Back to list

Tommaso Fellin Write a Message

Senior Researcher Tenured

Contacts

Via Morego 30
+39 010 71781 549

About

Tommaso Fellin graduated in Physics at the University of Padova in 1998 studying enzyme kinetics with time-resolved spectroscopy. From 1998 to 2003, as a PhD student in the Dept. of Biomedical Sciences at University of Padova, he investigated the biophysical properties of voltage-gated calcium channels and the functional consequences of mutations in calcium channels linked to human neurological disorders. During his first postdoctoral training period (2003-2004), he integrated electrophysiological and imaging techniques to study neuron-glia communication in brain slices. In 2005 he moved to the Dept. of Neuroscience at University of Pennsylvania School of Medicine as a senior post doctoral researcher and continued his research on neuron-glia interaction. In 2008, he joined the department of Neuroscience and Brain Technologies at the Italian Institute of Technology (IIT) as a junior team leader. He is currently senior team leader with tenure at the IIT, head of the Optical Approaches to Brain Function Laboratory, and co-head (together with Dr. S. Panzeri) of the Neural Coding Laboratory. He is also recipient of the European Research Council (ERC) consolidator grant NEURO-PATTERNS and co-funder of the start-up SmartMicroOptics.

Projects

The research activity of the 'Optical Approaches to Brain Function Laboratory' focuses on the study of brain microcircuits and on the development of innovative optical methods to probe their function.

 

Our goal

When we see an object, hear a sound or smell an odor, precise spatial and temporal patterns of electrical activity are generated within neuronal networks located in specialized brain areas. This electrical representation of the external stimulus is believed to mediate perception of the sensory experience. However, how information about the external stimulus is encoded in the spatial and temporal dimension of sensory-evoked activities and which specific feature of evoked network dynamics are used to drive behavior is largely unknown. Moreover, even in the same apparent state of vigilance, sensory-evoked activities are highly variable, and repetition of the very same sensory experience results in distinct network dynamics. What does this variability mean for sensory experience? Do distinct network dynamics carry different information about the stimulus? Or rather, does the brain code the same information coming from the outside world in multiple and equivalent ways?

My laboratory has taken a multidisciplinary approach to causally address these questions and decipher the computational principles of brain networks by combining new cell type-specific manipulations with innovative optical technologies for brain circuit investigation. Using mainly the mouse somatosensory cortex as a model system, we focus our research on four critical aspects of this challenging task: i) how specific network dynamics are regulated by the activity of distinct cellular subpopulations, including principal neurons, interneurons and glial cells, ii) how these dynamics are transferred between presynaptic and postsynaptic networks, iii) how distinct electrical representations of the stimulus may generate different perception of sensory experience, and iv) how a derangement of the cellular interactions underlying these circuit activities may contribute to the genesis and progression of specific brain diseases.

To achieve these goals, we use state-of-the-art approaches including cell type-specific optogenetic manipulations, patch-clamp recordings and two-photon microscopy in vivo and in brain slice preparation. Given that what we know about brain networks is limited by current methodologies, we are also developing new and more accurate tools for the investigation of cortical microcircuits. We are using patterned illumination by means of liquid crystals spatial light modulators and digital micromirror technology to illuminate cellular networks with high spatial and temporal resolutions. We aim to combine these novel approaches with genetically-encoded molecules and microendoscopes to probe and manipulate neuronal circuits with high spatial and temporal precision.

 

