [48]. Such a limitation, together with the
lack of a dominant metric, led to the common practice of empirically testing grasp pipelines
with a simple success rate over a given number of trials and objects [82, 74, 61, 62, 120].
However, this kind of binary metric is somewhat limited, since it has no means of decoupling
limitations of the algorithm itself from those of the test platform. To clarify this, consider the
following scenarios:

• the grasp planner is not aware of the robot workspace, and outputs a good grasp pose
that is not reachable with precision by the end effector

• the grasp planner is aware of the robot workspace, but it plans for a poor grasp pose

• the grasp planner is aware of the robot workspace and it outputs a good grasp pose, but
the camera extrinsics have not been calibrated properly.

In all of these, the experimenter using a simple binary success/failure metric would simply
record a failure, since telling the different scenarios apart is rarely straightforward in practice.
Testing the same pipeline on a different robot setup could easily lead to different results, and
the experimenter would record a different performance. While this is acceptable if the goal
of the experiment is simply to benchmark the performance of the overall system (e.g. the
system is being sold commercially as a package), on the other hand being able to decouple
and measure the performance of the single components is desirable (e.g. the experimenter is
benchmarking grasp planners). As a side benefit, this feature would enable the experimenter
to debug the system as well.
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According to these observations, we proposed GRASPA v1.0 (GRASPA is a Robot
Arm graSping Performance benchmArk), a benchmarking protocol and a set of metrics
to evaluate the performance of grasping pipelines. It aims to fairly compare methodologies
tested on different robots by measuring and accounting for platform limitations that might
hinder the overall performance. The proposed benchmark features:

• printable layouts of predefined grasping scenarios (populated with YCB object subsets)
equipped with localization markers to enhance test reproducibility

• a protocol to assess the robot reachability and the calibration of the vision system
within the defined grasping setup area

• a widely-used grasp quality metric to evaluate candidate grasping poses before their
physical execution

• a score to assess grasp stability during the physical execution on the robot

• possibility to benchmark the pipeline either in isolation or in clutter, with the definition
of a further metric to evaluate the obstacle avoidance in the latter case

• a composite score to quantify the overall performance of the pipeline.

We published on GitHub1 the code for computing the benchmark scores and instructions
on how to collect the required data. Additionally, we made available a Docker container
to ease installation and a cloud hosted environment to test the code without requiring any
installation.

We employed GRASPA to assess the performance of several grasping pipelines, on two
different robot setups. We used the iCub humanoid robot platform to benchmark the grasping
pipeline proposed in [78], while we used a Franka Emika Panda manipulator to benchmark
pipelines based on GPD [82], Dex-Net [62] and the superquadric grasp planner by Vezzani
et al. [120]. The results we obtained are available2 as well as an example implementation of
the procedure used to gathered such data.

4.1.1 State of the art and related work

In recent years, the success of data-driven methods has brought new ideas and advancements
in the field of robotic manipulation [10, 13, 82, 74, 61, 62], at the same time pushing the

1https://github.com/robotology/GRASPA-benchmark
2https://github.com/robotology-playground/GRASPA-test

https://github.com/robotology/GRASPA-benchmark.
https://github.com/robotology-playground/GRASPA-test
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community towards testing applications on common sets of both real objects [68, 47, 14] and
meshes [104, 17, 35] to develop benchmarking protocols. Notably, the YCB object set [14]
has had great impact on the robotic manipulation community, enhancing the reproducibility
of experiments by providing both physical and mesh representation of 77 objects drawn
from different categories (food, kitchen items, tools, shapes and task items). Despite the
complexity of grasping pipelines and the variability in test setup design, however, most of the
available benchmarks meant to be deployed on real robots are based on simple success/failure
binary evaluation metrics3.

Challenges such as the Amazon Picking Challenge [20] and RoboCup@Home [107]
proved to be quite effective in benchmarking entire autonomous pipelines by defining strict
rules and tasks. However, in these contexts the tasks themselves are often difficult to
reproduce and the number of accepted teams is typically small.

The VisGraB benchmark [49] presents a toolbox to evaluate vision-based grasp plan-
ners in simulation. VisGraB provides real stereo images of objects in various conditions
and a software environment to analyze the quality of user-planned grasps in a simulated
environment. A similar idea lead to the recent GraspNet-1Billion [35], where the authors
propose a large scale dataset of RGB-D images annotated with more than one billion grasp
poses and a unified evaluation system based on analytical metric computation in a simulated
environment. The dataset and evaluation system can be used for training grasp detectors (as
the authors propose in the paper) but also as a benchmark for other approaches. Despite the
usefulness of the datasets and the simulated environment evaluation suite, neither VisGraB
nor GraspNet-1Billion account for any real execution of the task, the type of the manipulator
and gripper or the aspects of grasping pipelines that lie beyond grasp detection (for instance
the visual calibration and robot workspace).

The ACRV benchmark [52] and the one published by Triantafyllou et al. [111] tackle
the issue of reproducibility by proposing a set of objects and layouts for industrial shelving
and pick and place applications. Both argue that physical execution of the task is essential
in evaluating the performance of pick and place pipelines, although their protocols do not
account for test platform limitations and the score metrics do not provide insight on the
performance of single pipeline steps.

3http://www.ycbbenchmarks.com/protocols-and-benchmarks

http://www.ycbbenchmarks.com/protocols-and-benchmarks/
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4.2 Benchmarking protocol

In this Section we outline the proposed benchmarking protocol, focusing on the design of the
grasping layouts, and the metrics to evaluate the individual pipeline steps.

4.2.1 Benchmark layouts

GRASPA is designed to evaluate grasping pipelines on an area located in front of the robot
with dimensions 594x420 mm (A2 standard paper size), resulting in the setup shown in Fig.
4.1. GRASPA uses a subset of the YCB object set (see Fig. 4.2), selected in order to include
a range of shapes, dimensions and challenges for the grasping task. We propose 3 scenarios
of increasing complexity in terms of number, shape and pose of the included objects (see Fig.
4.3a to 4.3c). Moreover, GRASPA can evaluate pipelines that work both in isolation (i.e. one
object at a time in the layout) and in clutter4 (i.e. all objects at the same time). In the latter
case, the added challenge is accounted for in the final score.

The 6D object poses are fixed and expressed with respect to the layout reference frame
shown in Fig. 4.3a to 4.3c. To this end, an ArUco marker board [41] is embedded in the
printable layouts to enable the experimenter5 to estimate the layout reference frame pose
in a robust way. Users need to express all the information collected during the benchmark
procedure with respect to the layout reference frame so as to be independent from the position
of the physical board. Finally, we provide printable layouts of dimensions 594x420 mm (i.e.
A2 format) that include markers and object footprints (e.g. Fig. 4.3d).

4.2.2 Reachability within the layouts

Depending on the testing platform, the robot arm size, mechanical structure or joint range
limits may impair the capability of the end-effector to reach some layout regions with
accuracy. Therefore, grasps in these regions might fail regardless of the performance of
the planner. To avoid penalizing planners for the limits of the test platform, an index of
reachability over the layout area must be included in the benchmark. In GRASPA, we adopt
an empirical approximation of such measure by dividing the layout area in 6 regions, each
with a reachability score S0i for i = 1, . . . ,6 (Fig. 4.4a). The reachability score S0i for each
region is defined over a set of poses uniformly distributed over the layout area with different

4In this work, we refer to clutter as a situation where the objects are visually occluded (as long as a top
down view is not used) and the presence of objects limits the task space of the robot while planning for grasp
and avoiding collisions.

5From this point onwards, we refer to the experimenter as "the user".



4.2 Benchmarking protocol 58

(a) iCub robot setup. (b) Panda robot setup.

Figure 4.1 The robot setups where GRASPA was deployed.

Figure 4.2 The subset of YCB objects selected for GRASPA 1.0.
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(a) Rendered view of layout 0. (b) Rendered view of layout 1.

(c) Rendered view of layout 2. (d) Printout of layout 0.

Figure 4.3 From (a) to (c): the 3D renders of the three layouts defined within the benchmark.
(d) shows one of the provided printable boards that allow for reproducibile object placement
on a physical setup.
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(a) Reachability/calibration regions. (b) Reachability pose set 0.

(c) Reachability pose set 1. (d) Reachability pose set 2.

Figure 4.4 (a) Regions used to determine the robot reachability and the calibration of the
vision system over the layouts. (b) to (d) Poses the end effector of the robot has to reach for
in order to test how well its workspace covers the layouts. Reachability pose set 1 is also
used later to test camera calibration.

orientations (Fig. 4.4b). The user makes the robot reach (or attempt to) for these pre-defined
poses and then acquire the ones actually reached by querying the forward kinematics. Poses
placed on the boundary of contiguous regions are considered to belong to both regions.

The score S0i for the i-th region is given by:

S0i =
Nreached

i
Ntot

i
∈ [0,1], (4.1)

where Nreached
i is the number of poses in region i actually reached by the robot with a given

accuracy and Ntot
i is the number of poses belonging to the region i.

A pose l is considered to be reached if the position and orientation errors (E p
l , Eo

l ) are
smaller than the thresholds (τr

p,τ
r
o) defined by the user. In Section 4.3.2 we elaborate more
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on such thresholds. The errors are computed as follows:

E p
l = ∥preached

l − pdesired
l ∥, (4.2)

Eo
l = sin(αerror

l ), (4.3)

where αerror
l is the angle of the equivalent axis-angle representation of the matrix:

Rerror
l = Rdesired

l Rreached
l , (4.4)

with Rdesired
l and Rreached

l respectively the desired and reached orientation matrix relative to
pose l [103].

For each benchmark layout L ∈ {0,1,2}, we associate to each object k = 1, . . . ,Nob j
L

(with Nob ject
L being the number of objects included in layout L) the reachability score S0i∗ of

the region i∗ where the object is located. For simplicity, an object belongs to the region its
center of mass falls into. Thus, for each object k = 1, . . . ,Nob jects

L in each layout we obtain
the reachability score S0L

k :

S0L
k = S0i∗ =

Nreached
i∗

Ntot
i∗

∈ [0,1]. (4.5)

4.2.3 Camera calibration within the layouts

Drawing a parallel to the reachability problem, GRASPA aims to assess the precision of the
manipulator when reaching for poses acquired by the visual system in the camera reference
frame. The main goal of this stage is to assess the calibration of the camera extrinsics, i.e.
in this case the pose of the camera with respect to some robot link (robot-mounted camera)
or the scene reference frame (world-mounted camera). In the former case, the calibration
being checked is the pose of the camera with respect to the robot links (e.g. Figure 4.5a),
while in the latter the camera is mounted outside of the robot arm links so that its pose with
respect to the world reference frame does not change when the robot arm moves (e.g. Figure
4.5). Our benchmark defines a camera calibration score S1i for each i-th region introduced
in the Section 4.2.2. In order to evaluate the scores S1i, the robot is asked to reach a subset
of the poses defined for the reachability evaluation (Fig. 4.4c) and the reached poses are
compared to the targets. Similarly to the reachability stage, these target poses are defined
with respect to the layout reference frame. This stage however differs from the reachability
stage in the fact that the 6D pose reached by the end-effector have to be acquired through the
visual system and transformed in the GRASPA board reference frame. A straightforward
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rTc

(a) Robot-mounted camera

rTc

(b) World-mounted camera

Figure 4.5 Difference between robot-mounted camera and world-mounted camera. In (a)
rTc denotes the transformation between root frame and camera frame, expressed in the root
reference frame.

way for the user to detect the pose of the end effector is, for instance, by affixing a fiducial
marker to it in a known position and orientation with respect to the kinematic chain.

The score S1i is then computed as:

S1i =
Nreached

i
Ntot

i
∈ [0,1], (4.6)

where Nreached
i is the number of poses in region i actually reached by the robot with a given

accuracy and Ntot
i is the number of poses belonging to the region i.

A pose l is considered to be reached if the position and orientation errors (E p
l , Eo

l )

(computed according to Eq. (4.2) - (4.4)) are smaller than respective thresholds (τc
p,τ

c
o)

defined by the user. As mentioned, the only difference with respect to the scores S0i is that
the poses actually reached by the robot are acquired through the robot vision system and not
from the forward kinematics.

