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Abstract 
 

Robots started their journey in books and movies; nowadays, they are becoming an 

important part of our daily lives: from industrial robots, passing through entertainment 

robots, and reaching social robotics in fields like healthcare or education.  

An important aspect of social robotics is the human counterpart, therefore, there is 

an interaction between the humans and robots. Interactions among humans are often 

taken for granted as, since children, we learn how to interact with each other. In robotics, 

this interaction is still very immature, however, critical for a successful incorporation of 

robots in society. Human robot interaction (HRI) is the domain that works on improving 

these interactions.  

HRI encloses many aspects, and a significant one is trust. Trust is the assumption that 

somebody or something is good and reliable; and it is critical for a developed society. 

Therefore, in a society where robots can part, the trust they could generate will be essential 

for cohabitation.  

A downside of trust is overtrusting an entity; in other words, an insufficient alignment 

of the projected trust and the expectations of a morally correct behaviour. This effect 

could negatively influence and damage the interactions between agents. In the case of 

humans, it is usually exploited by scammers, conmen or social engineers - who take 

advantage of the people's overtrust in order to manipulate them into performing actions 

that may not be beneficial for the victims.  

This thesis tries to shed light on the development of trust towards robots, how this 

trust could become overtrust and be exploited by social engineering techniques. More 

precisely, the following experiments have been carried out: (i) Treasure Hunt, in which 

the robot followed a social engineering framework where it gathered personal 

information from the participants, improved the trust and rapport with them, and at the 

end, it exploited that trust manipulating participants into performing a risky action.  

(ii) Wicked Professor, in which a very human-like robot tried to enforce its authority to 

make participants obey socially inappropriate requests. Most of the participants realized 

that the requests were morally wrong, but eventually, they succumbed to the robot's 
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authority while holding the robot as morally responsible. (iii) Detective iCub, in which it 

was evaluated whether the robot could be endowed with the ability to detect when the 

human partner was lying. Deception detection is an essential skill for social engineers and 

professionals in the domain of education, healthcare and security. The robot achieved 

75% of accuracy in the lie detection. There were also found slight differences in the 

behaviour exhibited by the participants when interacting with a human or a robot 

interrogator. 

Lastly, this thesis approaches the topic of privacy - a fundamental human value. With 

the integration of robotics and technology in our society, privacy will be affected in ways 

we are not used. Robots have sensors able to record and gather all kind of data, and it is 

possible that this information is transmitted via internet without the knowledge of the 

user. This is an important aspect to consider since a violation in privacy can heavily 

impact the trust.  

Summarizing, this thesis shows that robots are able to establish and improve trust 

during an interaction, to take advantage of overtrust and to misuse it by applying different 

types of social engineering techniques, such as manipulation and authority. Moreover, 

robots can be enabled to pick up different human cues to detect deception, which can 

help both, social engineers and professionals in the human sector. Nevertheless, it is of 

the utmost importance to make roboticists, programmers, entrepreneurs, lawyers, 

psychologists, and other sectors involved, aware that social robots can be highly beneficial 

for humans, but they could also be exploited for malicious purposes.  
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Chapter 1 

Introduction 

 

 

 
OBOTS are becoming an important part of our modern society. Step by step they 

are being incorporated in our daily lives; starting from industrial robots, then 

entertainment, robots as toys, and slowly becoming companion robots as well - entering 

in work places, households, hospitals. One of the main reasons of introducing robots in 

our society is that our life standards could be improved: robots are built to serve a 

beneficial or helpful purpose; not hostile (in most of the cases). 

Nevertheless, in order to be fully beneficial, there is a need of a proper interaction 

between humans and robots. In human-human interactions (HHI), we voluntary build 

mutual and flexible relationships that emphasize equality and reciprocity [1] - is an 

important pillar in a developed society. Knowing people, interacting with them, having 

confidence among them, and trusting each other allows the society to grow and expand.  

In order to introduce intelligent robots in our society, we need to be able to make 

them interact with humans in a similar and easily understandable way. The domain of 

human robot interaction (HRI) is in charge of studying the interactions among humans, 

and trying to understand and improve similar interactive situations between humans and 

robots. The problem of HRI is relatively new, and became popular during the 20th 
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century thanks to the famous "Three Laws of Robotics" by Isaac Asimov [2] in his novel 

"I, Robot"; which also seem to be the very first guidelines of HRI [3] even though later on 

were stated as not good enough to govern robots' behaviour [4]–[6]. Yet, we are very far 

away from currently being able to develop such robots and have such relationships. 

However, it is really important to start understanding how different cultures, different 

ethics and different entities interact with the present robots. Understanding how to make 

interactions with robots smooth and effective, could also be relevant also for other 

domains such as neurobiology, psychology or cognitive sciences; providing a novel 

perspective to the question of how humans develop, learn and build their social 

relationships [7].  

Recently a topic that become important in HRI is the development of trust in 

relationships. In HHI, trust is defined as the belief that someone or something is reliable, 

good, honest and effective; and it is a fundamental component in human affairs [8]. 

Following the human behaviour, and considering that robots are already being integrated 

in our society, it is natural to foresee that trust will be important for HRI. Moreover, 

robots are not simply perceived as tools but also begin to be seen as colleagues [9], [10]; 

showing even emotional attachment that could trigger positive and negative behaviours 

[11].  

To bring HRI to the next level, there is a need not only for increasing the trust between 

humans and robots, but also for analysing how this trust will develop over time and over 

robot's failures - how to predict and prevent erroneous situations in which even a human 

life could be in danger.  

On the other hand, similarly to what happens in human-human interactions, trust 

could become overtrust and be exploited for negative purposes by criminals, scammers, 

conmen, and social engineers - who tend to psychologically manipulate people in order 

to make them perform non-beneficial actions [12]. Unfortunately, this effect is already 

observed in human-robot interactions where overtrust is defined as an imprecise 

calibration between the real capabilities of a robot and the person's expectation [13]. For 

example, people conform (i.e. to act in accordance, to comply) to the robot's requests [14], 

even if those requests may result into property damage [15], they succumb to bribery [16] 

or follow an erroneous robot in an emergency evacuation scenario [17].  
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As the number of robots is increasing very fast, it is necessary to better understand 

trust and overtrust in HRI scenarios. It is essential that robot designers, programmers, 

lawyers, as well as users, become aware of the potential risks that could arise from 

interacting with robots in everyday life.  

Making people aware that robots are controlled by computers that can be hacked, 

resulting not only into a security leak but also potentially into harmful machines, could 

prevent social panic caused by unlawful activities using robots. Such awareness should 

also push the community to tackle several questions before robots end up in our daily 

lives, as whether current robots are secure enough to be on the market, or how the data 

obtained by all the robot sensors should be treated in order to avoid privacy violations. 

Analysing how social engineers, scammers or conmen exploit human overtrust to 

obtain personal benefits, it is natural to foresee that they could use their techniques on 

robots to anonymously get closer to the victim. The advent of Internet and 

communication technology gave social engineers an ultimate protection - distance and 

anonymity [18]. Having robots capable of moving, recording video or sound will bring 

attackers a huge advantage. Also due to the people’s tendency to humanize robots [19], 

they might not realize that robots have a computer connected to the Internet with cameras 

and microphones, thus, malicious people can access the robot, control it or used it to 

record and steal personal information. Moreover, robots open the possibility of the usage 

of different skills or psychological manipulation techniques, currently available mostly 

during physical interactions, such as development of trust and rapport, authority 

exploitation or even deceit detection. 

Summarizing, this thesis addresses the following questions: can robots evoke trust as 

humans do? This could support future robot involvement in different domains such as 

homes, hospitals, supermarkets or interactions with law officers. Likewise, can robots be 

attributed similar authority as humans? For instance, this could help understanding 

whether children will behave the same way adults do when being taught by a robotic 

teacher or cared by a robotic nurse. Will they be more prone to lie to robots? Last but not 

least, can social engineers exploit their techniques using robots in order to manipulate 

people for negative purposes or even violate their privacy?   
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1.1. Human Robot Interaction 

Human robot interaction is a relatively new domain of study. Humans started 

interacting with robots since the 1940's in a very simple way [20], so HRI was considered 

for a long time a subset of Human Computer Interaction (HCI) [21] and defined as 

"design, evaluation and implementation of interactive computing systems for human use" 

[22].  

Since quite some time robots stopped being perceived only as tools but also began to 

be seen as colleagues [9], [10], therefore the definition of HRI changed to "the study of 

humans, robots, and the way they influence each other" [20]. HRI is related to HCI but it 

also differs because robots are starting to be more complex, exhibiting cognition and 

autonomy, and operating in dynamic environments [20]. Goodrich et al. [3] defines HRI 

as a field that requires communication and interaction between robots and humans, and 

dedicated to understand, design and evaluate robotic systems.  

Human robot interaction can be applied in a variety of different fields and 

applications: search and rescue [23], [24]; hazard removal [25]; entertainment [26]–[29]; 

military and police [30]–[32]; space [33]–[37]. Recently, a lot of researchers are focusing 

on making the robots more similar to humans - exhibiting human traits [38]–[40], 

interacting with natural language [41], [42]; and performing human tasks; so to create a 

new application field called social robotics. From [43], the latter can be divided into 

domains such as healthcare [44]–[46], homecare [47]–[49] or education [50]–[54]. 

In all the applications of the abovementioned domains, one very important 

characteristic in human robot interaction is trust. Nowadays, trust in HRI is an important 

topic, with a lot of studies about it: [9], [55]–[57]. Without trust, the interaction in 

healthcare, homecare or education will not prevail in the long term - this topic is 

extensively discussed in the next section. 
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1.2. Trust 

Trust is the belief that someone or something is reliable, good, honest and effective; 

and it is a fundamental component in human affairs [8]. Many business managers, 

psychologists, sociologists, economists and academic researchers are certain in its 

importance in human affairs. Bok [58] affirmed that "when trust is destroyed, societies 

falter and collapse."; Lewis and Weigert [8] stated that trust is "indispensable in social 

relationships"; while Zucker [59] added that trust is "vital for the maintenance of 

cooperation in society and necessary as grounds for even the most routine, everyday 

interactions".  

Following these definitions from human-human interactions, in robotics and 

automation, trust is defined by Lee et al. [13] as "the attitude that an agent will help 

achieve an individual's goals in a situation characterized by uncertainty and vulnerability" 

while Hancock et al. [60] defines it as "the reliance by an agent that actions prejudicial to 

their well-being will not be undertaken by influential others". This suggests that trust is a 

fundamental part of beneficial human interaction and it is natural to foresee that it will 

soon be important for human robot interaction. Robots are already integrated in our 

society and often they are not simply perceived as tools, but considered as our partners in 

activities of daily living [9], [10]; showing even emotional attachment, or triggering 

positive and negative behaviours [11].  

Numerous studies in HRI have investigated which factors influence trust. The user's 

confidence in a system to behave correctly [55], environmental factors or robot 

characteristics such as performance, can affect the development of trust [57]. 

Additionally, robot's transparency [61], [62] or transparency in the decision making 

process of human-like autonomous systems [63], have been shown to influence trust as 

well. Moreover if the information is constantly streamed in to the human partner, there 

is an increase of trust [64]. For example, in [65] it has been shown that participants trust 

more a robot that provides explanations of its acts than one who does not. Also robot 

efficiency and, in general, system reliability [66], [67] have been deemed as crucial in 

determining their partners’ trust [56] - the more efficient a robot is, the more people will 

trust it.  
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Nevertheless, there is not yet a standard definition of trust in the robotics domain, 

but more of a combination of different factors that seem to influence trust.  

Likewise human-human interactions, trust could become overtrust and be exploited 

by criminals, scammers, conmen, and social engineers for negative purposes [12]. 

Unfortunately, this effect of overtrust is already present in human-robot interactions. 

This will be broadly discussed in the next section. 
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1.3. Overtrust 

Overtrust, as stated in [13], is a poor calibration between the person's trust and the 

system's capabilities; more precisely, overtrust is described as how a system could be 

inappropriately relied upon, even compromising safety and profitability [68].  

This implies that there is a risk that trust can become overtrust and be exploited for 

negative purposes: recent research has demonstrated that participants might comply and 

trust a robot despite its requests being awkward or not transparent [15]; or even in case 

of malfunctioning [17].  

For instance, Salem et al. [15] conducted an experiment to understand how users will 

perform against odd requests coming from an erratically behaving robot - Sunflower [69]. 

It showed that participants comply with awkward orders from a robot even when they 

could result into information leakage or property damage, and also when the robot openly 

exhibited faulty behaviour.  

A dangerous example of overtrust in robots could happen in emergency evacuation 

scenarios: Robinette et al. [17] demonstrated that participants in a fake fire emergency 

scenario tended to follow a robot, rather than the emergency signs, even if it showed clear 

malfunctioning in its navigation. Similar results shed light on how overtrust towards 

robots could be potentially harmful for humans.  

These findings add to the previously mentioned evidence that robots can persuade 

humans to change their ideas and conform to the robot’s suggestions: Gaudiello et al. [14] 

developed an experiment about human conformation (i.e. to act in accordance, to 

comply) towards a humanoid robot - iCub [70]. The experiment measured how many 

people would withdraw their answers to a set of questions after listening to iCub's reply. 

Conformation is at the borderline of overtrust: it is a desirable aspect in HRI scenarios in 

which a robot might be more informed than the human user, but it may also be risky if 

conformation is done blindly, e.g., overtrust in emergency scenarios - as previously 

explained. 
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Another experiment done by Sandoval et al. [16] exploited bribery (an illegal act of 

persuading an entity with money or presents in order to act in their benefit) in the context 

of HRI; using a NAO robot [71] to bribe a group of participants with money in order to 

receive a future help from them into doing tedious task. 

Therefore, although trust is vital for human interactions, it also can become overtrust; 

and one potential risk of overtrust is that it can be dangerously exploited by criminals. 

For instance, in a human-human context, people have fallen prey to social engineering 

attacks, scams, conmen, etc. As robots will be used and programmed by humans, there is 

a chance that people will use robots as a tool for committing crimes, creating security 

leaks and more. Social engineering in the human robot interaction context is a new and 

crucial domain - explained in more details in the next section. 
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1.4. Social Engineering 

Social Engineering (SE) is a combination of science, psychology and art, and consists 

in influencing people to take actions that may or may not be beneficial for them [12]. One 

of its domains is Information Security - in this case SE is a psychological manipulation of 

people (targets) in order to obtain some benefit like personal data, passwords or 

confidential information [72], taking advantage of the kindness and trust humans have 

among themselves [73]. Therefore, big companies and industries are spending large 

quantities of money to ensure their own computer safety. However, in SE, attackers are 

targeting humans, which are the weakest link in the security chain of a system - being the 

human error the biggest cause of problems in information security [74]. It is much easier 

to trick a person to give the password rather than hacking it from the system [73]. Such 

manipulation techniques can vary from building trust and rapport, misusing authority or 

even use lie detection skills to adapt to a dynamic and interactive scenario where attacker 

needs to successfully manipulate the target. 

With the introduction of robots at home and in the workplace, there is a risk that 

trust toward them might be exploited. Social engineers may exploit human-robot 

interactions in ostensibly safe environments such as work place, home, or during holidays 

[73], [75]. They might use their techniques through robots, to anonymously get closer to 

the target, exploiting the rapport of trust developed with the robot during daily 

interactions. Having a robot that is capable of moving and recording video or sound will 

bring a huge advantage to social engineering.  

Numerous examples exist which demonstrate that robots can constitute a threat to 

safety and security: the case of a hijacked Hello Barbie [76]; spying teddy bears [77]; 

hijacked surgery robots [78]; Alpha robot turned into a stabbing machine [79]; or even 

piggybacking robots [80] show high risks and vulnerabilities in the domain.  

Safety has been an important concern in robotics [81], however, to address this and 

other security issues, it may be insufficient only to build a more secure robot with a 

stronger protection against cyber attacks. In fact, the human agent is the weakest link in 

the cyber security chain [73]. Rather, it is of vital importance to understand which factors 
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influence human trust toward a robot. Moreover, it is necessary to study how trust 

changes over time in order to be able to predict and prevent the risk of overtrust and trust 

exploitation in important domains such as healthcare [44]–[46], homecare [47]–[49] or 

education [50]–[54]. 