Our research

To understand how specific network dynamics are regulated by the activity of distinct cellular subpopulations, we have focused our attention on a main circuit activity that characterizes cortical networks in the absence of external stimuli. This spontaneous activity, named slow oscillations, served as an initial model to test the role of different cellular subpopulations in the control of cortical circuit dynamics. We have applied advanced optical approaches to dissect out the cellular circuits underlying slow network oscillations in the mouse cortex. We used optogenetics, which allows the remote control of cellular excitability with light, to investigate the role of excitatory cells (Beltramo et al. Nat. Neurosci. 2013), inhibitory neurons (Zucca et al. eLife 2017), and glial cells (Fellin et al. PNAS 2009) in the control and propagation of cortical slow oscillations. For example, by combining selective expression of excitatory and inhibitory opsins in layer V and layer II/III pyramidal neurons with electrophysiological recordings in vivo, we showed that activation/inactivation of a subset of pyramidal neurons located in layer V, but not layer II/III, was sufficient and necessary to generate and attenuate slow oscillations, respectively (Beltramo et al. Nat. Neurosci. 2013). Based on patch-clamp recordings, we proposed that the differential role of layer V and II/III in the regulation of slow network activity is linked to the differential ability of these neurons to propagate prolonged depolarization within and across cortical layers. These results demonstrate that the cortex is endowed with layer-specific excitatory circuits that have distinct roles in the coordination of ongoing cortical activity. Moreover, these data underscore the importance of understanding the specific functional microcircuitry of cortical layers, rather than considering the entire cortical column as a uniform processing element. We have also combined optogenetic manipulations with electrophysiological recordings in vitro and in vivo to investigate the cellular mechanisms underlying the genesis of epileptic syndromes (Sessolo et al. J. Neurosci. 2015, De Stasi et al. Cer. Cortex. 2016).

From a more technical point of view, we have been developing optical tools for monitoring and manipulating brain networks with improved spatial and temporal resolution. More specifically, we have been focusing on a particular technique, patterned illumination using ‘wave-front engineering’ and we have been pioneering its application in living rodents. We first designed and built a 'patterned illumination module', a compact, simple optical path that can be easily implemented with commercial two-photon scanheads to allow spatial shaping of laser light (Dal Maschio et al. Optics Express 2010). The patterned illumination module is based on phase modulation of the wave-front of laser light by a liquid crystal spatial light modulator (SLM). The combination of this module with the scanhead constitutes a patterned two-photon illumination microscope capable of simultaneous imaging and stimulating using two independent laser sources at different wavelengths. We reported the first application of this optical set-up for in vivo experimental conditions in living rodents, using wave-front modulation to provide inertia-free focus control, i.e., dynamically focusing in depth while keeping the objective in a fixed position (Dal Maschio et al. Optics Letters 2011). As a necessary step towards the development of an optical system that allows the generation of artificial patterns of network activation in vivo, we applied our patterned two-photon illumination microscope to map the activity of cortical cells with millisecond temporal resolution and subcellular spatial resolution (Bovetti et al. Sci. Reports 2017). We also validated this approach in GRIN lens-based endoscopes for fast imaging in deep brain regions (Moretti et al. Biom. Optics Express 2016). Moreover, we combined holographic scanless imaging of GCaMP6 signals in population of neurons with wide-field single-photon optogenetic stimulation of the inhibitory opsin Archaerhodopsin (Bovetti et al. Sci. Reports 2017). This new experimental approach can be used to effectively map the response of neuronal circuits in the intact mammalian brain with unprecedented spatiotemporal resolution and no stimulation artifacts during inhibitory optogenetic manipulations.

Patterned two-photon illumination is being proposed as a powerful tool to investigate the role of precise spatiotemporal patterns of neuronal activity in driving behavior (Bovetti et al. J. Neurosci. Methods 2015). However, there is no clear theoretical framework for the application of patterned illumination to this aim. We are contributing to develop such a conceptual framework in the context of perceptual behavior (Panzeri et al. Neuron 2017).

 

Lab members:

  • Noemi Binini, post doc
  • Marco Brondi, post doc
  • Sebastiano Curreli, post doc
  • Valentina Pasquale, post doc
  • Dania Vecchia, post doc
  • Stefano Zucca, post doc
  • Angelo Forli, PhD student
  • Andrea Sattin, PhD student
  • Stefano Varani, PhD student
  • Francesco Nespoli, undergraduate student

 

Lab alumni:

  • Andrea Antonini, CEO SmartMicroOptics, Genova
  • Riccardo Beltramo, Scanziani Lab, Dept. of Biology, UCSF, San Francisco
  • Serena Bovetti, University of Torino, Torino
  • Marco Dal Maschio, Baier Lab, Max Planck Institute of Neurobiology, Munich
  • Angela Michela De Stasi, Bacci Lab, Institut du Cerveau et de la Moelle Epinière, Paris
  • Giulia D'Urso, Stoop Lab, Centre for Psychiatric Neurosciences, Lausanne University Hospital, Lausanne
  • Pasqualina Farisello, Martinoia Lab, Dept. of Bioengineering, University of Genova, Genova
  • Claudio Moretti, Gigan Lab, UPMC-Sorbonne Universités, Collège de France, Paris

Selected Publications

 

IIT publications

1) Gobbo F., Marchetti L., Jacob A., Pinto B., Binini N., Pecoraro Bisogni F., Alia C., Luin S., Caleo M., Fellin T., Cancedda L., Cattaneo A. “Activity-dependent expression of Channelrhodopsin at neural synapsesNature Communications (2017) In press.

