
Università degli Studi di Genova

Robotics, Brain and Cognitive Sciences Department,
Istituto Italiano di Tecnologia

A thesis submitted in partial fulfillment of the requirements for the
degree of DOCTOR OF PHILOSOPHY

Learning visual cues of interaction for
humanoid robots

Doctoral Course in Cognitive Robotics, Interaction and Rehabilitation
Technologies

Doctoral Program in Bioengineering and Robotics

Author:
Alessia Vignolo

Supervisors:
Prof. Francesca Odone

Prof. Giulio Sandini
Dr. Alessandra Sciutti

February 23, 2018



Abstract

One of the fundamental skills supporting safe and comfortable interaction between humans is
their capability to understand intuitively each other’s actions and intentions. At the basis
of this ability is a special-purpose visual processing that human brain has developed to
comprehend human motion. Among the first “building blocks” enabling the bootstrapping of
such visual processing is the ability to detect movements performed by biological agents in
the scene, a skill mastered by human babies in the first days of their life. After, they refine
the ability to understand actions until they get to the point of being able to interact in a
correct way.

In this thesis we present computational models based on the assumption that such visual
abilities must be based on local low-level visual motion features which are independent of
shape, such as the configuration of the body, and perspective. We first design a computational
model to detect biological motion in the scene and we implement it on the humanoid robot
iCub, embedding it into a software architecture that leverages the regularities of biological
motion also to control robot attention and oculo-motor behaviors. In essence, we put forth
a model in which the regularities of biological motion link perception and action enabling
a robotic agent to follow a human-inspired sensory-motor behavior. We then take a step
forward towards action understanding, by building a system that can segment actions into
motion primitives and use them to individuate similarities among different actions and among
different visual perspectives.

As a result we propose a computational model of the perceptual primitives supporting
infants’ social skills development, designed to be implemented on a robotic platform in order
to facilitate mutual understanding, safety and goal prediction during human-robot interaction.
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Chapter 1

Introduction

Goals. Robots are progressively entering our houses: robotic devices as vacuum cleaners,
pool cleaners and lawn mowers are becoming more and more commonly used and the growth
of robotics in the consumer sector is expected to continuously increase in the near future1.
The fields of applications for robotics will influence not only domestic activities, but also
entertainment, education, monitoring, security and assistive living, leading robots to frequent
interactions with untrained humans in unstructured environments. The success of the
integration of robots in our everyday life is subordinated to the acceptance of these novel
tools by the population. The level of comfort and safety experienced by the users during
the interaction plays a fundamental role in this process. A key challenge in current robotics
has then become to maximize the naturalness of human-robot interaction (HRI), to foster
a pleasant collaboration with potential non-expert users. To this aim, a promising avenue
seems to be endowing robots with a certain degree of social intelligence, to enable them to
behave appropriately in human environments.

In order to design robots that interact in a natural way, it is important to endow them
with functionalities that are typical of humans. In this context, human infants represent
an important source of inspiration. Indeed, even if endowed with limited sensory-motor
capabilities and no explicit knowledge of social norms, infants can already quite proficiently
coordinate with their peers [2] and caregivers [84], even in absence of language. Moreover,
from the restricted social abilities exhibited in the very first months of life, humans are able to
develop a full fledged social competence in adulthood. The partial skills exhibited by a baby
can therefore represent the minimum set of abilities necessary to enable the bootstrapping of
more complex interactive expertise. Endowing robots with analogous “social building blocks”
represents therefore the starting point in the attempt to replicate complex HRI skills, favoring
the establishment of a simple yet efficient intuitive understanding in the naive user. A long-

1EU Strategic Road Map 2014-2020
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term goal is to make the interaction between robots and humans more natural, providing the
robot with the capability of moving and perceiving in a human-like fashion. As a consequence,
during the interaction, in the human partner the same perceptual mechanisms, which are un-
consciously and naturally activated during a human-to-human interaction, would be activated.

In particular, human neonates show a natural predisposition towards biological motion
[80]: despite the limited visual information available to them, they can perceive the presence
of other humans moving near them. Since infancy, indeed, vision represents a fundamental
sense for interaction, and this particular predisposition is one of the keys for developing a good
capability in the human-to-human interaction. The observation of actions of our partners, as
reaching, grasping etc, can be enough to deduce what will be their next move and to adapt
accordingly the subsequent motion to interact and collaborate. Hence, an agent apparently
simple and with limited visual capabilities has already “in nuce” all the skills needed to al-
low for the development of the complex action understanding abilities proper of human adults.

In this context, the objective of the thesis is to study, design and validate computational
models of the perceptual primitives which are important for the development of social skills
and motion understanding ability in infants.
The scope of the thesis is highly multidisciplinary, as it addresses a developmental robotics
task inspired by studies of infant cognitive development and aimed at implementing models,
based on computer vision and machine learning techniques, on a complex engineering system
such as a humanoid robot. The reference architecture of the thesis is the iCub humanoid
platform [52], where the designed vision models have been implemented. This choice allows
for a systematic evaluation of the proposed solution and their use for natural human-robot
interaction.

State of art. The reference field of this work is developmental robotics, a collaborative
and interdisciplinary approach to robotics that is directly inspired by the developmental
principles and mechanisms observed in children’s cognitive development. It builds on the
idea that the robot, using a set of intrinsic developmental principles regulating the real-time
interaction of its body, brain, and environment, can autonomously acquire an increasingly
complex set of sensorimotor and mental capabilities [15].
Between all the capabilities, we focus on the motion perception one. In particular, bio-
logical motion plays an important role in human perception: stimuli that follow biological
kinematics are processed by specific areas in the brain [86] and are easier to be anticipated
during human–human interaction [67, 23]. Conversely, movements that do not comply with

4



biological motion rules are likely to be misperceived, both visually and proprioceptively
[33, 92]. Similarly, in the context of human–robot interaction it has been suggested that the
lack of biological plausibility in the motion of a humanoid robot could lead to a sense of
eeriness and disgust, precluding the possibility for a natural interaction [16] and reducing
the coordination with the partner [4]. Another peculiarity of biological motion perception
is its precocity. The ability to discriminate biological motion from non-biological motion in
humans is in fact present from birth, together with a natural propensity to orient attention
toward biologically moving stimuli [80].
All these considerations suggest that biological motion understanding represents one of the
basic perceptual properties that support the development of human social interaction skills.

Biological motion understanding is inherently linked to the topic of action analysis. Several
are the approaches that have been adopted so far to understand human activities in the
fields of computer vision. One option is the use of RGBD sensors [43, 82]: the additional
information carried by the depth channel gives the opportunity to enrich the process of
extracting the body structure and robustly interpret human activity. Potential problems for
these systems occur when the visibility of the partner is limited, for instance due to occlusions
or because the agent is partially out of the scene. In these cases, the difficulty in matching
the 3D input with the human skeleton might limit the efficacy of this approach, making it less
appropriate for cluttered environments. Another option is the use of RGB sensors [104, 21].

Despite the amount of work in computer vision [108, 1, 66], it is often not possible to
implement directly these methods in robotics, due to the specific constraints of the robotic
platform. For instance high resolution images are ideally needed to facilitate human activity
recognition, while robots are in general equipped with relatively lower resolution cameras, in
order not to overload their network, usually prioritized for real-time behavior, as locomotion.
Moreover, in robotics it is often not possible to adopt any approximation usually viable for
fixed cameras (e.g., a stable background) as they should move in their environment. Last, for
robotics aimed at interaction it is imperative that the processing is real-time, even at the
expenses of precision. Indeed, a non-perfect but rapid evaluation could in general trigger a
robot exploration action, enabling also a rapid correction in case of error. On the contrary a
slow scene processing hinders completely the possibility for an interaction. These features
bring strong constraints on the video analysis approaches appropriate for interactive robotics,
and suitable solutions have to be adopted [25].
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Main contributions of the thesis. In this thesis we take inspiration from developmental
science to design the principles of a hierarchical framework replicating the developmental
stages of human visual perception and supporting social intelligence (see Table (1.1) which is
a part of a table extracted from [87]). The Table (1.1) highlights how infants in the first stages
analyze the movement per se (i.e. gaze and biological motion detection) while in the following
ones perceive the movements as actions (i.e. recognition of the pointing, goal understanding,
etc.). The sentences in bold are the ones explicitely related to the development of motion
perception abilities.

Innate skills
Newborns Newborns gaze longer when the person looks directly at them [28]
Newborns Newborns prefer biological motion [80]
Newborns Newborns are attracted to people (i.e face/voice) [29]

Early Development
3 months Infants engage mutual gaze with adults, i.e. both agents attend to each

other’s eyes simultaneously [42]
6 months Infants can perceive approximate direction of attention of others (i.e. to the left

or to the right) [14]
9 months Infants can accurately detect the direction of the adult’s gaze [42]
12 months Infants start to understand pointing as an object-directed action [105]
12 months Infants anticipate with gaze the goal of a feeding action [34]

Later development
18 months Children start to follow adults’ gaze outside their own field of view [42]
18 months Children can infer what another person is trying to achieve, even if

the attempt is unsuccesful [51, 3]
18 months Children start to follow adults’ gaze outside their own field of view [42]
18 months Children altruistically (instrumentally) help adults when they are

having problems in achieving a goal [103]

Table 1.1: Infant abilities list.

Taking inspiration from this, it is possible to derive a hierarchical framework composed
by different steps (represented in the flow of Figure 1.1): biological motion recognition;
identification of groups of similar actions (or action categorization); action recognition.
In the thesis, we contribute to the development of this framework considering the following
points:

• Biological and non-biological motion models. Inspired by neonates that have
this capability, we build a computational model to distinguish between biological and
non-biological motion by exploiting low-level motion features. In the experimental
analysis we also show how the presence of biological movements can be derived by very
partial observations – in extreme cases just by observing a tool manually operated by
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Figure 1.1: Flow for action understanding.

a user or, in principle, the movements of a human shadow, where other methods of
human detection would fail.

• Implementation of the biological motion detection on iCub. We then imple-
ment the detector of biological movements on the robot iCub.We showed how the
detector reliably discriminates between biological and non-biological motion with a
good response rate and makes the robot direct the attention towards the biological
motion. Such a functionality, achieved by a neat procedure and without the need for
a time-consuming interpretation of the scene, was missing in the iCub system and is
original with respect to the state of the art.

• Action analysis. By building on this capability of recognizing biological motion as
proxy for the localization of interactive partners, we then focus on the capability of
understanding classes of actions in order to prepare the interaction. By leveraging on
motion primitives, a well-known concept of motor control, we build a system that can
categorize the actions based on a representation of them as a combination of the motion
primitives automatically discovered by data.

Structure of the document. The rest of the document is organized as follows:

• Chapter 2 is devoted to present in details our method to discriminate between biological
and non-biological motion, followed by an extensive experimental analysis;

• Chapter 3 is dedicated to present the iCub architectural framework that hosts our
method of biological motion detection on the robot and to show both the results
produced on the method while working online and the effect on the robot action;

• Chapter 4 contains the details of our method for representing actions as a suitable
combination of motion primitives, previously discovered from data, and an experimental
session on action recognition first carried out on a single view point and then with an
intra-view analysis;

• Chapter 5 is finally left to a discussion on possible future outcomes.
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Chapter 2

Biological motion

2.1 Introduction

In this chapter, we consider the natural predisposition of newborns to notice potential
interacting partners in their surroundings, which is manifested by a preference for biological
motion [80] and for faces looking directly to them [27] over other visual stimuli. Interaction
in its simplest form seems therefore constituted by a sensitivity to some properties of others’
motion and to their direction of attention.

Drawing inspiration from these observations, we propose a video-based computational
method for biological motion detection, which will be next implemented on the humanoid
robot iCub [52], to guide robot attention toward potential interacting partners in the scene.
We focus on a method purely based on motion, which does not require any a priori knowledge
of human shape or skeleton, nor detecting faces and hands [12, 32].

In essence, we put forth a model in which the regularities of biological motion link
perception and action enabling a robotic agent to follow a human-inspired sensory-motor
behavior. This way, we address two fundamental components necessary to facilitate the
understanding of robots by human users:

1. On the perception side, we make the robot find the same types of stimuli salient as a
human (e.g., [10]). In particular, we propose a computational tool to make the robot
sensitive to human activity, a very relevant type of motion for human observers.

2. On the action side, we enable the robot to direct its attention to human activity through
a biologically-inspired oculo-motor mechanism [9]. This way the robot can reorient its
gaze towards where the human partners are acting. Such eye shift can also represent an
intuitive form of communication, revealing where the robot is focusing and potentially
informing the human partner of its availability to interact [63].
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The use of a common, biologically-inspired, perceptual and motor framework facilitates the
human partner’s understanding and prediction of the future actions of its robot counterpart.

To design a system sensitive to the regularities typical of biological movements we draw
inspiration from the laws governing human motor control. We consider in particular the
Two-Thirds Power Law, since there is an evidence that human neonates are sensitive to it
since the first days after birth [50]. The law is a well-known invariant of human movements
[97, 92, 88, 72] describing the regular relationship between the instantaneous tangential veloc-
ity and the radius of curvature of human end-point movements [35, 98, 46]. There have been
experimental evidences, particularly for handwriting [46, 99], that in biological movements
velocity and curvature show a strong mutual influence. The low-level motion descriptor
we adopt, based on the same dynamic features, is meant to capture such connections even
on complex and noisy data. These motion features are particularly important in motion
perception of infants as they are close to the motionese features that have been discussed in
[7, 8, 58, 100]: humans, when interact with children, exaggerate their movements to make
them more legible by their interacting partners, modifying, among others, the velocity and
the curvature of the movements.

The goal of this section is, then, the analysis of video sequences in order to discriminate
between biological and non-biological motion, adopting a motion representation inspired by
the Two-Thirds Power Law. Our contribution is the application of the Two-Thirds Power law,
that has been always studied in the context of motor control, in the field of video analysis for
the first time, and in more general contexts (not just concerning planar movements but 3D
movements too).