Also in this case, for each benchmark layout L ∈ {0,1,2}, we associate to each object
k = 1, . . . ,Nob j

L the camera-calibration score S1i∗ of the region i∗ where the object is located.
Thus, for each object k = 1, . . . ,Nob j

L we obtain the camera calibration score S1L
k :

S1L
k = S1i∗ =

Nreached
i∗

Ntot
i∗

∈ [0,1]. (4.7)

Since GRASPA layouts are defined with respect to the board reference frame, the bench-
mark protocol can be applied to grasping pipelines that do not process visual input (provided
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the user can reliably define a transform between the robot and the board reference frames).
In such case, the benchmark does not take into account the scores S1L

k .

4.2.4 Graspability

Different robots might have diverse grasping capabilities due to the arm maximum payload
and the end-effector design and size. According to the fairness claims of GRASPA, grasping
pipelines should not be benchmarked on objects that are impossible for the robot to manipu-
late. By doing otherwise, the grasping attempt would result in an automatic failure for one of
or both the following reasons:

• the grasp planner cannot find a feasible candidate. This can happen when the gripper
fingers cannot encompass any object feature, e.g. when the object is too large

• the object weight exceeds the robot payload. Even if a good grasp can be found, it is
impossible for the robot to successfully grasp and lift the object

GRASPA encodes this information in the graspability score S2L
k = pL

k ∧gL
k , defined for each

object k = 1, . . . ,Nob ject
L in layout L. pL

k is 1 if the weight of the object is compatible with the
robot payload and 0 otherwise. gL

k is 1 if the end effector aperture is larger than the smaller
dimension of the object and 0 otherwise. For simple objects such as a box, this dimension
is the shorter edge of the enclosing 3D bounding box, while for complex objects (e.g. the
power drill) this can be the diameter of the grip. Objects can also be declared un-graspable
by other criteria, if sufficient motivation is given.

4.2.5 Grasp quality

This index evaluates grasps planned by the pipeline before execution, regardless of reachabil-
ity. GRASPA uses a metric that relies on computation of the Grasp Wrench Space (GWS)
and Object Wrench Space (OWS) [11]. This metric, while not being the most robust to
uncertainty [48], is still widely used in many grasping toolboxes such as Simox, OpenRAVE
and GraspIt! [112, 26, 72].

The user is required to provide the kinematic structure and the collision mesh model
of their end-effector. Grasps have to be parametrized in terms of end effector pose and
pregrasp configuration of the joints, making GRASPA compatible with both grippers and
multifingered hands. Grasps are tested by first moving the end effector model to the desired
pose with the desired pregrasp configuration, and then simulating the finger closure motion
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(in case of multifingered hands, joints are moved with equal velocity). When contact points
are detected (via collisions between the object and end effector meshes), joints attached to
the links that have collided are stopped. While this approach is straightforward for power
grasps, pipelines that plan the contact locations need to be tested by setting the final hand
configuration as a pregrasp.

We assume a hard point contact with friction model [77] with a fixed friction coefficient.
Non-graspable objects (according to Subsection 4.2.4) do not receive any score. The grasp

quality S̄3L
k for each graspable object k = 1, . . . ,Nob ject

L in layout L can be expressed as

S̄3L
k =

1
T

T

∑
t=1

( r̄(GWSk,t)

r(OWSk)

)
∈ [0,1], (4.8)

where {r̄(GWSk,t),r(OWSk)} are the radii of the largest spheres contained, respectively:

• in the GWS defined by the t-th grasp planned for the k-th object. r̄(GWSt,k) is obtained
by perturbing the grasping pose (before closing the fingers) in both position and
orientation to ensure robustness, and then averaging the results;

• in the OWS of the k-th object, and is computed regardless of the grasp.

GRASPA v1.0 uses the implementation of the aforementioned metric included in Grasp-
Studio [112].

4.2.6 Grasp execution and stability

GRASPA combines all the previously defined scores with grasp executions on physical
robots. A binary success score S̄4L

k for each object k = 1, . . . ,Nob ject
L in layout L is evaluated

over T = 5 grasp executions:

S̄4L
k =

1
T

T

∑
t=1

(
S4L

k,t

)
, (4.9)

where

S4L
k,t =

1, if object k has been grasped at trial t,

0, otherwise.

The object is considered grasped if it can be lifted by δp = 0.15 m and held without falling
for at least five seconds. Contact slip is acceptable as long as it does not ultimately cause the
object to fall. The score S̄4L

k can be evaluated by executing both grasping in isolation or in
the cluttered scene, assuming the same modality is kept for each object and layout.
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Finally, the benchmark evaluates the stability of the grasp during the execution of a fixed
trajectory. This trajectory simply consists of rotations around the end effector approach axis
and in the vertical plane such axis passes through. Given the grasping pose (pgr,Rgr), with
pgr ∈ R3 as position and Rgr ∈ SO(3) as the rotation matrix representing the orientation, the
trajectory consists of 5 waypoints:

p0 = pgr +δp R0 = Rgr (4.10)

w1 : p1 = p0 R1 = Rgr ·R+ (4.11)

w2 : p2 = p0 R2 = Rgr (4.12)

w3 : p3 = p0 R3 = Rgr ·R− (4.13)

w4 : p4 = p0 R4 = Rgr (4.14)

w5 : p5 = p0 R5 = Rgr ·R⊥ (4.15)

where R+/− represents a rotation of±45 degrees around the approach axis of the end effector,
and R⊥ a rotation of 30 degrees (towards the table surface) in the vertical plane that contains
this axis. The reference duration for each rotation trajectory is two seconds. We define the
grasp stability score S̄5L

k for each object k = 1, . . . ,Nob ject
L in layout L over T as:

S̄5L
k =

1
T

T

∑
t=1

(
Nreached

w,t

Ntot
w

)
∈ [0,1], (4.16)

where Nreached
w,t is the number of the trajectory waypoints reached without dropping the object

at trial t and Ntot
w = 5 is the total number of the trajectory waypoints. Again, contact slip is

acceptable if it does not lead to a fall.
If the pipeline under test allows for it, GRASPA can measure its ability to grasp while

avoiding other objects. We define the obstacle avoidance score S̄6L
k for k = 1, . . . ,Nob j

L over
T trials:

S̄6L
k =

1
T

T

∑
t=1

(
1−

Nhit,t

Nob j
L

)
∈ [0,1], (4.17)

where Nhit,t is the number of objects hit by the robot while approaching the target object at
trial t. The score is 1 if the robot is able to avoid all the objects and 0 if it collides with every
object. If no obstacle avoidance is accounted for, the objects must be placed on the layout
and grasped one at a time and S6 is not computed. We refer to this case as benchmarking in

isolation as opposed to benchmarking in clutter.
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4.3 Reporting benchmark scores

In this Section, we explain how the single step metrics are combined into a single composite
score. We outline how the benchmark scores are reported, giving guidelines on how to
interpret the outcome and how to choose the required user-defined thresholds.

4.3.1 Final composite score and summary table

All the scores proposed thus far contribute to the computation of a composite score S̄L

to evaluate the grasping pipeline performance in each layout L, accounting for the limits
of the testing platform. To this aim, the final score is computed considering only objects
m = 1, . . . ,Mob j

L such that:

• m is graspable by the robot, i.e. S2L
m = 1

• m is in a reachable region, i.e. S0L
m > 0.5. A region is not considered to be reachable if

less than half the test poses were not reached with precision

• m is in a region with a good calibration of the vision system, where at least half the
calibration poses were reached with acceptable precision, i.e. S1L

m > 0.5.

The expression of the final score S̄L is the following:

S̄L =
1

Mob j
L

Mob j
L

∑
m=1

S̄L
m, (4.18)

where, if benchmarking with objects in isolation:

S̄L
m =

1
T

T

∑
t=1

(S3L
m,t +S5L

m,t) ·S4L
m,t ∈ [0,2], (4.19)

whereas, if benchmarking in clutter:

S̄L
m =

1
T

T

∑
t=1

(S3L
m,t +S5L

m,t +S6L
m,t) ·S4L

m,t ∈ [0,3]. (4.20)

where L indicates the layout, m indicates the object and t indicates the trial, S3L
m,t is the

grasp quality score, S5L
m,t is the grasp stability score, S6L

m,t is the obstacle avoidance score
(if the pipeline allows for it), and S4L

m,t = 1 only if the object has been successfully grasped
at trial t. The scores computed by the benchmark are summarized in Table 4.1.
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The final output of the benchmark consists of a summary table (see Table 4.4 for an
example). In the second column, the value of the final score SL for each layout L = 0,1,2 is
reported. In the rest of the table, each row collects all the scores computed for each object
k = 1, . . . ,Nob j,L. Analyzing such scores can give insight about the performance of different
parts of the grasping pipeline, down to the hardware. For instance, if the grasp quality score

S̄3L
k is high but the robot could not grasp the object (S̄4L

k = 0), the reachability score S0L
k and

the camera-calibration score S1L
k can outline whether the vision system calibration or the

robot reachability are to blame for the failure in the execution of the grasp. On the other
hand, if S̄3L

k is low, but S̄4L
k and S5L

k are large, this may indicate that the physical execution is
able to compensate for the poor grasp quality (e.g. the gripper is compliant and can conform
to the object, or the object pose changes during the grasp execution).

4.3.2 Defining reachability and camera calibration thresholds

As previously mentioned, GRASPA requires position and orientation thresholds used during
the reaching test ((τr

p,τ
r
o), see Paragraph 4.2.2) and the camera calibration test ((τc

p,τ
c
o),

see Paragraph 4.2.3). Since GRASPA is meant to adapt to different robot platforms, these
thresholds cannot be fixed a priori by the benchmark and have to be chosen by the user
according to the robot platform and vision system. The pair (τr

p,τ
r
o) defines how precise

the robot kinematics is over the GRASPA layout space. For dexterous and precise arms
(e.g. industrial manipulators), small values of the reachability thresholds are advisable (e.g.
τr

p = 0.005 m,τr
o = 0.1 rad). For less precise robots (e.g. research-oriented platforms such

as iCub, PR2, Baxter) higher values are needed (e.g. τr
p = 0.02 m,τr

o = 0.5 rad). On the
other hand, (τc

p,τ
c
o) depend on camera resolution and the method used to visually infer the

end effector pose. Upper bounds on these parameters are τr
p = 0.05 m,τr

o = 0.5 rad, that we
found borderline acceptable for low-resolution cameras such as the ones used on the iCub
humanoid robot (320x240 pixels).

Note that the aforementioned thresholds are mostly useful in the presence of hardware
limits, inverse kinematics solver or calibration. In this scenario, low thresholds will likely
mark some regions as unreachable or not well calibrated and will allow only grasps in regions
where their execution can be more precise. With high thresholds, grasps will be executed and
scored in regions where lack of precision might lead to unstable grasps and unfair scoring.
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Figure 4.6 The cardinal point grasp detection pipeline as deployed on the iCub platform.

4.4 Deployment of the benchmark - iCub humanoid robot

In the upcoming two sections we give an overview of the experimental setups for the
deployment of GRASPA on real robots. We used the iCub robot platform to benchmark a
grasping pipeline based on the Cardinal Point Grasp approach outlined in Chapter 2 and in
Nguyen et al. [78]. Since we were mainly interested in the performance of the methods in
the simplest case, we benchmarked the pipelines on isolated GRASPA objects.

4.4.1 Pipeline description - Cardinal Point Grasps

What follows is a brief overview of the structure of the grasping pipeline set up on the
iCub humanoid robot. Since it replicates the approach proposed in Section 2.2.3, it closely
resembles the pipeline outlined in 2.3. A functional block diagram of the pipeline used in
this instance is shown in Figure 4.6, and we hereby give some detail to better document the
experimental setup.

Stereo matching. One of the features of the iCub robot is a stereo camera rig built in the
robot head, equipped with a 320x240 resolution color camera in each eye. This setup consists
of 3 actuated DoF in the robot neck to grant roll, pitch and yaw capabilities to the head, and
3 actuated DoF in order to model the human oculomotor system (tilt, version and vergence).
More details about this system are provided in Section 2.3.