2) Zucca S., D'Urso G., Pasquale V., Vecchia D., Pica G., Bovetti S., Moretti C., Varani S., Molano-Mazon M., Chiappalone M., Panzeri S., Fellin T. "An inhibitory gate for state transition in cortex" eLife (2017) 6: e26177.

3) Panzeri S., Harvey C.D., Piasini E., Latham P.E., Fellin T. "Cracking the neural code for sensory perception by combining statistics, intervention and behavior" Neuron (2017) 93: 491-507.

4) Bovetti S., Moretti C., Zucca S., Dal Maschio M., Bonifazi P., Fellin T. "Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain" Scientific Reports (2017) 7: 40041.

5) Moretti C., Antonini A., Bovetti S., Liberale C., Fellin T. "Scanless functional imaging of hippocampal networks using patterned two-photon illumination through GRIN lenses" Biomedical Optics Express (2016) 7: 3958-3967.

6) De Stasi A.M., Farisello P., Marcon I., Cavallari S., Forli A., Vecchia D., Losi G., Mantegazza M., Panzeri S., Carmignoto G., Bacci A., Fellin T. "Unaltered network activity and interneuronal firing during spontaneous cortical dynamics in vivo in a mouse model of Severe Myoclonic Epilepsy of Infancy" Cerebral Cortex (2016) 26:1778-94.

7) Sessolo M., Marcon I., Bovetti S., Losi G., Cammarota M., Ratto G.M., Fellin T.*, Carmignoto G.* "Parvalbumin-positive inhibitory interneurons oppose propagation but favor generation of focal epileptiform activity" Journal of Neuroscience (2015) 35:9544-9557.

8) Bovetti S., Fellin T.Optical dissection of brain circuits with patterned illumination through the phase modulation of lightJournal of Neuroscience Methods (2015) 241: 66-77.

9) Antonini A., Liberale C., Fellin T.Fluorescent layers for characterization of sectioning microscopy with coverslip-uncorrected and water immersion objectivesOptics Express (2014) 22: 14293–14304.

10) Bovetti S., Moretti C., Fellin T.Mapping brain circuit function in vivo using two-photon fluorescence microscopyMicroscopy Research and Techniques (2014) 77: 492-501.

11) Beltramo R., D’Urso G., Dal Maschio M., Farisello P., Bovetti S., Clovis Y., Lassi G., Tucci V., De Pietri Tonelli D., Fellin T.Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortexNature Neuroscience (2013) 16(2):227-34.

12) FellinT., Ellenbogen J.M., De Pittà M., Ben-Jacob E., Halassa M.M. “Astrocyte regulation of sleep circuits: experimental and modeling perspectivesFront. Compt. Neurosci. (2012) 6: 65. doi: 10.3389/fncom.2012.00065.

13) Dal Maschio M., Difato F., De Stasi A.M., Beltramo R., Blau A., Fellin T.Optical investigation of brain networks using structured illumination” in Cellular Imaging Techniques for Neuroscience and Beyond (2012), Elsevier.

14) Dal Maschio M., Beltramo R., A. De Stasi., Fellin T.Two-photon calcium imaging in the intact brain” Adv. Exp. Med. Biol. (2012) 740:83-102.

15) Difato F., Dal Maschio M., Beltramo R., Blau A., Benfenati F., Fellin T.Spatial light modulators for complex spatio-temporal illumination of neuronal networks” in Neuronal Network Analysis: concepts and experimental approaches (2012), Neuromethods book series, Springer.

16) Dal Maschio M., De Stasi A.M., Benfenati F., Fellin T.Three dimensional in vivo scanning microscopy with inertia-free focus controlOptics Letters (2011) 36:3503-05.

17) Difato F., Dal Maschio M., Marconi E., Ronzitti G., Maccione A., Fellin T., Berdondini L., Chieregatti E., Benfenati F., Blau A. "Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks" J. Biom. Optics (2011) 16: 051306.