To handle the wide intra-class variability of biological stimuli, we propose the use of a
structured motion descriptor that accounts for multiple temporal resolutions of the measure-
ments. A careful, automatic selection of such resolutions allows us to easily adapt our model
to a variety of scenarios.

We test the method on a wide set of variations including different sensors, points of view,
types of behaviors and dynamics. In particular, its efficacy in generalizing to new scenarios,
including scene observation from different visual perspectives and in the presence of severe
occlusions, is demonstrated.
The methods have been presented in [89, 90, 91, 59].
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2.2 State of art

Several are the approaches that have been adopted so far to perceive and detect the presence of
human activities. In the following we discuss state-of-the-art methods grouped by categories
according to the type of sensor and/or type of information used, while enhancing the novelties
of our approach.

One potential approach to detect humans is to endow robots of specific sensors such as
RFID or thermal sensors (see, for instance, [18]). In spite of high performances, this solution
requires ad-hoc hardware, usually not available in common robotics platform, limiting the
range of possible scenarios. Their relatively high cost is another factor that may harm a
large-scale diffusion – which is however desirable for future family or companion robots.

For the reasons above, we focus here on approaches based on more traditional RGB and
depth sensors. Although the proliferating of works in the computer vision community, the
constraints and limitations of robotics settings make it difficult to directly employ methods
successfully applied to other domains. Robots are in general equipped with relatively low
resolution cameras, in order not to overload their network, while standard computer vision
approaches may rely on high resolution images. Moreover, interactive robots require a fast
processing to support interaction: a perfect classification performance becomes useless if it
is achieved not rapidly enough to enable appropriate robot reaction. In this respect, the
speed-precision trade-off in HRI is often unbalanced toward speed, as a rapid, yet not precise
estimation still allows the robot to continue the collaboration, while adjustment of the initial
guess may always be achieved exploiting the evolution of the interaction itself.
With these constraints in mind, we cite here examples of use of RGBD sensors [43, 82],
promoted in recent years by the widespread availability of low-cost, highly-portable sensors.
This approach provides a richer information on the body structure, helping the understanding
of the performed activity, but to the price of low success when the visibility of the partner is
limited and it is not possible to match the 3D input with the human skeleton.

More related to our work is a third category of approaches, based on the analysis of 2D
video signals acquired with the RGB sensors of the robot cameras [104, 21].

Most 2D video analysis methods for human detection currently adopted in robotics rely
on appearance or shape features, for instance detecting faces and hands in the scene [12, 32].
However, these approaches have severe limitations as scene complexity grows, for instance
when the clutter in the environment increases or the light conditions become more challenging.
Shape-based or part-based methods are likely to fail when the human body is only partially
visible – as in presence of occlusions – while detectors based on faces are not appropriate for
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close interaction scenarios, as those involving precise manipulation on a tabletop.
Although still based on 2D signals, our approach substantially differs from previous works,

as we strictly focus only on the motion properties of the stimuli. A purely motion-based
human detection system makes it possible to detect the presence of humans in the vicinity
just by observing the effects of their behaviour on the environment, as for instance, the
movement of the manipulated tool – a use-case that to the best of our knowledge has not been
considered so far in the related literature. Note that, while motion detection is common in
robotics applications, oftentimes as a preliminary step for further analysis, human detection
through motion requires a selectivity to biological motion, which is usually absent in common
robotic systems.

There is wide evidence that humans are better at predicting stimuli moving according to
biological motion; whereas they present a distorted perception when behaviors subvert these
kinematics rules [33, 67, 23, 92]. Also in the specific context of HRI, it has been demonstrated
that the adoption of biological plausible motion by a humanoid robot can lead to a more
natural coordination with its actions [4] and potentially to a more pleasant interaction (see
[76]). Conversely, the execution of non-biological motion by a humanoid robot has been
suggested as a possible cause for the Uncanny Valley effect [55], i.e., to the occurrence of
a sense of eeriness and disgust toward the robot, precluding the possibility for a natural
interaction [16]. Human-like motion benefits interaction also when it is applied to gaze
behavior, for instance facilitating the regulation of conversations (e.g. [56]), the coordination
of shared plans in collaboration [6] and the prediction of robot goals (e.g. [70]). Drawing
inspiration from these evidence, to maximize the efficacy of the human activity detection
module, our proposed architecture leverages the regularities of biological motion also for the
preparation and execution of the robot saccadic action. This way, the robotic oculo-motor
action triggered by the perception module informs the human partner in an intuitive way
about the internal attentional status of the robot.

2.3 The 2/3 Power Law

In order to design a model able to detect the regularities of biological motion, we identified
some low-level motion features, whose co-variation characterise human movements. To identify
them, we took inspiration from the Two-Thirds Power Law, and we derive the computational
counterpart of the analytical quantities involved in the law. In this section, we present a
review of the law.
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Given a planar point which moves along a trajectory over time, its movement can be
described considering the geometric shape of the trajectory and the law of motion, which
controls how the position of the point varies. A motion which is associated with a physical
event, is always the consequence of their mutual influence. In the case of our interest, that
is the human motion, the central nervous system at the peripheral musculoskeletal plant
constrains a movement to exhibit a set of invariant features, which put in relationship the
shape with the kinematics [35, 98, 46]. A principle that governs human motion is, for instance,
the isogony principle: it states that humans tend to cover equal angles in the same amount of
time, independently of the arc length of the spatial trajectory, putting in a strong relationship
the velocity profile with the curvature of human motion.

These statements have been formalised in the so-called Two-Thirds Power Law [98, 46],
which can be formulates as

V (t) = K(t)
(

R(t)
1 + αR(t)

)β
(2.1)

where V (t) is the tangential velocity at time t and R(t) the radius of curvature at the same
instant t. Experimentally, it has been observed that β exponents are close to the empirical
value of 1

3 for a large class of human motion, but in particular for 2D handwritings [98, 46, 96]:
this fact is a manifestation of the regularity of human motion.

The other two quantities involved in the law are α ∈ [0, 1] and K(t) ≥ 0. The first is
equal to zero when the trajectory does not present points of inflection, otherwise it depends
on the average velocity of the motion. The latter, also known as velocity gain factor, depends
on tempo and length of the motion [95, 94]. Even if the role of K(t) is still not perfectly clear,
in [45, 93] it has been shown that its value is constant for long segments of the trajectories
while it changes usually where there are points of inflections of junctions.

In case α = 0 the law can be simplified as V (t) = K(t)R(t)β from which we can derive
the alternative formulation A(t) = K(t)C(t)1−β where A(t) = V (t)

R(t) is the angular velocity and
C(t) = 1

R(t) is the curvature.

In [93] the authors mathematically prove that when the form of the trajectory to be
followed is elliptical, the sequence of human-compliant positions must be generated by
harmonic functions with the same frequency, which is the mode of production humans
spontaneously select for drawing movements, also known as Lissajous model of trajectory
production [96].

If we consider ellipsoidal shapes with the center in the origin of a cartesian coordinates
system, and the main axis laying on the x and y axis of the system, the shapes can be
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mathematically described in terms of the parametric equations x(t) = A cos(Φ(t))
y(t) = B sin(Φ(t))

(2.2)

which depend on the length A and B of the main axis, and on Φ(t), representing the angular
parameter (which here acts as the law of the motion) as a function of the time instant t.

The spatial derivatives of the positions (i.e. the ideal velocity) can be analytically
computed as  Vx(t) = −A sin(Φ(t))Φ′(t)

Vy(t) = B cos(Φ(t))Φ′(t)
(2.3)

while the spatial curvature is

C(t) = 1
A2B2

(
x(t)2

A4 + y(t)2

B4

)− 3
2

. (2.4)

A Lissajous model can be easily obtained by discretizing the trajectory using equally-spaced
angles Φ(t) ∈ [0, 2π], using a sampling step ∆: at time t, Φ(t) = t∆, with t = {0, 1, . . . , N}
and N = 2π

∆ .
In the next section, we start by discussing the computational derivation of the motion

features inspired by the law.

2.4 A temporal multi-resolution biological motion de-
scriptor

In this section we start with a brief summary of an instantaneous motion description we
adopt as a building block for our method [61]. Then, we review the proposed multi-resolution
method [90] which efficiently combines measurements that may span different temporal
portions of an image sequence.

2.4.1 Instantaneous motion representation

Taking inspiration from the Two-Thirds Power Law, we can derive a set of motion features
which empirically estimate the analytical quantities related by it. We do not use directly
the law but features inspired by it as our data (which are visual data) are more complicated
and noisy than the data used traditionally to evaluate the law (that are motoric data). We
report in Figure 2.1 the key steps of our low-level layer of motion representation starting
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from video sequences. At each time instant t, the optical flow (that is the pattern of the
apparent motion of image objects between two consecutive frames caused by the movement
of the object) is computed using a dense approach [26] which provides an estimate of the
apparent motion vector in each image point (Figure 2.1b). The optical flow magnitude is
thresholded to enhance locations with significant motion. Isolated pixels and small regions,
which are likely to be generated by noise, are rejected by first applying a perceptual grouping
– in which only locations whose neighbouring pixels are also marked as moving are kept in
the analysis – and then discarding small groups. We then obtain a motion map whose largest
connected component (henceforth referred to as R(t)) becomes the candidate region for
motion recognition (Figure 2.1c), under the assumption that only a single interesting source
of motion is observed in the scene at each time instant. Let (ui(t), vi(t)) be the optical flow
components associated with point pi(t) ∈ R(t), and N the size of the region, i.e. the number
of pixels in it. We compute a set of motion features, according to the formulations in Table
(2.1), which empirically estimate the analytical quantities related by the Two-Thirds Power
Law. We finally describe the region R(t) with a feature vector xt ∈ R4 by averaging the
features over all the region elements:

xt = 1
N

[∑
i

V̂i(t),
∑
i

Ĉi(t),
∑
i

R̂i(t),
∑
i

Âi(t)
]

(2.5)

Figure 2.1, on the bottom line, shows the behavior of two of the computed features
(velocity and radius of curvature) across a period of time lasting 80 frames. As expected, the
peculiarities of the performed movements are best appreciated by observing it for some time.

Feature Formula
Tangential velocity V̂i(t) = (ui(t), vi(t),∆t)
Tangential velocity magnitude V̂i(t) =

√
(ui(t)2 + vi(t)2 + ∆2

t

Acceleration Âi(t) = (ui(t)− ui(t− 1),
vi(t)− vi(t− 1), 0)

Curvature Ĉi(t) = ‖V̂i(t)×Âi(t)‖
‖V̂i(t)‖3

Radius of curvature R̂i(t) = 1
Ĉi(t)

Angular velocity Âi(t) = V̂i(t)
R̂i(t)

Table 2.1: Empirical formulations of the spatio-temporal dynamic features (∆t is the temporal
displacement between observations of two adjacent time instants).
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(a) Frame (b) Optical flow magnitude (c) Segmentation

(d) Velocity (e) Radius of curvature

Figure 2.1: Above, the key steps of our low-level motion representation: the original frame
(a), the map of the optical flow magnitude (b) and the segmented region (c). Below, a visual
comparison between raw (blue) and filtered (red) features: the velocity (d) and the radius of
curvature (e).

2.4.2 Multi-resolution motion representation over time

Since a meaningful event lasts more than one temporal tick (e.g. in the action of Moving
an object, the meaningful information is not just in a specific time instant but rather in the
whole duration of the action), we integrate the instantaneous motion representation over a
fixed temporal frame w. To this purpose, we consider a set of w subsequent measurements
[xt−w, . . . ,xt] and compute a running average of each feature across time, obtaining a new
motion descriptor x̂t(w).

The choice of an appropriate size for the temporal window is critical and highly dependent
on the specific dynamic event. For this reason we adopt a multi-resolution approach, where
different temporal windows are jointly adopted, and we propose an adaptive procedure where
we learn from examples the best combination of temporal windows.

More in details, let us consider a maximum temporal window extent wMAX
T ∈ N, such that

wMAX
T > 1, and a selection of potentially interesting time windows wT defined as elements of
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a set W =
{
w ∈ N|w ≥ 1 ∧ w ≤ wMAX

T

}
.

At a certain time instant t we may have a temporal sequence of observations St ∈ R4wMAX
T as

St =
[
xt−wMAX

T
, . . . ,xt

]
. (2.6)

We apply a bank of running average filters – of widths selected from the range in the set
W – to each feature separately. The result is a set of motion descriptors x̂t(wT ) referring to
different time periods wT and such that

x̂t(1) = xt
x̂t(wT ) = RA(St|wT

, wT ), for 1 < wT ≤ wMAX
T

(2.7)

where RA is the running average filtering while the notation St|wT
denotes the restriction of

sequence St to the last wT elements. The leftmost part of Figure 2.2 reports a sketch of this
filtering procedure.

Figure 2.2: A visual sketch of our pipeline. From left: in each image of a sequence we detect
the moving region and compute the features. We then compute a running average of those
features over different temporal windows (3 in this example, identified by the blue ranges).
Then, we evaluate different temporal models which may be composed by more than one
temporal resolution and select the most appropriate.

Starting from the set of motion descriptors of Equation (2.7) we obtain many possible
temporal multi-resolution motion descriptors {F it}i:

F it = ⊕δi(wT )x̂t(wT ), for all wT ∈ W (2.8)

where ⊕ denotes the concatenation between feature vectors, while δi(wT ) ∈ {0, 1} is a binary
weight representing the presence or absence of the corresponding filtered vector in the final
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descriptor.
Thus, as a final step, we need to select an appropriate and minimal combination of

different temporal windows, considering that a multi-resolution descriptor will allow us to
deal with different type of dynamic events, but many different temporal windows would carry
a similar amount of information. The core of the selection process is detailed in the next
section, as it is intertwined with the actual motion classification step.