2D-driven point cloud segmentation. Due to technical limitations of the aforementioned
setup, effectively and reliably segmenting the object from the tabletop surface in the point
cloud domain proved to be infeasible. Hence, we overcame this limitation by performing
2D object segmentation and using this information to parse the depth map. While using
GRASPA, however, objects can visually occlude each other and the 2D segmentation method
used for the experimental validation of the Cardinal Point Grasp planner (described in Section
2.3) cannot be used in this instance. To overcome this limitation, we adapt an off-the-shelf
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Tensorflow implementation [1] of Mask R-CNN [45] in order to process monocular images
and obtain 2D segmentation masks of the objects. We use a ResNet-50 backbone pre-trained
on MS Coco, further training it on a subset of YCB-Video [128] and then fine-tuning it on
a custom synthetic dataset. The latter was obtained by augmenting real images with YCB
object crops following the Cut, Paste and Learn approach [30] enhanced with segmentation
masks. The dataset features the 16 YCB objects used in GRASPA as classes, and ArUco
marker crops as distractors. Further details on how we generate custom synthetic datasets
can be found in 3.2.2.

Superquadric computation. As described in [78] and Section 2.2.3 we approximate the
object with the smallest superquadric fitting the point cloud. The superquadric and its 6D
pose are estimated by solving a constrained optimization problem, imposing one of the axes
of the superquadric to be perpendicular to the table surface.

Grasp pose candidate proposal and ranking We generate grasping pose candidates from
the cardinal points of the superquadric (i.e. where axes intersect the surface). The candidates
are then ranked according to the superquadric and hand size, and the capability of the robot
to reach them with sufficient accuracy. Further details can be found in 2.2.3 and Nguyen et al.
[78].

Grasp execution The grasp execution was split in two concatenated trajectories. The first
trajectory consists in an approach motion, i.e. the robot reaches for a pose identical to the
target pose (pgr,Rgr) translated along the grasp approach axis, while the second trajectory
brings the robot hand to the the target pose itself and proceeds to close around the object.
The closure is performed by moving all the finger joints from the pregrasp configuration, i.e.
stretched fingers and opposed thumb, with the same angular velocity until a strain threshold
is reached.

4.4.2 Data collection

We hereby outline how we deployed the protocol to collect the benchmark data from the real
robot. The explanation is split in subsections, each pertaining to a single GRASPA indicator.
The code necessary to these experiments has been collected, together with experiment data,
in a public repository6.

6https://github.com/robotology-playground/GRASPA-test

https://github.com/robotology-playground/GRASPA-test
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Reachability score S0. Data for the computation of the reachability scores S0i has been
acquired by having iCub reach for the poses defined within the benchmark with its right hand,
querying the forward kinematics to obtain the poses that were actually reached. We used
OpenCV in order to estimate the pose of the layout marker boards (Fig. 4.3) with respect to
the robot. We used this information to express the target poses in the robot reference frame
and save the reached poses in the layout reference frame. Fig. 4.7 shows some samples of
the outcome.

(a) Desired poses (Reachability pose set 1) (b) Reached poses (Reachability pose set 1)

Figure 4.7 Reachability test results: comparison between the objective poses and those
actually reached by iCub.

Camera-calibration score S1. Data for the computation of the camera calibration score
S0 was obtained by following a similar procedure. As imposed by the benchmarking protocol,
the reached poses have to be acquired through visual means instead of simply querying the
forward kinematics. Since the whole grasping pipeline relies on the stereo camera rig, the
camera calibration score basically tests the camera extrinsics with respect to the robot root
reference frame. This is critical for humanoid robots such as iCub, since the camera rig
resides at the end of a kinematic chain that can be quite articulated. In the iCub case, the
kinematic chain between the eyes and the root reference frame consists of 9 DoF (3 for
the torso, 3 for the neck, 3 for the eyes). In order to visually detect the pose of the hand,
we resorted to affixing two ArUco markers located on the back and the side of the hand
(Figure 4.8).

Graspability S2. We considered an object to be graspable by the iCub if at least one of its
dimensions was smaller than the iCub hand aperture and its weight was compatible with the
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(a) (b)

Figure 4.8 Detection of the iCub TCP using fiducial markers. In (a), ArUco fiducial marker
placement on the iCub hand. In (b) visual estimation of the iCub TCP (blue axis pointing
down) through detection of the marker pose (blue axis pointing up).

Figure 4.9 Rendering of the grasp poses planned for layout 0 with the tested algorithm on
the iCub humanoid. For visual clarity, only one pose is rendered for each object.

maximum arm payload (0.5 kg). We considered un-graspable by iCub objects that have a
very low profile (i.e. scissors, clamp) when laid flat on the table.

Grasp Quality S3. For each object visible in each layout, we planned for T = 5 6D
grasping poses according to Section 4.4.1, expressed in the layout reference frame by using
the estimated pose of the ArUco marker board. During the grasp quality computation using
GWS and OWS, the iCub hand used in the GraspStudio [112] suite has been modeled from
the official CAD in order to make contact detection as similar as possible to the real case. A
graphical rendering of some of the planned poses can be seen in Figure 4.9.

Binary Success and Stability scores S4,S5. We executed in isolation the T = 5 grasps
computed by the algorithm for each object. Whenever the robot managed to grasp the object
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we also had it execute the trajectory defined in Section 4.2.6. We added a layer of rubber on
the robot fingertip to actually have friction on the contact points.

4.5 Deployment of the benchmark - Franka Emika Robot
Arm

Explicitly modeling graspable objects as superquadrics turned out to be quite reliable on
iCub, since the mechanical complexity and adaptability of its underactuated hand allow
power grasps to be advantageous. However, other state of the art grasp planners are designed
to perform precision picking tasks using parallel jaw grippers and require precise depth
sensing cameras. The reason we decided to deploy GRASPA on a different robot setup is
twofold: on the one hand, it allowed us to avoid designing and installing major upgrades on
the robot hardware; on the other hand, it allowed us to prove the claim that the GRASPA
benchmark is adaptable to different robot setups and work cells. Additionally, since the
Panda arm comes by default with a parallel-jaw gripper, this also enabled us to evaluate and
benchmark grasping pipelines designed for this class of end effector natively, without having
to adapt them to a humanoid hand.

We used a 7 DoF robot arm to benchmark a simple pipeline based on two state of the art
grasp planners, namely GPD [82] and Dex-Net [62]. These were chosen for the recognition
and impact on the grasping community, relevance to the proposed grasping task and code
availability. Similarly to the benchmarking on iCub, we considered the simplest scenario and
benchmarked the pipelines on isolated objects.

GPD. This approach, proposed by Pas et al., detects 6 DoF grasps on point clouds, assuming
a parallel jaw gripper. It works by uniformly sampling the point cloud (that can be either
partial or complete) and creating a candidate in each sampled location by setting the approach
direction to the surface normal. The grasp candidates are filtered out using a list of geometric
criteria such as approach direction, gripper size, maximum aperture and desired workspace.
Eventually, the quality of each candidate is estimated by considering the cloud points that
fall into the grasped volume of the gripper and projecting them in different ways to obtain
a tensor that is fed into a simple CNN. The output of the CNN is the grasp quality, and it
is trained on a number of synthetic grasps. For more details, refer to the paper [82]. An
example of a GPD-generated grasp can be found in 4.16b.
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Dex-Net. Proposed by Mahler et al., Dex-Net is a planar grasp detector that consumes range
images (in the form of depth maps) in order to perform bin-picking tasks in cluttered scenes.
It requires a setup where the camera is mounted on the top of the scene, with its image plane
parallel to the scene background (e.g. table or bin floor), and produces 4 DoF planar grasps
(i.e. the approach axis is orthogonal to the horizontal scene plane) that are parametrized with
3D position and angle around the approach axis. Dex-Net has seen different revisions and
the addition of features in recent years (e.g. vacuum instead of parallel jaw gripper structure,
or a mix of the two with different policies) but at its core it is an end-to-end grasping pipeline
trained on a synthethic grasp database (also proposed by the same authors [64]) that uses
CNNs to extract features from depth maps and propose a number of grasp candidates with
associated estimated quality. An example of a DexNet-generated grasp can be found in 4.16a.

4.5.1 Pipeline description - Dex-Net and GPD grasp planners

The experimental setup consists of a Franka Emika Panda using the stock Franka Hand as
a gripper. An Intel Realsense D415 was attached to the end effector in order to acquire
RGBD and point cloud from the scene (Figure 4.1b). The stock Franka Hand fingertips are
made of a stiff rubber material and require quite a large clamping force in order to generate
friction. While this does not constitute a problem for some YCB objects used in GRASPA
(e.g. hammer), repeated grasps would have damaged some of the more fragile objects (e.g.
cardboard boxes). We applied some soft rubber tape on the fingertips in order to limit the
amount of force applied during a grasp to the minimum the Franka Hand can sense (about 10
N) and still generate friction on the contacts.

Since the experimental setup would be the same for different grasp planners, we designed
a lightweight software framework aimed at wrapping different implementations of grasp
planners and reusing as many software modules of the same pipeline. The main components
of the frameworks are the following:

• a Python package that provides base classes and helper functions for camera data
and grasp poses. It also defines a common interface for any grasp planner that deals
with such data. This way, any grasp planner that consumes RGB images, depth maps
or scene point clouds can inherit the same interface class and implement a number
of common methods (e.g. planning for grasps given camera data, or displaying the
planned grasps). This package has very little dependencies and can wrap planners
written in Python (natively) and other languages (through compilable bindings)
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Figure 4.10 The grasp planner benchmarking pipeline as deployed on the Franka Emika
Panda setup.

• a ROS-based grasp planning server that uses the Python common interface to expose
the grasp planning functionality to other nodes through a standard request (containing
visual data and camera parameters) and response (6D grasp candidates)

• a ROS-based grasping benchmark manager that receives 3D visual data from the
camera and ensures coherent communication between the grasp planner and the motion
planning stack.

At the time of writing, the grasp planners whose functionality has been implemented in
the benchmarking framework are Dex-Net [62], GPD [82] and the 6D superquadric-based
grasp planner proposed by Vezzani et al. [120].

The rest of the pipeline (see Figure 4.10 for a functional representation of the different
blocks) features a point cloud segmentation stage and a motion planning stack.

Point cloud segmentation. This simple ROS node consumes point clouds coming from the
camera and filters it in order to remove the table plane, restricting the perceived workspace
whatever object is on top of the GRASPA board in front of the robot. Tabletop plane removal
is performed by fitting a plane to the point cloud through a random sample consensus
(RANSAC) algorithm.

Motion planning stack. This ROS node receives input from the user, the point cloud
segmentation module and the grasping benchmark manager. It is built on top of the MoveIt!
framework and its function is to compute a feasible trajectory for all the joints, given any
target for the end effector in the 6D space while avoiding collision with itself and the
workbench. This node also detects the pose of the GRASPA marker board with respect to the
robot root reference frame.
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4.5.2 Data collection

Similarly to Section 4.4.2, we now document the experimental procedure carried out to collect
the benchmark data from the real robot setup, according to the GRASPA protocol. Again,
we split the explanation in subsections, each pertaining to a single GRASPA indicator. The
full pipeline code, although split in different repositories to ease reusability, is available in
full at our GitHub organization7. The data gathered from these experiments is also available
online8.

Reachability score S0. The robot setup was placed in front of the GRASPA board as
shown in Figure 4.11a, positioning the end effector so that the gripper-mounted camera could
detect the board pose rTb with respect to the robot reference frame. At that point the robot
can move its end effector towards the reachability targets and record the reached 6D poses
using only the direct kinematics.