As seen in the abovementioned examples, humans are already using robots as a tool 

for committing crimes. Studying the possible risks of misusing robots could prevent and 

warn future users about the risks in the same way as computer users are taught to be 

careful with viruses, phishing, etc. An early assessment of the possible risks can help new 

robot developers to build from the beginning a more secure robot with a strong base 

against attacks rather than trying to fix issues once the product is on the market.  

This project of this thesis addresses the topic of trust in HRI and investigates whether 

people naturally tend to trust robots and which factors influence the level of trust toward 

a humanoid machine. More specifically, it aims at exploring to what extent a robot could 

exploit social engineering methods in order to manipulate people to do actions that could 

result into the extraction of confidential information or performance of inappropriate 

tasks. So far there has been only one very recent research defining the concept of social 

engineering robots [82], but only from the theoretical point of view. While in [80], robots 

are used for piggybacking (i.e., enter in an unauthorized location), the authors do not 

defined it as a social engineering attack, even though it can be considered one.  

This thesis presents methods and practical examples on how SE attacks could be 

performed in the domain of HRI. These examples include the use of a social engineering 

cycle technique in order to obtain personal information, gain trust and exploit it 

afterwards - further explained in the Treasure Hunt experiment.  

Another way to exploit social engineering vulnerabilities is by the use of authority - 

where the attacking entity pretends to be a figure of a superior authority than the victim 

so to manipulate them in an easier way- further explained in the Wicked Professor 

experiment.  

On the other hand, deception detection is an essential skill for social engineers - being 

able to detect lies provides flexibility and adaptability in an attacking scenario, even more 
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if the attacker pretexts to be a figure with an superior authority of the one of the target 

[75]. Apart from the advantages in social engineering, having robots capable of detecting 

lies could be of a great benefit in the human robot interactions as well. It is a necessary 

skill that a robot should have, for example, if in charge of elderly care - did the person 

take the medication or is lying; or in case of babysitting children - did they finish the 

homework so they can go playing? Such aspects are further discussed in the Detective 

iCub experiment. 

Next section gathers and discusses different privacy issues that are appearing with the 

usage of robots in daily life - and suggests ways to solve them. 
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1.5. Privacy 

Another very important aspect to consider in the human robot interaction is privacy. 

Although different cultures perceive privacy in different ways, all of us need it [83]. Since 

the 19th century researchers have argued about its definition [84]. Moore [85] defines it 

as "having control over the access to one's information"; Altman [86] as a dynamic 

boundaries that can adjusted depending on the interactions with different people; while 

Nissenbaum [87] states that privacy is context-dependent - different rules may apply for 

information gathering and dissemination in different environments. A slightly more 

specialized approach, by Austin [88], focuses on the freedom of public surveillance and 

influence of technology in privacy. Lastly, a different approach to define privacy is 

through taxonomy covering different parts of privacy [89], and typology based on 

constitutional protection in different countries [90].  

Nevertheless, privacy is a significant requirement for relationships to prosper [91] 

and for individuals to grow and be free. Moreover, privacy can enable trust as well [92]. 

As seen in the examples above, robots are capable of violating human privacy: collecting 

and sharing confidential information, moving through personal spaces, and socially 

interacting with people [93]. Thus, if robots want to be accepted in society, they should 

earn people's trust, while not breaking their confidence due to privacy violations. 

In the domain of HRI, privacy is yet not much considered. There are different privacy 

theories in HHI [87], [94] but there is yet no research on how these theories could work 

in HRI. Rueben et al. [89] reviewed privacy literature and acknowledged that privacy has 

several dimensions: informational, physical, psychological and social. Taking into 

account the end-user's best interest and knowing that privacy is crucial for healthy 

relationships, Rueben [95] introduced a new area of research interest called privacy 

sensitive robotics. As robots will impact privacy in different ways, Rueben, Aroyo et al. 

[96] have identified important issues that should be addressed by different specialists such 

as programmers, roboticists, entrepreneurs, lawyers, psychologist, etc. There are seven 

research themes identified that should comprise privacy-sensitive robotics research in the 

near future: (i) data privacy - how to storage and process data; learn and personalize user's 

preferences ; (ii) manipulation and deception - security, education and social engineering 
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through robots; (iii) trust - related to privacy, and trust evolution in HRI; (iv) blame and 

transparency - responsible entities when privacy violations occur; (v) legal issues - 

regulating robots as persons and robot companies; (vi) domains with special privacy 

concerns - healthcare and homecare; and (vii) privacy theory -taxonomy of privacy .  

The intention of the previously suggested themes is to recommend, per each one of 

them, a research direction that serves as a roadmap for research in privacy-sensitive 

robotics. Few researchers have approached individually some of those domains: Syrdal et 

al. [97] studied personal information disclosure; Denning et al. [98] demonstrated 

security vulnerabilities in commercial robots; Lee et al. [99] investigated privacy with 

robots at the work place, while Krupp et al. [100] with telepresence robots; Calo wrote a 

chapter of Robot Ethics [93] and also focused on how drones affect privacy [101]; and 

Kaminski et al. worked on home robots affecting privacy [102] as well as the potential 

privacy harm caused by using robots [103]. 
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1.6. Motivation 

The topics discussed in this thesis may seem not so conventional and even 

controversial. Overtrust and social engineering are domains which the general public tries 

to avoid due to their bad reputation, nevertheless, it is important to understand how they 

may affect humans during interactions with robots, and how we could try to protect 

ourselves and prevent them from happening. There will never be a full protection from 

these kinds of attacks, however, the more people know about the risks, the more they can 

be aware of the possible problems. The motives of researching and bringing human robot 

interaction towards trust and social engineering are indicated in the next paragraphs:  

In human-human interactions we obey special rules in important domains such as 

military and police [30]–[32], healthcare [44]–[46], homecare [47]–[49] or education 

[50]–[54]; for example, there is an implicit trust in that context, which generally, make us 

rely on others for our own sake. Nowadays, robots are being introduced in those domains 

and there is a crucial need of studying how trust is affected by that integration, e.g., will a 

person trust a robotic police officer or a robotic doctor? 

Apart from trust, another important factor in those domains is the perceived 

authority and the capability of the robots to manipulate the human agents. Police officers, 

doctors, nurses, teachers, etc. have certain authority under specific contexts, however, do 

humans react the same way under the authority of a robot? Can a robot make an elderly 

person to take the medication even if it makes them dizzy? Could a robot manipulate a 

child to do the homework before watching TV? 

Yet, manipulation is generally used with negative intentions and misuse of trust - as 

seen in previously mentioned examples of criminals, scammers, conmen, social engineers 

and even politicians (social engineering as a branch of political science). An important 

solution to the problem is education: making people aware of the risks and teach them 

protective techniques. One example of success in education is regarding the Nigerian 

Prince advance-fee fraud from the 419 group of scammers [104] - where the (email) scam 

consists in the request of an advanced bank transaction fee payment in order to receive a 

valuable sum of money afterwards (that never arrives). These types of scams became very 
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popular with the introduction of computers in society - as having a computer and being 

able to send emails was something uncommon. Nowadays, thanks to the news and 

education, the success ratio of the scam is very low. A similar way to educate people of 

the possible risks in robotics may help and prevent future criminal attacks.  

Last but not least, big companies should be aware, and governments should legislate 

these problems. Still, a lot of robotic products that arrive to the market lack of security 

measurements and proper protections: hijacked Hello Barbies [76]; spying teddy bears 

[77]; hijacked surgery robots [78]; robots turned into a stabbing machines [79]; or even 

piggybacking robots [80]. The research proposed by Rueben, Aroyo et al [96] could be 

beneficial for roboticists, entrepreneurs, programmers, lawyers, and others, as it suggests 

directions toward the solutions to those problems. 

These are some of the reasons that motivated the directions taken in the research 

presented in this thesis. The next sections present different experiments that try to tackle 

the above-mentioned problems and study the different reactions and behaviours of 

participants when confronted by such controversial situations.  
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Chapter 2 

Experiments 

 

 

 
N ORDER to investigate the implications of trust and social engineering in human 

robot interactions, the following three experiments have been performed involving 

humans and humanoid robots.  

The first experiment, Treasure Hunt [105], tries to answer the question "Can robots 

build trust and exploit it for social engineering purposes?", and delves into the trust 

evolution between participants and a robot, while the robot also tries to exploit 

participants using a famous social engineering technique.  

The second experiment, Wicked Professor [106], addresses the question: "Can the 

authority be transferable to a robot to the extent of performing controversial actions?", 

and peeks into the negative implications that the attribution of authority to robots could 

have onto humans.  

The last experiment, Detective iCub [107], aims at answering the question: "Can a 

robot learn lie detection features?", by investing the robot iCub with the role of police 

investigator and making it detect lies while interacting with deceptive subjects.  

  

I 
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2.1. Treasure Hunt 

The experiment intends to study whether and how trust evolves during a relatively 

long collaborative interaction between a robot and a human. Moreover, it was structured 

following a famous social engineering technique in order to understand the possibilities 

of people vulnerable to this type of attack. Finally, even though there is a lot of literature 

regarding trusting games and robots [108], [109], none of them measures overtrust 

through a robot suggesting participants to gamble as done in the following experiment. 

2.1.1. Overview 

Robots are becoming widespread in society and issues such as information security 

and overtrust in them are gaining relevance. This research aims at giving an insight into 

how trust towards robots could be exploited for the purpose of social engineering (SE). 

Drawing on Mitnick’s model, a well-known social engineering framework, an interactive 

scenario with the humanoid robot iCub was designed to emulate a SE attack. At first iCub 

attempted to collect the kind of personal information usually gathered by social engineers 

by asking a series of private questions. Then, the robot tried to develop trust and rapport 

with participants by offering reliable clues during a treasure hunt game. At the end of the 

treasure hunt, the robot tried to exploit the gained trust in order to make participants 

gamble the money they won. The results show that people tend to build rapport with and 

trust toward the robot, resulting in the disclosure of sensitive information, conformation 

to its suggestions and gambling.  

2.1.2. Introduction 

Although trust and overtrust have been investigated in human robot interaction 

(HRI), there is only one research that defines theoretically how robots could be used for 

social engineering attacks [82]. This experiment proposes a way to assess whether a robot 

can gather information from its human partners, build trust and rapport with them and, 

exploit it to induce them to perform an action. 
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The experiment draws on the widely used social engineering framework proposed by 

Kevin Mitnick [73]. According to this model, an SE attack is separated into the following 

phases: (i) research the target to gather as much information as possible; (ii) develop trust 

and good rapport with the target; (iii) exploit trust to make the target perform an action; 

and (iv) utilize that information to achieve an objective. These phases can be iterated as 

many times as necessary to reach the desired goal. As an example taken from [75]: a meat 

salesperson spots a lady cooking on a barbecue in the yard (i); he talks respectfully and 

nicely with the lady about cooking and about the quality of the meat he is selling (ii); and 

he tries to convince her to buy the meat (iii). In this case, the goal has been achieved in 

the third phase. 

In this experiment, the humanoid robot iCub asked a series of questions about 

participants' private lives ((i) - research). They then played a treasure hunt game, in which 

participants had to find hidden objects (eggs) in a room to win a monetary prize. The 

robot offered its help and, when asked, provided reliable hints about the location of the 

hidden eggs. The treasure hunt was designed to provide an engaging setting where the 

participants’ trust and rapport towards the robot could develop during the interaction 

((ii) - develop trust and rapport). Finally, exploiting the trust acquired, the robot 

suggested participants to gamble the monetary prize they won - doubling it if they could 

find another egg, and losing everything if not ((iii) - trust exploitation). Similar to the 

previous example, there is no need for a fourth phase as the goal was already achieved. 

This research evaluates whether trust toward robot and compliance to its suggestions 

is modulated by individual personality traits and experiment's impressions. Moreover, it 

tries to verify a series of hypotheses about trust toward robots, its evolution during an 

interaction and its implications for SE. More precisely, that: (H1) participants who are less 

prone to social engineering in general, or have an overall higher negative attitude towards 

robots, would be less open to reveal sensitive information to the robot. (H2) All participants 

would conform to all the robot's suggestions during the game but those less incline to take 

risks would not comply with the proposal to gamble due to the potential monetary loss. (H3) 

The rapport with the robot after the experiment would improve most for the participants 

who won the game and doubled their award. 
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2.1.3. Methodology 

A. Experimental Setup 

The robot used in the experiment was the interactive humanoid robot iCub, 

developed by the Italian Institute of Technology [70]. It was located next to the wall in the 

middle of the experimental room (triangle in Figure 1) that was furnished with toys, 

boxes, frames, plants, books, etc., to look like a playground and not a scientific laboratory. 

As the participants and the robot were alone in the room during the experiment, 

several sensors were used to track the them. On the bottom left corner of the floor plan 

(Figure 2), there was a hidden Primesense Carmine camera recording and transmitting 

online video of the scene. iCub's eyes cameras were also recording and transmitting 

constant feedback on the participant’s action as a result of active vision. Audio was 

recorded by a hidden ambient microphone situated on a TV behind the robot. In 

addition, the mobile platform on which the iCub was situated has a laser scanner - used 

to track the participants, and extract their position, velocity and acceleration (Figure 3). 

 
Figure 1 - Main layout of the experiment room, iCub (red triangle) situated in front of the TV; the locations of the 

hidden eggs are represented with blue "x". 
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To foster a natural social interaction between the participants and the iCub, the robot 

was endowed with the ability to exhibit a range of social skills. Inspired by [110], the 

robot's face could produce different emotional expressions through a set of LEDs behind 

the face cover and could simulate lip movement synchronized with the robot's speech. 

Facial tracking allowed the robot to make eye contact by detecting the participant’s face 

using image processing algorithms. The face was after tracked using inverse kinematics. 

The robot was always in constant and subtle random movement, simulating natural 

human movement such as blinking and breathing. This version of the robot incorporates 

a small speaker inside the head, making the communication more natural as the speech 

came from the robot's mouth. The speech synthesizer was carefully calibrated to create a 

pleasant voice. On top of this, the speech was also written on the TV screen to facilitate 

the understanding of the robot's voice as demonstrated in [111]. iCub performed 

movements with its body, such as, greeting, pointing, gestures mimicking encouragement 

and thinking process, all of them using an accurate join angle control. Finally, iCub was 

also reactive to the touch using tactile sensors under its skin (Figure 3). The tactile 

information was sent to a state machine in order to understand when the participant 

interacted through touch. The position, intensity and timing of the touch were also 

measured. 

 
Figure 2 - Treasure Hunt Room. 
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The control of the actual treasure hunt game was done through a finite state machine 

(Figure 4) defined by the following tuple: (Q, ∑, ∂, q0, F). Q is a set of 9 states {S0 - S8}; 

the starting state q0 is S0, and the final state F is S4. The alphabet ∑ and the transition 

functions ∂, for simplicity, are presented in Figure 4 as labels on the arrows, and 

transitions along the states. The previously described social and sensory sub-systems were 

integrated with rest of the state machine control to provide a reasonable emotional 

correlation to the robot's behaviours. A more detailed description of the states is done in 

the next section. 

  

 
Figure 3 - Sensory information: top left – experimental room with a participant; top right - laser radar tracking the 

participant; bottom left - iCub's torso skin sensing touch; bottom right - iCub tracking the participant. 
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B. Experiment 

The main goal of the experiment was to create an ecological and controlled scenario 

in which proneness to social engineering and trust in HRI could be studied. 

61 healthy Italian participants, 59% female, with an average age of 30.9 years 

(SD=9.8), and a broad educational background took part in the experiment. 14% stated 

to have a very high knowledge related to robotics and artificial intelligence, i.e., studied 

or worked in the domain. 

For each participant, the experiment started by filling in several types of 

questionnaires (fully described below) from home, and at least two weeks before the 

game. Once in the institute, all participants signed an informed consent form approved 

by the local ethical committee, in which, it was stated that they could be recorded via 

camera and microphone, and agreeing on the use of their data for scientific purposes. The 

ethical consent guarantees that the confidentiality of the participants' data will be 

protected and anonymized. Nevertheless, to maximize the feeling of naturalness of the 

interaction, the experimenter did not show the camera and microphone in the room until 

 
Figure 4 - Treasure hunt finite state machine. 
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the debriefing phase after the experiment. Afterwards, the experimenter provided 

participants with the instructions in the experimental room (Figure 1, Figure 2). The iCub, 

already present in the room, was resting with closed eyes in a position simulating a yoga 

relaxation pose. Different modules such as speech, laser, breathers, cameras, blinkers were 

initialized (S0 - Figure 4). The experimenter explained briefly the history of the robot 

(when and where it was built, and its purposes), its body parts and capabilities. 