18) Deng Q, Terunuma M, Fellin T, Moss SJ, Haydon PG ”Astrocytic activation of A1 receptors regulates the surface expression of NMDA receptors through a Src kinase dependent pathwayGlia (2011) 59:1084-93.

19) Dal Maschio M., Difato F., Beltramo R., Blau A., Benfenati F., Fellin T. ”Simultaneous two-photon imaging and photo-stimulation with structured light illuminationOptics Express (2010) 18:18720-18731.

20) Halassa M.M., Dal Maschio M., Beltramo R., Haydon P.G., Benfenati F., Fellin T.Integrated Brain Circuits: neuron-astrocyte interaction in sleep-related rhythmogenesisScientificWorldJournal (2010) 10:1634-1645.

21) Fellin T., Halassa M., Terunuma M., Succol F., Takano H., Frank M.G., Moss S.J., Haydon P.G. “Endogenous non neuronal modulators of synaptic transmission control cortical slow oscillations in vivoPNAS (2009) 106:15037-42.

22) Halassa M., Fellin T., Haydon P.G. “Tripartite synapse: roles of astrocytic purines in the control of synaptic physiology and behaviorNeuropharmacology (2009), 57:343-6.

23) D’Ascenzo M., Podda M.V., Fellin T., Azzena G.B., Haydon P.G., Grassi C. “Activation of mGluR5 induces spike afterdepolarization and enhanced excitability in medium spiny neurons of the nucleus accumbens by modulating persistent Na+ currentsJournal of Physiology (2009), 587:3233-3250.

24) Dityatev A., Fellin T. Extracellular matrix in plasticity and epileptogenesisNeuron Glia Biology (2009), June 5:1-13.

25) Fellin T.Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activityJournal of Neurochemistry (2009) 108:533-544.

 

Edited books

- Fellin T., Halassa M.M. (2012) “Neuronal network analysis: concepts and experimental approaches”, Neuromethods Book Series, Springer.

http://www.springer.com/biomed/neuroscience/book/978-1-61779-632-6

 

Previous publications

26) Halassa M., Florian C., Fellin T., Munoz J.R., Lee S.Y., Abel T., Haydon P.G., Frank M. “Astrocytic adenosine controls sleep homeostasis and cognitive consequences of sleep lossNeuron (2009) 61:213-219.

27) FellinT., D’AscenzoM., HaydonP.G.Astrocytes control neuronal excitability in the nucleus accumbens”  ScientificWorldJournal (2007) 7:89-97.

28) Ding S.*, Fellin T.*, Zhu Y.*, Lee S.Y., Auberson Y.P., Meany D., Coulter D.A., Carmignoto G., Haydon P.G. Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus” Journal of Neuroscience (2007) 27(40):10674-84.

29) Halassa M.*, Fellin T.*, Takano H., Dong J.H., Haydon P.G. “Synaptic islands defined by the territory of a single astrocyteJournal of Neuroscience (2007) 27(24):6473-6477.

30) Halassa M., Fellin T., Haydon P.G. “The Tripartite Synapse: Roles for Gliotransmission in Health and DiseaseTrends in Molecular Medicine (2007) 13(2):54-63.

31) D’Ascenzo  M.*, Fellin T.*, Terunuma M., Revilla-Sanchez R., Meany D., Auberson Y.P., Moss S.J., Haydon P.G. “mGluR5 stimulates gliotransmission in the nucleus accumbens” Proc. Natl. Acad. Sci. (2007) 104(6):1995-2000.

32) Fellin T., Gomez-Gonzalo M., Gobbo S., Carmignoto G., Haydon P.G. “Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices” Journal of Neuroscience (2006) 26:9312-9322.

33) Fellin T., Sul JY, D’Ascenzo M, Takano H, Pascual O, Haydon PG. “Bidirectional astrocyte-to-neuron communication: the many roles of glutamate and ATP.Novartis Found Symp (2006) 276:208-217.

34) Fellin T., Pascual O, Haydon PG. “Astrocytes coordinate synaptic networks: balanced excitation and inhibitionPhysiology (2006) 21:208-215.

35) Carmignoto G., Fellin T. “Glutamate release from astrocytes as a non-synaptic mechanism for neuronal synchronization in the hippocampus.” J. Physiol. Paris (2006) 99(2-3):98-102.