Camera-calibration score S1. Differently with respect to the iCub experimental setup,
the camera used to acquire RGB-D data for grasp planning cannot detect the end effector if a
marker were affixed to it. In order to visually estimate the position of the end effector, we set
up a second Intel Realsense, identical to the hand-mounted one, in front of the setup (Fig-
ure 4.11a). Using the hand-mounted camera we can detect the pose of the GRASPA marker
board with respect to the world root reference frame (rTb ∈ SE(3)). We can decompose this
as

rTb = rTh
hTc1

c1Tb
rTb ∈ SE(3) (4.21)

where rTh ∈ SE(3) denotes the pose of the hand tool center point (TCP) with respect to the
root reference frame, hTc1 ∈ SE(3) denotes the pose of the hand-mounted camera c1 with
respect to the TCP and c1Tb ∈ SE(3) denotes the board pose in the camera reference frame.
Since rTh and c1Tb do not depend upon camera c1 extrinsics, we can use an external camera
c2 to evaluate the accuracy of the hand-camera calibration hTc1 . By estimating the GRASPA
board pose in the c2 reference frame (c2Tb ∈ SE(3)) we obtain the pose of camera c2 in the
root reference frame

rTc2 = rTb
bTc2 = rTb

c2Tb
−1 rTc2 ∈ SE(3) (4.22)

7https://github.com/hsp-panda
8https://github.com/robotology-playground/GRASPA-test/tree/master/experiment_data

https://github.com/hsp-panda
https://github.com/robotology-playground/GRASPA-test/tree/master/experiment_data
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(a)
(b)

Figure 4.11 The Panda arm set up for the computation of metrics S0 and S1. An additonal
camera was mounted in front of the robot (a) to visually estimate the end effector pose (b).

and, by detecting the pose of the TCP in the c2 reference frame (c2Th ∈ SE(3)) we can obtain
the pose of the TCP in the GRASPA board reference frame

bTh = bTc2
c2Th

bTh ∈ SE(3) (4.23)

which is the required input for metric S1. In order to estimate c2Th we augmented the
marker board pose estimation node to also detect single markers and we 3D-printed a custom
structure to rigidly attach said markers to the robot hand in a known configuration, as seen in
Figure 4.11b.

Graspability S2. The Panda arm features a payload several times larger than the iCub
arm, therefore the only objects that were deemed ungraspable are the ones whose smaller
dimension is larger than 0.08m, the maximum aperture of the Franka Hand gripper.

Grasp Quality S3. In order for the S3 metric to be computed, a description of the Franka
Hand must be specified in the Simox framework. Just as other grasp analysis tools (e.g.
GraspIt! [72]), the Simox toolbox requires the complete kinematic structure of the end
effector, complete with collision meshes in order to detect contacts during closure. Due to the
inner workings of the collision detection engine employed by the toolbox, only one contact
point will be generated for each pair of colliding meshes. The Franka Hand can be therefore
simply modeled with three meshes (hand main body and two fingers) and when the gripper
closes around an object two contact points will be found in total. However, this results in
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null volume for the Grasp Wrench Space (GWS) due to the contact model, the grasp shape
and the low number of contacts. In the point contact with friction model used by Simox
(refer to Figure 4.2), the wrench wci applied at the i-th contact point has a null component
around the contact normal ni. This does not constitute a problem for multi-finger grasps since
contact normals are typically non-collinear, but in the case of a parallel jaw grasp there are
two contact points and their contact normals are collinear. This hinders the capability of the
grasp to resist any perturbation (in wrench space) acting on the object around said normals,
effectively flattening the GWS along that dimension. One possible solution is to use a more
sophisticated contact model, e.g. the soft finger model [77]. This allows each contact to exert
a force along the normal (point contact with friction model) as well as a torque around it,
and allows the grasp to resist wrenches around ni even if the contact normals are collinear.
Unfortunately, the Simox toolbox does not support this model and extending the software
framework was beyond the scope of this work. Another solution is to split the fingertip
collision volume, effectively increasing the number of contacts.

Choosing the number of contacts. In order to model the behaviour of the contact
surfaces, we would ideally need to split the contact surface of the fingertips in an infinite
number of infinitesimal contact surfaces9. Since this is computationally intractable, we
sought to approximate this with a finite number of contact surfaces.

We divided the contact surface of the fingertips (Figure 4.13a) in an increasing number of
equally spaced contact volumes so that, during closure, Simox may compute the GWS over
a larger number of contact points. We computed grasp quality through Simox on the same
grasp, varying the number of subdivisions of the contact surface. As shown in Figure 4.12, the
grasp quality converges for a large number of contacts. We can observe that the point contact
with friction model used by Simox causes the grasp quality metric S3 to directly depend on
the maximum distance between the contact normals and only indirectly on the number of
collision volumes used; the number of the collision volumes is inversely proportional to their
size (because of the fixed size of the fingertip), and since in this case each collision volume
can generate a contact, there will be contact normals closer and closer to the fingertip edge
(if the grasp allows for it). We show this by placing 4 collision volumes of edge 1mm at the
vertices of the fingertips contact surface. (Figure 4.13b). For a given grasp (that allows the
fingertips to fully rest on the obect), grasp quality metric S3 is equal to the case in which the
fingertip surface is divided in 100 collision volumes with edge size 1 mm (S3∼ 0.15 in both

9It is important to notice that this was not necessary while modeling the iCub hand, as the power grasps
planned for it ensure there are always at least more than two contacts with the object, and the contacts being far
apart (with contact normals that are rarely parallel) avoids the collapse of the GWS volume.
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Figure 4.12 Modeling of the collision volumes of the Franka Hand fingertips. For each
subdivision of the fingertips, grasp quality has been measured on the test grasp and by
perturbing it 50 times. Perturbations are drawn from uniform distributions: ∆p ∈ [0,1]cm is
the Euclidean norm and orientation ∆p ∈ [0,10]deg is the sum of three euler angles.

cases). However, using 4 small, maximally spaced contact surfaces on each fingertip is not
feasible, as not all grasps cause the fingertips to fully contact the object. This, in turn, may
cause missed contacts and this makes the metric unreliable and subject to large swings when
the pose is perturbed during computation of ¯S3L

k .
To recap, in the case of a parallel jaw gripper and a point contact with friction model, the

GWS volume is limited by the maximum distance between contact normals. Hence, since
it is not feasible to use a small number of maximally spaced collision volumes, we need to
model the fingertip surface with a large number of different collision volumes, that diverges
to approach the ideal case. However, using a very large number (e.g. 100) of contacts for
each fingertip exponentially increases the time needed for computing collisions. As a tradeoff
between the two extremes, we chose to model the each fingertip with 49 contact volumes
(7x7 grid), covering the whole fingertip pad surface. As shown in Figure 4.12, using 49
contacts instead of 100 leads to a 5% loss in grasp quality, which we believe is a good enough
approximation for this use case.

Binary Success and Stability scores S4,S5. Following the benchmarking protocol defined
in Section 4.2.6, we executed 5 grasps for each object, in isolation, and tested the grasps
by lifting the object and moving it through the protocol stability trajectories. While closing
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(a) (b)

Figure 4.13 Subdivision of the Franka Hand collision volumes in order to study grasp quality
variations. In (a), an example subdivision of each fingertip in a 7x7 grid of collision volumes.
Finger meshes are in transparency. The TCP reference frame is highlighted (approach axis in
blue). In (b), the "edge case" where collision volumes are very small and on the fingertip
edges. The green shapes represent the computed friction cones.

(a) Panda hand with 2 contacts (b) Panda hand with 49 contacts

Figure 4.14 The Franka Hand as modeled in Simox, grasping an example object. The green
shapes represent the computed friction cones. In (a) each fingertip has been modeled as a
single collision volume. The two contact normals are almost collinear and the volume of the
GWS (VGWS) is∼ 10−9. In (b) each fingertip has been split in 49 (7x7 grid) collision volumes,
for a total of 98 contact points. In this case, the grasp can resist an external torque around the
contact normal direction (VGWS = 0.152). The green shapes represent the computed friction
cones.
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the gripper fingers, we thresholded the squeezing force to 10 N in order not to damage the
objects while simultaneously applying enough normal force to cause surface friction.

4.6 Results and Discussion

In this Section we aim to present and discuss the results of the benchmarking done on the
iCub and Panda robots. Since one of the features of GRASPA is to allow vastly different
grasping pipelines, tested on different robot setups, to be evaluated fairly, we compare the
outcome of the experiments in order to highlight the pros and cons of using the proposed
benchmark instead of others.

4.6.1 On GRASPA thresholds for each setup

Table 4.3 collects the user-defined parameters used for data acquisition and score computation.
Although the GRASPA protocol gives users some guidelines (refer to Section 4.2.3) regarding
how to select the threshold values (τr

p,τ
r
o,τ

c
p,τ

c
o), ultimately it is up to the user themselves to

choose appropriate values for the platform under evaluation. For the deployment on iCub, for
instance, the τ thresholds have been chosen conservatively considering the limited task space
and the visual calibration limits of the robot. The pipeline under test plans for power grasps
(i.e. it computes a pose for the hand palm and not for each fingertip) and is, therefore, robust
with respect to reachability errors in position of τr

p = 0.02 m and in orientation of τr
o = 0.5

rad. Due to the complexity of the iCub oculomotor system, we chose looser tolerances for
the GRASPA relative thresholds (τc

p = 0.045 and τc
o = 0.8) in order to account for some error

in the calibration of the vision system. For the deployment on the Panda robot, on the other
hand, all the thresholds have been lowered by about 75% to account for the higher precision
the arm is capable of.

4.6.2 GRASPA computed scores

Computed scores are reported in Tables 4.4 to 4.6. Before moving on, we highlight:

• the values of the reachability score S0L
k and the camera calibration score S1L

k when
S0L

k < 0.5 and S1L
k < 0.5. In these cases, the object is in a region unreachable by the

robot or with an unacceptable visual calibration error
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• the value of the graspability score when the object is not graspable, i.e. S̄2L
k = 0. In

these cases, the final score S̄L
k is not computed by the benchmark and is replaced with

the placeholder N/A

• because of the proximity of some objects to the robot torso, the stereo vision could not
reliably acquire partial point clouds. In these cases, no further score is reported.

As stated in the benchmark description, the granularity of the GRASPA metrics allows
for an in-depth look into the performance of the experimental pipeline. In the following
paragraphs we will analyze the indicators, giving an example of how these can be used to
infer useful information about success and failure cases.

Analysis of the GRASPA scores on the iCub setup. Table 4.4 shows how our benchmark
fairly tests the capabilities of the superquadric cardinal point grasping pipeline, without
penalizing its performance wherever the test platform proved its limits. A meaningful
example is the foam brick in layout 0. The grasp quality score S̄3L

k is good, meaning that the
algorithm computes proper grasping poses for the object. However, in practice, the robot
could grasp the object only once over the 5 trials (S̄4L

k = 0.2). The reason of such failure can
be attributed to the poor vision system calibration in the region of the object (S1L

k = 0.25).
For the considerations explained in Section 4.3.1, the foam brick scores do not contribute
to the computation of the final composite score. On the other hand, the grasps computed
for other objects (e.g. potted meat can, cracker box and tennis ball) show a poor analytical
grasp quality (low S̄3L

k ) in layouts 0 and 1, but the respective values for S̄4L
k and S̄5L

k show
good performance in practical graspa. This indicates that the execution of these grasps
by the real robot ended up being more successful than anticipated by the analytical grasp
quality metric. Since reachability and visual calibration metrics (S1L

k and S0L
k ) are maxed

out, it cannot be blamed non-ideal behaviour of the system while executing the approach
trajectory. By looking at experimental video footage, we observed that in these cases the
mechanical underactuation in the iCub hand allows the fingers to conform to the object. This
behaviour is not modeled in the Simox toolbox used to compute S̄3L

k , and this would explain
the discrepancy in performance between the simulated closure and the actual closure.

Analysis of the GRASPA scores on the Franka Emika Panda setup. Tables 4.5 and 4.6
list the GRASPA indicators computed on the Panda setup for the GPD and Dex-Net based
pipelines. As highlighted by the reachability metric S0L

k , the robot can easily reach the
objects over the GRASPA board in a variety of orientations. In fact, despite having the same
number of the DoF with respect to the iCub arm:
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• the links of the Franka arm are almost twice as long

• the robot inverse kinematic is more precise and repeatable. In iCub, the torso, shoulder
and elbow joints are tendon-driven, introducing small non-idealities that are difficult
to compensate completely. This is not the case for the Franka arm, whose joint are
directly driven through a gearbox

• the joint ranges are larger for the Franka arm.