2.4.3 Biological motion representation and classification

We formulate the problem of recognizing biological motion from video sequences as a binary
classification problem. To this purpose, given a certain temporal scheme denoted with i∗, we
consider a training set

Z = {(F i∗k , yk) ∈ X × Y }nk=1 (2.9)

where F i∗k ∈ X ⊆ Rd is a given temporal multi-resolution descriptor (input)1, while yk ∈
Y = {−1, 1} is the associated output label (1 for biological samples and −1 for negative
non-biological samples). The size d depends on the specific F i∗k considered. Henceforth, we
will refer to F i∗k as Fk.
To learn the relationship between input and output in a predictive way, we adopt a Regularized
Least Squares (RLS) binary classifier which amounts at minimizing the following functional

fZ = arg min
f∈H

1
n

n∑
k=1

(yk − f(Fk))2 + λ||f ||H (2.10)

where H is a Reproducing Kernel Hilbert Space with a positive semi-definite kernel function
K, and λ a regularization parameter that controls the trade-off between the data term and
the smoothness term. At run time, a new datum F is associated with an estimated label
obtained by the sign of fλZ(F), with

fλZ(F) =
n∑
k=1

αkK(F ,Fk) (2.11)

where α = (K + nλI)−1y is an n-dimensional vector of unknowns, while K is the associated
kernel matrix. In the model selection procedure better detailed in Section 2.5.1, we train a
set of classifiers each one associated with a different combination of motion features F . The
best multi-resolution motion descriptor is selected in a data-driven manner, by ranking the
validation error achieved by the different classifiers.

1We omit the index t of Equation (2.8) for readability.
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2.5 Offline experimental analysis

In this section we discuss the experiments we performed primarily on video sequences acquired
with the iCub humanoid robot [52], using the machine learning library GURLS for an efficient
implementation of RLS [83]. We first describe the method assessment, where we discuss
the choice of kernel function and strategy for data filtering. To evaluate the sensitivity of
the method to the acquisition sensor, we also considered test sets captured with a common
web-cam and a hand-held camera (Canon EOS 550D).

The method developed builds on the optical flow, therefore in the experiments we make
some assumptions keeping in mind the optical flow limitations known from literature: in
particular, we consider videos with textured moving objects in order to avoid the camouflage
effect. Moreover, we consider videos with just one source of motion in the scene, even if,
in principle, in case there are several sources of motion, it is possible to identify all the
regions, track them and apply the same method for motion recognition on individual regions
in parallel.

In the following, we first discuss in details the training procedure. Second, we show the
generalization capability of our approach by discussing its appropriateness on a selection
of tests including new dynamic events, new scenarios, and on data acquired by a different
sensor.

2.5.1 Training the motion classifier

The training phase of a motion classifier includes (i) amodel selection in which the classification
parameters and the most appropriate multi-resolution representation are chosen; and (ii)
training of the final classifier based on the previously selected model.

The dataset

Our training set is composed of indoor videos of three subjects observed by the iCub eyes
while performing repetitions of given actions from a repertoire of dynamic movements typical
of a human-robot interaction setting. The choice of acquiring a collection of videos in-house
is due to the absence, to the best of our knowledge, of a benchmark explicitly designed for
purposes similar to ours. More in details, we consider the following actions:

• Rolling dough (9 movements, ∼300 frames — Figure 2.3a)

• Pointing a finger towards a certain 3D location (7 movements, ∼330 frames — Figure
2.3b)

18



• Mixing in a bowl (29 movements, ∼190 frames — Figure 2.3c)

• Transporting an object from and to different positions on a table (6 movements, ∼300
frames — Figure 2.3d)

• Writing on a paper sheet (3 movements, ∼300 frames — Figure 2.3e)

As for the non-biological examples, we consider a selection of dynamic events which can
be observed indoors:

• Wheel with a random pattern (∼300 frames — Figure 2.3f)

• Wheel with a zig-zag pattern (∼300 frames — Figure 2.3g)

• Balloon (∼300 frames — Figure 2.3h)

• Toy Top turning on a table (∼300 frames — Figure 2.3i)

• Toy Train (∼398 frames — Figure 2.3j)

For each dynamic event we acquired two videos. Henceforth, we will adopt the notation
{VSi1} and {VSi2}, i = 1, 2, 3, to denote, respectively, the sets of first and second video
instance of subject Si. Similarly, {VN1} and {VN2} are the two sets of videos containing
non-biological events.

In the following, the training set used for training the classifier and selecting the model
includes {VSi1} for i = 1, 2, 3, {VN1}, and {VN2}. Details on how they are divided are
described where appropriate. Instead, {VSi2}, i = 1, 2, 3, are left out and used as a first test
in Section 2.5.2. The images have size 320× 240 and have been acquired at an approximate
rate of 15 fps. The cameras we used in our work (both the robot and the opposite view
webcam used for the test) have a relatively low resolution.

Method assessment

We first compare the adoption of linear and RBF kernel in RLS combined with the use of two
different strategies for filtering the motion features over time. The first approach relies on
filtering the horizontal and vertical velocity components (Vx and Vy) only (i.e. the elements
from which all the other features are derived), while with the second one we filter each feature
in Equation (2.5) (here after identified as V , C, R and A) separately. In the comparison, we
consider a finite set of possible temporal windows, W = {1, 10, 15, 30}. For each of them we
train a separate classifier on a data set composed as {VS11} ∪ {VN1}. Next, we evaluate the
classification performances on a validation set in which we collect {VS12} ∪ {VN2}.
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(a) Rolling dough (b) Pointing (c) Mixing in a bowl (d) Transporting (e) Writing

(f) Wheel (random
pattern)

(g) Wheel (zig-zag
pattern)

(h) Balloon (i) Toy-top (j) Toy train

Figure 2.3: (a-e) Biological movements included in the training set.
(f-j) Non-biological movements included in the training set.

Figure 2.4 shows the results we obtained in terms of violin plots, enhancing the probability
density of the data at different values. A visual comparison between Figure 2.4a and 2.4b
clearly shows the benefit of using the RBF kernel, while the violin plots of the right-most parts
of both figures speaks in favor of filtering the dynamic features separately. This observation
is enforced reporting in Table (2.2) the average classification accuracies obtained with the
RBF kernel. We include in the evaluation a further accuracy (second column of the table)
obtained by classifying videos (instead of single motion descriptors, i.e. single frames) with
respect to the majority of labels associated with it over time. The results clearly show the
robustness of the representation schema.

Following these conclusions, in the next experiments the features are filtered separately
and the classifier is equipped with an RBF kernel.

Model selection

The main purpose of the model selection (see a visual sketch in Figure 2.5) step is to choose
the most appropriate temporal multi-resolution representation, from a large set of N choices.
This will allow us, at run time, to compute that representation only.
We perform the selection in a data-driven manner, where for each representation considered,
we obtain an average validation accuracy by adopting a Leave-One-Subject-Out approach.

Leave One Subject Out procedure. For a given multi-resolution representation
(Equation (2.8)) we represent all data accordingly, then we partition the training set each
time leaving the videos of one subject {VSi1} as positive examples of a validation set. As for

20



(a)

(b)

Figure 2.4: Comparison of different conditions for building the representation scheme, using
a linear kernel (a) and using a RBF kernel (b). In both cases, left and right parts of the plots
refer to filtering the velocity components only, or all the features separately.
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Figure 2.5: A visual sketch representing the core procedure of our model selection.
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Method Filter width Avg. Acc. Video hit
± std.dev. rate

No filter (WT = 1) 0.81± 0.13 0.72

On Vx and Vy
WT=10 0.78± 0.22 0.71
WT=15 0.76± 0.23 0.68
WT=30 0.77± 0.27 0.80

On V,C,R and A
WT=10 0.88± 0.10 0.92
WT=15 0.89± 0.10 0.86
WT=30 0.87± 0.13 0.84

Table 2.2: Averages and standard deviations of accuracies across 10 different runs of the
training phase using the RBF kernel. The filtering applied to each feature shows higher
robustness.

Scheme Average Overall Precision F-measure Hit rate Overall
accuracy accuracy video ranking

x̂t(1)⊕ x̂t(15)⊕ x̂t(30) 0.87± 0.13 0.86± 0.01 0.91± 0.01 0.69± 0.20 0.82± 0.05 5.25
x̂t(1)⊕ x̂t(10)⊕ x̂t(30) 0.87± 0.14 0.86± 0.01 0.90± 0.01 0.68± 0.20 0.86± 0.04 5.03
x̂t(1)⊕ x̂t(30) 0.87± 0.12 0.86± 0.01 0.91± 0.01 0.68± 0.20 0.86± 0.04 4.00
x̂t(1)⊕ x̂t(10)⊕ x̂t(15)⊕ x̂t(30) 0.86± 0.13 0.85± 0.02 0.90± 0.02 0.68± 0.20 0.81± 0.07 2.08
x̂t(1)⊕ x̂t(15) 0.85± 0.12 0.85± 0.02 0.90± 0.01 0.68± 0.20 0.81± 0.07 1.67
x̂t(1)⊕ x̂t(10)⊕ x̂t(15) 0.85± 0.13 0.85± 0.02 0.89± 0.02 0.68± 0.20 0.82± 0.07 1.54
x̂t(1)⊕ x̂t(10) 0.84± 0.12 0.84± 0.01 0.89± 0.01 0.67± 0.19 0.77± 0.05 1.08
x̂t(10)⊕ x̂t(15)⊕ x̂t(30) 0.85± 0.15 0.84± 0.02 0.89± 0.02 0.67± 0.20 0.78± 0.06 1.08
x̂t(10)⊕ x̂t(30) 0.84± 0.15 0.83± 0.02 0.88± 0.02 0.67± 0.20 0.76± 0.07 0.87
x̂t(15)⊕ x̂t(30) 0.83± 0.15 0.83± 0.02 0.88± 0.02 0.67± 0.19 0.74± 0.05 0.83
x̂t(10)⊕ x̂t(15) 0.80± 0.14 0.81± 0.03 0.86± 0.02 0.65± 0.19 0.61± 0.12 0.73

Table 2.3: A quantitative evaluation of the combined time descriptors.

the negatives, the set {VN1} is always used as a training and the set {VN2} as a validation.
This allows us to obtain an average validation accuracy. With this partitioning, the training
set is composed of ∼ 3000 points. Notice that within each run of the training procedure we
include a hold out process (with M = 10 different partitioning), with a balanced training,
that allows us to select the parameters σ (RBF Kernel parameter) and λ (RLS regularization
parameter).

Detecting the best representation. Let N be the number of the different multi-
resolution representations considered. This number depends on the cardinality of the set of po-
tentially interesting time windows W (see Section 2.4.2). We set W = {1, 5, 10, 15, 20, 25, 30},
and forced the final temporal descriptor (Equation (2.8)) to be concatenation of at most 3
different temporal windows (Equation (2.7)). We chose a maximum size temporal window of
30 frames – equivalent to 2 seconds – as this temporal period already affords complex action
processing in human brain [85].
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The step size of 5 frames between adjacent windows is due to the intrinsic nature of
the data. The choice of considering at most 3 temporal windows is suggested by the
need of controlling the amount of data redundancy. Under these assumptions, we obtain
N = #W +

(
#W

2

)
+
(

#W
3

)
= 63.

In Figure 2.6 we show the performances of each representation scheme, ranked in descending
order with respect to the average validation accuracy. The bars are color-coded with respect
to the number of concatenated temporal representations (from dark to light: 3, 2, 1). In
general three temporal windows appear to be more descriptive, and in particular the ones
including different temporal ranges (short-medium-long) are ranked first.

Figure 2.6: Average accuracy for each representation (dark blue: concatenation of three
temporal windows; medium blue: concatenation of two temporal windows; light blue: a single
temporal window.

With this analysis, we conclude that the temporal multi-resolution representation that
concatenates the raw features vector with the filtered measures on temporal windows wT = 15
and wT = 30 is the best-performing, leading to a final feature vector of length 12. Figure 2.7
shows the classification accuracies of the selected multi-resolution representation, compared
to the cases a single filter width is adopted, on the validation set. A first observation is that
there is not a single temporal window appropriate for all the events: for instance, the single
filter width wT = 30 performs quite well in all cases but one (sequence Mixing, case (c) of
Figure 2.7), as the very fast dynamics of the movement requires smaller window sizes for
filtering the signals. Indeed, shorter time windows provide better performances in this case.

Overall, the multi-resolution descriptor reports more stable performances, with higher
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Figure 2.7: A comparison between the selected temporal multi-resolution descriptor and all
the different time widths considered independently. The results refer to the actions of Figure
2.3.

average accuracies and lower standard deviations (see Table (2.4)). This speaks in favour of
the capability of our approach to cope effectively with dynamic events of variable temporal
duration when no prior information is available.

Training the final classifier

Now we have selected the most appropriate temporal representation r∗, we may build the
final classifier. To this purpose, we consider the whole training set and run a final training
procedure using the r∗ representation (1-15-30), and performing model selection in order to
set σ∗ and λ∗ again with a balanced hold out procedure, with M = 10 trials. The obtained
classifier is adopted to evaluate the capability of our method to generalize to new data, as
discussed in the following sections.