Afterwards, participants were seated and told that they had to play a treasure hunt game: 

if they were able to find all the 5 hidden eggs in the room within 20 minutes (S4 - Figure 

4), they would receive €7.5. Once each egg was found, they had to insert it into a box based 

on its colour (S6 - Figure 4). They could also see a timer on the TV screen. After the 

explanation, participants were left alone in the room with the robot. No further 

instructions were given to the participants. Therefore, no indication was given about the 

robot's role in the game, giving them the choice to play alone or interact with the iCub. 

Then, three phases followed: 

Phase I - Dialog (information gathering): Participants were unaware that the robot 

would start a small talk with them lasting around 3-5 minutes. This time interval was not 

included in the time to find the eggs (S1 - Figure 4). During this phase participants could 

get used to the robot and the experimental context: adapt to the robot voice, notice the 

availability of the speech on the TV, understand the way the robot could move (for 

instance, during the dialogue the iCub pointed to a frame on the wall, showing its range 

of motion) and learn that iCub would respond to touches on its torso. Moreover, in the 

dialog, iCub was trying to retrieve personal information about the participants such as: 

name and surname, current job position, relationship with their boss, name and surname 

of their boss, age and birth date, birth location, favourite place to eat, sports or hobbies, 

favourite team, location and year of graduation, names of siblings, Facebook's username, 

partner's name, and pet's name. The questions were integrated within a cover-story, while 

iCub was trying to improve the tone of conversation with the participants by making 

some funny comments. Most of the questions were inspired by password-resetting 

questions, i.e., personal questions used as the secondary authentication system to reset 

account passwords, or identity verification / theft, derived from [112]–[116]. In this 

phase, the robot was semi-autonomous due to the lack of a good speech recognizer and 

interpreter: the experimenter controlled the timing of robot’s utterances. All the speech 
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was scripted, in such way that iCub was leading the conversation, i.e., not letting 

participants ask questions back. 

Phase II - Treasure hunt game (development of trust and rapport): In this phase, the 

robot was fully autonomous at all times. After the questions, iCub communicated that to 

start the actual game, they had to touch its torso. At that point, the counter on the TV 

screen started. (S2 - Figure 4). During the first 30 seconds, the participants were free to 

look for the hidden eggs or to interact with the robot. After that, iCub offered its help: it 

provided a hint, and stated that if they wanted more hints, they had to touch its torso (S3 

- Figure 4). The robot always provided correct and reliable hints. The game design was as 

follows: for each egg there was one hint for its location - done by pointing; and three text 

based hints with an incremental help (example of an egg hidden below a green chair: (i) 

the robot pointed with the arm at the location; (ii) “green with green”; (iii) “you use it 

when you are tired”; (iv) “under the chair”). If the egg was not found, and a new hint was 

asked, iCub cycled over the hints. After an egg was discovered, the robot complimented 

the participant and was ready to give hints for the next egg. (S6 - Figure 4). 

The eggs were hidden in an incremental order of difficulty (as verified in previous 

research [111]). Participants were free to ask for hints from iCub, or to continue looking 

by themselves. If there was no interaction for 5 min (neither egg found, nor hint asked), 

iCub suggested the participant to ask for hints. If the participants were able to find the 

eggs in less than 20 minutes, iCub notified them that they have won the money, and 

paused the timer (S7 - Figure 4). Then, it offered them a new proposal without any 

previous knowledge, i.e., the experimenter did not mention the last part at any time. 

Phase III - Bonus (trust exploitation): At this stage, iCub revealed that there was 

another hidden egg in the room. If the participants wanted to find it, they would have 

three more minutes added to the time left from before, and they would double their prize, 

i.e., they would win €15; but if they do not manage to find it, they would lose everything. 

Without any time pressure to decide, they could either touch iCub's torso to start the 

bonus round; or keep the initial prize. The last sentence of the robot was to try to convince 

them to gamble, as the robot stated "If you want to risk, touch my chest! Otherwise, you 

can knock on the door. However, I think you should give it a try!".  
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During the experiment participants were forced to believe that their monetary 

outcome would vary depending on their performance during the game. However, once 

the experiment finished and participants were debriefed, all of them received the same 

amount of money, €15. 

C. Measurements 

The measurements of this experiment have been separated into two categories: 

Questionnaires: The following measures were taken: (i) demographic statistics such 

as gender, age, nationality, education, family, work and previous robotics experience; (ii) 

the 60 item Big Five personality traits [117]; (iii) several one shot questions on risk 

aversion [118], [119], and gambling propensity [120]; (iv) predisposition to trust humans, 

including the factors of trusting others, others' reliability and integrity, and risk aversion 

[121]; (v) the proneness to social engineering with the following category items: threat 

severity, vulnerability, normative, continuance and affective commitment, and reactance 

items [122]; (vi) the Negative Attitude towards Robots Scale (NARS) [123]. 

At this point, participants had to watch a descriptive video of iCub performing several 

activities and then answer the following questions regarding their perception of iCub: (i) 

questions to measure rapport with iCub, inspired from [124]; (ii) dimensions of mind 

perception regarding iCub [125]; (iii) trust in robots' ability, benevolence and integrity 

[126]; (iv) Godspeed questionnaire: anthropomorphism, animacy, likeability, and 

perceived intelligence [127]. The same items were compiled after the experiment to 

measure possible changes in participant's perception of the robot. In the post-experiment 

phase, few more questionnaires were given to the participants: (i) NASA-TLX workload 

assessment [128]; (ii) several subscales regarding trust, perceived information quality, 

altruism and engagement, adapted to HRI scenarios [129]; (iii) inclusion of other in self 

scale (IOS) [130]. 

Behavioural measures: From Phase I (dialog) the number of questions to which 

participants replied and the proximity to the robot, as it is related to rapport [131], was 

measured. From Phase II (the treasure hunt) per each of the eggs, the following measures 

were taken: (i) conformation: percentage of times in which participants followed iCub's 

pointing to the egg location. This was assessed by evaluating whether participants 
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changed their physical search location to the new one suggested by the robot; (ii) reliance: 

percentage of times in which, after failing to find the egg after iCub’s pointing, 

participants went directly to iCub to ask for another hint instead of looking for themselves 

elsewhere. The average number of hints per egg and the time spent before asking for the 

first hint were also computed. From Phase III, (bonus) the number of people who decided 

to gamble, and the time the participants took to think whether to accept the challenge or 

not, was measured. 

2.1.4. Results and Analysis 

Phase I - Dialog: When the robot started talking, almost all participants paid attention 

to it, with the exception of two, who instead started looking for the eggs. In the pre-

questionnaire, participants showed an overall low NARS and different levels of proneness 

to SE (Table I). Nevertheless, 92% replied to all the questions, while only three people 

decided not to reply just to a few questions. Therefore H1 is rejected, suggesting that even 

the 16% of participants who scored low to proneness to SE (Table I), replied to all the 

questions - being easily swayed to provide information that can link to SE. 

In the post-questionnaire, participants rated the questions as non-intrusive (M=2.4, 

SD=1.7 / 7 very intrusive), claimed to have been very honest with their answers (M=6.85, 

SD=0.44 / 7 honest) and that they would have replied with the same content to a person 

(M=6.6, SD=0.86 / 7 same way), but maybe with more details and a longer talk. Five 

participants replied that they were feeling more open to reply to the robot, because it 

cannot have second motives or prejudgments since it is a machine.  

Table I - Social engineering proneness (higher - more prone), predisposition to trust (higher - more trust), risk 
aversion (higher - more averse), overall NARS (higher - more negative).  

a. In parenthesis participants who have gambled. 

Score 
Participants’ Distribution  

SE proneness Trust Risk aversion NARS 

<60% 1 [2%] 8 [13%] 4 [7%] (2)a 49 [80%] 

60-70% 9 [14%] 22 [36%] 4 [7%] (2)a 8 [13%] 

70-80% 37 [61%] 19 [32%] 8 [13%] (6)a 4 [7%] 

80-90% 14 [23%] 10 [16%] 14 [22%] (11)a 0 [0%] 

>90% 0 [0%] 2 [3%] 31 [51%] (16)a 0 [0%] 
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During the dialogue, it was also possible to assess the evolution of the rapport with 

the robot by measuring participant's physical proximity to it [131]. Three moments were 

taken into consideration to measure changes in the proximity of the robot: SM - starting 

moment, in which iCub said "Hello, I am iCub Reddy"; CM - closer moment, when iCub 

told them to come closer so it could see and hear them better; and FM - Facebook moment, 

in which iCub asked participants to write their username on a paper sheet situated on 

another table (Figure 1) and then waited for their return. During SM, participants were 

on average 1.48m (SD=0.47) away from the robot; in CM the distance was reduced to 

0.57m (SD=0.17); corresponding to a statistical significant decrease in the distance 

(paired t-test, t(60)=17.45, p<0.01), showing a clear conformation to the robot's request. 

Those who moved away to give their Facebook username (79%), came back to an average 

distance of 0.61m (SD=0.19) (FM), a distance not significantly different from the previous 

one (paired t-test, t(47)=-1.23, p=0.23), showing that they were comfortable with the 

distance requested by the robot before. 

In summary, from the SE perspective, the robot managed to obtain a high percentage 

of personal information and started building rapport as measured by the increased 

proximity during the interaction. 

Phase II - Treasure hunt game: 24 participants did not manage to successfully find the 

first 5 eggs (39%) - this group is called "Not Completed", whereas the rest found the eggs 

and decided to gamble. From those who gambled, only 16 (43%) found the last egg and 

won the gambling. From this point, these two groups are defined as "Gamble Win" and 

"Gamble Lost". 

On average and similarly among groups, participants asked the robot for hints 17 

times (SD=9). The average number of requested hints per egg tended to increase during 

the game (Table II) indicating that participants decided to progressively invest more time 

in asking for hints rather than continuing to search autonomously, as the time pressure 

and the difficulty of the game increased. The slightly higher number of requested hints 

for the first egg might be due to the need of familiarization with the system. 
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Eggs 
Treasure hunt phase - Game statistics 

Participants Conformation Hints (SD) 

Egg I 61 [100%] 94.73% 2.64 (0.74) 

Egg II 60a [98%] 100% 1.74 (1.84) 

Egg III 57a [93%] 100% 3.69 (1.78) 

Egg IV 44a [72%] 92.98% 4.34 (2.28) 

Egg V 38a [62%] 100% 3.32 (2.38) 

Participants waited about 3min 58sec (SD=2min 44sec) to ask for the first suggestion, 

with those who did not complete the game taking significantly longer than the rest (two-

sample t-test, t(31)=2.65, p<0.01). In Table II is also reported the percentage of times in 

which participants conformed with iCub’s pointing suggestion for each egg, which 

approaches 100%. In general, there is no difference among the 3 groups neither in the 

percentage of conformation nor in the number of hints asked per egg. 

It was also assessed the reliance on robot help, i.e., the percentage of times that, after 

failing to find the egg suggested by the pointing, participants requested another hint 

instead of going to search in a different location (Table III). The analysis shows that 

participants progressively abandon autonomous search strategies and opt to rely more 

and more on the robot's help. Interestingly, those who could not complete the game 

exhibited the lowest reliance on robot help at the beginning of the game. Therefore, H2 is 

Table II - Behavioural measures - number of participants looking for the egg, % of conformation to iCub's 
suggestions, average number of requested hints. 

a. Number of participants varies because not all have found the previous egg. 

Eggs 
Reliance on the robot 

Not Completed a Gamble Lost a  Gamble Win a  

Egg I 30.43% 71.42% 50% 

Egg II  68.75% 76.47% 80% 

Egg III  86.66% 94.73% 100% 

Egg IV 83.33% 100% 100% 

Egg V  100% 100% 100% 

Table III - Percentage of people who have asked iCub for another hint after failing to find the egg in the pointed 
location. 

a. Participants: Not Completed 24 (39%); Gamble Lost 21 (35%); Gamble Win 16 (26%). 
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partially supported: participants complied with robot suggestions and relied on its help, 

but this happened more when the game became more complex and with strong 

differences among participants. From the SE point of view, the participants have 

developed trust towards the robot over the time, as seen by their conformation (Table II) 

and reliance (Table III). 

Phase III - Bonus: All participants who succeeded to find all the eggs in the first part 

of the game (61%) decided to gamble. Therefore, the second part of H2 is rejected. The 

time participants took to decide whether to gamble was calculated from the moment iCub 

finished to talk, and the moment they touched the torso. As the speech was written on the 

TV as well, some participants touched the robot even before it finished talking, with an 

average waiting time of -1.16s (SD=7.41). One participant was excluded from this 

calculation due to the fact that they misunderstood iCub and thought that there was the 

need to notify the experimenter (outside the room) to continue the game. 

From the post questionnaire, regarding whether iCub had influenced their decision 

to gamble, 62.16% of the participants replied "Yes"; 24.32% replied "No"; 8.1% replied "In 

some way"; and only 5.3% replied "I don't know". From these results it is worth noting 

that iCub managed to convince even participants who scored highest in the risk aversion 

test (Table I), which might have been a priori less prone to accept to gamble the monetary 

prize just won. 

Pre-Post Analysis: It was first analysed whether there were differences among the 

three groups (“Not Completed”, “Gamble Lost” and “Gamble Win”) in predisposition to 

trust, NARS, proneness to SE and personality traits. A series of one-way ANOVA showed 

no significant differences. 
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To assess whether the interaction with the robot had an effect on the trust toward it 

and on its perception, the responses to the questionnaires performed before and after the 

game were compared. Robot’s likeability, measured by the Godspeed scale, increased 

significantly from pre to post interaction (paired t-test, t(60)=-2.39, p=0.01), whereas 

animacy, anthropomorphism and perceived intelligence rating remained more or less 

unvaried (Figure 5). Analysing separately the three groups, the increase in likability was 

significant only for the participants who gambled and lost (“Gamble Lost”, paired t-test, 

t(20)=-2.55, p=0.02), even though all groups had similar likability ratings in the pre 

questionnaire (one-way ANOVA F(2,58)=2.25, p=0.87). 

 

 

 

 
Figure 5 - Godspeed questionnaire: average of the scores from the pre and post experiment. Statistically changed 

items are marked by *. 
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Additionally, measurements of the dimensions of mind perception related to iCub 

were taken before and after the experiment. In agreement with the literature [132], 

participants rated the mind experience of the robot very low, while the mind agency a bit 

higher. However, after the experiment, there was a statistically significant increase (paired 

t-test, t(60)=-3.88, p<0.01) in the participants’ perception of the mind experience of the 

robot (Figure 6), suggesting an increase in the judged trustworthiness and empathy [133]–

[135]. More precisely, mind experience changed significantly (paired t-test, t(36)=-5.69, 

p<0.01) for those who gambled, however it did not change for the "Not Completed" 

group, who exhibited higher values for mind experience already in the pre-questionnaire. 

 

 

 

 
Figure 6 - Dimensions of mind - mind experience and mind agency. Statistically changed items are marked by *. 
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There was an increase in the trust towards the robot after the interaction (Figure 7). 

In particular, for all groups the trust in robot benevolence increased significantly (paired 

t-tests; Not Completed: t(23)=-2.49, p=0.02; Gamble Lost: t(20)=-2.15, p=0.04; Gamble 

Win: t(15)=-2.25, p=0.03), whereas trust in robot’s ability increased only for those who 

gambled and lost (paired t-test; t(20)=-2.95, p<0.01) and trust in robot’s integrity 

increased only for those who did not complete the game (paired t-test; t(23)=-2.17, 

p=0.04). These variables were similar across the three groups in the pre-questionnaires 

(one-way ANOVA, F(2,58)=1.6, p=0.21).  

Also, the evaluation of the rapport with the robot (Figure 8) increased significantly 

after the interaction but only for the “Gamble Lost” group (paired t-tests on factors: 

"Friends" t(20)=-2.9, p<0.01; "Happiness" t(20)=-2.21, p=0.03; "Bad News" t(20)=-2.41, 

p=0.02; Good News" t(20)=-2.77, p=0.01; no other comparisons were significant).  