This reflects in an almost perfect reachability score (compare Figure 4.15 with Figure 4.7).
Due to the cameras and extrinsics calibration used, values of S1L

k show that camera calibration
is very reliable. The value range of S3L

k is consistent between Dex-Net and GPD, but it
is on average smaller with respect to the same metric in the iCub experiments. This does
not come as a surprise, as the volume of the GWS is generally larger when a grasp is
composed by contacts that are further apart (as outlined in Section 4.5.2) from each other. On
average, while S4L

k and S5L
k are both higher with respect to the pipeline tested on iCub, when

comparing the performance of GPD against Dex-Net the former seems to have an advantage.
Dex-Net is a top-down grasp planner, effectively providing candidates with 4 degrees of
freedom in cartesian space (the approach axis is always facing the horizontal surface the
objects are supposed to lie on), while GPD outputs 6D grasp poses. This is especially
advantageous for objects that are not easily graspable from the top (e.g. the mustard bottle,
whose cap is thin and slippery) but are very easily graspable from the side. Figure 4.16 shows
the difference in approach between the two planners.
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(a) Reached poses for reachability set 0 (b) Reached poses for reachability set 2

Figure 4.15 View of the poses reached by the Panda arm during reachability tests. Target
poses are those shown in 4.4b and 4.4d. The Panda arm has excellent reachability over the
board, with only two poses being unreachable (top right for (a) and top left for (b)). The same
position can be reached without issues when the end effector is pointing down (reachability
set 1), but the length of the last link of the robot arm (between the TCP and the center of the
wrist) is just large enough that the poses are out of the 6D workspace.



4.6 Results and Discussion 85

Contact
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√

f 2
2 + f 2

3 ≤ µ f1

f1 ≥ 0
| f4| ≤ γ f1

Table 4.2 Contact models typically used in manipulation. n̄ indicates the contact normal, µ

and γ indicate the Coulomb friction coefficients and fi for i=1...4 represent the generalized
forces acting on the contact. An in-depth explanation of these models can be found in [77].

Robot End-effector Modality τr
p τr

o τc
p τc

o

iCub Right hand In isolation 0.02 m 0.5 rad 0.045 m 0.8 rad

Panda arm Franka Hand In isolation 0.005 m 0.1 rad 0.01 m 0.2 rad

Table 4.3 User-defined parameters used during benchmarking procedure.
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(a) Top grasp planned by Dex-Net

(b) Side grasp planned by GPD

Figure 4.16 Advantages of 6D grasp planning. Dex-Net only plans for top grasps and cannot
take advantage of the full object geometry like GPD. (a) results in a failure, while (b) results
in a success.
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Layout Per object scores

Layout 0 S̄L Object S0L
k S1L

k S2L
k S̄3L

k S̄4L
k S̄5L

k S̄L
k

0.59 mustard bottle 1.0 1.0 1.0 0.15 1.0 0.8 0.95
banana 1.0 0.75 1.0 0.32 0.8 0.2 0.36
potted meat can 1.0 1.0 1.0 0.01 0.8 0.45 0.46
gelatin box 0.75 0.25 1.0 0.07 0.2 0.0 N/A
foam brick 0.75 0.25 1.0 0.27 0.2 0.2 N/A

Layout 0 S̄L Object S0L
k S1L

k S2L
k S̄3L

k S̄4L
k S̄5L

k S̄L
k

0.70 hammer 0.75 0.25 0.0 N/A N/A N/A N/A
tennis ball 1.0 1.0 1.0 0.23 0.2 0.2 0.29
chips can 0.5 0.5 1.0 0.25 1.0 1.0 1.25
banana 0.25 0.0 1.0 0.19 0.0 0.0 N/A
potted meat can 1.0 0.75 1.0 0.01 0.8 0.7 0.71
cracker box 1.0 1.0 1.0 0.04 0.8 0.5 0.54
mustard bottle 0.75 0.25 1.0 0.23 0.8 0.15 N/A

Layout 0 S̄L Object S0L
k S1L

k S2L
k S̄3L

k S̄4L
k S̄5L

k S̄L
k

0.77 pear 1.0 0.75 1.0 0.0 0.0 0.0 0.0
master chef can 1.0 1.0 0.0 N/A N/A N/A N/A
chips can 0.5 0.5 1.0 0.48 1.0 1.0 1.48
medium clamp 0.75 0.25 0.0 N/A N/A N/A N/A
scissors 0.75 0.25 0.0 N/A N/A N/A N/A
power drill 0.25 0.0 0.0 N/A N/A N/A N/A
potted meat can 0.75 0.25 1.0 N/A N/A N/A N/A
tomato soup can 0.75 0.25 1.0 N/A N/A N/A N/A
tennis ball 1.0 0.75 1.0 0.07 0.4 0.4 0.43
strawberry 1.0 1.0 1.0 0.13 0.6 0.55 0.51
mustard bottle 0.5 0.5 1.0 0.25 1.0 1.0 1.25

Table 4.4 Results obtained when testing the superquadric cardinal point grasp planner on the
iCub humanoid robot.
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Layout Per object scores

Layout 0 S̄L Object S0L
k S1L

k S2L
k S̄3L

k S̄4L
k S̄5L

k S̄L
k

0.77 Mustard Bottle 1.0 1.0 1.0 0.09 0.2 0.05 0.08
Banana 1.0 1.0 1.0 0.33 1.0 1.0 1.33
Potted Meat Can 1.0 1.0 1.0 0.01 0.8 0.8 0.81
Gelatin Box 1.0 1.0 1.0 0.09 0.8 0.65 0.72
Foam Brick 1.0 1.0 1.0 0.07 1.0 0.85 0.92

Layout 0 S̄L Object S0L
k S1L

k S2L
k S̄3L

k S̄4L
k S̄5L

k S̄L
k

0.65 Hammer 1.0 1.0 1.0 0.12 0.6 0.0 0.07
Tennis Ball 1.0 1.0 1.0 0.19 0.6 0.6 0.71
Chips Can 1.0 0.92 0.0 N/A N/A N/A N/A
Banana 1.0 0.92 1.0 0.29 0.8 0.8 1.03
Potted Meat Can 1.0 1.0 1.0 0.09 0.8 0.8 0.82
Cracker Box 1.0 1.0 1.0 0.03 0.6 0.6 0.61
Mustard Bottle 1.0 1.0 1.0 0.09 0.6 0.6 0.66

Layout 0 S̄L Object S0L
k S1L

k S2L
k S̄3L

k S̄4L
k S̄5L

k S̄L
k

0.77 Pear 1.0 1.0 1.0 0.14 0.0 0.0 0.0
Master Chef Can 1.0 1.0 0.0 N/A N/A N/A N/A
Chips Can 0.92 1.0 0.0 N/A N/A N/A N/A
Medium Clamp 1.0 1.0 1.0 0.16 0.6 0.6 0.72
Scissors 1.0 1.0 1.0 0.17 1.0 1.0 1.17
Power Drill 0.92 1.0 1.0 0.08 1.0 0.85 0.92
Potted Meat Can 1.0 1.0 1.0 0.12 0.8 0.8 0.92
Tomato Soup Can 1.0 1.0 1.0 0.15 0.0 0.0 0.0
Tennis Ball 1.0 1.0 1.0 0.13 0.0 0.0 0.0
Strawberry 1.0 1.0 1.0 0.31 1.0 1.0 1.31
Mustard Bottle 0.92 1.0 1.0 0.12 0.8 0.8 0.92

Table 4.5 Results obtained when testing Dex-Net on the Panda.
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Layout Per object scores

Layout 0 S̄L Object S0L
k S1L

k S2L
k S̄3L

k S̄4L
k S̄5L

k S̄L
k

1.2 Mustard Bottle 1.0 1.0 1.0 0.16 1.0 1.0 1.34
Banana 1.0 1.0 1.0 0.34 1.0 1.0 1.16
Potted Meat Can 1.0 1.0 1.0 0.14 1.0 1.0 1.14
Gelatin Box 1.0 1.0 1.0 0.14 1.0 1.0 1.15
Foam Brick 1.0 1.0 1.0 0.22 1.0 1.0 1.22

Layout 1 S̄L Object S0L
k S1L

k S2L
k S̄3L

k S̄4L
k S̄5L

k S̄L
k

0.78 Hammer 1.0 1.0 1.0 0.13 0.8 0.25 0.36
Tennis Ball 1.0 1.0 1.0 0.28 0.2 0.2 0.25
Chips Can 0.92 1.0 0.0 N/A N/A N/A N/A
Banana 0.92 1.0 1.0 0.28 0.8 0.7 0.93
Potted Meat Can 1.0 1.0 1.0 0.14 1.0 1.0 1.14
Cracker Box 1.0 1.0 1.0 0.07 1.0 1.0 1.07
Mustard Bottle 1.0 1.0 1.0 0.15 0.8 0.8 0.94

Layout 2 S̄L Object S0L
k S1L

k S2L
k S̄3L

k S̄4L
k S̄5L

k S̄L
k

0.83 Pear 1.0 1.0 1.0 0.23 0.2 0.2 0.25
Master Chef Can 1.0 1.0 0.0 N/A N/A N/A N/A
Chips Can 0.92 1.0 0.0 N/A N/A N/A N/A
Medium Clamp 1.0 1.0 1.0 0.20 0.8 0.8 0.99
Scissors 1.0 1.0 1.0 0.10 0.6 0.55 0.59
Power Drill 0.92 1.0 1.0 0.10 1.0 0.95 1.06
Potted Meat Can 1.0 1.0 1.0 0.17 1.0 1.0 1.18
Tomato Soup Can 1.0 1.0 1.0 0.18 1.0 1.0 1.17
Tennis Ball 1.0 1.0 1.0 0.17 0.4 0.4 0.44
Strawberry 1.0 1.0 1.0 0.27 0.6 0.5 0.65
Mustard Bottle 0.92 1.0 1.0 0.14 1.0 1.0 1.12

Table 4.6 Results obtained when testing GPD on the Panda.
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4.7 Remarks and further development

So far, in this chapter we have outlined the GRASPA benchmarking protocol and its objec-
tives, explained the motivation behind the choices made in designing its metrics and shown
an application on two different robot platforms. By recalling the main points this work aimed
to address (see Section 4.1) and the results obtained experimentally, we can draw some
conclusions and point to relevant improvement directions.

GRASPA favours reproducibility of grasping experiments. The reproducibility claims
heavily rely on the usage of a marker board where objects have to be placed in specific
poses. The board is inexpensive and easy to print on different paper formats. Placing the
objects on the printout shapes with precision is an easy task, since the object footprints are
obtained from object meshes. On one hand, the choice to use a subset of YCB objects allows
many different users around the world to replicate the same experimental conditions, given
the spread of the object set. On the other hand, users that are not already in possession of
the dataset will not be able to adopt the benchmark. A viable way to lower this barrier to
entry is to rework the object set used by GRASPA in a way to be easily and inexpensively
3D-printable. While this is a relatively easy fix, consumer-grade 3D printers cannot yet
faithfully produce exact replicas of the YCB objects in terms of color, material and texture of
the YCB objects. In order to lower the barrier even more, GRASPA could be reworked to
replace YCB objects with shapes generated as meshes in the first place, and then rendered as
real objects through 3D printing instead of the other way around. As Morrison et al. show in
their work [73], it is possible to use generative models to produce 3D-printable objects based
on how challenging they are to being grasped. This is an interesting possible development,
since it would also give a more grounded and objective explanation for the choice of objects
in the benchmarking set.

GRASPA is adaptable to different robotic platforms. We tested the approach on two
platforms with different kinematic structure, capabilities and end effectors. Although
GRASPA provides a convenient and easy to install way to compute the benchmark scores
and metrics, the burden of writing a custom software application to gather the required data
from the target platform is left to the user. This allows for maximum flexibility, but it also
could turn down potential users since the time and effort overhead it adds is non-negligible.
Given the variability in robot setups, middleware and hardware used in the robotics research
community, balancing versatility and deployment effort is a zero-sum game. The best im-
provement direction for GRASPA in this sense is to turn it into a software package integrated
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in ROS, as at the time of writing this document it is the most widespread and open-source
middleware for robotics.

GRASPA can be adapted to many grasping pipelines. We deployed GRASPA in order
to test three grasping pipelines that are quite different in terms of assumptions and perfor-
mance. For all of them, we managed to compute and gather all the data required by the
benchmark to compute its metrics and problems in the deployment of the benchmark were
mostly due to the effort required in adapting the pipelines to the robotic platform, instead of
the protocol itself.