2.5.2 Testing the motion classifier

In this section we report the results of our testing analysis (see Figure 2.8). The experiments
we carried out aim at testing the validity of the model on new data, including data containing
very different appearance of dynamics with respect to the training set.
We organized the experiments in different test trials, to discuss the robustness of our model

25



Representation Average accuracy Standard deviation acc.
x̂t(1) 0.87 0.09
x̂t(5) 0.84 0.12
x̂t(10) 0.89 0.09
x̂t(15) 0.88 0.10
x̂t(20) 0.88 0.10
x̂t(25) 0.92 0.06
x̂t(30) 0.93 0.08

x̂t(1)⊕ x̂t(15)⊕ x̂t(30) 0.94 0.05

Table 2.4: Average and standard deviation accuracy of the temporal single-resolution repre-
sentations and the best performing multi-resolution scheme.

on scenarios of increasing complexity. At first, we perform an assessment of the method on
the same actions of the training set but using different videos (Test I in the following). Then,
we proceed considering conditions that vary with respect to the training set: we focus on
movements included in the training set but characterized by different speeds or trajectory
patterns (Test II); actions in critical situations of visibility (as in presence of occlusions,
limited spatial extent of the observed motion, and even when just the shadow is in the camera
field of view (Test III); different human actions (on the fronto-parallel plane or performed in
depth with respect to the camera) recorded with the robot (Test IV) and with a hand-held
camera placed in front of the robot, to test the influence of the acquisition sensor and of the
viewpoint (Test V). On average, each video lasts about 20′′ .
In the following, we discuss in details each test.

Positive examples. We focus on biological movements and consider the training actions,
adopting the second set of videos of each subject, i.e. {VS12}, {VS22}, {VS32}. As expected,
the method performs very well (see the graph in Figure 2.8a), with an average accuracy,
across subjects, of 0.98± 0.03.

Negative examples with changing speed. We consider variations of the apparent motion
with respect to the training set. Case 1: the three training subjects performing faster training
actions Rolling dough, Transporting; Case 2: the Wheel (with one of the appearance patterns
of the training set) and the Toy train (with the same trajectory of the training set) with
different speed and the Wheel with a different pattern (first picture in Figure 2.8b); Case
3: the Toy train covering a circular trajectory (second picture in Figure 2.8b) as opposed
to the ellipsoidal path considered in the training set (Figure 2.3j), with slower and faster
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velocity profiles (at approximately half and twice the velocity of the training set). The
accuracies, reported in the graph in Figure 2.8b show again very appropriate values, although
an influence of the variations applied in Case 3 can be observed. This may be explained
with a partial lack on information when the conditions become too severe (presence of high
velocity, limited spatial extent of the apparent moving region).

Occlusions and distant dynamics. We focus here on some critical scenarios.

• Case 1: A training subject performs actions included in the training set (see an example
in the first picture in Figure 2.8c) and a new one (Waving) with partial occlusions;

• Case 2: A training subject performs actions not included in the training set (Walking,
Waving hand) far from the camera (second picture in Figure 2.8c);

• Case 3: Observing the shadow of an action included in the training set (Pointing)
(third picture in Figure 2.8c) and a new one characterised by a whole-body motion
(Walking) as opposed to the upper-body movements considered in the training set.

The accuracies are reported in the graph in Figure 2.8c. Cases I and III show how our method
is tolerant to the presence of severe occlusions and, to some extent, is able to deal with indirect
information, such as the one produced by the shadow of a moving object. As expected, both
situations produce good results, with a relatively small decay in the performances. On the
contrary, Case II shows a greater decrease in performance, probably due to the too limited
extension of the apparent motion caused by the large distance of the motion from the camera.

Novel dynamic events. We consider here actions executed on the fronto-parallel plane and
movements performed in depth, on a transverse plane. As for fronto-parallel dynamics, we
focus in particular on handwriting, considering the following sub-categories: frontal drawings
of smooth symbols (as ellipses, infinite, see the first picture in Figure 2.8d, Case 1), hearts,
Case 2), sharp symbols (as rectangles and lines, Case 3), unconstrained text writings (Case
4).
Concerning the movements in depth, we identified the following scenarios: a user performing
natural, unconstrained movements (Case 5, see an example in the second picture of Figure
2.8d); drawing smooth symbols on a table (Case 6, see an example in the third picture
of Figure 2.8d); drawing hearts on a table (Case 7); drawing of sharp symbols on a table
(Case 8); free text writing on a table (Case 9); natural movements towards the robot (hi5,
handshake, Case 10).
We considered both smooth and sharp shapes in order to test the method in case of continuous
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movements similar to the ones on which the Two-Thirds Power Law has been already tested
in the literature (smooth shapes), and in case of other type of movements as the discontinuous
ones (sharp shapes). The accuracies are reported in the graph of Figure 2.8d. We can observe
a very good accuracy in the fronto-parallel cases (from Case 1 to Case 4). Regarding the
movements in depth, we can observe there is a decay in the performances in Case 5, as it
includes very different movements with respect to training, with some even involving complex
forces (like in the action of hammering); Case 6, the actions of drawing smooth shapes, shows
a very good performance, while it decreases in Case 7 and Case 8, respectively the actions of
drawing hearts and sharp shapes; the accuracy is very good in Case 9 and 10, respectively
the action of writing on a table, that indeed was in the training set (even if the video has
been acquired in different place and time), and the actions towards the robot.

View-point changes with different sensors. We consider the same movements adopted
for Test IV, but observed from an opposite point of view and using two different sensors (a
common web-cam and the camera Canon EOS 550D). The use of different sensors and the
change of perspective lead to the generation of optical flow fields that may differ significantly
from the ones adopted for the training phase.
We organized the tests considering the same classification adopted in Test IV. Planar
movements have been observed with a web-cam (320 x 240 pixels, 20 fps), while the sequences
of actions in depth have been acquired with the Canon (320 x 240 pixels, 30 fps).
The accuracies are reported in the graph of Figure 2.8e. We can observe that changing the
point of view there is a decay in the performance in the fronto-parallel cases (Case 1-Case
4), except for a small increase in Case 3, while there is an increase in the performance in all
the cases of movements in depth except for Case 10. The movements with inflection points
(drawing movements of smooth shapes, both on the fronto-parallel plane and in depth), that
should be robust to the change of the point of view, are Case 1 (decrease of 0.29) and Case 6
(increase of 0.13).

2.6 Discussion

In this chapter we presented a computational model for discriminating between biological and
non-biological movements in video sequences, leveraging a well known regularity of human
motor control. Notwithstanding the large heterogeneity of the dynamics of the movements
that can be encountered in everyday life situations, we proposed a temporal multi-resolution
descriptor, purely based on low-level motion features. We showed that this descriptor has
on average a better performance than any single-resolution descriptor, as the latter fails in
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capturing the large variability of possible dynamics of the movements.
We demonstrated the descriptor to be effective also for events of a variable temporal

duration and to generalize well to new and challenging scenarios. It should be noticed that
our approach does not require any appearance-based detection of the human partner, as
the regularities of biological motion are extracted independently of the agent’s shape. This
feature guarantees the possibility to recognize human activities also when the agent is not
visible or severely occluded, e.g. observing a shadow or a visible tool moved by a hidden
agent.

Given the promising results derived from the offline testing reported in the previous
sections, in the next chapter we propose a version of the method able to work online and to
be integrated on the software framework of the robot iCub.
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(a) Test I on new videos of biological movements observed during training. Each bar refers to a
training subject.

(b) Test II on movements with changing speed.

(c) Test III on videos with occlusions, far events and shadows.

(d) Test IV on novel dynamic events.

(e) Test V on novel dynamic events observed from a different view-point.

Figure 2.8: Frames from sequences adopted in the Tests and graphs with the average
classification accuracy (see the text for details on different cases for each Test). The images
are the ones that have been really used for the analysis: the low quality is due to both the
resolution and the bad lighting condition. In some cases, the presence of a transparent board
placed between the camera and the observed scene further affects the quality of the images.
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Chapter 3

Implementation of the biological
motion detector on iCub

3.1 Introduction

The possibility to exploit the method described in the previous chapter for robot perception is
then validated by implementing the method in a module integrated in the software framework
of the iCub humanoid robot [91]. The module implements an engineered variation of our
method – appropriately handled to work online – and is used to enhance the robot visual
attention system [71, 62], endowing the robot with the ability to rapidly redeploy attention
in the scene on actions performed by human agents with a biologically plausible saccadic
behaviour. The advantage of the solution is that attention is biased towards moving human
agents even when they are not visible in the scene. At the same time, the natural robot gaze
motion can act as an implicit communication signal, informing the collaborators of its current
attentional state. In this paper, a detailed analysis of the results of the integration between
the motion classification and the attentive system is done by separating the two stages of
perception and action: this gives a better idea of when, during the robot pipeline, and why
the robot fails or is not perfectly precise in the discrimination task between the biological
and non-biological movements. Moreover, we also analyze the velocity profile of the fixation
point to reach the target.

3.2 Implementation in the iCub framework

The final goal is to embed the human activity detection system in a more structured
architecture supporting natural attention redeployment and gaze behavior by the robot.
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Figure 3.1: The iCub architecture where our method has been implemented.

The software framework of the solution is designed to leverage the modularity supported
by the middleware Yarp [53] and to enable two different computation stages: the perception of
biological movement and the synthesis of biological oculomotor actions. Modularity guarantees
optimal computation distribution on the network resources and scalability of the solution. In
Figure 3.1, we show the structure of the framework indicating how interconnections between
modules are structured to produce a natural behaviour in the iCub. The frameworks is
designed to close the sensor-action loop through the execution of oculomotor actions based
on salient loci in the stream of input images.
In the following, we review each module in details. Although our solution may account for
a generic number N of moving entities in the scene, without loosing in generality, we focus
on the case N = 2 to exemplify the system behaviour. In particular, we choose the two
biggest moving blobs in the scene and we track them within the visual field in time with the
assumption that they do not overlap in corresponding regions of the visual field. The modules
explained in Sections 3.2.1, 3.2.3 are part of our contributions, while the ones explained in
Sections 3.2.2, 3.2.4, 3.2.5 are part of the pre-existing framework.

3.2.1 OpfFeatExtractor

The module resembles the early stage of visual pathways. The analysis is based on images of
size 320× 240 acquired from the cameras embedded in the eyes. The module comprises two
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classes of parallel computing, opfCalculator and featExtractor, that with reference to Section
2.4, correspond to the functionalities of motion segmentation and description, respectively.
The parallelization of the necessary computation demand in multiple threads guarantees
online performance.
Two instances of the featExtractor class analyze the most salient and persistent blobs in the
image plane, henceforth named A and B blob. The correctness of the data transferring from the
opfCalculator to the featExtractor is guaranteed by supervised access (Yarp::Sig::Semaphore)
to the two shared resources, srA = [Ut, Vt, blobA] and srB =[Ut, Vt, blobB]. The opfCalculator
module provides maps of the horizontal (Ut) and vertical (Vt) components of the optical
flow on the whole image and the masks of A (blobA) and B (blobB) blobs to the rest of
the network via tcp ports. In addition to the blobs descriptors, the opfFeatExtractor also
provides two mono-cromatic images, the binary maps marking the locations of blobs A and
B in the image plane.

3.2.2 Classifier

The Classifier is a module that wraps few novel functions around the Machine Learning
library GURLS [83]. The module is programmable from remote (RPC port) allowing the
user to control the modules, triggering different functionalities, the most relevant being the
training of the model, and the online recognition to classify new observations. When model
training functionality is activated, information coming from the opfFeatExtractor module is
collected in a training set. When an appropriate amount of data is available, the module
invokes a GURLS function to train a binary classifier using RLS (see Section 2.4.3). After the
training, the model is adopted for online recognition, when at each time instant, new observed
stimuli are described and classified. Classification is instantaneously based on the RLS score,
generating a vote for the biological class if the score is positive, or for the non-biological class
in case it is negative.
In order to partially correct instability of the final classification due to temporary failures,
votes are collected into a temporal buffer of size 15. At each time instant, the final output of
the classifier is based on a statistic of the votes in the buffer: when the majority of them (at
least the 60%) is for a certain class, then the new observed event is labeled as an instance of
that class, otherwise the system returns a temporary uncertain response as feedback.
Two classification processes receive, as input, the descriptors of A and B blobs and they give,
as output, the classification results of A and B respectively. The two classifications are made
by using a single classifier.

33



3.2.3 BioMerger

The bioMerger module synchronizes the feedbacks of two classification modules (for both A
and B) with the binary masks provided by the opfFeatExtractor module. Consequently, the
module generates a color image of size 320× 240 where the detected blobs A and B are color-
coded according to their associated labels as depicted in Figure 3.2b,d,f,h. In addition, the
module prepares a topographic feature map designed to compete in the visual attention system
PROVISION (PROactive VISion attentiON) [71]. The spatial map (320 × 240 grayscale
image) indicates, with different level of saliency, the spatial locations where the biological
movement is detected. The bioMerger streams a top-down command to the attentive system
modifying the weight of biological motion in the competition for the attention, according to
the confidence of the classification.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: (a,c,e,g) Representation of the setup and color segmentation for biological motion
samples.
(b,d,f,h) Biological (green) and non-biological (red) movements detected in (a,c,e,g).

3.2.4 PROVISION

The PROVISION is a log-polar attention system based on the computation model for at-
tentive systems proposed in [38]. Through the combination of two fundamental processes,
Winner-Take-All (WTA) and Inhibition-of-Return (IoR), the visual attention selects the
most significant location in the saliency map. The selection of the saliency winning lo-
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cation activates a ballistic oculomotor action (saccade) that brings the salient stimulus
in the camera center of the drive eye. In this contribution we enhanced the collection
of feature maps with an additional feature map responding to the presence of biological
motion in the image plane. The mechanism triggers PROVISION autonomous focus of
attention redeployment towards the biological movement which in turn triggers a oculomotor
command to the IkinGazeControl. The PROVISION system provides to the rest of the
network a command of suppression of the movement perception. The process resembles
the suppression of the magnocellular visual pathway [13] and avoids excessive activation of
the visual pathway caused by the egomotion during the saccade. The bioMerger leverages
the PROVISION command of suppression to idle the process of extraction of the biological
movement feature. This assures a stable perception-action loop comprising the extraction
of the optical flow, the classification and the execution of oculomotor actions, such as saccades.