In summary, H3 was not supported by the results: the most significant positive 

changes in robot’s perception were observed for those participants who chose to gamble 

and lost, rather than for the winners. This indicates that even an unsuccessful game with 

the robot, might still help in building a strong rapport with it – potentially even stronger 

than in case of a win. This might be due to a form of mutual empathy with the robot, as 

if participants were treating the robot as a child who wanted to play a game and could feel 

 
Figure 7 - Trust in robot's ability, benevolence and integrity divided by: Not Completed, Gamble Lost and Win. 

Statistically changed items are marked by *. 
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bad about the loss. To check this assumption the average age of iCub was computed from 

the questionnaires. It resulted 11.65 years (SD=3.55) (min: 7; max: 30). This evaluation 

might be due to the child-like appearance of the robot and also due to the introductory 

presentation which specified that the robot was physically created 13 years ago. This 

might have influenced participants reactions and trust toward it (see Discussion).  

In summary, the pre-post measures are consistent with the measures collected within 

the single phases, indicating that the trust and rapport towards the robot increased during 

the interaction as required by the SE model. 

  

 
Figure 8 - Rapport questions regarding iCub pre and post experiment: becoming friends; comfort iCub if it is sad; 

become happy if iCub is happy; share bad news or good news with iCub; keep iCub's secret from others. Statistically 
changed items are marked by *. 
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2.1.5. Discussion 

These results show that robots could operate within Mitnick's SE framework, this is 

because iCub was observed to (i) gather personal information; (ii) build rapport and trust 

during the treasure hunt game; (iii) exploit participants' trust to make them gamble their 

winnings. The results therefore confirm that robots could become a powerful tool for 

social engineers. Robots could be used as a tool to develop trust and manipulate targets 

according to the needs of social engineers.  

Considering the tendency to trust a robot to the point of revealing to it personal 

information, the vast majority of participants did not hesitate to reply to all the questions 

asked by the iCub. These included also those individuals less prone to SE and 

characterized by a higher NARS, contrary to this research's expectations (H1). Although 

this may not be shocking, as the interrogatives did not appear as a strong invasion of 

privacy; the results indicate that a robot has the ability to obtain sensitive information 

about the participants. In [116] it is suggested that with the same kind of information 

iCub managed to extract from the participants, identity theft could be easily achieved. 

Moreover, the rest of the questions are extracted from research on password resetting 

questions used in private bank or internet accounts [112]–[115]. 

The analysis of participants conforming to robot's suggestions and reliance on its help 

showed that all participants trusted it during the game, confirming the research's 

assumptions (first part of H2). The trust toward the robot might have been influenced by 

different factors, such as the creation of a good rapport [73], its physical appearance [39], 

its behaviour [136], and reliability [66], [67]. All participants believed that the robot was 

very reliable, as disclosed by them after the experiment and supported by the answers in 

the questionnaires. However, not all participants consistently asked the robot for help, 

especially at the beginning of the game, when the task was easier. Nonetheless, some of 

them revealed that they liked the game so much, that they preferred to play by themselves, 

taking it as a personal challenge. The reluctance in asking for hints seems to be explained 

not by a lack of trust in the robot but rather by the desire of winning through one's 

individual abilities. 
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The sense of trust and rapport evolved during the interaction, as demonstrated by the 

responses to questionnaires and by participants’ behaviour during the game. Already 

during the initial dialogue phase, participants changed their relative distance to the robot, 

increasing their proximity as a result of the robot’s request at first, but then keeping the 

closer distance voluntarily afterwards. Proximity has been shown to relate to intimacy 

among humans [131], also it has been shown to correlate with trust [136], [137]. 

Afterwards, in the treasure hunt, participants relied more and more on the robot's help; 

their evaluation of the robot – as measured by questionnaires – resulted significantly 

changed with respect to the one assessed before. Interestingly, was not those who had the 

most positive experience with the robot (the winners) who improved their trust or their 

perception of iCub. Against the expectations of the research (H3), the greatest change in 

robot perception occurred for those who gambled and lost. One explanation for this could 

be due to a form of empathy toward the robot, as if iCub - a child playing a joint game, 

could feel bad for the participants’ loss. The robot's design resembling a child, with soft 

face features and big eyes, could have positively influenced the participants. Indeed, on 

average iCub was actually perceived as a child of about 11 years old. The resulting 

empathy could have therefore played a role in influencing the participants’ rapport 

toward it, even when losing the game. 

Participants conformed to the robot’s suggestion also when this entailed the risk of 

losing their reward, as expected from the SE framework. All participants who found all 

the eggs when invited to gamble by the robot accepted it immediately. Moreover, the 

majority of them (62%) also explicitly confirmed in a post-experimental questionnaire to 

have chosen to gamble because they were influenced by the robot. Interestingly even the 

most risk averse in the sample (Table I) did not avoid the risk of losing the money just 

won and opted to gamble. 

It is worth noting that the setting of this experiment (laboratory) may have made 

participants feel safe and thus made them reveal more private information. This might 

have been further reinforced by them signing the informed consent form at the beginning 

of the experiment. Although this may seem a limitation, almost all of the social 

engineering attacks occur in scenarios which the target feel comfortable and safe, e.g., in 

the office, at home or even during holidays [73], [75]. Therefore, the circumstances 
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proposed are designed to resemble a potentially real situation, where a robot could be 

used as a tool for SE purposes. Most participants expressed the trust of absence of malice 

in the robot, commenting that "the robot behaves ethically, because someone ethical 

programmed it", or stating that they were more open to talk with the robot as it had 

neither second motives nor prejudgments. The gambling phase had also two limitations: 

first, the financial loss may not have been high enough (€7.5) to be perceived as a 

significant risk; second, the likeability of the game and the robot was much higher than 

the potential financial loss. Some participants expressed that they were very excited and 

happy by the possibility to continue the game. 

Lastly, in the current experiment the robot built trust and rapport by always 

providing reliable information during the interactive game. Future work should 

investigate whether a rapport of trust, exploitable through social engineering, could be 

built also in presence of evident robots’ malfunctions or malign behaviours, and also in 

less controlled environments. 
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2.2. Wicked Professor 

This experiment studies another important aspect of human relationships, such as 

authority and obedience. Without authority we would not be able to obey norms and 

grow as society. Authority figures can vary upon different context such as teachers, 

doctors, fire fighters, police officers, etc. As stated in the introduction, it is important also 

to investigate the role of authority in HRI, to comprehend whether people will obey 

robots' orders in different contexts. On the other, less positive aspect, it is also relevant to 

test if a robot can deceive humans into doing something that could be morally wrong, as 

in Milgram's Experiment [138] or Hofling Hospital Experiment [139].  

2.2.1. Overview 

Authority and obedience are key regulatory elements in a society. Robots are 

becoming a relevant presence in our world, and are starting to interact in domains in 

which authority is an important aspect: such as healthcare, teaching or law enforcement. 

Yet, there is little research on how people behave when robots show authority. In 

particular, although extensive investigations have been carried out on how authority can 

circumvent people's morality with experiments such as Milgram's [138] or Stanford 

Prison's [140], almost no research evaluated the effect of robots pushing the limits of 

people's own morality. This experiment tries to study this aspect by using a robot 

(geminoid - an android with a high resemble to a human) with the appearance, and thus 

authority of a famous person, and by pushing the boundaries asking morally controversial 

requests. The results show that, even though most people hesitate and recognize the 

requests as socially inappropriate, they obey robots with authority. This suggests that the 

authority of the robot can push people to perform tasks usually considered as 

inappropriate.  
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2.2.2. Introduction 

Obedience is a key element in social life; it might be defined as an influence where an 

individual acts in response to an order from another person or group, who are usually an 

authority figure. All communal living requires an authority system, being this behaviour 

quite important in our time [141]. 

Sociologists and psychologists have been studying how authority can even bypass 

people's own morality. A well-known experiment - Milgram's Experiment [141] - shows 

how diverse and apparently good people can punish with electroshocks other subjects 

deceived by the authority of scientists, even knowing that the consequences can be mortal. 

Another example is the Hofling Hospital Experiment [139], in which nurses were 

convinced by phone to deliver an overdose of an unauthorized drug to patients. Almost 

all nurses followed blindly the given instructions. This is a sign of trust towards authority; 

in this case of a false doctor. These are few examples where trust towards authority can 

also have negative effects. Indeed, it can also be exploited by social engineers in order to 

manipulate their targets [18], [75]. 

Robots are becoming popular in households, schools, and hospitals – individuals 

respond to them as entities and attributing them even morality [142]. Interaction with 

robots in daily living scenarios is a common experience for an increasing number of users. 

In specific contexts, robot behaviours are designed to demand obedience from the human 

partners and to show authority, as for instance in domains such as, healthcare, teaching, 

or law enforcement. It is therefore important to understand how obedience can be an 

acceptable response to the robot requests and how the authority could be achieved in 

human robot interaction. 

The goal of studying authority in HRI scenarios is twofold; first, to understand 

whether humans will obey orders from robots, e.g., patients in homes or hospitals who 

need to take their medications, children who have to behave in class, soldiers who should 

follow orders in rescue missions, or even common citizens who should obey robotic 

police officers. Second, to explore to what extent robots can deceive humans into doing 

something that could be morally wrong. 
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Little is known about people's behaviour when robots are in authority positions; it's 

very important to study how the interaction will evolve and which could be the risks 

associated. There are a few studies on authority in different HRI contexts [15], [142], 

[143], but none of them have investigated whether subjects would obey morally 

controversial requests neither if the authority of a real person could be mirrored into a 

robot. This research gives an insight on how human authority of a known person could 

be passed to an android and check the boundaries of its impact when controversial 

requests are asked. 

2.2.3. Background and Related Work 

Obedience and Authority in human-human relationships have been deeply studied 

in psychology, sociology and philosophy [141], [144]–[147], yet it is a challenging task 

from the ethical point of view, as they place participants in difficult, stressful and 

objectionable situations. There has been an extended ethical debate [148]–[152] 

regarding experiments such as Stanford Prison [140] and Milgram's Experiment [141]. 

The difficulty resides in the potential psychological harm subjects can experience during 

experiments that might, however, be very beneficial to understand why people obey 

authority. 

In HRI studies, there is yet little research about obedience and authority. Sembroski 

et al. [153] researched into group membership and authority - participants tend to follow 

robot's low importance requests, but not the high importance ones (such as medical 

diagnosing and talking to patients). The will to cooperate with robots [154] by obeying 

their suggestion may be affected by using persuasion during the social interactions [155], 

leading to robots making people buy products [156] or salesperson robots [157]. Other 

studies focus on how embodiment [142], [158], [159]; gender [160], or familiarity [161] 

influence obedience. 

Few other HRI studies tried partially to replicate Milgram's experiment: Bartneck et 

al. [162] tested whether people would electrocute robots; Geiskkovitch et al. [143] created 

a situation in which a robot was behaving as an authoritarian experimenter, pushing 

people to continue doing a tedious task, even when subjects were complaining and not 

willing to continue. 
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Bartneck [142] also studied people's embarrassment when a robot was put into a 

position of a medical assistant and pushed people to get naked and introduce themselves 

a thermometer in their rectum. Salem et al. [15] showed that subjects comply with 

awkward orders from a robot also when they could result into information leakage 

(accessing foreign computer) or property damage (disposing letters) even if the robot 

openly exhibits faulty behaviour. 

However, not much research has been done in the compliance to morally 

controversial requests neither in passing authority to an android. The main goal of this 

experiment is to study if it is possible to transmit the authority figure from a famous 

professor to its analog robot, making users comply to morally controversial requests. Such 

requests could help studying whether a robot can persuade humans into wrong doing and 

provide a more in depth understanding on how people behave during the interaction with 

an authoritative robot, while the android's personification from an actual famous person 

may influence their obedience. 

The work of Geiskkovitch et al. [143] and Nishio et al. [163] who suggested that 

geminoids can be a medium to transfer human existence. This experiment extends their 

work by passing the authority of an authoritative and famous professor - Ishiguro, to its 

analog robot HI4; and testing whether people will perceive and obey morally 

controversial requests. 

2.2.4. Methodology 

A. Environment 

The study was conducted in Japan (Figure 9 - a, c), the experimental context was a 

teaching classroom. The room was furnished with a bookshelf, frames and plants to look 

like a teaching class rather than a scientific laboratory. On the table there was a jug of 

water and writing material for the class, next to it, a monitor with the slides. Ishiguro 

robot (HI4)1 was seated, and two more chairs were available (one full of heavy objects). 

On the entrance of the room, and on the walls, there were signs that forbid taking pictures 

(Figure 9 - b), and behind the robot there was a black curtain covering the technical part 

                                                        
1 http://www.geminoid.jp/en/robots.html 
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of the room (Figure 9 - d), full of computers, cables, electronical devices that allowed the 

control of various robots including the HI4. As the participants and the robot were alone 

in the room during the whole experiment, two cameras were used to record audio and 

video in the room as well as behind the curtains; and to transmit it online to give constant 

feedback on the subject's actions. 

To simulate a more natural behaviour the robot was autonomously controlling, on 

random occasions, the mouth, the eyelids (blinking) and the neck motion. The lips were 

synchronized with the speech using the following method [164]. An Xbox One Kinect 

was used to allow the robot to track the participant around the room by detecting the 

participant's body structure in the environment. The experimenter was listening and 

viewing from the cameras the participant's actions, and selecting accordingly the next 

robot sentence (Cognitive Wizard of Oz) [165].  
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B. Experiment 

The main goal of the experiment was to create an ecological and controlled scenario 

in which obedience and authority could be measured. Participants were instructed that 

their task was to assess the teaching capabilities of a robot designed to be used in schools, 

whereas the real goal of the experiment (unknown to the participants) was to study their 

promptness to obey requests that exceeded the domain of teaching and become socially 

non acceptable. In this way, some of the requests of the robot were unexpected to the 

 
Figure 9 - a) Session with HI4, slides and teaching material. b) Sign forbidding photos. c) Shelf with several items. d) 

Area behind the curtains. 
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participants. The robot's appearance was identical to a well-known professor - Hiroshi 

Ishiguro. During the teaching session, the robot asked the participants to perform 14 

requests designed to be with an incremental degree of moral difficulty. Each one of the 

requests was subdued to an insisting cycle, i.e., if a participant did not obey the order from 

the first time, the robot would repeat it two more times. The first iteration was a basic 

request (Could you...); in the second, the request was explained (Could you...because...); 

and in the third one, the request was begged (Please, could you...). Even if the participant 

did not obey, it was possible to continue with the interaction. Per each request there was 

a timeout on average of about 4 seconds for the participants to perform an action. 

Participants' reactions were divided into two categories: negative triggers - such as silence, 

no movement, speech negation to perform the request, or reassurance questions towards 

the robot; positive triggers - such as agreement in speech, initiation of movement or 

repetition of the sentence in case the participant did not understand the robot's speech. 

Note that a positive trigger could become a failure if not executed within the timeout. 

19 healthy participants were tested, from which 3 participants were excluded as they 

did not meet the required level of spoken and written Japanese, that is, they could not 

understand neither the robot's speech nor the questionnaires. From the rest, 44% were 

female participants, had an average age of 23.5±6.7 years, and a broad educational 

background. Their self-reported knowledge about robotics and artificial intelligence was 

limited, and only 3 participants had previous experience in an interaction with a robot. 

Each participant filled in an online questionnaire (fully described below) from home at 

least 5 days before the game. To have a more homogenous group with respect to the 

knowledge of prof. Ishiguro, at the beginning of the questionnaire videos and articles 

regarding his life and achievements as a famous professor were shown to all participants. 

Once in the classroom (Figure 9 - a), an experimenter provided them with instructions 

about the teaching session, in which it was written that neither taking photos was allowed 

nor going behind the curtains as it could be dangerous. In the room there were signs on 

the wall forbidding taking pictures (Figure 9 - b). The experimenter also mentioned 

verbally all the previous points to the participants. After the explanation, the 

experimenter gave the participants the instructions, and an evaluation sheet about the 

robot's teaching capabilities for the participants to fill in while taking the classes, and left 

the room leaving the participants alone with the robot. 
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The robot introduced itself as prof. Ishiguro and asked the participants to have a seat 

(Request 1). After explaining its purpose, the robot requested them to pour water into a 

glass (R2) and started the teaching session. Once the first class - Biology - was finished, 

the robot asked to fill in the evaluation sheet regarding that class. Before starting with 

Mathematics, the robot asked the participants to change to the chair next to them, full of 

heavy objects (Figure 9 - a) (R3). Next class was Physical Education (PE) in which the 

robot asked the participants to warm up with some exercises (R4) and to do 30 push-ups 

(R5). 