GRASPA proposes a granular way to test grasping pipelines. While discussing the
outcome of the experiments (Section 4.6.2) we have shown how having a performance index
for different aspects of grasping pipelines can explain away some apparent inconsistency
in the results. In particular, we found the reachability index S0L

k and the calibration index
S1L

k for each object to be especially useful in diagnosing failure cases. While the concept of
breaking away from simple success/failure metrics is useful, we identified some shortcomings
in how some of these metrics are defined. In particular, the way the metric ¯S3L

k is computed
also has room for improvement. As explained in Section 4.5.2, the way grasp quality is
computed at the moment is disadvantageous while evaluating grasps performed with parallel
jaw grippers, due to the contact model implemented in the Simox toolbox. While testing
grasps in a virtual environment certainly helps disentangling the "ideal performance" from the
one experimentally observed on the real robot, such virtual environment must treat grippers
and multifingered hands in the same way. Hence, an improvement direction for GRASPA is
to rework the contact modeling within the Simox toolbox or to migrate towards the usage of
a different physics-based framework. The method used to sample the workspace in order to
compute these scores is quite coarse in the current state and, more critically, the computation
of S0L

k and S1L
k requires the user to pick error thresholds without a rigorously defined protocol.

More on this in the next point.

GRASPA accounts for the limits of the test platform. As already stated, GRASPA aims
to be flexible with respect to the platform it is being deployed to, however we recognize
that the choice of these parameters is unbalanced in nature. As they are curently defined,
in specific conditions S0L

k and S1L
k reduce the negative impact of a grasp failure while

simultaneously not amplifying successes. For example, consider the mustard bottle in Layout
1 in Table 4.4 and the tennis ball in Table 4.5. In the former case, iCub could not compute a
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good quality grasp for the object, nor grasp it in a stable manner, nonetheless since S0L
k ≤ 0.5

this failure case does not affect the overall score S̄L. In the latter case, both reachability and
visual calibration metrics obtained full scores and the low ¯S3L

k , ¯S4L
k and ¯S5L

k affected the
compound score S̄L. In other words, the arbitrary choice of the τ thresholds lead to the fact
that having a more precise, better calibrated robot makes the failure cases count more while
having a less accurate robot with poor vision calibration is forgiving with respect to grasp
failures. This could be improved upon by reworking the way S̄L

k is computed.

4.8 Impact of GRASPA on the community

Version 1.0 of GRASPA was accepted [12] in the context of the RA-L Special Issue in
Benchmarking Protocols for Robotic Manipulation, and has been included in the YCB
official website, in the Protocols and Benchmarks section10.

At the time of writing this thesis, the GRASPA protocol is having some resonance
in the robotics research community. As already mentioned, the benchmark in its entirety
requires quite some effort on the user side in order to be set up on the target robot platform,
nonetheless the way GRASPA proposes to deal with experiment repeatability has attracted
some attention. For instance, some works in the grasping and pose detection field [6, 110]
have adopted the layouts and printable marker board to validate the proposed approaches. In
addition, GRASPA was adopted in the context of the HEAP CHIST-ERA project as explained
in the next section.

4.8.1 GRASPA and project HEAP

GRASPA has had a relevant impact on the HEAP CHIST-ERA project, a project including a
number of academic European partners in the field of robotic manipulation and grasping. The
project proposes to tackle current challenges in automatic and human-guided manipulation
of objects in scenarios where the objects are not known a priori or have been deformed or
separated in parts. Moreover, HEAP puts the focus on building an end-to-end benchmarking
framework, which includes rigorous scientific methodology and experimental tools for
application in realistic scenarios.

One of the initial efforts of the project was to establish a common robot setup and build
a customized simulation environment to obtain its digital clone. The partner consortium
settled on using Franka Emika Panda robot arms and Intel Realsense cameras in a tabletop

10http://www.ycbbenchmarks.com/protocols-and-benchmarks

http://www.ycbbenchmarks.com/protocols-and-benchmarks
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scenario. Our contribution to this initial effort consisted in the integration of the GRASPA
object set and layout structure in the aforementioned simulation environment (based on the
Bullet physics engine and PyBullet [21]). Since such environment would have to be used to
test grasping algorithms and pipelines starting from the acquisition step, we implemented the
GRASPA layouts as scenes using the most high-quality mesh renditions of the YCB object
subset available to date. We used the meshes provided with the YCB-Video dataset [128]
since they are more accurate and texture-complete with respect to those in the original YCB
dataset. Rendered examples of such scenes are shown in Figure 4.17.

Even though the intended use for GRASPA is to be deployed on real robotic setups, we
adapted our benchmarking framework (refer to Section 4.5.1 for details) to the simulated
environment to field-test its performance and report issues to the development team. In fact,
the consortium is currently striving to fully integrate the simulated robot setup in the ROS
ecosystem, in order to be able to seamlessly switch between it and the real setup to speed up
development and experimentation.

Parts of the GRASPA framework, in particular the layout, evaluation metrics and general
idea were adopted as standard in the HEAP project also for what concerns the real-world
experimental evaluation of grasp planning algorithms. As a matter of fact, the evaluation of
GPD and Dex-Net using the GRASPA benchmarking protocol is part of an effort aimed at
establishing a performance baseline using state of the art grasp planning and grasp detection
approaches.

HEAP is also providing challenges and interesting directions for further developments of
GRASPA. On the one hand, in the context of the project some aspects of GRASPA related
to the adaptability of the benchmark to different setups are not really relevantm since the
consortium has agreet to use a common setup. On the other hand, the ambitions of the
project point towards including more challenging layouts that include heaps of deformed or
broken objects that go beyond what the YCB dataset proposes. In fact, a research direction
consists in integrating a number of challenging objects obtained from deep 3D generative
models (on the line of works such as EGAD [73]). Another possible development direction
points towards extending the way GRASPA computes metric S3 in simulation to include
more advanced contact models and an ensemble of grasp quality measures of different nature
instead of a single one based on the computation of the GWS [97].
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(a) Layout 0 (b) Layout 1

(c) Layout 2 (d) The complete scene environment

Figure 4.17 The GRASPA layouts in the HEAP simulation environment. From (a) to (c), the
GRASPA boards as rendered by the simulated Intel Realsense camera mounted on the robot
hand. in (d), a render of the complete scene during grasp execution.



Chapter 5

Towards shape completion strategies for
grasp planning

This Thesis work has been focused on scenarios where the shape of objects to be grasped is
not known a priori. We have hypothesized that objects can be modeled with a superquadric
in Chapter 2 and we have included the object 2D appearance to only perform instance
segmentation in Chapter 3, while in Chapter 4 we have benchmarked two model-free state of
the art grasp planners. At runtime, we have always assumed that a complete and detailed 3D
description of the object is not available a priori in order to plan for grasps. We have also
implicitly stated that such a description cannot be recovered from a single view observation
because of the auto-occlusion1 property of non-clear objects.

In order to plan for grasps given the auto-occlusion property, we have several options:

• grasps can be planned without explicit modeling of the unseen parts. This is the case,
for instance, of many approaches that detect grasps from partial observations like GPD
or Dex-Net (see Section 4.5 for specific details)

• more information can be gathered by integrating several views acquired from a variety
of viewpoints, before planning for grasps. This can be done with a multiple calibrated
cameras setup, or if the camera is mounted on the robot end effector and can be moved
around

• make assumptions on the object shape given the observations, i.e. performing a
modeling operation, and planning grasps on the model.

1The term auto-occlusion simply refers to the intuitive fact that we cannot observe points that are on the
other side of the object.
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Combining the first and second point seems to be the most effective solution. If the robot
does not need to be moved, a number of calibrated RGB-D cameras can be placed around the
workspace, or a single robot-mounted camera can be moved around the object if the robot is
not fixed. This however does not help with cluttered scenes like object piles or structured
clutter, which is often the case in grasping tasks. In this case, the shape of the object cannot
be perceived without modeling it.

A wide variety of assumptions on object shapes can be made in order to formulate
a modeling problem. Shapes can be approximated by geometric primitives, under the
assumption that said primitives are fit for grasp planning. In Chapter 2, for instance, we
have presented methods that use such approximations. Heuristics can also be put in place
to reconstruct the missing parts, e.g assuming they are symmetrical to the observed parts.
We could also assume similarity with objects whose 3D model is known, or the objects
themselves are known, as in the pose estimation problem. Finally, we could attempt to
reconstruct the whole object shape by using a model that has learned to complete a variety of
different objects given partial measurements. This last approach is called shape completion

in the literature, and has gained traction in latest years thanks to the popularity of 3D deep
learning frameworks.

As it often happens, the rising interest in shape completion methods has recently spilled
over from the computer vision field into robotics research. Algorithms and architectures that
can reconstruct the complete 3D shape from partial views constitute a "superpower" that
can be useful in a number of applications, from motion planning to navigation and scene
understanding. Arguably, the robotics subfields that can benefit from shape completion the
most are manipulation and grasping, since vision-based approaches are no longer limited by
partial measurements and can rely on complete 3D information instead.

Given the novelty of the field, this Chapter is supposed to be an exploratory study for
shape completion techniques for robot grasping. In Section 5.1, we review some recent
relevant work on the subject. In Section 5.2 we describe the shape completion problem in
more detail, delving into the types of representations and the most promising architectures.
In Section 5.3 we replicate the results of two approaches from the state of the art, analyzing
one of them in depth in order to provide insight on its features and limitations. Finally, in
Section 5.4, we summarize our findings and propose interesting research directions towards
improving the state of the art on the subject.
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5.1 Related Work

To the best of our knowledge, the first approach to deep learning-driven shape completion
for robot grasping is the work by Varley et al. [116]. The proposed pipeline feeds a partial
object point cloud into a 3D CNN in the form of a voxel grid. The output is different voxel
grid representing the completed shape, which is transformed into a mesh via marching
cubes [59]. The best grasp is then computed via a sampling-based scheme with analytical
metrics, by using the GraspIt! [72] grasp simulator. Lundell et al. [60] inherit the same
pipeline, substituting a VoxNet-based deep autoencoder to the 3D CNN. The architecture
employs dropout to sample the latent space at inference time in order to produce a number of
possible shape voxel grids that are then averaged and meshed. Lundell et al. [61] attempts
the reconstruction of the whole scene, segmenting the 3D point cloud of a cluster of objects
and completing every shape using a very similar approach to the previous work by the same
authors [60]. After the whole scene is completed, a virtual depth map is rendered from a fixed
number of points around it, and candidate grasps are obtained through the out-of-the-box
Dex-Net implementation [62]. This produces (almost) 6-DoF grasps, i.e. planar grasps
detected on a number of different planes.

The methods cited so far cast the input 3D data in a voxel grid representation to be
used both as input and output, but other representations have been used as well. Van der
Merwe et al. [114] directly use the input point cloud to approximate the signed distance
field (SDF) of the completed shape. In this case, the authors use the compactness of the
SDF representation in order to plan for grasps by accounting for the feasibility of the motion
with respect to the scene. Gao and Tedrake [39] propose a novel representation embedding
geometric information (e.g. mesh or point cloud) with semantic keypoints (e.g. top and
bottom object centers). This approach employs state of the art deep learning methods for
both shape completion and keypoints detection and combines them in order to plan for grasps
and approach trajectories.

Some methods attempt shape completion with a multimodal approach, i.e. visual and
tactile inputs. Watkins-Valls et al. [123] use a similar pipeline to [116], employing a 3D deep
autoencoder with a multimodal input (consisting of tactile measurements and partial point
cloud) to probe the occluded side of the object and produce a more accurate mesh on which
grasps or manipulation actions can be planned. Wang et al. [122] incorporate information
from both 2D vision and tactile sensors. The approach leverages prior knowledge learned
from a large shape dataset to obtain an initial estimation of the complete shape from a color
image, which is then refined using tactile sensing.
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5.2 Background

In this Section, we provide some notions in order to ease understanding the general structure
of the typical autoencoder-based shape completion pipeline. We also provide insight on some
popular representations used in the field, and explain the inner workings of two interesting
approaches from recent literature.

5.2.1 Different representations of 3D shapes

Over the years, a number of different representations for 3D data and shapes have been
employed according to the target task and constraints. We hereby recall the definition of the
most relevant ones in the shape completion field. A visual reference for these representations
is shown in Figure 5.1.

Point cloud. This is the most popular and simple 3D representation used in robotics. It
consists in a sparse set of points pi = (xi,yi,zi) ∈ R3 expressed in some reference frame,
typically in a Cartesian space, that can also contain information such as the point color and
normal vector. Point clouds are a natural representation to use in robotics, since each depth
map pixel from a RGB-D camera or stereo rig corresponds to a point. Due to their sparse and
unordered nature, they are typically converted into other representations before being used
as input of machine learning and deep learning models. In very recent years, nonetheless,
a number of models [91, 92, 53, 125, 108] that take a point cloud as input have surfaced,
becoming a feasible backbone for deep shape completion.