3.2.5 IkinGazeControl

The biological control [73] accounts for both the neck and eye control. The combination of
two independent controls guarantees the convergence of the fixation point on the target. The
controller solves the fixation tasks by implementing a biologically inspired kinematic controller
that computes the robot joint velocities in order to generate minumum-jerk, quasi-straight
trajectory of the fixation point. The controller is also enriched with additional models of
biological oculomotor actions such as vestibular ocular reflex and passive gaze stabilization.
The PROVISION system gives instructions to the IkinGazeController that autonomously
coordinates 3 degrees-of-freedom (DoF) neck and 3-DoF eye system to show natural behaviour
in the robot gaze. The rate obtained is compliant with the temporal dynamics of saccades in
human attentive systems and the process as a whole resembles the infant predisposition to
bias attention towards biological movement in the scene.

3.3 The method at work on the robot

In this section we present the experimental analysis performed online on the robot. We start
analyzing the accuracy for the classification of biological motion, even in presence of different
moving stimuli in the observed scene. Later, we will discuss the integration with the attention
system and biological control system of the oculomotor action in the humanoid robot iCub.
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3.3.1 Experiments on online learning

We describe the classification performances obtained on the robot. We first observe that, in
typical applications involving proactive robots, it is fundamental to provide reliable training
and classification in a reasonable time span. In the reported experiment, we show how this is
achieved by parallelizing tasks in the software infrastructure.

To facilitate reproducibility both the biological and the non-biological stimuli are presented
on a table (64cm of height) and at a distance of 64cm from the origin of the iCub frame of
reference.
Training is performed starting from an initial condition without a priori knowledge, meaning
that the robot lacks the abilities of discriminating between biological and non-biological
motion. The training is performed online on the robot, replicating the situation where the
operator interactively instructs the robot. Model selection is also performed online.

We first train the robot on the set of biological and non-biological categories already
adopted for the offline analysis (see Section 2.5). In this case, we apply a filtering with a
Gaussian mask to partially correct instantaneous noisy information that might affect the
overall analysis. In our experiments we fix the width of the Gaussian mask to M =9, which we
found to be a good compromise between accuracy of the results and computational efficiency.
On average, each video lasts about 20′′ .

We test the classification system by proposing a single stimulus from a subset of represen-
tative events categories in different portions of the iCub field of view. The obtained results
are shown in the first part of Table (3.1). During the evaluation, we determine whether each
received packet matches the expected response (column AccuracyA). The average accuracy
obtained in case of a single stimulus with biological and non-biological motion is 0.98. The
reported accuracy is obtained in asynchronous evaluation periods (column Time). A relevant
aspect for robotic applications, requiring adaptability to context change in the environment,
is the transmission rate (column RateA), which is reasonable for oculomotor actions such as
saccades.

Finally, we consider an experimental scenario where two stimuli (A and B) are presented
on different portions of the field of view. The analysis of the classification quality is reported
in the second part of Table (3.1), where we show accuracy and transmission rate corresponding
to the A and B stimulus, and the overall evaluation time. The average accuracy obtained in
case of two stimului with biological and non-biological motion is 0.94. The classification of
the motion is uncertain at the initial transient, due to the filtering of the features vector and
the instability of the classification. In the table we report the accuracy excluded the initial
time windows necessary for stable filtering of the result. Averaging the accuracies obtained
on biological and non-biological samples in one stimulus and two stimuli cases, we obtain an
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Stimuli AccuracyA RateA[pkt/s] AccuracyB RateB[pkt/s] Time[s]
clouds 1.0 4.30 – – 40
leaves 0.94 4.40 – – 40

rolling dough 0.96 4.02 – – 40
transporting 1.0 4.19 – – 40

clouds-rolling dough 1.0 3.13 1.0 3.13 30
clouds-transporting 0.98 3.27 1.0 3.26 30
leaves-rolling dough 0.81 3.51 0.90 3.57 30
leaves-transporting 0.85 3.83 1.0 4.11 30

Table 3.1: Online classification results with one stimulus and two stimuli.

accuracy of 0.95.
Despite the number of classifications has increased, the decrease of the rate is limited and

it has no effect on the gaze control. In fact, the software framework is designed to be scalable
and the computation demand of multiple classifications is distributed across the processing
node in the network. Overall, this set of experiments produces convincing results for what
concerns accuracy. We only have a degradation on the pair leaves + rolling dough stimuli,
due to discontinuities of the stimulus provided.

Figure 3.3 shows how the classifier generates response messages, for a biological stimulus
(rolling dough). The score provided by the classifier is accumulated over a 15 frames temporal
window. In this case, the response is constantly 1.0 indicating a correct classification as
biological movement. The brief undetermined classification (classifier response: 0.0) is due to
scores below zero in the previous window of 15 frames, as depicted in picture. The system
recovers after few iterations and the classification returns to provide correct response giving
evidence of robustness.

3.3.2 Experiment on integration with PROVISION and Gaze Con-
trol

The classification system is designed to reliably provide results to a broad range of software
applications in the iCub network. To facilitate its use, we integrate the classification output
with the masks produced by the opfFeatExtractor into a single mask. The mask is produced
and provided to the network by our new bioMerger module. In this experiment, the output
of the bioMerger module interfaces with pre-existing software: PROVISION and iKin Gaze
Control [64]. The biological movement detector provides a feature map of biological movement
and the level of confidence associated with classification.
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The integration experiment described here includes two different stages: perception and
action. For both the evaluation stages we produce a biological and a non-biological movement
(distractor) and we determine how the position of the salient biological stimulus evolves over
time. To determine the ground truth for the localization of the human activity in the scene,
we adopt a color segmentation module and we perform experiments with a human subject
wearing colored gloves. The localization based on color relies on a source of information
alternative to the one exploited by our algorithm (i.e., motion), thus representing a dependable
estimation for comparison (see Figure 3.2). For each case, beyond measuring the perceptual
error, we run multiple saccades and extract the statistics on the errors due to the control
stage.

In the evaluation of perception quality, we compare our estimated (u, v) position of the
salient stimulus in the image plane provided by PROVISION with the segmentation of the
moving region detected by the color segmentation (Figure 3.4). In this phase, no oculomotor
command is generated and the fixation point of the robot is at the center of the scene in
F=[-0.5, 0.0, -0.35]m where the frame of reference is located and oriented according to the
iCub standards. In Figure 3.5 we show the distance in pixels between the two different
locations. Notice that a mean distance in the range [20-40] pixels corresponds to a metric
range [4-8] cm, given the distance of the camera from the stimuli (64cm).

Figure 3.3: An example of the classifier generating response messages – Rolling dough case
(bio = 1, nonbio = -1,“?" = 0).
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Figure 3.4: An example of perception errors, computed as the distances between the
locations identified by the color segmentations (blue crosses) and the corresponding positions
individuated by the biological motion detector (red dots). The dots and the crosses are
printed on a more transparent version of the scene extracted from the robot point of view
before the beginning of the oculo-motor action.

Case Stimuli (A-B) corr/tot
Case 1 gesturing-wheel random 11/11 sac.
Case 2 leaves-writing subject1 10/11 sac.
Case 3 cars-gesturing 15/15 sac.
Case 4 bouncing ball-mixing 11/12 sac.
Case 5 mixing,no person-wheel zigzag 11/11 sac.
Case 6 wheel random-writing subject2 13/13 sac.

Table 3.2: Number of correct saccades in integration experiment.

In the evaluation of the action quality, we analyze how the biological movement detector
biases the proactive attentive system of the humanoid robot iCub. We assume that the
classification of the motion is done when the camera of the robot is not moving, but we
experimentally observed that a small movement of the eyes is acceptable, as small movements
are discarded from the analysis thanks to the thresholding of the optical flow. The visual
attentive system generates a saccade command and once the controller plans the relative
saccade, the oculomotor action is executed bringing the center of the robot eye (fovea) to the
most salient stimulus, winning in the competition between perceptual features. Considering
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Figure 3.5: Average perception error in all cases. For the detailed list see Table (3.2).

the known distance of the stimulus from the stereo cameras, the gaze controller moves the
fixation point to the target of interest (the biological movement in the scene). In PROVISION,
a post-saccadic refinement mechanism based on visual feedback control can potentially refine
the saccade. However we disabled such additional control to avoid unclear measurements
on two distinct and concurrent visual processes on the robot. Notice that, as shown in
Table (3.2), the system performs incorrect saccades in two different cases. The two incorrect
saccades are due to a misclassification of the biological stimulus by the Classifier module:
they have been discarded for both the evaluation of the perception and action quality.

In Figures 3.6 we show the position given by the color segmentation when the saccade
starts (blue dots), and the trajectory of the position given by the saccadic commands (red
line) towards the fovea (0,0), from when the saccade starts up to 2.5 seconds (as, from Figure
3.7 where we represent the velocity of the fixation point during the executing of the saccade;
in other words, we can consider the time of its approaching to the target as the duration
of the saccade). The semitransparent image overlapping the trajectory is to consider as the
snapshot of one visual scene taken right before the oculomotor command saccade is triggered.

We measure the control error by computing the distance between the center of the fovea
(0,0) and the position given by the saccadic command (red line of Figure 3.6) for the six
typologies of trials in the previous perception stage. In Figure 3.8, we show the error from
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: The position given by the color segmentation when the saccade starts (blue
crosses), and the trajectory given by the saccadic commands (red line) towards the fovea
(0,0).

the moment the saccade starts up to about 6 s. In the graphs of the control error the mean
of the error (blue solid line) reaches immediately the quality threshold of 40pixels. The
threshold is set according to our estimation that at a distance of 0.68m, 40pixel error is
interpreted as a correct saccade from a human observer. The responses in Case1, Case3 and
Case5 show overshoots, due to the relative position of the biological stimulus with respect to
the resting position. All the responses converge to control errors below the 40 pixel threshold
guaranteeing the expected quality of the control of the saccade to the biological movement.
The oscillations after the transient are due to the response of the color segmentation that
tracks moving stimuli after the end of the saccade and it is not related to the quality of the
saccade generated by the system.

Then, we measure the distance between the center of the fovea (0,0) and the centroid of
the color detection system (Figure 3.9): this can be referred as a global error, as it includes
both the perception error and the control error.

Case5 is a very peculiar case as the color segmentation gives us the position of the center
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: The blu line is the average velocity of the fixation point to reach the target for
each case, the blue dotted line is the average velocity ± standard deviation.

of the rectangle around the stick (Figure 3.6e), while our module will give as oculomotor
command the most salient position of the saliency map, which corresponds to the position of
maximum optical flow. This leads to have a larger standard deviation in the perception error
(Figure 3.5, Case 5) and a larger control error (Figure 3.8e). However, considering the goal of
detecting humans in the scene, our method could be considered actually more accurate than
color segmentation.

3.4 Discussion

This computational model can therefore enable an artificial agent to detect the pres-
ence of humans in its surrounding to provide the appropriate pro-social behavior, as we
demonstrate by implementing it on the humanoid robot iCub. The video at this link
https://youtu.be/wQ39oUq1eaA shows some real-world experiments of the proposed compu-
tational model.

The saccadic action performed by the robot as a consequence of the detection of human
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Control error. Distance between the position given by our module as saccadic
command and the fovea (0,0). The blu line is the average error, the blue dotted line is the
average error ± standard deviation. The red line is a threshold of 40 pixels.

activity in the scene, beyond providing the robot with a better view on the area where it
is more probable that an interaction could start, also informs the human partner about
the internal attentional status of the robot in the most intuitive approach. This type of
gaze-based intuitive communication, commonly adopted in conversational agents and social
robotics, has recently gained impact also in the field of small manufacturing, where Baxter
(by Rethink robotics) exploits a screen with (non-functional) eyes, just to reveal its focus of
attention. In our system the matching between the actual function of the eyes (i.e., cameras)
and their ostensive value, increase even more the intuitive interpretation of the iCub actions.

In this respect, our work represents the first building block of the social abilities of the
robot, that in the future will be exploited to categorize actions into different classes, an
issue that we have started to address in [60]. Such capability can be of strategic interest
for a broad community aiming at enabling effective interaction between human, robots and
intelligent machines.
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Global error. Distance between the centroid of the biological motion (given by
color segmentation) and the fovea (0,0). The blu line is the average error, the blue dotted
line is the average error ± standard deviation. The red line is a threshold of 40 pixels.
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Chapter 4

Understanding and recognising
actions

4.1 Introduction

In the previous chapter we showed that it is possible from a low level description of a visual
motion to determine whether it belongs to a living being or to an inanimate object. This
partition represents a fundamental building block in the development of interactive skills,
but does not provide any information on the meaning of the observed movement. The goal
of this chapter is to assess whether an extension of the description we proposed could help
understanding which type of action is occurring in front of the robot, once the motion has
been recognized as biological. Our goal is not classical action recognition, where possible
classes of interest are clearly a priori identified. Rather we aim at individuating groups of
actions sharing some similarity relationships, in terms of kinematics (for instance one group
could be made by continuous actions and another one by actions with a starting point and
an ending point), and at enabling the robot to recognize to which of these emerging groups
belongs the action it is seeing. With this goal in mind we explore the concept of visual
motion primitives, intended as a limited number of action sub-components necessary and
sufficient to describe and reconstruct a wide range of different complex actions. We propose a
kinematic definition of primitives based on simple visual features as velocity and curvature of
the apparent motion (see below Section 4.4), and we verify whether such description enables
the detection of similarity among different classes of actions or of the similarity between
actions observed from different visual perspectives (Section 4.7).

The idea of motion primitives is an important topic in fields such as Human-Machine
Interaction (HMI) and has applications in several areas, like intelligent systems, ambient
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intelligence, natural interfaces and robotics. In the latter, the primitives have been mostly
applied to motor control problems [75], as they are combined for making the robot able
to perform manipulation actions on objects. Our innovation is exploiting the concept of
motion primitives in a perception setting, with the idea, in the future, of using it for building
a unique paradigm where perception and action are strictly linked to each other: in this
scenario, the robot will understand the human motion by observing it and decomposing it in
primitives, and will be able to perform the motion itself.