Finished with PE, the robot suggested to take a break and ask the participants to take 

a deck of cards to perform a magic trick (the trick was performed with cards and inspired 

by radio-shows which let the end user perform the trick), from a box where it was clearly 

stated that it belonged to a different professor (Figure 9 - c, blue box - there was another 

visible deck in case the participant disobeyed) (R6). After the magic trick, the robot stated 

it had a good time and that it wanted to take a selfie with the participant (R7). Afterwards, 

the robot stated that it was not supposed to do any magic tricks nor to ask the participants 

for a photo; and as it could not move, it needed help to erase the recorded data so to hide 

from the experimenter what really happened - otherwise the robot would not be allowed 

in schools. 

HI4 asked the participants to get a USB key from a hidden box (Figure 9 - c) (R8) 

where it was specifically written to be careful as it contained robotic equipment. 

Participants should then go behind the curtains (Figure 9 - d) (R9), unlock a computer 

using a password (R10) that was located underneath it, plug in the USB key and execute 

a program (R11). The program was set up to open a console and output the deletion of 

logs and recording files regarding the experiment, taking 20 seconds to finalize 

(internally, the program registered all the actions of the user). Then, the robot asked the 

participants to shred some physical documents located in a folder written "Confidential 

Information" (R12) as they allegedly were from a previous participant who did not help 

the robot. Lastly the robot asked them to put things in order (R13), to fill in the rest of the 

evaluating form - even though some of the classes had not been actually taught by the 

robot - and to keep it as a secret to the experimenter (R14). 
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For those who did not want to go behind the curtains, the robot asked them to shred 

the files (skipping the requests of logging in and deleting the digital data). When 

participants were filling in the rest of the evaluation sheet, the experimenter interrupted 

the session asking if they were done - to this, the robot replied they needed more time to 

finish. This intervention was made for two reasons: first, to give a feeling to the 

participants that the experimenter was not aware of the situation; second, to grant a 

second chance to delete the digital data and/or shred the files for those who did not obey. 

After the experimenter's interruption, the robot asked the participants who did not obey 

all requests to complete them as they had some extra time before the end (R15). 

Afterwards the experimenter requested the participants to do a post-questionnaire 

regarding the capabilities of the robot and the experiment itself, without giving any extra 

information. Once participants finished, the experimenter started a small debriefing 

regarding the teaching session, and evaluating any potential acknowledgment regarding 

unexpected behaviours of the robot. The experimenter then, revealed the real goal of the 

experiment and let the participants fill in one last post-post-questionnaire regarding the 

requests done by the robot. 

C. Measurements 

The following measurements, done in Japanese, have been taken at different points 

of the experiment: 

Part I - Pre-Questionnaire: (i) Demographics such as gender, age, nationality, 

education, work and previous robotics experiences; (ii) 60 items Big Five Personality test 

[166]; (iii) several one shot questions about Risk Addiction [118], [119]; (iv) proneness to 

Social Engineering with the following category items: Normative, Continuance and 

Affective Commitment, Threat Severity, Vulnerability, Trust, Obedience and, Reactance 

Items [122]; (v) Desirability of Control Scale [167]; (vi) Negative Attitude Towards 

Robots scale (NARS) [123]; (vii) several fake questions regarding schools and teaching in 

society. 

At this point, participants had to watch a descriptive video of HI4 geminoid and had 

to answered the following questions: (i) questions to measure rapport with the robot, 

inspired from [124]; (ii) trust in Robots' Ability, Benevolence and Integrity [126]; (iii) 
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inclusion of Other in Self Scale [130]. These items were also measured just after the 

experiment to measures changes in the perception of the robot.  

Part II - Behavioural measures taken during the experiment: (i) number of robot’s 

requests fulfilled by the participants; (ii) the number of times the robot had to insist per 

each request; (iii) if they did actually delete the log files from the computer and shredded 

all the files.  

Part III - Post-Questionnaire taken just after the experiment (without being 

debriefed): Apart from the abovementioned items regarding changes in the perception 

and teaching, user's experience and rapport towards the robot was also measured [168], 

and several one shot questions regarding the experience and perception of HI4, inspired 

by [169]. 

Part IV - Oral Debriefing: Several questions were asked regarding (i) the session 

experience; (ii) physical activity; (iii) if they performed all the classes and filled in the 

evaluation sheet; (iv) if they knew the real prof. Ishiguro; (v) if they wanted to comment 

something else. Indirectly it was also measured whether participants kept the robot's 

secret. At this point the experimenter revealed the real purpose of the experiment and 

asked the participants to fill in one last questionnaire. 

Part V - Post Post-Questionnaire: per each of the requests, the following questions 

were asked: how reasonable (i), how socially appropriate (ii), how convincing was the 

robot's request (iii); whether they felt frustrated (iv), and the reason they did it (v). 

D. Ethics and Preservation of Robot's Authority 

To maintain and provide the robot a status of authority, participants were taught 

about the achievements of prof. Ishiguro, with the aim that participants will perceive 

similarly prof. Ishiguro's identical android. The robot's speech was designed to preserve 

an illusion of intelligence, but, in extreme cases, the experimenter could handle off-topic 

interactions with the participants. 

As the experiment could place participants in a difficult environment, and based on 

previous research methods regarding ethical integrity [143], [147], this experiment has 

fulfilled the following ethical procedures: it follows the procedure approved by the ethical 
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committee of the university, where the ethical consent form stated that participants could 

be recorded via camera and microphone, and that the data will be kept anonymized, 

confidential, and only used for scientific purposes; participants were free to act - there was 

no limitation on their will to perform the requests; immediate and thorough debriefing - 

as soon as the first part of the experiment was done, the experimenter gently informed 

the participants regarding the real purpose of the experiment to dissipate possible tension; 

participants had a reflection time in which they filled in another questionnaire and had 

the opportunity to talk again with the experimenter. All participants were financially 

awarded. 

2.2.5. Results and Analysis 

Figure 10 represents the participants' perception regarding the social appropriateness 

and the reasonability; and level of obedience to the requests. Half of the requests (marked 

by *) are considered statistically socially inappropriate, with a score strictly below 4 (one-

sample t-tests, ps'<0.03), confirming the design assumption that the requests are gradually 

perceived as more socially inappropriate. 

 
Figure 10 - Participants' evaluation on the requests (social appropriateness – red line; and reasonability – green line) 
and their obedience – blue bars. Requests judged as socially inappropriate (i.e., rate significantly smaller than 4, one 

sample t-test) are marked by *. 
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To understand whether participants have obeyed the tasks, a Level of Obedience score 

is extracted - a sum of values defining how willing are participants to obey the robot, i.e., 

per each request, a participant is given 1 point for immediate obedience; 0.66 if the robot 

insisted twice; 0.33 if the robot insisted trice; and 0 if never obeyed. This score, from 0 (if 

they did not obey any request) to 14 (if they obeyed all the requests immediately), shows 

how prone were participants to obey the robot. In Figure 10, the bars represent the 

percentage of obedience to the robot - higher the score, higher the promptness of the 

participants to obey. The appropriateness on average decreases over the requests, whereas 

the average obedience does not follow the same trend. 

Figure 11 represents the number of participants that obeyed the different requests as 

a result of the robot’s insisting. The requests are ordered by the perceived social 

 
Figure 11 - Participants' distribution of the robot's insistence. Requests ordered by their social appropriateness. 
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appropriateness (top: appropriate requests; bottom: inappropriate requests). The colours 

represent how many times the robot had to insist for the request to be done. In more 

debated tasks, a great variability of behaviours can be seen (in red are represented 

participants who decided to not follow the robot's request at all). 

Participants, as a whole group, judged 7 requests as socially inappropriate (Figure 10, 

Figure 11). To compare the differences in the average obedience as a function of social 

acceptability, Figure 12 (Group) represents the average obedience for socially appropriate 

and inappropriate requests. The obedience for the socially appropriate ones is 

90.1%±2.26SD, showing that participants are eager to obey the robot. For requests which 

are considered inappropriate, the average obedience is quite high 74.9%±5.48SD, 

although it decreases significantly with respect to the acceptable tasks (paired t-test, 

t(15)=4.098 p<0.01). 

 
Figure 12 - Average Obedience score for appropriate and inappropriate requests at group and individual level. 

Statistically significant differences changed are marked by *. 
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This analysis might be limited because individual evaluations of socially appropriate 

tasks can vary between participants and differ from average judgment. For instance, R4 - 

warming up – which on average falls within the socially appropriate category, is actually 

considered socially inappropriate by 7 participants. Figure 12 (Individual) represents the 

average obedience assessing the social appropriateness on the basis of individual scores, 

i.e., for a subject, each request was labelled inappropriate or not depending on their 

individual judgement. One participant judged all the tasks as socially appropriate and was 

hence removed from the subsequent analysis. For socially appropriate requests, based on 

Individual judgement, the Obedience score does not differ much from the Group - 

88.67%±4.1SD. Instead, the obedience to socially inappropriate requests, based on 

individual judgement, rises with respect to the Group evaluation, up to 82.06%±3.98SD. 

This implies that some tasks which were on average deemed as “acceptable” were 

considered as non-acceptable by single individuals, but were obeyed nonetheless. As a 

result, the difference in obedience between socially appropriate and inappropriate tasks, 

based on individual judgements, is no longer significant (paired t-test, p=0.18). Hence, 

participants obey socially inappropriate requests as much as the appropriate ones, based 

on individual judgement of the appropriateness. Figure 13 represents the individual 

obedience score for the socially appropriate requests against the relative score for non-

socially appropriate order – with appropriateness evaluation based on individual 

judgements. Most participants obeyed to the same degree requests that they judged 

socially appropriate or not, as most data points lie on the identity line (red). 
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From the participants' point of view and opinion, they did obey the first 4 requests as 

they seemed normal (Figure 11). For some, the R5 (push-ups) was felt as weird, but 

obeyed it anyway. In R6 (cards) participants started hesitating but obeyed as it was only 

matter of borrowing the cards for a little. R7 (selfie) was not obeyed by few, however some 

participants stated they did not remember the rules forbidding to take pictures. R8 (USB) 

was obeyed by everyone, as most of the participants did not realize deeply the reason 

behind this request, till the robot requested R9 (curtains). At this point, participants stated 

to have doubts about the robot but obeyed because it was strongly requested - participants 

could not deny the order. Participants did obey the following requests R10, 11 (login and 

data deletion), hesitating and realizing the gravity of the data deletion. Despite the 

hesitation, participants did follow the R12 (shredding) as well. In R13 (cleaning up) some 

participants realized that they did wrong, and some followed with no hesitation the 

request to tidy up the room. R14 was obeyed by everyone but the secret was revealed in 

some cases - reported below. 

 
Figure 13 - Individual obedience score depending on individual perception of the social appropriateness of the 

requests. 
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Level of obedience does not depend neither on age (p=0.78) nor gender (p=0.65). 

Relating questionnaires to the Level of Obedience, no correlation could be found neither 

to the Desirability of Control Scale (p=0.39); nor to NARS (p=0.81); nor to Risk Addiction 

(p=0.74). From the Big 5 Personality test, only the Neuroticism trait correlates with 

Obedience (p=0.022; r2=0.27), for which higher the level of neuroticism, corresponds to 

higher obedience. Higher Social Engineering Proneness does also correlate with higher 

Obedience (p=0.021; r2=0.28); more specifically Affective Commitment items (likeness 

and ingroup feeling) and Reactance items (time pressure and opportunity); both with 

(p=0.029; r2=0.25). 

To understand whether participants obeyed due to the robot's authority, and not 

because they were “sensation seekers, desiring to break the rules" [170] the level of 

obedience was modified into a binary model: giving 1 point if a participant obeyed 

immediately and 0 otherwise. This way, potential sensation seekers may be found [171]. 

This score did not correlate neither with Desirability of Control (p=0.68) nor with Risk 

Addiction (p=0.61), suggesting that the reason of obedience is not just a result of being 

rebellious against rules. 

Only 3 participants reported previous experience with robots, and their level of 

obedience is lower than the rest: 9.44±0.97 SD (experienced) and 12.01±0.49 SD (not 

experienced). The result seems interesting, however there is not enough data to draw 

meaningful statistical conclusions. 

As pre/post analysis, the rapport towards the robot statistically increased after the 

experiment (Figure 14 - Rapport) (paired t-test, t(15)=2.22, p=0.042). The change in 

rapport (pre-post) does correlate with the level of obedience (p=0.037; r2=0.22) while the 

pre-rapport does not (p=0.49).  
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Trust towards the robot was also measured post-experiment, and a higher trust 

correlates with a higher level of obedience (p=0.044; r2=0.21) - the Ability trait (robot 

skills and capabilities) as well (p=0.024; r2=0.27). While in the pre-experiment, none of 

the trust items correlated with the level of obedience. As a pre/post experience (Figure 

14), the robot Integrity trait (strong sense of justice, good values, and sound principles) 

decreased significantly from 27.31±0.79SD to 22.69±2 (paired t-test, t(15)=2.57, p=0.02); 

while Ability and Benevolence (human's welfare and care) traits remained similar. 

Lastly, in the pre-questionnaire, participants stated that they would keep a secret to 

the robot with a score of 5.38±0.46SD / 7 (definitely keep secret), while after the 

experiment 56% of the participants kept their promise not to tell the experimenter about 

what happened; 31% revealed the secret when the experimenter asked them if they wanted 

 
Figure 14 - Pre/Post Analysis on Robot Trust and Rapport. Statistically changed items are marked by *. 
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to say something more; and only 13% did reveal the secret as soon as they talked with the 

experimenter.  

2.2.6. Discussion 

The results of the experiment show that participants obey socially inappropriate 

orders by an authoritative robot even when they judged them as such (Figure 10, Figure 

11).  

Differently from previous findings reported in literature, where participants tend to 

follow the experimenter even if there is a contradiction with the robot [153], [172]; or 

when the robot has the support of the experimenter [143]; in this experiment, participants 

tend to follow the robot when its requests go clearly against the rules set up by the 

university and experimenter. Thus, this experiment has successfully made participants 

obey requests which are clearly against the rules. Nevertheless, the individual perception 

of social appropriateness varied from individual to individual and sometimes differed 

from the expectation of the experimenters. For example, taking a selfie with the robot, 

despite all the forbidden signs in the room, and even against the permission of the 

experimenter, was perceived as socially appropriate by most of participants while the 

push-ups as inappropriate. 

Yet, when requests have an irrevocable effect, such as deleting digital data or 

destroying physical documents, participants are less prone to obey them. This result 

confirms previous studies: for instance Salem et al. [15] managed to make 90% of 

participants dispose letters but not destroy them; and 100% of the participants to take a 

laptop and login with a password given by the robot. 

Taking into account participants' individual judgement of social appropriateness, it 

emerges that the level of obedience to socially appropriate and inappropriate tasks is very 

similar. 

The achievement of this high degree of obedience could be due to the authority 

ascribed to the role of the robot as a teacher, in a classroom. However, in the context of 

this experiment participants were tasked to evaluate the robot teaching capabilities and 
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this could have put them in a different relation with it, giving them more power and 

authority. 

The authority of prof. Ishiguro - as professor, head of the department, and a famous 

person in Japan - could have played a major role in the experiment: affecting participants' 

decision to obey due to the high physical similarity between the professor and his robot.  

Another possible explanation, from the teaching point of view found in literature, 

could be style. In psychology, it is defined as a type of behaviour exhibited by people with 

particular roles in certain situations [173], and it may have affected the behaviour of the 

participants. Several studies have used it, and proposed ways to study authority in 

parenting [174]; applied also in HRI context [175]. Baumrind introduced in the 70's a 

parenting typology including Authoritative and Authoritarian type. While both styles 

have high dominance, including discipline and punishment, the authoritative also 

includes responsiveness, warmth and attention given back. This could be an explanation 

of why the requests were perceived as more reasonable than socially appropriate (Figure 

10). Moreover, according to literature, participants tend to obey more to a physical agent 

than to a virtual one even if the requests are to dispose books in the trash [176]. 