Mesh. In its simplest form, a mesh is a collection of vertices, edges and polygonal faces.
In computer vision and robotics, meshes are typically used when face planes and normals are
useful, for instance rendering applications in computer graphics and collision checking and/or
grasp planning in robotics. Because of this reason, this representation is typically the output
of a shape completion pipeline, often obtained from a voxel or point cloud representation
using popular mesh construction algorithms such as marching cubes [59].

Voxel. Voxels are an extension of the pixel concept to the 3D space. Voxel grids discretize
a limited portion of space in cells of equal size, producing a dense representation. Voxel grids
are very popular in the field of shape completion and deep learning for 3D vision: on the
one hand, it is trivial to convert point clouds into voxel representations, therefore removing



5.2 Background 99

(a) Point cloud representation (b) Mesh representation

(c) Voxel grid representation (d) Signed Distance Field representation

Figure 5.1 Different 3D representations of the Stanford Bunny model.

the problem of sparse representation; on the other hand, their similarity to their 2D pixel
counterparts implies the convolution operator can be adapted in a straightforward way [69].

Continuous representations. The representations outlined so far are inherently descrete,
or are limited in resolution. To overcome this limitation, recent works have proposed the usage
of continuous representations as output of a deep neural network relying on concepts such as
Signed Distance Function (SDF) [81], occupancy functions [70] or Gaussian Process Implicit
Functions (GPIS) [38]. Some of the features that make these representations desirable are
a potentially infinitesimal sampling granularity, smoothness and, in the case of GPIS, the
native estimation of uncertainty.



5.2 Background 100

5.2.2 Deep autoencoders for shape completion tasks

Deep autoencoders are at the core of most state of the art data-driven shape completion
approaches and architectures. In this Section, we briefly show its definition and the basic idea
behind its usage for shape completion, in order to ease comprehension of the next Section.

Autoencoders are dimensionality reduction methods that compress the number of features
used to describe data. Assuming some input data x ∈ Rn, we wish to compress it into a
lower-dimensional feature space through an encoder function z = e(x), Rn→ Rm, m < n

(Figure 5.2a. The co-domain of the encoder, i.e. the compressed feature space, is typically
called latent space. In order to be able to decompress the data mapped in the latent space, a
decoder function is needed, i.e. x̂ = d(z), Rm → Rn.

The choice of e(·) and d(·) is what defines an autoencoder. The ideal goal is to make
sure the encoding/decoding process can restore the initial data with no information loss, i.e.
x = x̂ = d(e(x)). More realistically, if we indicate possible encoder and decoder functions
as E and D, for a given m the choice of e(·) and d(·) must minimize the reconstruction
information loss ε:

(e∗,d∗) = argmin
(e,d)∈E×D

ε(x, x̂) (5.1)

= argmin
(e,d)∈E×D

ε(x,d(e(x))) (5.2)

where the loss ε is a criterion to measure the difference between the input and output
data. For instance, e(·),d(·) can be chosen within the linear family. In this case, it can
be shown that the PCA (Principal Component Analysis) technique can be a valid linear
encoding-decoding scheme. In order to enhance the compression capability of the scheme
e(·),d(·) can be chosen within any neural network family, making them highly nonlinear. In
this case, the reconstruction problem in Equation 5.2 can be cast as an iterative optimization
process, and tackled with backpropagation and gradient descent techniques.

The dimensionality m of the latent space is also a critical parameter to the autoencoder,
and it must be tuned according to the capacity of the encoder and decoder. A latent space
that is too small might not be enough to grant minimum reconstruction error, and therefore
the majority in the information will be embedded in the parameters learned in e(·) and d(·).
The edge case of this scenario is m = 1 with infinite capacity of the encoder and decoder:
in this case, every data point could be mapped into a different value of the scalar indicating
the latent space (e.g. z = 1,2, . . . ,N where N is the number of training data points). A latent
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ze(x) d(z)x x̂

x ∈ Rn x̂ ∈ Rnz ∈ Rm

m < n

(a) Visualization of the general autoencoder architecture.

ze(x) d(z)

x x̂

(b) A 3D autoencoder used to reconstruct a complete shape.

Figure 5.2 Intuition for shape completion deep autoencoders. In (b), the reconstructed shape
is transformed into a mesh for visualization purposes.

space that is too large might lead to overfitting the training dataset, with each example being
mapped in a different region of the latent space, with minimal overlap. Note that framing
the optimization as Equation 5.2, even though granting minimum reconstruction error on the
training dataset, does not constrain distribution of the latent space in any way, leading to the
abscence of structures that could be exploited during inference, i.e. lack of regularity.

Autoencoder models are used for a large variety of tasks. Shape completing autoencoders
are inspired to the denoising (also known as reconstructive) kind, tasked with learning to
reconstruct a noisy or corrupted input from uncorrupted ground truth. For shape completion
tasks, during training the encoder is presented with single view, partial 3D data x̃ and the
reconstructed output x̂ is used to compute the reconstruction error with respect to the ground
truth x, i.e. the complete version of x̃. If (e∗,d∗) are the parameters of the encoder and
decoder deep networks, Equation 5.2 becomes
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(e∗,d∗) = argmin
(e,d)∈E×D

ε(x,d(e(x̃))) (5.3)

At inference time, the autoencoder is presented with a partial object observation, and the
completed shape is retrieved at the output (Figure 5.2b). As example, in the following
we describe the main structure of the autoencoders for shape completion used by Lundell
et al. [60] and Van der Merwe et al. [114], which are used in the rest of this Chapter for an
exploratory study.

A voxel-based shape completion autoencoder. The work by Lundell et al. proposes an
autoencoder based on the 3D CNN autoencoder proposed by Dai et al.[22], augmented by
skip connections and a latent vector enclosed by dropout layers. The input is cast from a
partial point cloud into a fixed size voxel grid, and the output is obtained in the form of a
voxel grid that has to be transformed into a mesh. At inference time, the same partial input
voxel grid is fed through the completion process multiple times, each with a different dropout
scheme around the latent space. Then, a mean shape is computed and grasps are detected on
it by using the GraspIt! [72] simulation tool. This process of exploiting dropout to probe
the uncertainty of a learned deep model is called MC-Dropout [37] and has probabilistic
foundations that are outside the scope of this study.

We employ this method in Section 5.3 in order to test the possibility of using such a
method to replace partial point clouds with completed point clouds as input of an out of the
box 6DoF grasp planner.

A hybrid shape completion autoencoder. The work by Van der Merwe et al. proposes
a shape completion autoencoder that uses partial object point clouds as input and outputs
an SDF function. It uses PointConv [125] layers as encoder and a simple MLP2 as decoder.
After the partial point cloud is embedded as a latent vector z = e(x̃), the decoder uses z and
query points qi = (xi,yi,zi) ∈ R, i = 1, . . . ,N to sample the SDF of the completed shape at
those points, SDF(qi) = d(z,qi). The idea is to estimate the shape of the completed object
in an implicit form via the signed distance function instead of an explicit formulation like a
voxel grid. There are many advantages to this approach:

• the absence of 3D convolutions make both training and inference fast and with a
smaller memory footprint

2Multi Layer Perceptron, i.e. a deep neural network with fully connected layers.
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• the SDF is that it is continuous and differentiable

• a point cloud, mesh or voxel grid representation can be obtained from the SDF by
sampling points qi the 3D space with arbitrary resolution. The shape is obtained by
following the surface boundary where SDF(qi) = 0.

The SDF representation is used by the authors to perform geometry-aware grasp and
motion planning. In Section 5.3.1, we try to analyze the internal representation of the
PointSDF in order to identify any structure or exploitability.

5.3 Out-of-the-box shape completion for grasp planning

In Chapter 4.5 we have benchmarked two state of the art grasp planners that make use of
learned models (i.e. GPD [82] and Dex-Net [62]) and experimentally showed that they
performed well out of the box, with some tuning due to the differences in robot setup. The
benchmarking setup used a single hand-mounted camera, hence both planners operated with
a partial view of the scene objects. During the experiments on the real robot, the successful
candidates were mostly limited to visible parts of the objects and often failed when contacting
unseen parts of the object. This is somewhat expected, since that is the task the algorithms
were trained for. While working on superquadric-based grasp planners (Chapter 2), we
observed that modeling complete objects, although with simple shapes such as superquadrics,
would lead to candidates on the hidden sides of the object that would eventually prove to be
good grasps during execution.

According to these observations, we hypothesize that a state of the art 6DoF grasp
planner trained on partial point clouds can efficiently leverage information obtained with
shape completion methods in order to obtain a larger number of good candidates. Lundell et al.
[61] already proposed something similar by completing a single view scene data, rendering
synthetic depth maps from different points of view and planning for grasps using the same
out of the box Dex-Net planner we benchmarked in Section 4.5. Although interesting, we
argue this approach limits the grasp orientation of the candidates due to the finite number of
viewpoints (12 in the paper) and does not offer the versatility of a fully 6DoF approach.

As a proof of concept, we have tested the same approach to shape completion shown
in Lundell et al. [60] in combination with GPD in order to show the difference between
6DoF grasps computed on a partial point cloud and on a completed shape. We used a Intel
Realsense to gather partial point clouds from 10 real YCB objects, using a simple RANSAC
plane removal to segment the object from the tabletop surface, and we fed them through the
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entire shape completion pipeline. We produced 50 different completions for every single
partial point cloud, in order to obtain a meaningful average completed shape. We then
sampled the resulting point clouds with a resolution similar to that of the camera we used
during acquisition, obtaining completed point clouds. At this point, we detected 6DoF grasps
using the out of the box GPD algorithm on both sets. We set no constraints in terms of
position and orientation on the candidates, generating a set of 500 grasps on each point cloud
and reporting the best 10. Visual results of this procedure are shown in Figure 5.3.

Inspecting these results, it appears like the GPD grasp detector can potentially benefit
from the completion procedure. This seems to be an improvement for some of the objects:

• on the mustard_bottle, planning on the partial point cloud produces clusters of grasps
on the cap and base area, while planning on the completed shape outputs clusters on
the sides of the object, where the gripper can exploit more surface area (Figure 5.3a)

• on the pitcher, all the candidates planned on the partial point cloud are clearly infeasible.
The pitcher is a large object, only graspable by the gripper on the edges and the handle,
which is where GPD detects feasible grasps in the completed shape (Figure 5.3b)

• grasps planned on the power_drill were good on both the partial and the completed
cloud. While the grasps obtained from the partial point cloud clustered on the top
of the drill, the ones on the completed shape were clustered mostly on the base and
handle (Figure 5.3c).

Quantitatively, the grasp quality of candidates computed by GPD on the completed shapes
resulted to be around 15% higher on average than those computed on partial point clouds.
This grasp quality metric comes from the CNN in the GPD pipeline, and it is prone to an
overestimation of the quality of grasps computed around edges (as highlighted by the pitcher
results); nonetheless, this is a promising research direction and suggests further analysis and
experimentation with other methods.

5.3.1 Studying the internal representation

So far, the only meaningful value metric we have considered for shape completion autoen-
coders is the reconstruction error, i.e. how good the completion is with respect to the ground
truth and how it can be used for grasping. However, in Section 5.2.2 we have introduced
autoencoders as dimensionality reduction methods and we have pointed out that the latent
space representation is just as important as the output, as it represents the quality of the
encoding. A well-structured latent space can be exploited for both shape completion and
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(a) Grasps computed on Mustard Bottle point clouds.

(b) Grasps computed on Pitcher point clouds.

(c) Grasps computed on Power Drill point clouds.

Figure 5.3 Grasps computed by GPD on partial point clouds (left) and on the relative
completions (right) obtained with Lundell et al.. Candidates shown in green indicate better
grasp quality, as computed by the GPD candidate ranking model.

grasping tasks; for instance, an interpretable latent space might reveal information about the
shape prior [22], or might contain hints about the object size, keypoints, or the presence of
concavities. However, to the best of our knowledge, none of the works mentioned in Section
5.1 include conditioning the structure of the latent space through a regularization term in
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the training loss function. We decided to investigate the latent space of PointSDF, due to
the simplicity of the architecture (the decoder is a simple MLP), looking for structures and
patterns in the encoded inputs.