In particular, we propose a system that, starting from a video sequence, is able to learn in
an automatic way some motion primitives and to represent the video sequences as a proper
combination of them. To this purpose, we use the dictionary learning technique.

4.2 State of art

The literature about gesture, action, and activity recognition, in the field of computer vision
is huge: we refer the reader to [108, 1, 66] for a complete survey of the topic. Regarding the
works on action recognition for the specific application in robotics, we refer to [25]. Here
we will focus more on works about the recognition of actions and of human poses based
on optical flow and on works that share our goal, that is “actions categorization”, and in
particular on research related to the idea of motion primitives.

Optical flow has been used in several 2D and 3D model-based methods with the goal
of estimating the human pose from videos. Methods [11, 41, 79, 101], for instance, link
the 2D image motion to the parameters of articulated human figures. In [24] the authors
generate training flow fields from different views using a synthetic character and motion
capture data. By applying PCA, a low-dimensional representation of the flow is built, and
simple activities are represented in that low-dimensional space. Efros at al. [22] use optical
flow to estimate pose of low resolution people in video. As the flow information is limited
and noisy, it is treated as a spatio-temporal pattern, which becomes a motion descriptor,
used to query a database for the nearest neighbor with a similar pattern and 2D and 3D
pose that is known. In this method, similar sequences of fully body poses in the database are
required. In Bissacco et al. [5] they use a boosted regression method to recognize pose from
image and motion features, which are derived by image differences and not really optical flow.
Some recent methods use optical flow to augment traditional 2D pose estimation methods.
In [31] the authors use optical flow to help in the segmentation of body parts while reasoning
about pose, segmentation and motion. In [39] the authors use images and flow to train a
deep convolutional neural network (CNN) to estimate upper body pose. Nevertheless, these
methods use optical flow just as an additional information, and rely mostly on other image
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cues.
In our work, we investigate how far we can go by using just features computed from the optical
flow. Regarding the problem of actions classification, the classical approaches [108, 1, 66] in
computer vision aim at achieving the best possible performance by using a rich information
extracted from the video. A direct qualitative comparison with these methods is not feasible
as the goal is different: indeed, we use a low level description based on primitives focusing
just on the kinematics and in particular on velocity and curvature of the movement. Our
goal is to discuss what we can achieve with this low level information, which resembles the
low ability of infants in motion perception. Moreover, the use of kinematic features leads
towards another topic of great interest for robotics, that is the possibility, for the robot, of
not just understanding the human motion in front of it but also to be able to perform this
motion itself: the ambition is, indeed, to design unique methods to model both perception
and action, while usually these are two different problems addressed with different methods.

Regarding motion primitives, although there is no common definition of them (often
referred to also as segments), an accepted idea is that actions can be naturally decomposed,
in phases and subgoals [81]. According to the motion primitive paradigm, each action phase
corresponds to a primitive. For instance, for manipulation tasks, there are typically a series
of action phases on which objects are grasped, moved, brought into contact with other
objects, and finally released [30, 17]. Most of previous works on this topic in robotics refer
to the problem of motion planning using combinations of primitives [36, 44, 48], and are
often applied to manipulation tasks, in some cases with the interesting approach of learning
sub-actions and/or their goals [107, 81]. While the effort in reproducing human motion
for robot motor planning is apparent, very little has been done to reveal and exploit the
biological mechanisms allowing for an efficient use of the motion primitives from a perception
standpoint.
From the human perception point of view, in [37] it has been shown that humans, if being
asked to segment hand/arm actions, base their choice on where to place segmentation marks
on low level kinematic information, i.e. change in direction, velocity and acceleration of the
wrist. From a computational point of view, in [68] the authors propose a computational
representation of human action to capture the view-invariant dynamic instants where a change
in the speed and direction of the trajectory occurs.
We decided to focus more on kinematics, that is the intervals between two dynamic instants
instead of the dynamic instants themselves: these intervals in time represent the basis on
which the primitives are built.
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4.3 Adaptive data representation

In order to pursue the goal of representing actions through motion primitives, these have
to be found out. In this section, we introduce the dictionary learning technique, a common
approach to learn adaptive representation from data, that can be used to discover the motion
primitives.

4.3.1 Dictionary Learning

The purpose of dictionary learning is to learn a set of atoms, that is a dictionary D, that can
capture the essence of all the data of the considered dataset, such that every datum can be
approximately expressed as a linear combinations of elements in the dictionary as x ' Du:
this mapping brings the descriptors into a common reference frame, allowing a more effective
comparison between them over time. The dictionary D is a matrix K × d, where K is the
number of atoms of the dictionary and d number of features contained in each descriptor.
Typically K > d, therefore D is a over-complete basis.
For doing dictionary learning in an unsupervised way, typically, the K-Means [19] technique
is adopted. It is based on minimizing the following reconstruction error:

min
D,U
‖X−DU‖2

F

s.t. Card(ui) = 1, |ui| = 1,ui � 0, ∀i = 1, . . . , T
(4.1)

where X = [x1, . . . ,xT ] is the set of descriptors used for learning the dictionary, U =
[u1, . . . ,uT ] are the cluster membership codes, with each ui ∈ RK , K dictionary size. The
constraint Card(ui) = 1 means that only one element of ui is non-zero, and ui � 0 means
that the element must be greater than zero, i.e. each local descriptor belongs to one cluster.
Another way to do dictionary learning is to usa a Gaussian Mixture Model (GMM) [74] that
generalizes the K-Means algorithm by learning a probability density function p(xi |θ) =∑K
k=1 p(xi|µk,Σk)πk, where πk are the mixing coefficients and p(xi|µk,Σk) is a d dimensional

Gaussian. Each descriptor xi is then soft-assigned to clusters:

uik = p(xi|µk,Σk)πk∑K
j=1 p(xi|µj,Σj)πj

k = 1, . . . , K. (4.2)

The Mixture Models learning is done by an Expectation-Maximization (EM) algorithm.
In the case of sparsity based methods [106], the dictionary is learned by minimizing the
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following objective function:

min
D,U
‖X−DU‖2

F + λ‖U‖1 (4.3)

where ‖· ‖F is the Frobenius norm. L1-norm yields to results characterized by sparsity and
robustness. Another possibility is to use other penalties like the L0-norm, but in this case it
becomes an NP-hard problem where the convergence to an optimal solution by the algorithm
is not taken for granted. It is worth noting that fixing U, the optimization of Equation
(4.3) becomes a least square problem, while fixing D, it becomes a linear regression with the
sparsifying norm L1. Given a fixed D, an efficient algorithm to solve the problem in Equation
(4.3) is the feature-sign search one. This algorithm searches for the sign of the coefficients U;
indeed, considering only non-zero elements the problem is reduced to a standard unconstrained
quadratic optimization problem (QP), which can be solved analytically. Moreover it performs
a refinement of the signs if they are incorrect. For the complete procedure we refer the reader
to [49]. In practice, the algorithm employed for learning the dictionary is not crucial, and
dictionaries learned with K-means are enough to obtain the best results.

4.3.2 Coding

Once a dictionary is learnt, the input features x1, . . . ,xM ∈ Rd are mapped into a new space
of codes u1, . . . ,uM ∈ RK . Several coding operators can be used, each of them producing
different output. For instance, BOW-like methods give as output the amount of atom
contribution to the linear combination or the visual word occurrences. These coding operators
minimize the following reconstruction error:

ui = arg min
u
‖x−Du‖2 + λR(u)

s.t. C(u)
(4.4)

where, depending on which regularization terms R(u) and constraints C(u) are used, different
algorithms can be derived:

Vector Quantization (VQ) [47] This algorithm, given a dictionary D, minimizes the
following reconstruction error of xi:

min
ui
‖xi −Dui‖2

s.t. Card(ui) = 1, |ui| = 1,ui � 0
(4.5)
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that is the same as Equation (4.1) with a fixed dictionary.

Sparse Coding (SC) [106] In this algorithm, each descriptor is represented by using just
a subset of atoms, the more relevant ones. It minimizes:

min
ui
‖xi −Dui‖2 + λ‖ui‖1 (4.6)

where the L1-norm makes the learned representation able to capture the main patterns of
the descriptors and produces sparsity. The parameter λ is chosen as a trade-off between the
signal approximation and the sparsity. This equation corresponds to Equation (4.3) with a
fixed dictionary.

Locality-constrained Linear Coding (LLC) [102] Given that locality produces sparsity
and not viceversa, one can give priority to locality, and this algorithm does this. Here, just a
subset of coded vector ui, whose components are related to the k nearest neighbors of the
input xi and the atoms in D are selected. The codes are obtained minimizing:

min
ui

‖xi −Dui‖2

s.t. 1Tui = 1
(4.7)

where ui are the components of ui related to the k nearest neighbors of xi in D, denoted
with D. Codes entries that are not associated with any neighborhood in the dictionary are
set to zero.

New coding methods that have been proposed recently do not minimize any function but
rather rely on high-level statistics: in this way, large and informative representations can be
achieved even with small dictionaries. Between these methods, we mention Super Vector
coding [109], Fisher Vector [74] or its non-probabilistic version, VLAD [40]. They are too
demanding for real-time and robotics applications due to the final descriptor size.

In conclusion, in order to better distinguish the classes, we decide for a sparse representation
of the data, choosing the Sparse Coding technique.

4.4 Motion representation using visual primitives.

In this section, we discuss how to represent an action as a suitable combination of visual
motion primitives. First we devise a method to segment an action into sub-movements and
we derive the motion primitives as atoms of a dictionary learnt from data. Then we discuss
how to combine such primitives to obtain a meaningful description of the action.
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To do that, we go through the following steps:

• Data extraction. At each time instant t, we first extract the optical flow for each point
of the moving region, we compute the average of it and then we compute the tangential
velocity and the curvature [69] of human end-point movements, as described in Section
2.4. At this stage, each video is represented by temporal sequences of tangential velocity
and curvature.

• Segmentation. We split the velocity sequence over time in sub-movements detecting,
in an automatic way, points that correspond to a Start, Stop, Change in the dynamics
of the action, which refer to the dynamic instants cited in Section 4.2. We used two
rules of segmentation for different type of actions:

– Rule 1: the velocity is segmented where it goes to 0, and this rule can be applied
to actions which are not continuous, which have points of Start and Stop (like
Eating, see Figures 4.1a, 4.1c). For actions that do not have points of Start and
Stop, the Rule 2 is applied.

– Rule 2: the velocity is segmented where there is a maximum in the curvature, as
it corresponds to a local minimum of the velocity, and this rule can be applied to
segment continuous and repetitive actions that do not present points of Start and
Stop but point of Change in the dynamics (like Mixing, see Figures 4.1b, 4.1d).

As a result of the segmentation procedure, we obtained the sub-movements of the
velocity as depicted in the examples of Figure 4.1. For each of the two datasets of
sub-movements (each one corresponding to a different rule of segmentation), we build a
dictionary of motion primitives.

• Representation of sub-movements with dictionary.

– One dictionary for action. First of all, we treat each action separately and we
build a dictionary for each action. For doing it, for each action we take all the
sub-movements obtained from the segmentation and we do a K-means clustering
obtaining a dictionary of atoms (with a number of atoms equal to the value of K
considered for the K-means). In this case where a dictionary is built starting from
one action, a low value of K should be enough to cover all the sub-movements of
the action.

– Unique dictionary. Then, we treat all the actions together and we do the
clustering for the sub-movements obtained with the segmentation of all the actions
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(a) (b)

(c) (d)

Figure 4.1: (a,c) Video sequence of Eating, a movement with dynamic instants of Start and
Stop, where the Rule 1 is applied to segment it.
(b,d) Video sequence of Mixing, a continuos movement with no point of Start and Stop, but
with points of Change in dynamics, where the Rule 2 is applied to segment it. One round of
the hand includes two sub-movements.
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Figure 4.2: Building a unique dictionary of motion primitives.

of the training set, building a unique dictionary (case example in Figure 4.2). In
this case, the value of K should be increased as we have to deal with a lot of
different actions at the same time and we need a number of atoms that is enough
to represent all of them. After building the dictionary, each sub-movement of the
training set is then reconstructed as an approximation of a linear combination of
some of the atoms in the dictionary, using the sparse coding technique described
in Section 4.3.2, and represented as the sequence of weights used for each atom in
the reconstruction (case example in Figure 4.3).

At the end of this procedure, given a video V representing a given action, we finally
describe each sub-movements vi of V as the feature vector [u1, u2, ...uK ], where uj are the
coefficients/weights assigned to each atom (some of them are equal to 0) and K is the number
of atoms of the dictionary.

4.5 Analysing motion primitives

Given the data representation described in the previous section, our purpose is to capture
similarities between actions.

First, we address the problem with an unsupervised approach, where we perform a
K-means clustering of the data, with different values of K, to see how the sub-movements
of the actions are grouped together inside the clusters. It is important to notice that this
K-means procedure is unrelated and subsequent to the one described in the previous section.
From the results of this step we infer the complexity of the problem, that is characterized by
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Figure 4.3: Representation of the sub-movements of the actions as linear combination of
dictionary atoms (sparse coding).

intra-class variability, as sub-movements of the same action look different from one another,
and by inter-class similarity, as sub-movements of different actions look similar.

Then, following a supervised approach, we perform a classification of the actions. We
first train a binary classifier per class, with the samples of that class as positive samples and
all other samples as negatives: given an action, in the testing phase, the model can say if a
new data is of that action or not. After that, we build a multi-class classifier with one-vs-all
approach, where a binary classifier per class is built, and prediction is then performed by
running these binary classifiers and choosing the prediction (i.e the action) with the highest
confidence score. To learn the relationship between input and output in a predictive way, we
adopt a Regularized Least Squares (RLS) classifier. Both the binary classification and the
RLS have been already explained in Section 2.4.3 in detail.