36) Fellin T., Pozzan T., Carmignoto G. “Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes.” J Biol Chem. (2006) 281(7):4274-84.

37) Fellin T., Haydon PG. “Do astrocytes provide excitation underlying seizures?” Trends in Molecular Medicine (2005) 11(12):530-3.

38) A. Tottene, F. Pivotto, T.Fellin, T. Cesetti, A.M. van den Maagdenberg, D. Pietrobon. “Specific Kinetic Alterations of Human CaV2.1 Calcium Channels Produced by Mutation S218L Causing Familial Hemiplegic Migraine and Delayed Cerebral Edema and Coma after Minor Head Trauma.” J. Biol. Chem. (2005) 280(18):17678-86.

39) Fellin T., Luvisetto S., Spagnolo M., Pietrobon D. “Modal Gating of Human CaV2.1 (P/Q-type) Calcium Channels: II. The b Mode and Reversible Uncoupling of Inactivation”.J. Gen. Physiol. (2004), 124: 463-474.

40) Luvisetto S., Fellin T., Spagnolo M., Hivert B., Brust P.F., Harpold M.M, Stauderman K.A., Williams M.E., Pietrobon D. “Modal Gating of Human CaV2.1 (P/Q-type) Calcium Channels: I. The Slow and the Fast Gating Modes and their Modulation by Beta Subunits“. J. Gen. Physiol. (2004), 124: 445-461.

41) Fellin T., Pascual O., Gobbo S., Pozzan T., Haydon P.G., Carmignoto G. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron (2004), 43: 729-743.

42) Fellin T, Carmignoto G. “Neuron-to-astrocyte signaling in the brain represents a distinct multifunctional unit”. J Physiol. (2004), 559: 3-15.

43)  Zonta M, Sebelin A, Gobbo S, Fellin T, Pozzan T, Carmignoto G. “Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes”. J Physiol. (2003), 553.2: 407-414.

44) A. Tottene*, T.Fellin*, S. Pagnutti, S. Luvisetto, J. Striessnig, C. Fletcher, D. Pietrobon; “Familial Hemiplegic Migraine Mutations increase Ca2+ influx through single human CaV2.1 channels and decrease maximal current density in neurons”. Proc. Natl. Acad. Sci. (2002), 99(20):13284-13289.

45) S. Guida, F. Trettel, S. Pagnutti, E. Mantuano, A. Tottene, L. Veneziano, T. Fellin, M. Spadaro, K.A. Stauderman, M.E. Williams, S. Volsen, R. Ophoff, R.R. Frants, C. Jodice, M. Frontali, D. Pietrobon; ”Complete Loss of P/Q Calcium Channel Activity Caused by a CACNA1A Missense Mutation Carried by Episodic Ataxia Type 2 Patients”. American Journal of Human Genetics (2001), 68: 759-764.

Awards

 

Funding: 

  • Marie Skłodowka-Curie Research Fellowship Programme, Seal of Excellence, 2017-2019.
  • Marie Skłodowka-Curie Research Fellowship Programme, Seal of Excellence, 2017-2019.
  • ERC consolidator grant, 2015-2020.
  • FET Flagship Human Brain Project (FLAG-ERA-JTC), 2015-2018.
  • Marie Skłodowka-Curie Research Fellowship Programme, 2016-2018.
  • NIH, BRAIN Inititative grant, 2014-2017.
  • FP7, DESIRE, 2013-2017.
  • Interdisciplinary/Interdepartmental project, Istituto Italiano di Tecnologia, 2014-2016.
  • Interdisciplinary/Interdepartmental project, Istituto Italiano di Tecnologia, 2013-2015.
  • Progetti di eccellenza, Fondazione Cariparo, 2012-2014.
  • Fondo Investimenti Ricerca di Base, Italian Ministry of Health, 2012-2015.
  • Genetic disease grant, Telethon Foundation, 2011-2014.
  • Program in Neuroscience grant, Compagnia di San Paolo, 2010-2013.