The objective of this analysis was to embed a number of different partial views of YCB
objects in the latent space of the PointSDF model in an attempt to observe the distribution of
the embeddings. Since the pre-trained model provided by the authors of the paper did not
seem to behave well with respect to the noise model of our RGB-D camera, we opted for
synthetic point clouds with a controlled noise model. We rendered 50 partial point clouds
for each object, uniformly sampling viewports on a sphere centered on the center of mass of
the object center. We added noise to the rendered depth map before converting it to a point
cloud, as described in the paper. Then, we embedded each partial point cloud and analyzed
the distribution of the embeddings.

The latent space of PointSDF has dimension 256, therefore is well beyond being directly
interpretable. In order to visualize the distribution of the embeddings, and detect any
clustering, we used two methodologies:

• the first involves computing the distance between embeddings of different objects. We
compute this distance D(oi,o j) by averaging the Euclidean distance of every embed-
ding of the i-th object from every embedding of the j-th object. Results according to
this metric are shown in Figure 5.4

• the second involves using t-SNE [113] to visualize the embeddings in a 2D interpretable
space. Results according to this metric are shown in Figure 5.5.

This experiment shows that, for some objects, the resulting embeddings clusters are
somewhat separated even if there is no explicit regularization term in the loss function used
for training PointSDF (refer to the paper for further details). This is the case, for instance, of
the clamps (extra_large_clamp and large_clamp).

Objects that have a similar shape are also somewhat clustered in different portions of the
latent space3: elongated objects such as the banana, large_marker and the aforementioned
clamps are well separated from the box-like objects, that in turn are separated from cylindrical
objects such as tomato_soup_can and master_chef_can. Other objects, for instance the
wood_block, mug and bowl do not feature clustered or organized representations, and are
scattered all over the latent space.

3Although t-SNE reduces the dimensionality from 256 to 2, the method guarantees the best projection of
global and local structures
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Figure 5.4 Matrix of distances between embeddings of different objects rendered from
different poses. Embeddings are obtained with the PointSDF encoder. Higher distances
indicates that the clusters are more separated in the latent space.
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In order to further verify that the clusterization of the embeddings does not happen for
all the objects, we pick different embeddings of the same object and interpolate in the latent
space, similarly at what is done in Zhao et al. [129]. Given two embeddings, we generate a
50-steps trajectory in the latent space and generate a completed shape at every step. Meshes
are obtained by sampling the SDF in a voxel 3D space of edge 128, and then meshed through
a marching cubes algorithm [59]. As an example, in Figure 5.6 we show this process for the
objects banana and mug. According to the insight obtained in the previous phase (Figures
5.4 and 5.5), the former is well clustered and the latter is not, therefore the interpolation
provides an interpretable shape in all the trajectory points only in the first case. While the
banana in Figure 5.6 looks like a banana for the whole trajectory, the mug loses its concavity
at around half the trajectory. Moreover, the latent representations for these two objects are
quite far apart (Figure 5.4), therefore the fact that reconstructed shapes of the banana are very
different from the ones of the mug is quite intuitive.

5.4 Remarks and further work

In this Section, we have given an overview of the shape completion problem and how it has
been tackled, in recent times, with powerful deep autoencoder architectures. Although such
architectures have appeared in the latest robotic manipulation research literature as part of an
integrated grasp planning pipeline, we have shown that the idea of pairing shape completion
with out of the box, state of the art, 6 DoF grasp planners is promising. We have also argued
that the capability of an autoencoder to reconstruct training examples should not be the only
driver when optimizing these model for real-world applications, and more attention should
be put on the regularization of the latent space. Enabling these architectures to not only have
good reconstruction accuracy but also an interpretable and exploitable latent space structure
is an interesting research avenue. For instance, the optimization of the network weights
can be steered towards a target distribution (e.g. a Gaussian multivariate) by inserting a
Kullback-Leibler divergence term into the loss function alongside the reconstruction error.
This idea has led to the usage of Variational Autoencoders (VAE), that are very popular in
current times as generative models. To the best of our knowledge, this approach is already
used to generate 3D shapes from random seeds, and some works propose a VAE as a grasp
candidate proposal system [74], but very little yet exists towards the shape completion task.

The results showed in this Chapter are mere proof of concepts, and elicit further studies
on the subject. Since the work by Varley et al. [116], shape completion has started to gain
traction in the robotics community and, thanks to the performance of modern-day GPU-



5.4 Remarks and further work 110

accelerated deep learning models, could in the next years become a common tool in any
robotic manipulation pipeline just as much as RGB-D cameras did in the 2000s.
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(a) (b)

Figure 5.6 Shapes reconstructed from an interpolation in embedding space for the object mug
(a) and banana (b). The top row represents the completion related to the 10-th embedding
of the latent space trajectory, the middle row corresponds to the 25-th embedding and the
bottom row corresponds to 40-th embedding.



Chapter 6

Conclusion

This Thesis addresses the problem of vision-based grasp planning, that is the detection of
suitable end effector poses for a robot to reach for in order to pick up objects from the
surrounding environment. This is an essential part of any robot task involving physical
interaction and manipulation actions. In particular, the purpose of the Thesis work is twofold.
On the one hand, we target the grasp planning problem in contexts where the robot system can
only leverage partial views of the scene and has no a priori information about the 3D model
of the object. On the other hand, we address an issue regarding existing and scientifically
valid ways to effectively benchmark the performance of grasp planning approaches already
present in the state of the art by proposing a benchmarking protocol ourselves.

In some high-volume, application-specific environments such as robotic assembly lines,
the manipulation system (in terms of gripper, manipulator kinematic structure, and perception
system) and the robot workspace are optimized with respect to the task at hand. In this case,
the 3D geometry of the target objects are well known in advance and the grasping task simply
resolves into a pose detection problem, since the grasp planning itself can be addressed with
mature analytical techniques [7]. For appplications involving environments where it is not
feasible to scan and store the 3D representation of every object, such as homes, stores or
warehouses, this approach is not feasible and robots can usually only rely on partial 3D views
of the scene. In this Thesis work, we distilled this into a target scenario where everyday
objects are distributed on a horizontal surface with increasing levels of occlusion and clutter.
In Chapter 2 we show how we attempted to tackle such scenario by fitting superquadric
surfaces to partial object point clouds to approximate the general shape and graspable volume
of the target. The main novelty of our method resides in the way the optimization problem is
framed to constrain the orientation of the superquadric with respect to the horizontal surface.
Moreover, we also proposed a simple method to generate candidates around the superquadric
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shape and rank them using a metric that accounts for kinematic feasibility of the grasp and
the geometry of the superquadric with respect to the robot hand. This approach was deployed
and tested on the iCub robot and its results compared with a similar method that also employs
superquadrics.

The proposed solution performed well on the test scenario, and ended up being integrated
in the iCub ecosystem as a standard routine for grasping. For its effectiveness and simplicity,
it was also used as grasping action in the context of a Human-Robot Interaction framework.
However, the method works well on the assumption that target objects are symmetric with
respect to one or more planes. While the assumption holds for simple objects such as boxes,
cans and bottles, the method is not expressive enough to reliably model asymmetric targets
and generate good grasp candidates. Improvement directions for this kind of primitive-based
method involve using a larger number of superquadrics to model the target object [115] or
using superquadric functions with local deformations, or even better hyperquadrics [44], to
tackle asymmetric targets with irregular shapes.

At the time of performing the experiments, the iCub software module ecosystem did
not yet include solutions to perform object segmentation on cluttered surfaces and occluded
objects. In Chapter 3 we have shown how we adapted a state of the art deep learning
architecture for instance segmentation to solve this problem and allow us to tackle visually
cluttered environments. However, for a number of grasping experiments we had to frequently
switch the number and type of objects in our test set, and this required to retrain the network as
fast as possible. To this end, we extended a fast dataset generation algorithm to automatically
annotate images for instance segmentation tasks. We therefore obtained a versatile tool that
helped us adapt the learned model to different object sets in the matter of hours, instead of
days. Although this tool proved useful in various kinds of experiments, including serving as
segmentation front end for a novel pose detection approach, it can be improved in terms of
time and effort needed to train the model for a new task. In its nature, it is still a method that
requires offline training, and while it might be good enough for manipulation experiments, it
has limited use in the world of service robotics. In this sense, recent works in literature show
that online and continuous learning techniques [65, 16] have a faster retraining wait time and
can perform just as good as offline methods like ours, given that the robot is able to acquire
annotated ground truth automatically, which is a challenge in itself. Such techniques would
allow robots that work in human environments to quickly and naturally adapt to new object
sets.

The desire to test our superquadric-based approach against other state of the art methods
and compare results obtained on different robot setups lead us to realize how daunting
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this task really is, since the robotics manipulation community has never adopted common
benchmarks and protocols for the kind of scenario targeted in this Thesis. Although some
benchmarks exist for very specific tasks, and some object sets [14] saw a widespread adpotion,
nothing specific to grasping on a cluttered tabletop surface existed, despite the large number
of papers on the subject published in the last 5 years. With this goal in mind, we designed
GRASPA (Chapter 4). GRASPA is a benchmarking protocol whose main contributions are
the reproducibility of target scenes, a procedure to assess the good calibration and reachability
of the robot over the scenes, a way to test planned grasps both in simulation and on the metal,
and a number of granular metrics that attempt to fairly evaluate successes and failures. We
showed how GRASPA may be used to measure the performance of different grasp planners
can be assessed using different robot platforms, and this allowed us to make interesting
observations about the failure cases of the approaches being tested. This does not mean,
however, that GRASPA cannot be improved. For instance, some grasping approaches are
designed to tackle bin picking and heap sorting scenarios, and the current GRASPA scenes do
not provide enough of a challenge. Another part of GRASPA that has a lot of improvement
headroom is the metric used to quantify the simulated grasp quality, that turned out to be
unreliable for parallel grippers because of the limits of the simulation tool used. With the
evolution of software physics simulation, it makes sense to foresee a grasping simulator that
focuses on proper friction simulation [31] to replace the current implementation in GRASPA.
Overall, the most important lesson learned with GRASPA is that benchmarks imply a delicate
balancing act: on the one hand, they should be adaptable to every robot, every setup, every
sensor and every gripper, in order to encompass every possible scenario; on the other hand,
the larger the appeal, the higher the difficulty in making all scenarios comparable to each
other. This also implies direct correlation between flexibility and the effort required of
the user (in the form of writing code and adhering to the protocol). Therefore, we believe
any improvement towards a version 2.0 of GRASPA would have to aim to hit a sweet spot
between being useful enough for a large enough portion of the research community and
avoiding the imposition of a cumbersome overhead to experiments.

Testing both our own superquadric modeling approach and model-free approaches taken
from the state of the art (nominally, GPD [82] and Dex-Net [62]) on the same task helped
us observe failure cases on both. Primitive-based modeling approaches trade off precise
modeling and grasping for an hypothesis about the hidden parts of the object, while model-
free approaches like GPD and Dex-Net can efficiently exploit local geometries for precise
grasps, but they cannot generate candidates on the hidden part of objects. A question arises
then: is it possible to combine the pros of both, without the respective cons? We believe it is,
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and the answer may lie in shape completion methods. Since these methods rely on training
a deep autoencoder model to reconstruct complete shapes from partial readings, they can
provide an explicit and interpretable model of the target object from single view observations
based on previous experience. In the last Chapter (Chapter 5), we have provided a proof of
concept by combining an existing shape completion approach with a state of the art grasp
planner, with encouraging results. In the same Chapter we have also outlined the importance
of the dimensionality reduction these models implicitly perform, and how such a feature can
be exploited in order to augment the capabilities of grasp planners that make use of such
shape completion approaches.

As a closing remark, and considering the exploratory journey this PhD Thesis turned out
to be, we reiterate an observation made in the Introduction: despite some lines of thought
might consider grasp planning a solved problem, we believe that is not the case when thinking
forward to some of the realistic challenges autonomous robots might have to face. We also
believe that in order to make significant advancements that adhere to the scientific principles,
the manipulation research community should aim at producing usable benchmarks that
foster reproducibility of experiments and fair, unbiased comparison of results even at the
cost of some overhead in the experimental validation phase. Finally, we foresee that shape
completion methods will, in the coming years, gain even more traction and become the go-to
solution for bridging the gap between model-based and model-free approaches, by leveraging
the performance of the former and the assumptions (or rather, lack thereof) of the latter.
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