4.6 Experimental results on several dictionaries

In this section we present some early results obtained on video sequences of a multi-view
dataset we acquired (Appendix A), composed of 19 actions (reported in Table (4.1)). The
purpose of these early experiments is to investigate our data following the procedure described
in Section 4.4 using one dictionary for action, focusing only on one point of view (the frontal
one).

For each action we take all the sub-movements obtained from the segmentation of the
video sequences of the training set and we do a K-means clustering obtaining a dictionary
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1 Grating the carrot
2 Cutting the bread
3 Cleaning a dish
4 Eating
5 Beating eggs
6 Squeezing the lemon
7 Cutting with a mezzaluna
8 Mixing
9 Open the bottle
10 Turning the omelette
11 Pestling
12 Pouring water
13 Reaching an object
14 Rolling the dough
15 Washing the salad
16 Salting
17 Spreading cheese on a bread
18 Cleaning the table
19 Transporting an object

Table 4.1: Dataset of cooking actions.

of atoms (with a number of atoms equal to the value of KD considered for the K-means).
We repeat it with KD = 1, 2, 3 as the actions we consider are mostly characterized by 1, 2
or 3 motion primitives. Then, in order to understand which dictionary is the best one for
each action, we reconstruct each sub-movement using the dictionaries obtained, and we then
take into consideration the dictionary which corresponds to the first KD with a mean error
of reconstruction < 0.3 (if, for a certain action, all the dictionaries have an higher error, we
take the dictionary related to the maximum KD, that is KD = 3). We then reconstruct each
sub-movement of the test set as a linear combination of the atoms of the dictionaries chosen
for each action. In the error matrix of Figure 4.4, the mean errors of reconstruction for
each action using all the dictionaries are reported: in the cell (i, j), for instance, there is the
mean error obtained by reconstructing the sub-movements of the action i with the dictionary
obtained for the action j. We can observe that it is possible to identify some blocks in the
matrix, meaning that identifying some similarities between actions is feasible.

These are just early results that allow us to understand better our problem, but that are
not conclusive with respect to the goal we have, that, instead, will be addressed in a deeper
way in the next section.
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Figure 4.4: Error matrix obtained with the reconstructions of sub-movements of actions
with the learnt dictionaries.

4.7 Experimental results on single dictionary

In this section we present the results obtained on video sequences of a multi-view dataset we
acquired (Appendix A), composed of 19 actions (reported in Table (4.1)), by using one single
dictionary of motion primitives, that means by treating all the actions together.

The purpose of these experiments is to evaluate if it is possible to represent complex
dynamic events with the tools used so far. We start from addressing the problem of actions
similarity, focusing only on one point of view (the classical one, i.e. the frontal point of view),
and we end by comparing different points of view.
We first do unsupervised learning to carry on an analysis to understand the complexity level
of the data we are dealing with and how much separate the classes are, in order to infer how
the actions taken into consideration are related to each other. Then, we discuss the results
obtained by doing supervised learning, in a multi-class classification framework, where each
class is represented by an action.
All these results concern the frontal point of view, resembling the case in which a robot
has to understand the action performed by a human in front of it, or the case of an infant
observing the mother. Finally, following a developmental approach, we discuss how adding
data recorded by different points of view can improve the classification results.
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4.7.1 Unsupervised learning

To represent the data, we follow the procedure described in Section 4.4. First of all, we split
the velocity curves of the actions in sub-movements, and we perform a K-means clustering
with KD = 15 clusters, obtaining a dictionary of 15 atoms (Figure 4.5). The size of the
dictionary is fixed to 15 as we empirically observed that it can describe well all the sub-
movements of the actions in the dataset we used. From Figure 4.5, we can observe symmetric
and asymmetric bell-shaped profiles, already known in human movement science [54]. All
the primitives are composed by a single-peaked bell-shaped velocity profile, while just one
(the 6th atom in Figure 4.5) is double-peaked. Regarding the first group of primitives, it is
possibile to have an idea of the quantitative differences between them with the Table (4.2).

Given this representation, we group the data with a K-means clustering with KD = 19
to see how the sub-movements of all the actions are distributed inside the clusters and how
much the clusters are similar to each other. At the beginning, the choice of KD is 19 because
the classes are 19, and we would like to give them the possibility to be all divided in different
clusters, without forcing some of them to be grouped together. In Figure 4.6 we report the
distances between the centroids of the clusters: we can observe that some clusters are more
linked to some others (dark cells), and that other ones are really different with respect to
anyone else (whiter rows and columns). Then, as we have also the labels of the clustered
data, we can see which classes fall inside each cluster: in the histograms of Figure 4.7, for
each cluster we count how many data of a certain class have been associated to that cluster.
Observing Figure 4.7, we may derive a list of the classes that are representative of a certain
cluster (Table (4.3)), considering:

• the first class with more samples if

– the second class contains < 80% of samples of the first one;

• the first and the second class with more samples if

– the second class contains > 80% of samples of the first one,

– the third class contains < 80% of samples of the second one;

• the first, the second and the third class with more samples if

– the second class contains > 80% of samples of the first one,

– the third class contains > 80% of samples of the second one,

– the fourth class contains < 80% of samples of the second one,
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given that all the classes accepted contain more samples than a certain threshold th (set to
10).

The cells of Table (4.3) that are empty refer to clusters that contain no class which meets
the previous requirements.
From Figure 4.7 and Table (4.3) we can observe how some classes, in particular 2 and 9 are
contained in several clusters and they appear to have a high intra-class variability, meaning
that they have samples that are different to each other and that are well represented by
different centroids, or that contain primitives which occur in different actions.

To simplify the problem, we eliminate some information in order to have a better under-
standing of what remains: we replicate the K-means clustering eliminating these two classes
and with KD = 17, obtaining Table (4.4). Here the same problem is observed with the class
17, so we do the same considering all the classes but 2, 9 and 17, with KD = 16 and KD = 8.
We use also KD = 8 to force some classes to be grouped together, to study the similarities
between them. In this case, as the number of samples of each clusters is higher because
there are less clusters, we also increase the threshold th of the minimum amount of samples
contained in one cluster to the value of 15. From the histograms obtained with both values of
KD, we then list here the classes that can be considered grouped (together with some other
classes or alone) in a certain cluster (Tables (4.5) and (4.6)).

Figure 4.5: Dictionary of 15 atoms.

From the tables we can observe that some clusters contain some classes together (e.g.
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Primitive Maximum speed (px/frame) Factor b
1 6.78 0.45
2 2.97 0.64
3 4.09 0.73
4 10.89 0.64
5 1.79 0.73
7 7.56 0.55
8 5.33 0.55
9 11.08 0.36
10 10.58 0.64
11 0.85 0.45
12 7.03 0.36
13 6.56 0.73
14 3.35 0.45
15 1.89 0.45

Table 4.2: Quantitative description of the learnt primitives with single-peaked, bell-shaped
velocity profiles of Figure 4.5 in terms of maximum speed (peak speed) and factor b, computed
as the acceleration time (i.e. the time to peak) divided by the total duration time of the
primitive.

Custer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Classes 10,17 9 1 1,2 9,2 14 9 9 2 5 8 19,13,2 2 7 14 9 9

Table 4.3: All the 19 classes grouped in 19 clusters.

cluster 6 of Table (4.6) contains classes 8 and 15) while others contain just one class (e.g.
cluster 8 contains samples of class 7). It is worth noting that classes of similar actions, the
classes 8,15 (Mixing, Washing the salad) and 4,13,19 (Eating, Reaching an object, Transporting
an object) are grouped in two clusters. From this analysis carried out in an unsupervised
setting, we can conclude that our problem involves classes with a high intra-class variability
and classes very similar to each other. Given that premise, we can now move to the next
section, aware that the multi-class problem we are addressing is quite complicated.

4.7.2 Supervised learning

In this section, we try to classify the actions in a supervised manner. To this purpose we
consider the data represented as described in Section 4.4 and their labels and we build a
classifier. We adopt the machine learning library GURLS for an efficient implementation of
RLS and we consider a classifier equipped with an RBF kernel.
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Figure 4.6: Matrix of the euclidian distances between the centroids of the clusters for the
frontal view data.

Custer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Classes 17 18,16 1 8,15 19 1 13 17 14 6,17,10 19 3 7 5 17

Table 4.4: All the 19 classes but 2 and 9 grouped in 17 clusters.

We use the whole training set and run a training procedure doing model selection in order to
set σ∗ and λ∗ with a balanced hold out procedure, with M = 3 trials.

Binary classification First of all, in order to measure the complexity of the classes and
to observe if some classes are easier to be distinguished than others, we train several binary
classifiers. More in detail, for each class we train a binary classifier to discriminate between
the data of that class and the rest of data, building as training set all the data of the class
and the same amount of data randomly chosen from the rest of the set, to have a balanced
training set. The performance of the classification of the test set, computed as the average
accuracy (Macroavg of Table (4.7) with number of classes/actions N = 2), are shown in Table
(4.8). We can observe that some classes (e.g. class 4,5,7,8,13,19) are easier to be classified
than others (e.g. 2,6,9,11,16). This is in line with the results obtained in the unsupervised
classification experiments (Tables (4.6) and (4.5)) where classes 8,15 and 4,13,19 where quite
well distinguishable from others.
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(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

(e) Cluster 5 (f) Cluster 6 (g) Cluster 7 (h) Cluster 8

(i) Cluster 9 (j) Cluster 10 (k) Cluster 11 (l) Cluster 12

(m) Cluster 13 (n) Cluster 14 (o) Cluster 15 (p) Cluster 16

(q) Cluster 17 (r) Cluster 18 (s) Cluster 19

Figure 4.7: Histograms of the distribution of the classes for each cluster obtained with a
K-means with K=19. All 19 classes considered, frontal view point.
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Custer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Classes 1 10 5 4,19,13 10 3 10 1 5,16 5 8 16,18 19,13 7 14

Table 4.5: All the 19 classes but 2,9,17 grouped in 16 clusters.

Custer 1 2 3 4 5 6 7 8
Classes 1 1 1 0 5,16 10 8,15 13,14,19 7

Table 4.6: All the 19 classes but 2,9,17 grouped in 8 clusters.

Performance Formula
Macroavg (average accuracy) 1

N

∑N
i=1

TPi

Pi
,

where N is the number of classes
PrecRec (average precision) 1

11
∑
r∈{0,0.1,...,1.0} pinterp(r),

where pinterp(r) = maxr̃:r̃≥rp(r̃),
p is precision, p = tp

(tp+fp) ,
r is recall, r = tp

(tp+fn)

Overall accuracy
∑N

i=1 TPi

n
,

where n is the number of samples of the test set

Table 4.7: Different quantities to evaluate the classification performance.

Then, we train a unique multi-class classifier with the purpose of discriminating each
action from the others in a multi-class framework. In the training phase, the GURLS library
accepts as input parameter the type of performance to consider during the model selection,
Macroavg and PrecRec (the formulas are reported in Table (4.7)).

We decided to use PrecRec as it seems to suffer less from the problem of overfitting to the
training data, as the performance on the classification on the training set and on the test set
are more similar to each other than in the Macroavg case. The obtained classifier is then
used to evaluate the capability of our method to discriminate between actions on new data.
We carry out classification experiments on the test set, composed by the same actions of the
training set but of different videos. At the end of the test phase, the GURLS library gives as
output the scores of each class.

Scores over time In Figure 4.8 there is an example of scores of all the sub-movements of
an action (Transporting an object) over time: we can observe how, even in cases, like this
one, where the maximum score in average is the one associated with the correct class, it
still goes up and down over time, showing that some sub-movements of the actions are more
descriptive than others. It is worth noting that Reaching an object and Eating have also a
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Class 1 2 3 4 5 6 7 8 9 10
Macroavg 0.79 0.61 0.71 0.85 0.82 0.52 0.86 0.82 0.61 0.71

Class 11 12 13 14 15 16 17 18 19
Macroavg 0.55 0.68 0.86 0.76 0.72 0.58 0.71 0.67 0.80

Table 4.8: Average accuracy of binary classifiers on test set for each class.

high score, confirming the similarity of the kinematics of the three actions.

Multi-class classification The label associated with the data is the class with the maxi-
mum score. We report the results of this classification experiment in Figure 4.9, that shows
the confusion matrices of the average precision (definition in Table (4.7)) obtained on the
training set and on the test set, where in the cell in position (i, j) there is the percentage of
sub-movements of the class i-th that have been labeled as class j-th.

In the first row of Table (4.9) the accuracies have been reported: more in detail, we
computed the overall accuracies and the average accuracies (formulas in Table (4.7)).

It can be noticed how the performance, although well above chance, is not very high.
This was anticipated in Section 4.7.1, where we noticed a high intra-class variability and the
presence of similar classes.

However, if we make the system wait for the whole video of the action to be finished to
classify it, then the possibility to have a correct classification increases. Also, if we consider
as correctly classified sample even if the correct class is one of the first three classes with the
highest score, then the performance will improve significantly (Table (4.10)).

We then tried to decrease the number of classes to observe if, in case of a multi-class
problem composed by less classes, the performances get better. The results obtained in
Section 4.7.1 can lead the decision about which classes should be eliminated: we did the same
unsupervised analysis of Section 4.7.1 for all the points of view, and we found out that the
classes that are more difficult are 2, 9, 17 and also 4, 6, 7, 11, 12, 13. According to these
results, first we eliminate the classes 2, 9, 17 (results in Figure 4.10 and the second row of
Table (4.9)) and then also 4, 6, 7, 11, 12, 13 (results in Figure 4.11 and the third row of
Table (4.9)), improving significantly the performance.