 

 

 

 

 

INFORMATION NOTICE ON COOKIES

IIT's website uses the following types of cookies: browsing/session, analytics, functional and third party cookies. Users can choose whether or not to accept the use of cookies and access the website.
By clicking on further information, the full information notice on the types of cookies used will be displayed and you will be able to choose whether or not to accept cookies whilst browsing on the website.
Further information
Accept and close

I numeri di IIT

L’Istituto Italiano di Tecnologia (IIT) è una fondazione di diritto privato - cfr. determinazione Corte dei Conti 23/2015 “IIT è una fondazione da inquadrare fra gli organismi di diritto pubblico con la scelta di un modello di organizzazione di diritto privato per rispondere all’esigenza di assicurare procedure più snelle nella selezione non solo nell’ambito nazionale dei collaboratori, scienziati e ricercatori ”.

IIT è sotto la vigilanza del Ministero dell'Istruzione, dell'Università e della Ricerca e del Ministero dell'Economia e delle Finanze ed è stato istituito con la Legge 326/2003. La Fondazione ha l'obiettivo di promuovere l'eccellenza nella ricerca di base e in quella applicata e di favorire lo sviluppo del sistema economico nazionale. La costruzione dei laboratori iniziata nel 2006 si è conclusa nel 2009.

Lo staff complessivo di IIT conta circa 1440 persone. L’area scientifica è rappresentata da circa l’85% del personale. Il 45% dei ricercatori proviene dall’estero: di questi, il 29% è costituito da stranieri provenienti da oltre 50 Paesi e il 16% da italiani rientrati. Oggi il personale scientifico è composto da circa 60 principal investigators, circa 110 ricercatori e tecnologi di staff, circa 350 post doc, circa 500 studenti di dottorato e borsisti, circa 130 tecnici. Oltre 330 posti su 1400 creati su fondi esterni. Età media 34 anni. 41% donne / 59 % uomini.

Nel 2015 IIT ha ricevuto finanziamenti pubblici per circa 96 milioni di euro (80% del budget), conseguendo fondi esterni per 22 milioni di euro (20% budget) provenienti da 18 progetti europei17 finanziamenti da istituzioni nazionali e internazionali, circa 60 progetti industriali

La produzione di IIT ad oggi vanta circa 6990 pubblicazioni, oltre 130 finanziamenti Europei e 11 ERC, più di 350 domande di brevetto attive, oltre 12 start up costituite e altrettante in fase di lancio. Dal 2009 l’attività scientifica è stata ulteriormente rafforzata con la creazione di dieci centri di ricerca nel territorio nazionale (a Torino, Milano, Trento, Parma, Roma, Pisa, Napoli, Lecce, Ferrara) e internazionale (MIT ed Harvard negli USA) che, unitamente al Laboratorio Centrale di Genova, sviluppano i programmi di ricerca del piano scientifico 2015-2017.

IIT: the numbers

Istituto Italiano di Tecnologia (IIT) is a public research institute that adopts the organizational model of a private law foundation. IIT is overseen by Ministero dell'Istruzione, dell'Università e della Ricerca and Ministero dell'Economia e delle Finanze (the Italian Ministries of Education, Economy and Finance).  The Institute was set up according to Italian law 326/2003 with the objective of promoting excellence in basic and applied research andfostering Italy’s economic development. Construction of the Laboratories started in 2006 and finished in 2009.

IIT has an overall staff of about 1,440 people. The scientific staff covers about 85% of the total. Out of 45% of researchers coming from abroad 29% are foreigners coming from more than 50 countries and 16% are returned Italians. The scientific staff currently consists of approximately 60 Principal Investigators110 researchers and technologists350 post-docs and 500 PhD students and grant holders and 130 technicians. External funding has allowed the creation of more than 330 positions . The average age is 34 and the gender balance proportion  is 41% female against 59% male.

In 2015 IIT received 96 million euros in public funding (accounting for 80% of its budget) and obtained 22 million euros in external funding (accounting for 20% of its budget). External funding comes from 18 European Projects, other 17 national and international competitive projects and approximately 60 industrial projects.

So far IIT accounts for: about 6990 publications, more than 130 European grants and 11 ERC grants, more than 350 patents or patent applications12 up start-ups and as many  which are about to be launched. The Institute’s scientific activity has been further strengthened since 2009 with the establishment of 11 research nodes throughout Italy (Torino, Milano, Trento, Parma, Roma, Pisa, Napoli, Lecce, Ferrara) and abroad (MIT and Harvard University, USA), which, along with the Genoa-based Central Lab, implement the research programs included in the 2015-2017 Strategic Plan.