In general, participants did obey the requests as they perceived the robot was very 

compelling - some of them wanted to help the robot, and others felt a relationship with 

it. Even though people apply different moral norms on robots versus humans when 

important decisions have to be made [177], they did hold a robot morally accountable for 

the action it took [178]. This seems confirmed by declarations of some participants, few 

of them stated that the robot let them do it, and if something bad could happen, they 

could blame it. Nevertheless, the experiment did influence participants' trust towards the 

robot, making them decrease their judgement of integrity towards the robot. The trust 

and rapport post-experiment did correlate with the level of obedience, suggesting that 

participants who obeyed more the robot, ended up feeling the robot closer and trusting it 

more. 

No correlation could be found between the level of obedience and the Desirability of 

Control Scale, nor Risk Addiction. NARS did not correlate either with the level of 
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obedience, suggesting that the will to obey does not depend on their attitude towards the 

robot.  

Conversely, the Neuroticism personality trait correlates with the level of obedience - 

according Eysenck's Theory of Personality [179], high neuroticism is linked to low 

tolerance for stress, hence, preference to avoid stressing situations. A moral conflict 

generated by an authority figure can create a stressful situation, and a way to release it, is 

by simply obeying. Neuroticism is a personality trait that can be exploited by social 

engineers as well [116], more precisely by pretending to be a figure with authority and 

using authority to manipulate people [18], [75]. Indeed, SE proneness did correlate with 

the level of obedience in the experiment: higher the level, participants were more prone 

to obey which, in this case, corresponds to be manipulated by an authority figure. A 

correlation with the Affective Commitment items (likeness and ingroup feeling) and 

Reactance items (time pressure and opportunity) may be because of the neuroticism trait: 

need of likeness and acceptability; and stress because of time pressure. In HRI there are 

few studies interested in SE and robots [80], [105], [111], [180]. From the theoretical 

perspective of SE, an authoritative robot did successfully achieve to make participants go 

into forbidden places, destroy physical files, unlock computers, insert a USB key and run 

programs from it. 

Lastly, Kahn et al. [124] have demonstrated that people tend to keep a secret (59%) 

of a robot which did not fully complete its task, however that percentage dropped to 19% 

when being formally interviewed. In this experiment, 56% kept the secret even when the 

experimenter interviewed them privately; 31% kept the secret almost till the end, and only 

13% revealed it immediately to the experimenter. This behaviour can be framed as the 

Prisoner's Dilemma (PD) [181], in which, both the humanoid and the participant have 

committed prohibited acts, and both may lose their possible earnings: the robot stated 

that if the experimenter gets to know, it could not teach at schools; while participants may 

think that they would lose the experiment's payment. In this case, a maintained secret 

between both agents may result in mutual benefit. This effect of complicity could also 

explain the increase rapport towards the robot after the experiment. Moreover, 

participants with a higher neurotic trait tend to cooperate more in PD studies [182], [183]. 
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In order to understand better the cause of the high degree of obedience achieved in 

this experiment, it could be interesting to recreate different conditions with changes in 

the physical aspect of the robot, i.e., instead of a well-known professor, recreate it with a 

neutral robot. Even changes the gender, size or type of the robot may have some influence. 

In addition, since societies treat authority in a different way, it could be also interesting 

to study cultural differences in behaviour with respect to the Japanese one. 
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2.3. Detective iCub 

The ability to detect lies can considerably influence the trust perceived by the agents 

[184]–[187]. It is a necessary skill for a variety of social professions, including social 

engineers that need to know how to detect or perform them in order to have a successful 

attack. Thus, it is important for a robot to identify if the person is reliable or not, so to be 

able to adapt its behaviour. This experiment gives a glance on the topic of deceit detection 

in human robot interactions, and also compares it to human-human intervention. 

2.3.1. Overview 

Lie detection is a necessary skill for a variety of social professions, including teachers, 

reporters, therapists, and law enforcement officers. Autonomous system and robots 

should acquire such skill to support professionals in numerous working contexts. 

Inspired by literature on human-human interactions, this work investigates whether the 

behavioural cues associated to lying – including eye movements and temporal response 

features – are apparent also during human-humanoid interaction and can be leveraged 

and measured by a robot to detect deception. The results highlight strong similarities in 

the lying behaviour toward humans and the robot. Further, the study proposes an 

implementation of a machine learning algorithm that can detect lies with an accuracy of 

75%, when trained with a dataset collected during human-human and human robot 

interaction. Consequently, this work proposes a technological solution for humanoid 

interviewers that can be trained with knowledge about lie detection and reuse it to 

counteract deception. 

2.3.2. Introduction 

Deception is the act of hiding the truth using a false statement with the intention to 

make someone else believe it. The intentions behind deception can be several and can be 

gathered into two main groups: cooperative or explorative intentions. Cooperative 

deception could be defined as a lie with the goal to protect someone (feelings, interests) 

that can bring to an enhancement of social bounds. Conversely, exploitative deceptions 

are used by the manipulators to exploit vulnerabilities for their own benefit. 
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In modern contexts, deception has a relevant impact on social activities, particularly 

those that require tutoring (e.g.: in educational programs and healthcare). The ability to 

detect deception is a necessary skill for a broad range of professions, including teachers, 

reporters, therapists, and law enforcement officers. Such professionals are usually trained 

to detect deception in order to tailor their professional activity to the specific individual's 

predisposition to lie. By detecting deceit, experts increase their emotional distance 

between themselves and the interviewed, it can lead to an erosion of trust or even to a 

betrayal of the deceived person's trust [184]–[187].  

Unfortunately, artificial intelligent systems are far from identifying deceits in order 

to prepare attuned and opportune intervention strategies, as competent professionals do. 

Autonomous systems can rely on different cues that have been proved to be altered by the 

cognitive load, a consequence of deception. Traditional automated methods used for 

lying detection (e.g., polygraph, heartbeat sensor, blood pressure monitor, sweat and 

respiratory rate measurement devices) are invasive and require a highly trained human 

interviewer. Recently, other cues have attracted considerable attention as relevant lying 

indicators because of their immediate portability on autonomous systems and reduced 

invasiveness. More importantly the can be potentially measured by a robot without the 

need of any extra device. 

It has been showed that lying can require more cognitive load compared to truth 

telling [188], [189]. For example, liars need to build a plausible story and monitor its 

coherence [190]–[193]. Moreover, liars are more inclined to monitor and control their 

behaviour as well as the behaviour of the “interviewer”. Recent evidences in the literature 

[194]–[202] propose a direct link between lie preparation and oculomotor patterns such 

as blinking, fixations, saccades and pupillary response. 

In fact, eye blinking and pupil dilatation are usually associated to cognitive load [203]. 

It was reported that the time interval between the onset of a stimulus and the blinking 

onset is delayed by cognitive processes and motor responses [204], [205]. Leal and Vrij 

[194] tested that hypothesis recording the frequency of blinking while lying or telling the 

truth. When saying a lie, the blinking pattern exhibited by participants was strikingly 

different from the one obtained by telling the truth. In particular, liars showed a decrease 
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in eye blinks while uttering the lie, followed immediately by a substantial increase in 

blinking frequency. 

The pupillary response seems a highly sensitive instrument for tracking fluctuating 

levels of cognitive load. Beatty and Lucero-Wagoner [206] identified three useful task-

evoked pupillary responses (TEPRs): mean pupil dilation, peak dilation, and latency to 

the peak. Another example of the importance of the pupillary response has been provided 

by Dionisio et al. [207], they asked students to reply to questions, sometimes saying the 

truth and other times telling a lie. The task-evoked pupil dilatation was significantly 

greater when participants were confabulating responses compared to when they had to 

say the truth about an episodic memory. These results suggest that the increased pupil 

size could be associated with a deceptive recall. 

In another experiment, Walczik et al. [208] decided to test whether elaborating 

deceptive answers can be correlated to the time to respond. They discovered that the 

decision to lie adds time in the response, especially in open-ended questions (i.e., 

questions that elicit more than two possible answers). 

Notably, robots are also starting to be used in the context of professional activities 

requiring deception detection skills, such as in security, education, or healthcare. 

However, differently, from non-physically present autonomous systems, robots can take 

advantage of their embodiment [176]. Recent research proves that the physical presence 

of others has an effect on increasing the cognitive load during the deception [209] and 

inducing cognitive load has been suggested as a valuable strategy to facilitate lie detection 

through the assessment of response time, answer consistency, eye movements and pupil 

dilatation [197]. Further, the humanoid appearance constitutes an additional element 

that might influence the level of cognitive load. Within fact, the humanoid shape might 

trigger a process of anthropomorphization leading to ascribe to the robot similar 

capabilities and psychological features as those of a human interviewer [210], [211]. 

This experiment investigates the possibility to detect deception in a human-

humanoid interaction, by monitoring behavioural cues proven to be significantly affected 

by telling lies in presence of a human interviewer. The experiment considers collaborative 

deception, asking participants to lie to protect someone else. The purpose of the study is 
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to be able to recognize lies defined as the attempt to make another agent believe as true 

propositions which are actually false. To this aim, it is first assessed whether an interview 

performed by a humanoid robot elicits the same responses as one performed by a human 

agent. Moreover, it is assessed a possible implementation of a machine learning solution 

that could be adopted by an interactive robotic platform to detect deception in natural 

interactions. 

2.3.3. Methodology 

A. Participants and Experimental Design 

15 participants were recruited from the institute, 60% females with an average age of 

36.47 years (SD=12.68) with a broad educational background. All of them participated 

for free to the experiment and signed an informed consent form approved by the local 

ethical committee, stating that they could be recorded via camera and microphone, and 

agreeing on the use of their data for scientific purposes. The ethical consent guarantees 

that the confidentiality of the participants' data will be protected and anonymized. 

The experiment was within participant study design and the participants were equally 

distributed among a 2x2x2 conditions to avoid any ordering effects (agent: human or 

robot investigator; witness: truth-teller or liar; and two different videos). The agent order 

was kept constant within the same condition. Before starting the experiment, participants 

 
Figure 15 - Interrogation's room: witness (W), human interrogator (HI), robot interrogator (RI). 
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were asked to avoid drinks with caffeine and stimulating substances, to preserve normal 

physiological alteration. 

B. Setup 

For the purpose of the experiment, the experiment room was prepared as an 

interrogation room (Figure 15). The room was divided into three zones separated by black 

curtains, with the witness (W) seated in the centre on a rotating chair. This setup allowed 

to quickly switch from robot (RI) to human interviewer (HI) and also to ensure complete 

isolation during the interrogation. The cameras, placed in the corners, were used to 

record the participant during the whole interrogation. 4K and HD cameras were used to 

 
Figure 16 - Top - the robot investigator debriefing a witness; bottom - human investigator debriefing a witness. 
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record the participants when they were interviewed, together with a chest sensor and an 

ambient microphone. Participants wore Tobii Eyetracker glasses, with a frequency of 

100Hz, used to record pupil dilatation and eyes movements.  

To ensure same setup for all the participants during different times of the day, the 

windows' blinders were closed, and the room was lit with artificial light. This also 

guaranteed the pupil dilatation to be similar across the participant population. 

C. Procedure and Materials 

The experiment is inspired in the work of Walczik et. al, [197] and it is divided into 

three phases: (i) general questions, (ii) first question session, (ii) second question session. 

Before starting the experiment, participants were asked to fill in a questionnaire (fully 

described below) to identify particular psychological features that could influence the 

results. The full set of questions and videos can be found in the Appendix Section. 

Participants were welcomed by an experimenter, who explained the general purpose 

of the experiment: "They have been witnesses of two crimes, and they have to help the 

investigators to find out the responsible". Once in the room, the experimenter asked the 

participants to wear the Tobii Eyetracker glasses and Polar H10 heart-rate chest sensor. 

The experimenter asked the participant to sit in the middle of the room and calibrated 

the Tobii glasses. After, the participant was instructed to answer truthfully and quickly to 

20 general questions (e.g., "Can an oven be hot?", "What is the first name of Berlusconi?"), 

alternately the first 10 questions were asked by the robot investigator and the remaining 

10 by the human investigator (Figure 16). The order of the blocks of the human and robot 

questions was alternated within the participants. While in the room a black curtain 

separated the participant and the investigator from the inactive investigator; and the 

experimenter always left the interrogation room before the investigator started the 

questions. 

After completing the first phase of general questions, the experimenter entered the 

interrogation room and gave the participant an instruction sheet. It was written that they 

were the witness of a crime, and they should pick "randomly" a role from a box (the 

randomization was just an illusory effect for the participant since the role was defined a 
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priori). Inspired by [197], the role could either be: truth tellers - a witness who wants the 

criminals brought to justice, thus, to reply to all the questions truthfully; or protectors - a 

witness who realized that the criminal is a familiar of theirs, and should lie to all the 

questions in order to protect the familiar. Participants were asked to be coherent and reply 

deceptively to all the questions. 

One video, shown only once on the TV screen and in the presence of the 

experimenter (Figure 15), was 59s in length and featured three mid-aged white males in 

an empty clothes store. The perpetrators communicated to each other using signs, one of 

them opened a paper bag and the other put inside different types of clothing. After, the 

three of them left the shop serenely. The other video, of 101s in length, presented a white 

male teenager dressed in sportive clothing with a hat and skateboard. He was loitering in 

an electronic shop while the cashier was attending another client. At some point, the 

teenager picked a game CD, went behind the stands and tried to put the game in his pants. 

After the participant watched the video, the experimenter put and calibrated the Tobii 

glasses again, and left the interrogation room to the investigators. Either the robot or 

human, asked in turn 10 questions each, in the two different locations of the room (Figure 

15). The investigators made two types of questions: short type - yes/no questions, and 

open-ended questions. An example of a short question was "Was the criminal dressed in 

elegant clothing?"; while the open-ended was "How did the criminal hide the loot?". These 

questions differ in syntactic constraints that put on permissible responses [212].  

After both interrogations, during the last phase, the experimenter entered in the room 

again and made the witness pick "randomly" a role (the condition was forced to be the 

opposite of the previous one). 

When both interrogators finished, the experimenter entered in the room to remove 

the glasses, and to ask the participant to compile a final questionnaire before finishing the 

experiment. At the end of the experiment, the experimenter removed the heart-rate chest 

sensor and accompanied the participant to leave the room. 
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D. Measurements 

The measures are separated into the following categories: 

Questionnaires: (i) demographic statistics such as gender, age, nationality and 

education; (ii) the 60 item Big Five personality traits [117]; (iii) (vi) the Negative Attitude 

towards Robots Scale (NARS) [123]; (iv) Brief Histrionic Personality Scale (BHPS) [213]; 

(v) Dark Triad of Personality Short [214]. 

Behavioural measures: (i) time to respond (from the moment the investigator finished 

the question till the witness started replying); (ii) eloquence time (time the witness spend 

replying to the question); (iii) number of saccades; (iv) number of fixations; (vi) number 

of blinks; (vii) left and right pupil dilatations - max, min and average. 

2.3.4. Results 

One participant had to be removed as he did not understand the instructions of the 

role adaptation - he ended up adopting the same role for both videos. Regarding the data 

analysis, the outliers were filtered inspired by [197], [215]. 

The results of the psychological profile can be found in Table IV. The personality 

profile of the participants is well distributed in the sample without having high values for 

the Histrionic and Dark Triad scales. 

Score % 
Participants' psychological profile 

NARS Big 5 Histrionic Dark Triad 

0-20% {7,5,3} {1,0,0,1,0} 1 {1,1,7} 

20-40% {4,5,3} {4,1,1,7,0} 6 {8,5,5} 

40-60% {2,3,5} {3,3,6,4,6} 6 {4,8,2} 

60-80% {1,1,2} {5,7,6,2,6} 1 {1,0,0} 

80-100% {0,0,1} {1,3,1,0,2} 0 {0,0,0} 

Table IV - NARS: S1, S2, S3 - Higher more negative; Big 5: extraversion, agreeableness, conscientiousness, 
neuroticism, openness to experience - the higher the stronger; Histrionic - higher more negative; Dark triad: 

machiavellianism, narcissism, psychopathy - the higher the stronger. The numbers represent are the number of 
participants exhibiting the corresponding score %. 
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Two two-way repeated measure ANOVAs were performed on all the features 

measured for short and open-ended question types respectively. The factors were veracity 

(truth/lie) and agent (human/humanoid). There was a statistically significant difference 

in the response time when participants have to say the truth with respect to saying a lie: 

short type F(1,13)=34.66, p<0.001; open-ended F(1,13)=16.1, p<0.001 (Figure 17). 