We performed the same experiments with the videos acquired by the other viewpoints
(egocentric and lateral). From the confusion matrices obtained we build graphs of similarity
reported in Figure 4.12. We take into consideration the cells with a value higher than a
threshold of 0.15, and we represent them as a connection between two nodes (each one is an
action). The edges are oriented from the action to the class: for instance, in Figure 4.12c,
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(a)

(b)

Figure 4.8: (a) Scores of all the classifiers for each sub-movement of the Transporting an
object sequence.
(b) Scores of the first 4 classifiers with the highest score (in average). The maximum score is
associated to the correct class, that is Transporting an object.

64



Figure 4.9: Confusion matrix of the average precision obtained with the multi-class classifier
on the test set.

the edge from node 18 to node 16 means that more than 15% of samples of action 18 have
been classified as class 16 (this connection is represented by the cell with row 18 and column
16 in Figure 4.11). The width of the edge is representative of the value of the cell (the higher
the value, the thicker the edge), and the nodes are positioned close to nodes that are similar
to them. We can observe that in the three viewpoints, in the case of 19 classes there are
some nodes (in particular 2 and 9) that are in the center of the graphs, making confusion
in understanding the similarities between the actions. In the case of 16 and 10 classes, the
graphs are clearer and some interesting connections can be noted: in Figure 4.12c we can
observe that the classes 8 (Mixing), 10 (Turning the omelette) and 15 (Washing the salad),
are connected to each other as well as 5 (Beating eggs) and 18 (Cleaning the table), and also
1 (Grating the carrot) with 3 (Cleaning a dish) and 1 with 19 (Transporting an object), while
14 (Rolling the dough) is well distinguishable from the others. Some of these similarities can
be found even in the other viewpoints: in Figures 4.12f there are connections between 5 and
18, 1 and 3 (both characterized by a fast vertical periodic movement), 1 and 19, while in
Figures 4.12i there are connections between 1 and 3, 1 and 19, 8 and 15 (both characterized
by circular movements). Looking to Figures 4.12b and Figures 4.12e is possible to notice also
another interesting connection, that is between 4 (Eating), 13 (Reaching an object) and 19
(Transporting an object), that are characterized by very similar movement of the hand, with
a starting and an ending point.
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Figure 4.10: Confusion matrix of the average precision obtained with the multi-class classifier
on 16 classes on the test set.

Figure 4.11: Confusion matrix of the average precision obtained with the multi-class classifier
on 10 classes on the test set.
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N. of classes Training set Test set Chance
Overall acc. Average acc. Overall acc. Average acc.

19 0.45 0.42 0.29 0.24 0.05
16 0.55 0.54 0.36 0.34 0.06
10 0.61 0.64 0.49 0.49 0.1

Table 4.9: Accuracy of multi-class classification on training set and test set.

N. of classes Training set Test set Chance
Overall acc. Average acc. Overall acc. Average acc.

19 0.81 (0.45) 0.78 (0.42) 0.60 (0.29) 0.53 (0.24) 0.05

Table 4.10: Accuracy of multi-class classification on training set and test set considering the
classification of a sample as correct if the correct class has a score which is within the third
maximum score. 19 classes case. In brackets there is the accuracy value in case you consider
the classification as correct just when the correct class gives the maximum score (first row of
Table (4.9)).

4.7.3 Intra-view analysis

In this section we perform some experiments to investigate the view-invariance property of
the system, by using the data recorded from different points of view. In this experiment we
follow a developmental approach, taking inspiration from a child (person 1, egocentric view)
that observes himself, the mother (person 2, frontal view) and another person (person 3,
lateral view).

In Figure 4.13 different scenarios are shown. In TR1 case, for instance, we want to
evaluate situations that emulate the infant which observes his own actions to recognize them
(TR1 TE1), or to recognize these actions performed by a person in front of him (TR1 TE2)
or to recognize actions performed by another person (TR1 TE3). We then did the same with
the other viewpoints (TR2 and TR3).

Following again the developmental inspiration, we asked ourselves if learning with two
different viewpoints (for instance TR12, similar to the child that learns by observing himself
and himself in the mirror or the mother in front that imitates him) could bring advantages,
even in the capability of recognizing the same actions from a different viewpoint. In TR12^
case, we emulate the child that learns by observing movements performed by himself and
movements similar but not identical performed by the mother (as “^” means that the video
has been recorded in a different time). In TR13 case, we emulate the child that learns by
observing movements performed by himself and by a third person.
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We can observe that the best performances, as expected, are obtained by training and
testing the system on the same view. Nevertheless, we can observe that in TR12, TR12^,
TR13 the performance over the three bars are more consistent across views that in the cases
with a singular view as training set. This means that training on two views bring advantages,
as, although there is a loss in the performance with respect to the previous condition on
single view, a good generalization is achieved.

4.8 Discussion

In this chapter we did a step forward towards motion understanding, estimating the similarity
between actions. We proposed a representation of actions based on the use of a dictionary:
first, the system segments the action in the video in sub-movements and learns a dictionary
of motion primitives in an automatic way, producing symmetric and asymmetric bell-shaped
velocity profiles. Then, the actions are represented as a suitable combination of the motion
primitives learnt.

We analyzed the descriptiveness of our representation by carrying out experiments in
unsupervised and supervised manner, finding out some similarity relationships between
different actions. We also analyzed different viewpoints, reasoning about view-invariance
and showing that putting together more viewpoints leads to have better performance in the
classification results, even in case of test on a different viewpoint: this result can be linked to
human development of action understanding, which is facilitated by occasions in which the
child and the mother act together [57].

Even if the goal of this work was categorizing actions into groups, it is possible to improve
the current method to use it for actual action recognition. For doing it, several possibilities
could be adopted: first of all, the description of the motion can be enriched by using also
the other features and not only the speed. Furthermore, it is possible to use all the features
extracted for each pixel of the region of interest without collapsing the whole information
in a centroid by averaging them: this could be useful to extract the movements related
to different segments of an articulated object (e.g. an arm) or to study in parallel the
movement of different objects (e.g. two hands). Another idea is reasoning about the reliability
of the answers of the classifier in different parts of the video: indeed, some parts of the
recorded actions are more important and peculiar of the action itself than others. Taking
into consideration this distinction between different parts of the action could lead to give
more weight to the classification answers of peculiar parts of a certain action. Another
improvement could be considering also simple spatial features, as the shape of the trajectory
or the direction along which the motion is performed.
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(a) frontal-19classes (b) frontal-16classes (c) frontal-10classes

(d) ego-19classes (e) ego-16classes (f) ego-10classes

(g) lateral-19classes (h) lateral-16classes (i) lateral-10classes

Figure 4.12: Graphs of similarity between actions.
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Figure 4.13: Average precision in multi-class classification
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Chapter 5

Conclusion and future work

In this thesis, we investigated a problem of developmental robotics, devising computational
models of the visual primitives at the basis of social interaction in humans. Our inspiration
roots on the very first stage of development, where the limited amount of visual information
suggests that human beings have the capability to accomplish simple pro-social tasks on the
basis of rather coarse motion models. We took inspiration from the Two-Thirds Power Law,
validating its applicability to video analysis problems. We built a model able to discriminate
between biological and non-biological motion, demonstrating the possibility to exploit our
method to perform human activity detection also in complex scenarios, where traditional
appearance-based approaches (such as skin or face detection methods) would fail. Our
approach is robust to severe occlusions or to indirect representation of the agent motion in
the scene (as during the observation of agents’ shadows).

Moreover, we implemented an online version of the method on a robotic intelligent system,
which leverage the human detection skill and appropriately orient the focus of attention in
order to establish an interaction with the human counterpart. In particular, the integration
with the attention system allowed us to endow the robot with the ability redeploy the fixation
point on biological activities in the scene.

We also exploited biological motion regularities to discover motion primitives and to
visually represent the observed actions as a combination of them, categorizing the actions
into different classes. The system is able to detect groups of coherent actions and, to a certain
extent, in a coherent way across views.

In summary, we addressed the two problems of biological motion recognition and action
categorization of Figure 5.1. The latter has been implemented only offline, while its porting
on iCub is left for a future work. For this, some parts of the biological motion classification
method implemented on iCub can be used: in particular, the information on which the
method builds on are already extracted online from iCub cameras, as they are the same as
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Figure 5.1: Flow for action understanding. Steps in full line have been implemented and
discussed in the thesis, the ones in dashed line are left for future works.

in the method for biological motion detection, and the multi-class classification is already
implemented in GURLS, the library used for the binary classification of biological and
non-biological motion. The missing parts are the segmentation procedure, the clustering for
the motion primitives identification, and the representation of the data with sparse coding.

Regarding the future work, we know that humans can infer a lot of information from the
way an action is performed, while robots still miss this capability, limiting the intuitiveness
and the naturalness of the interaction [78]. The important variables of this implicit interaction
are low level information as velocity and curvature: they can reveal the effort of a person [77],
the willingness of making the partner understand the action (like in the case of signaling [65])
and even the emotional status (e.g. aggressiveness or kindness of the action [20]). In this
context, a future work can be the use of the methods developed in the thesis to determine this
features of the action during an interaction: this will enhance artificial agent’s competence in
interpreting its operative context having a better understanding of the actions performed by
the human and will allow it to provide the appropriate pro-social behavior.

For the future, we also aim at improving our method for understanding actions by using
not just visual but even motoric information: to this purpose, we have already collected a
multimodal dataset (Appendix B) at the University of Maryland.
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Appendix A

Multi-view dataset

We acquired a dataset composed of indoor videos of one subject performing cooking actions.
We have used three identical high resolution IP cameras, mounted on three tripods so that in
all acquisitions we have a still uniform background and moving foreground objects. Figure
A.1 shows the setup and example video frames. The dataset includes repetitions of the same
action observed from three different viewpoints: a frontal view (A), a lateral view (B), and
an egocentric view, obtained by a camera mounted slightly above the subject’s head (C).
We recorded different types of cooking actions, which included the use of tools and food
ingredients: 1-Grating the carrot, 2-Cutting the bread, 3-Cleaning a dish, 4-Eating, 5-Beating
eggs, 6-Squeezing the lemon, 7-Cutting with a mezzaluna, 8-Mixing, 9-Open the bottle, 10-
Turning the omelette, 11-Pestling, 12-Pouring water, 13-Reaching an object, 14-Rolling the
dough, 15-Washing the salad, 16-Salting, 17-Spreading cheese on a bread, 18-Cleaning the
table, 19-Transporting an object. No specific constraints have been imposed to the volunteer
with the exception of the request of containing the actions within a fixed working space. For
each dynamic event we acquired two videos. The images have size 640× 480 and have been
acquired at an approximate rate of 30 fps.

Figure A.1: Acquisition setup
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Appendix B

Multi-sensor dataset

Multi-view and motoric dataset. The dataset collection has been performed in three
different main sections: 1) actions with IMU sensor glove (NuGlove), 2) actions with force
sensor glove (or force sensor knife), 3) actions with bare hands. In each section, three different
objects are involved: 1) a sponge, 2) a cup, 3) a potato (and the tool knife). 15 subjects were
trained to perform the actions. Detailed explanations about the tools used to record the data
are provided here.

The NuGlove is an instrumented gesture recognition glove made by AnthroTronix
company that can be used either as a controller for robotic devices or to track individual
hand movements. The NuGlove is an orientation-based glove, meaning that it uses the
natural movements of the operator’s hand/arm as the input, but also includes gyroscopes
and magnetometers, allowing for 9-axis detection and control in each finger. When combined
with the accelerometers, the overall system allows for greater movement detection and
differentiation. Python is used as the programming languages and operation system used is
Linux/Ubuntu. It is equipped with USB cable for data transferring (wired connection). The
glove is equipped with 7 IMU sensors on the back side of the glove (one on each finger, and
one on the dorsum of the hand and on the wrist area). Each sensor provides 7 outputs: 3
accelerations along each axis and 4 quaternions. As a result, the final output of the glove
consists of 50 columns of data. The first column is the time stamp, the next 28 columns
are the quaternions data and the next 21 columns are the acceleration data. A figure of the
NuGlove is presented on the left of Figure B.1.

To measure the pressure applied by different part of the hand on the object or on the
tool, we used a force sensor glove (in the case of the actions with the sponge and the cups)
and a force sensor knife (in the case of the actions with the knife and the potato). The
glove is equipped with 7 force sensors on the inertial side of the glove (one on each finger,
and two on the palm area) but since in most actions the little finger is not involved or if
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involved it has mostly a performance similar to the ring finger, the data of the sensor on this
finger is not considered. The knife is equipped with 6 force sensors. As a result, the final
output of the glove and the knife consists of 7 columns of data. The first column is the time
stamp (useful for the synchronization with the other sensors) and the next 6 columns are the
pressure data in lb (Columns 2 to 7). The sensors mounted are FlexiForce A201 sensors, that
allow a maximum force of 4448N (0-1000 lb). A figure of the sensorized glove and knife is
presented on the right of Figure B.1.

The two cameras used are Xtion PRO LIVE cameras, that have one RGB, one Depth and
two Microphone sensors. Depth image size is VGA (640x480) with 30 fps and the resolution
is SXGA (1280*1024).

The actions we asked to the subjects to perform are the following 10 actions for each
object:
Actions with a sponge: Washing, Spot cleaning, Scratching (removing a small spot), Flipping,
Squeezing, Sponging up water, Cleaning, Folding it (in half), Twisting it (requires both hand),
Squeeze down.
Actions with a cup: Drinking, Pounding, Shaking, Moving (to a different location), Pouring,
Rotating (by lifting it up and holding it on the rim), Flipping, Turning in place, Rolling (it
back and forth), Scooping (up sugar).
Actions with a knife and a potato: Peeling, Chopping (One single shot of cutting), Slicing,
Mincing, Dicing, Carving (a triangle), Pressing, Transferring, Making a hole (removing a
small piece by a rotation of the knife), Coring (circular motion for cylindrical hole).

Figure B.1: IMU sensor glove, force sensor glove and knife.
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