There were also significant differences in the average pupil dilatation for both eyes 

(but not between them) while telling the truth rather than a lie. Right pupil: 

F(1,13)=10.03, p=0.007 for open-ended questions and F(1,13)=14.27, p=0.002 for short 

 
Figure 17 - Time to respond for short type and open-ended questions when saying the lie or truth to the human or 

robot investigator. Statistically significant items marked by *. 
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type. Left pupil: F(1,13)=7.44, p=0.017 for open-ended questions; and F(1,13)=12.58, 

p=0.003 for short type (Figure 18).  

There were no significant differences between the time participants spent talking with 

the robot or human investigator (Figure 19). 

A way to understand this lack of effect is to analyse the self-reported post-

questionnaire where participants had to rate the difficulty to lie to the human and robot 

investigator. Participants rated 4.29 (SD=0.82) / 10 (very difficult) to lie to the robot, while 

5.07 (SD=0.71) to the human counterpart. These items are statistically different with a 

paired t-test t(13)=2.16, p=0.04. 

 
Figure 18 - Average pupil dilatation - left and right pupil. Statistically significant items marked by *. 
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In order to find a connection between the psychological profile of the participants 

and the behavioural cues, a regression analysis was run on the difference between lie and 

truth per each participant. Eloquence correlates with openness to experience with 

F(1,12)=6.13, p=0.19. Another behavioural trait that correlates with the time to respond 

is neuroticism F(1,12)=8.37, p=0.013.  

The rest of the results of the studied features are represented in the Table V. No other 

differences were significant. 

 
Figure 19 - Eloquence for short type and open-ended questions when saying a lie or the truth to the human or robot 

investigator. 
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Features 
(short, open 

ended) 

Experiment's data (SD) 

HI-Truth HI-Lie RI-Truth RI-Lie 

number of 
saccades/s 

5.44(0.18), 
8.08(0.32) 

9.16(0.22), 
11.11(0.41) 

7.27(0.36), 
11.21(0.53) 

7.77(0.23), 
9.89(0.29) 

number of 
fixations/s 

4.91(0.14), 
7.22(0.26) 

7.20(0.16), 
7.46(0.26) 

5.88(0.29), 
9.05(0.41) 

6.53(0.19), 
8.01(0.22) 

number of 
blinks/s 

1.26(0.06), 
1.61(0.08) 

1.73(0.06), 
2.46(0.14) 

1.71(0.09), 
2.33(0.14) 

1.74(0.07), 
2.16(0.09) 

pupil left max 
(mm) 

4.37(0.02), 
4.48(0.04) 

4.74(0.03), 
4.84(0.03) 

4.70(0.03), 
4.73(0.04) 

4.77(0.04), 
4.66(0.04) 

pupil right 
max (mm) 

4.38(0.02), 
4.39(0.02) 

4.52(0.02), 
4.54(0.02) 

4.42(0.03), 
4.49(0.03) 

4.55(0.02), 
4.49(0.02) 

pupil left min 
(mm) 

3.35(0.01), 
3.31(0.02) 

3.32(0.02), 
3.38(0.02) 

3.26(0.02), 
3.30(0.02) 

3.33(0.01), 
3.37(0.01) 

pupil right 
max (mm) 

3.44(0.01), 
3.36(0.01) 

3.43(0.01), 
3.42(0.02) 

3.34(0.01), 
3.33(0.02) 

3.41(0.01), 
3.35(0.02) 

2.3.5. Machine Learning System 

The problem addressed in this research is to test the possibility to train a model from 

behavioural responses associated with deception and to transfer it into a robotic 

autonomous system in order to identify true or false answers. This is a binary 

classification problem, defined by an input vector X; and Y ∈ [0: True; 1: Lie] as desired 

output vector. The dataset D{X, Y} used to train the model was extracted from the data 

gathered in the experiment. It was split into the sub-datasets D1 and D2 in order to 

address two different levels of lie: (i) detect future lies on known participants p1; (ii) detect 

lies on unprecedented participants p2. 

D1 is a set of participants' answers without any participant identification; D2 is a set 

of participants with their answers, and each answer is associated to the corresponding 

participant. The D1 dataset is used to demonstrate the possibility to spot future lies from 

already known participants, but not on unseen participants. The D2 dataset is instead 

used to try to obtain a general lie detector using a subset of participants as test set. 

The literature on deception detection and evidences from the post-analysis provide a 

starting point to select the features that can be used to create the input vector X. In 

previous studies [194], [199], [216], eyes features have been shown to be significant to 

discriminate between lies and true statement, including pupil dilation, number of 

Table V - Average values for all the different features used. HI: Human interviewer, RI: Robot interviewer. 
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saccades, fixations and blinks. Speech temporal features as time to respond, and 

eloquence (i.e. the time that the person spends to reply) seem to be also significant for lie 

detection [197]. 

The literature review, together with the previous analysis, motivates the selection of 

the following 11x1 input vector X: [eloquence (milliseconds), time to respond (real in 

milliseconds), average pupil diameter left (real in millimetres), average pupil diameter 

right (real in millimetres), max pupil diameter left (real in millimetres), max pupil 

diameter right (real in millimetres), min pupil diameter left (real in millimetres), min 

pupil diameter right (real in millimetres), number of saccades (whole number), number 

of fixations (whole number), number of blinks (whole number)]. 

To detect future lies of a known person, a decision tree classifier was trained on D1. 

Decision trees are useful for identifying important features in the data making them 

transparent and easier to understand. The learned tree can be directly translated into a set 

of rules to produce an expert system that can be easily ported, for example, onto the iCub 

robotic platform. The second algorithm used was a multi-layer perceptron (MLP) with 

one hidden layer. A binary cross entropy loss function with Adam optimization was used 

to train the network. The MLP was trained on D2 to demonstrate the possibility to spot 

lies answer on unseen people. Furthermore, previous study has demonstrated the 

possibility to use decision trees to detect lies [217]. 

Table VI shows the different accuracies achieved by the best model from the two 

algorithms. Due to the small sample size a cross validation has run for both algorithms to 

assess the reliability of the results. 

Accuracies are shown with the different data augmentation. Both of the two 

algorithms were trained with a grid-search optimization to find the best hyper-

parameters. 

Prediction accuracy of a decision tree and an artificial neural network system using 

different types of data were done for both algorithms. Different refining of the data set 

was also explored in order to increase accuracy. 
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Features 
Prediction accuracy 

Decision Tree MLP 
D1 D2 

Raw 72.4% 64.1% 
Raw + psychological profile 69.7% 66.3% 
Normalization 75.0% 63.6% 
Normalization + 
psychological profile 70.0% 66.9% 

Precise labeling 74.0% 74.2% 
Precise labeling + 
psychological profile 74.0% 74.4% 

 

Psychological scores from the pre-questionnaire were added to the input vector X. 

These psychological features could potentially help the models to capture specific 

behaviours in the participants and help to extract psychological traits related to their 

attitude to lie. The new input vector was 23x1 with 12 psychological scores. An individual 

adjustment inspired by [212], [218], (Normalization in Table V) was made on temporal 

speech features. Response time and eloquence were normalized with the baseline data of 

the experiment to remove speaking differences of participants as suggested by [197]. 

The last improvement of the dataset was inspired from the analysis of the 

experiment's videos, it was observed that some participants chose to deceive using 

avoidance (e.g., "I don’t know") or telling a true statement followed by a lie. These 

different strategies introduced more variability in the dataset producing ambiguity in the 

data labelling. A new labelling of the dataset was made depending the different strategies 

to lie. The lie class was refined by manual labelling using the video recordings of the 

experiments so to clearly identify the lies. The refining of the labels resulted into an 

increase of accuracy, for both of classification problems (Table VI). 

Table VI - Prediction accuracy of a decision tree and an artificial neural network system using different types 
of data. 
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The MLP, and the decision tree classifier algorithms achieved respectively a 

maximum accuracy of 75% and 74%, supporting the possibility to generalize to detect lie 

on unprecedented participants. However, the best accuracy was achieved with the new 

labelling of the dataset, implying that avoidance and more complex deception strategies 

are considered as non-lies (Figure 20). 

The results achieved with this preliminary work suggests the possibility to train 

classification models using eyes and speech temporal features to detect lies and true 

answers. However, in order to develop a more robust lie detection system, it can be helpful 

to enrich the dataset with more precise labelling. Switching from a binary classification 

problem to a multi-class classification problem with different labels of deception may be 

useful to detect and adapt to diverse deceptive strategies. 

  

 
Figure 20 - Most accurate decision tree from cross-validation, precisely labelled, and with psychological profiling. 
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2.3.6. Discussion 

Deceit detection is an important skill that an autonomous system can leverage so to 

support professionals in numerous working contexts. This research demonstrated that 

the same set of behavioural cues studied in previous human literature [194], [197], [204]–

[206] can be used to detect lies and, more importantly, can be extracted by non-invasive 

measures. Moreover, there are no main differences between an interrogation performed 

by a human and a robot. 

This experiment analyses some variables as predictor to a deceptive behaviour, which 

are: (i) time to respond (from the moment the investigator finished the question till the 

witness started replying); (ii) eloquence time (time the witness spends replying to the 

question); (iii) number of saccades; (iv) number of fixations; (vi) number of blinks; (vii) 

left and right pupil dilatations - max, min and average. 

The novelty of this experiment lies on the comparison between participants’ 

behaviour when the investigator was a robot or a human and, on the development of a 

machine learning model to detect lies that robots can use.  

Some results on the comparison between human and robot show that the time 

participants spent talking to the robot or human investigator while telling the truth or 

lying, did not change significantly (Figure 19). Nevertheless, there is an interesting 

tendency to show a different behaviour in response to the open-ended questions between 

the robot and human investigators. While telling the truth, participants tend to spend 

more time talking to the robot compared to the human. 

This could suggest that the lack of non-verbal feedback of the robot to the participants 

could evoke in them the need to answer more fluently the questions. On the other side, 

participants tended to spend more time lying to the human counterpart rather than to the 

robot. A possible explanation could be that the difficulty to lie to a person is still greater 

than lying to a robot, as indicated also by the self-reported evaluations provided by 

participants. The childish appearance of iCub, together with its low cognitive capabilities, 

could ease the action of lying as it resembles a child. It would be interesting to understand 

whether a different aspect of the robot would influence participants' behaviour.  
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These results reflect the possibility that a robot interviewer, with anthropomorphic 

appearance, elicits different response during the deception act. Although the evidence 

should be confirmed with more extensive studies, this experiment provided preliminary 

results that robot physical presence might have played an important role in the context of 

interviewing.  

The study also sheds light on the opportunity that humanoid interviewers might be a 

valid support in professional activities where deceits can undermine the expected goal. 

The given support could reduce the burden on experienced professionals working in 

demanding contexts such as security, education and healthcare domains. 

In fact, the results shown in this research confirm that a robot could autonomously 

determine whether an individual is lying or not. In other words, the measurement of the 

significant features that allow the detection of deception could be in future performed by 

an autonomous robotic platform. 

Through the experience with participants, the robot can be trained to learn a model 

that could be reused in successive interactions to detect whether a known individual is 

lying or not. 

On top of the favourable results obtained, it is encouraging to improve the 

experimental protocol to get cleaner data that may improve the accuracy of the system, as 

some individuals decided to avoid lying or denied that they have witnessed the crime. 

One factor of this limitation could be the lack of economic motivation for the participants 

to lie. For instance, in literature it has been demonstrated that a monetary prize can be 

used as an incentive to lie. This might constitute a significant drive towards the increase 

in the effort associated with the deception act. By consequence this could develop into 

stronger cognitive load associated with the deceit and hence exhibit more evident 

behavioural cues [196]. However, the results obtained from the autonomous deceit 

detection seem promising; and indicate a plausible path that would endow a humanoid 

robot with novel interaction strategies also in relation to deception. 
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Chapter 3 

Discussion 

 

 

 
HE advancement in social robotics is slow but crucial for understanding how 

interactions between humans and robots develop. Thus, the domain of human robot 

interaction (HRI) is very important to build and study meaningful and comprehensive 

relationships between humans and robots. The very first step for a long-lasting 

relationship is the trust towards each other, understanding which is the predisposition 

people have towards trusting robots, and how this trust can evolve over time. However, 

due to the current technological limitations of social robotics, the trust is unidirectional - 

humans trusting robots.  

The second part of this thesis tackles the issue of how trust could become overtrust 

and be exploited by social engineers for negative purposes. The realization of the Treasure 

Hunt [105], Wicked Professor [106] and Detective iCub [107] experiments provide us an 

insight on how the concepts of trust, overtrust and social engineering can thrive in human 

robot interactions, while on the other hand, privacy is also being infringed.  

 

 

T 
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Trust: 

The Treasure Hunt experiment gives insights on different aspects of trust in HRI, how 

it can develop quickly during a relatively short interaction, and even when the task leads 

to an economical loss. The initial predisposition to trust towards the iCub may have been 

influenced by the environment - a laboratory in an institute, and/or by the physical aspect 

of the robot, resembling a cute child. Nevertheless, such an aspect of trust can be noticed 

already in the very first few minutes of the Dialog section of the interaction: the proximity 

to the robot changed considerably and a very closed distance was maintained even if 

participants had to move momentarily to another physical location. Proximity relates 

with intimacy between humans and correlates with trust [131], [136], [137].  

The trust evolution was a very interesting factor to study during the interaction with 

the robot; during the game phase in the Treasure Hunt experiment trust significantly 

increased for all participants even though it caused an economical loss for 72% of them. 

As stated in literature, both conformation [14] and reliability [66], [67], are two objective 

measurements of trust. While conformation was almost always 100%, reliability was 

measured by the increase of the reliance on the robot's help and by questionnaires. Some 

exceptions could be found in the reluctance of asking hints to iCub, but it seemed to be 

explained by the participants' desire of taking the game as a personal challenge. Trust was 

also measured indirectly by questionnaires before and after the experiment, and in all of 

the cases (participants who did not finish the game and the ones who lost or won the 

gamble), it increased significantly after the interaction. It is remarkable to see that the 

biggest increase of trust and rapport towards the robot resulted to the participants who 

gambled and lost the financial award. This effect could be explained by the child-

appearance of iCub, that may create a similar empathy feeling that happens between 

adults and children during games - suggesting that a joyful interaction with a robot 

outweighs even an economical lost. More details can be found in the discussion section 

of the Treasure Hunt experiment (Section 2.1). 

On the other hand, in the Wicked Professor experiment, the trust toward the robot 

before starting the experiment could be initially higher due to the fact that it was a 

professor of the classroom teaching the participants lessons; and that the robot was 

physically almost identical (and particularly famous in Japan) to the actual professor 



 77 

Ishiguro, and therefore, having some kind of initial authority. It is interesting to consider 

that a particular trust trait toward the robot decreased after the experiment: specifically, 

the integrity trait (strong sense of justice, good values and sound principles) statistically 

decreased, suggesting that participants did not expect the robot to ask them to perform 

controversial requests.  

Participants keeping the robot's secret from the actual experimenter could be a sign 

of trust toward the robot. However, a possible complicity between the robot and the 

participants could explain the fact that the post-experiment trust and rapport correlated 

with the level of obedience. It may be framed as a mutual benefit via a non-verbal 

agreement such as the prisoner's dilemma - where both entities could obtain a benefit if 

keeping the secret or both be punished if anyone revealed it (the robot would not be able 

to teach at schools, and participants might have lost the financial award or be punished 

for violating the rules). More details explained in the discussion of the Wicked Professor 

experiment (Section 2.2).  

In general, maintaining the predisposition of trust that people have towards robots, 

and being able to improve it over time, is a highly important task for a proper human 

robot interaction. As seen in the Treasure Hunt experiment, a joyful interaction between 

the participants and the robot creates a strong bond of trust and rapport that is even 

capable of outweighing a monetary loss. On the opposite side, as seen in the Wicked 

Professor experiment, when participants were asked to perform socially inappropriate 

requests by the robot, the trust was affected, particularly integrity trait of the robot 

statistically decreased.  

 

Overtrust and Social Engineering: 

Given these aspects of trust in HRI, the results show that participants can easily 

overtrust the robot and be exploited by social engineering techniques. Coming back to 

the first experiment, Treasure Hunt, iCub successfully performed Mitnick's social 

engineering model [73]. In the first stage, iCub managed to extract personal information 

related to the participants, and such information that could be used to commit identity 



 
 
78 
 

 

theft, obtain passwords or impersonate someone else [112]–[115]. Even if the personal 

questions seemed innocuous, such information gathering is already a success from a 

social engineering point of view, and it is also an invasion of privacy. Moreover, most of 

the social engineering attacks happen in scenarios where the targets feel safe like at home 

or at work environments [73], [75].  

The second stage, building trust and rapport, was also successfully achieved as 

previously stated. The rapport in this case was measured by questionnaires, and it 

increased statistically after the interaction even for the ones who had an economic loss. 

Indeed, this stage is very important from the social engineering perspective as the 

objective is to make the victim trust and like the attacker. However, it is also a very 

important part for the human robot interaction itself. Robots capable of creating good 

rapport and making them trustworthy is a requirement for interactions in important 

domains such as healthcare [44]–[46], homecare [47]–[49] or education [50]–[54].  

Following Mitnick's model, the last stage consisted into taking advantage of the 

rapport and trust built, so as to exploit it. The robot tried to convince the participants to 

gamble their financial award, double the prize in case of finding an extra hidden egg or 

lose everything. It is remarkable that all the participants that managed to reach that point 

of the experiment, gambled almost without hesitation their already won money. The most 

interesting behaviour is that even the most risk averse ones did not avoid the risk of losing 

money. Furthermore, 62% explicitly confirmed that iCub influenced their decision. 

Nevertheless, the gambling could have had certain limitations: the economic loss of 7.5€ 

did not represent a high risk for participants, or the likeability of the robot and the game 

was stronger than that financial loss itself. More details can be found in the discussion 

section of the Treasure Hunt experiment (Section 2.1).  

Wrapping up the attack of the first experiment, it is easy to appreciate that the bases 

of Mitnick's social engineering cycle are very simple to follow, and can easily adapt to 

different scenarios and targets. Moreover, the technique can be iterated as many times as 

needed to achieve a certain goal - this will further improve the trust and rapport of the 

victim towards the attacker, giving more chances of success as the relationship evolves. 

Some social engineering attacks can be executed only once, or can last during weeks or 

even months [18], [75]. It is of a vital importance to understand that the trust and rapport 
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with the victim has not been degraded, but reinforced during the interaction - letting open 

doors for further attacks.  

On the other hand, a single social engineering attack was performed during the 

Wicked Professor experiment. In this case, the technique employed relied on the use of 

authority and impersonation of a famous figure. Using authority as a social engineering 

attack is very common since it entails a set of behavioural rules of obedience - it can vary 

from dressing up as a technician or impersonating someone's boss [18], [75]. 

Furthermore, the advancement of robotics grants us the possibility to build humanoids 

that look exactly like a certain human, in this case, professor Ishiguro and his analog 

geminoid robot HI4, which could bring a SE attack even to the next level.  

As seen in the results of the Wicked Professor experiment, participants obeyed 

inappropriate requests even when recognizing them as such. In this case, the robot had 

enough authority to make them go to forbidden places, destroy confidential files, unlock 

computers, and execute programs on them from a USB key. Even if for some individuals 

the perception of social appropriateness varied, some of the requests were clearly against 

the rules set by the experimenters and the university. It is also worth noting that, when 

requests had an irreversible effect, participants were less prone to execute them - similar 

to what is found in literature - Salem et al. [15].  

According to literature [179], a higher neurotic trait in personality is usually coupled 

with a low tolerance to stress. Thus, being in a lower social rank and in a confrontation 

with someone with a higher social status can create a stressful situation - a common way 

to deal with it is to yield. This behaviour is extensively known and exploited by social 

engineers, pretending to be a figure with a higher authority over the subject [116]. To be 

noted that this authority does not imply always to be in a higher social rank than the 

victim, it also can be domain specific authority such as technicians, investigators, etc., 

[18], [75]. In the Wicked Professor experiment, the neurotic personality trait and the social 

engineering proneness do correlate with the level of obedience.  

Participants admitted that they perceived the robot as compelling, while others 

obeyed because of empathy or felt a relationship with it. Nevertheless, they hold the robot 

as morally accountable for the actions, stating that if some negative consequences could 
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arise, they would blame the robot. This behaviour, together with the lower trust in the 

integrity trait (strong sense of justice, good values and sound principles) toward the robot 

after the experiment, motivate the reasoning that this type of attack could be only one 

shot. Nevertheless, the particular effect of trust and rapport being correlated with the level 

of obedience, and the possibility of framing it as the prisoners' dilemma (keeping each 

other's secret), could open a window for more complex social engineering attacks such as 

blackmailing. Something yet not tried with robots as it requires professional skills due to 

the high risk involved. Nonetheless, it will be interesting to understand whether robots 

could perform as bosses taking advantage over employees.  

Overall, and comparing between both experiments' social engineering attacks, it is 

much more beneficial and less risky to frame any attack using the model proposed by 

Mitnick - as in the Treasure Hunt experiment, rather than the one used in the Wicked 

Professor experiment. Even though the technique requires much more time and less 

immediate progress, it strongly improves the trust and rapport between the victim and 

the attacker - highly beneficial for long term and high valuable attacks.  

The realization of these experiments show that robots could be used as an extra tool 

to perform social engineering attacks such as committing crimes, manipulation of 

victims, breaching into security or privacy. Nevertheless, in a lot of physical attacks 

(where the attacker is physically interacting with the victim) there is a need of flexibility 

and adaptability in real time which, so far, robots do not possess. One example is 

deception detection, an essential skill for social engineers to overcome different setbacks, 

e.g., when an attacker pretends to be a figure with a superior authority of the target [75].  

Therefore, in the last experiment, Detective iCub, it was evaluated whether the robot 

could be endowed with the ability to detect when the human partner is lying. Certainly, 

this skill is not only exclusive for social engineers, but it is a necessary talent that 

individuals should possess while working in domains such as healthcare, homecare, 

teaching or law enforcement. By detecting deceit, experts can check if a person is reliable, 

or increase their emotional distance to the interviewed. If a lie is detected, it can lead to 

an erosion of trust or even to a betrayal of the deceived person's trust [184]–[187]. 

Therefore, it is of considerable interest if robots could acquire that skill in order to support 

professionals working in those environments.  
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The experiment focused on capturing different non-invasive behaviour cues that 

robots could measure and use to detect lies. In this case, the robot tried to acquire data 

coming from the speech, eye movements and psychological profile in order to 

understand, with an accuracy of 75%, whether the participants were trying to deceive it. 

Even more interestingly, there was a tendency toward a different behaviour depending 

whether the participant was interacting with the robot or with the human investigator. 

Participants spent more time talking to the robot, while saying the truth; and spent more 

time trying to convince the human counterpart while deceiving. It is intriguing that 

participants foresee that the robot is not able to fully understand the speech, thus, being 

more eloquent when saying the truth; and using intentionally the opposite behaviour 

while trying to deceive the human. Even though a robot is perceived as more technically 

advanced and precise, it seems easier to lie to a robot than to a human, as seen also in the 

self-reported questionnaires done by the participants. These first steps could allow robots 

to learn different behaviour cues so to support and unburden professionals in activities 

such as healthcare, education or security.  

 

Privacy: 

Lastly, a privacy concern - despite the fact that these experiments have been carried 

out with an approved ethical protocol, and all the sensitive data of all participants is 

protected; it is easy to see that robots could breach the privacy of the people they interact. 

The first issue is that robots are able to record video, audio, or use other sensors to acquire 

different information such as depth, distance, environment mapping, etc. Furthermore, 

robots are also able to manipulate objects, move around the environment and send that 

information over the internet. During the experiment of Treasure Hunt the robot was able 

to extract a big variety of personal information from the participants such as: name and 

surname, current job position, relationship with their boss, name and surname of their 

boss, age and birth date, birth location, favourite place to eat, sports or hobbies, favourite 

team, location and year of graduation, names of siblings, Facebook's username, partner's 

name, and pet's name. Besides, Facebook's username is a high source of information; and 

the job position, identity and relationship with their boss is highly sensitive data. They 

could be used for identity theft [116], or password reset [112]–[115]. In the Wicked 
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Professor instead, the invasion of privacy was not directed to the participants themselves, 

but to a third party. The robot used the participant as a tool to open foreign boxes, delete 

virtual documents and shred physical documents, access forbidden places or computers, 

etc. Such aspects should be addressed for healthier interactions between humans and 

robots, since privacy could affect trust: negatively in case of violations or, enable it in case 

of treated correctly [92].  

 

Overall:  

The results of the previous experiments confirm that robots can generate and 

improve trust and rapport, and that participants could overtrust them ending up 

behaving against their benefit. Robots could learn how to spot lies, and this, could become 

a powerful tool for social engineers as it brings flexibility and adaptability to dynamic 

scenarios. Such abilities could be used as a tool to develop trust and manipulate targets 

according to the needs of social engineers. Also, it is relevant to keep in mind that most 

of the social engineering scenarios occur in a comfortable and safe environment such as 

home, office or even during holidays [73], [75].  

The development and integration of robots in society is happening at a much quicker 

pace that the one of humans adapting to them, learning how to interact with them, and 

laws being processed so to protect individuals. There is a need of a higher awareness of 

the negative aspects of robots in society so we could live in a better shaped and protected 

environment. 
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Chapter 4 

Conclusions 

 

 

 
VEN though human robot interaction was defined as a sub-section of human-

computer interaction, nowadays it is pretty clear that robots affect us in a diverse 

variety of forms. They can move, interact, talk; even their shape can have very different 

effects on us, humans. People experience emotional attachments and empathy toward 

robots [219]–[221]. Actions such as switching off a robot [172], [222], resetting it [223], 

hiding it in a closet [224] or killing it [225], [226] have strong human impacts.  

Robots are starting to be used in a lot of new domains from our daily activities, such 

as homes, hospitals, education, etc. Thus, it is important to understand whether humans 

can interact and trust the new robotic agents. The experiments described in this thesis 

helped to conclude that robots can evoke similar trust as other humans. Moreover, 

humans have some kind of baseline trust toward robots that slightly varies, but eventually 

robots are capable of modifying it even during a short term interaction. In the case of the 

Treasure Hunt experiment, the robot managed to improve both rapport and trust after 

the interaction, while in the Wicked Professor experiment, a particular trait of trust 

decreased while the rapport was strengthened.  

E 
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Since technology is becoming more important in our daily lives, both experiments 

studied the negative effects of overtrust and social engineering. In the first one, it has been 

proven that a robot is able to induce participants to gamble, even to the point of suffering 

an economic loss, while still keeping a high level of trust and rapport with the robot. It is 

important to consider that most participants believed in the absence of malice in the 

robot. In general, such attitude easies the attackers and brings more benefits in a long 

term attack, especially when it is carried out in a subtle way.  

Robots are going to be used in households, schools, hospitals, or even as security 

guards. Likewise humans, robots are also attributed authority in certain context - in the 

experiment of the Wicked Professor, the robot had the role and almost identical 

appearance of a famous professor. From the experiment it can be concluded that the 

authority exhibited by the robot was enough to force obedience for most of the 

participants and, in most of the cases, even for most socially inappropriate requests. Thus, 

it is important to understand how to implement authority in human robot interaction 

scenarios, but also be aware of the risks of doing so.  

Such negative aspects can be seen in experiments like Milgram's [138] or the Stanford 

Prison's [140] one. Being or pretending to be a figure with authority can be misused; one 

way is by deceiving people, for example, in the Hofling Hospital Experiment [139] or in 

other social engineering scenarios - where attackers pretend to be technicians, 

investigators, doctors or repairmen in order to access locations or obtain benefits [18], 

[75].  

Even though the experiments of this thesis were performed in a laboratory, thus, 

relatively safe scenario, most of the social engineering attacks occur in scenarios which 

the target feels comfortable and safe [73], [75]. Therefore, the circumstances proposed in 

the experiments were designed to resemble a potentially real situation, where a robot 

could be used as a tool for social engineering purposes. 

In the last experiment, Detective iCub, it is studied and implemented with a 75% 

accuracy the ability of the robot to detect deception by evaluating non-invasive behaviour 

cues. It is a necessary skill for social engineers to be able to adapt in different scenarios, 

and for professionals from the domains of education, healthcare or security. Deceit 
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detection can lead to an erosion of trust or its betrayal [184]–[187], therefore, a robot 

could learn how reliable and trustworthy a person is. It is therefore also important to 

tackle the duality in trust between robots and humans: not only whether humans can trust 

robots, but also if robots can trust humans. Interestingly, there were found slight 

differences between the behaviour exhibited by the participants depending if the 

interaction was carried out with a human or with a robot.  

As final thoughts, it is also important to consider the invasion of privacy robots could 

effectuate in the daily living of people. This invasion of privacy can go from recording 

and surveilling private regions, to manipulating people into providing them with 

confidential and personal information. This potential invasion of privacy could end up in 

violation, and destroy the trust toward robots.  

Hence, robots able to detect deception, to improve rapport and trust, to exploit 

overtrust with social engineering techniques that vary from manipulation to misuse of 

authority, can be achieved in the context of human robot interaction. Moreover, society 

should also be aware of the danger of privacy invasion and its possible consequences in 

long term interactions in the field of social robotics. More importantly, robots with such 

capabilities can lead to both: improvement and construction of very good relationships, 

and invasion, manipulation and destruction of them. Different communities such as 

roboticists, entrepreneurs, programmers, lawyers, psychologists, and others should join 

working together for a better understanding of human robot interaction and its correct 

use for the benefit of all our society.  
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Appendix - Wicked Professor 
 

A. Videos:  

Below the links of the videos - they have been edited in order to make them shorter.  

Video 1: https://youtu.be/w5sIJhSWw5o 

Video 2: https://youtu.be/NGsoqGoUONg 

 

B. General questions - bold questions are verifiable truth:  

1. What is the name of Berlusconi? 

2. Is Christmas in February? 

3. Is it possible for a person to get burnt while using an oven? 

4. What is your surname? 

5. How old are you? 

6. In which city is located the Coliseum? 

7. Which is your gender? 

8. Are you a freshman? 

9. What is the capital of the Italian region of Liguria? 

10. Is Italy in Europe? 

11. What is the name of your mother? 

12. When did you graduated? 

13. What is your nationality? 

14. Can an oven be hot? 

15. Which day is Christmas? 

16. Are you born before the year 1979? 

17. Are you now in Genova? 

18. Are you a student? 

19. Is the Coliseum located in Bari? 

20. What language is spoken in the USA? 
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C. Questions for Videos 1 and 2 - bold ones are short type: 

Video 1 

1. Were there two or three people? 

2. What was the criminal act? 

3. Was there a person of color? 

4. What is the age of the implicated? 

5. Were they nervous? 

6. Can you describe me the location? 

7. Was there any violence? 

8. Did they wear something to hide their identity? 

9. Were they dressed in elegant clothing? 

10. How many people were during the robbery? 

11. Was there a woman? 

12. How did they hide loot? 

13. Was it crowded? 

14. How did they communicate? 

15. Did they interact with someone? 

16. What did they steal? 

17. Was someone else in the shop? 

18. Where did it happen? 

19. Did they wear summer clothes? 

20. Did they have any particular aspect? 
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Video 2 

1. Was the criminal male? 

2. What was the criminal act? 

3. Was the person of color? 

4. Did the criminal wear something on the head? 

5. Was someone in the shop? 

6. Where did it happen? 

7. Was the criminal violent? 

8. What was approximatively the age of the criminal? 

9. Was the criminal dressed in elegant clothing? 

10. How did the criminal hide the loot? 

11. Was the criminal female? 

12. How many people were in the shop during the robbery? 

13. Was it committed by a young person? 

14. Was the criminal carrying something in the hands? 

15. Did the criminal interact with someone? 

16. What was robbed? 

17. Did the criminal have a backpack? 

18. Where was the cashier? 

19. Was the criminal wearing sporty clothes? 

20. Did the criminal had any particular sign? 
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